WEIGHTED INEQUALITIES FOR
BOCHNER-RIESZ MEANS IN THE PLANE

ANTHONY CARBERY AND ANDREAS SEEGER

1. Introduction

For a Schwartz function f € S(R?) let f(ﬁ) = [ f(y)e~"¥€)dy denote the Fourier transform.
We consider the Bochner-Riesz means of index A\ defined by

2 ~ .
S) = G [0 ST

and the maximal operator
§:f(@) = sup|S;f (@)

which controls the pointwise behavior of S} as t — oo.
In this paper we prove weighted L? inequalities

(L) 1824 ey < 05 [ 1f@PW s

for appropriate weights w, W. We shall always assume that all weights w under consideration are
nonnegative, locally integrable and satisfy some mild growth condition at infinity, namely

(1.2) /w(x)(l ) Modz < oo

for some fixed large Ny; we shall call such weights admissible.

Rubio de Francia [11] showed that for every w € L?(R?) there is a nonnegative W € L?(R?)
such that ||[W]ls < Cy|jw|l2, Cx < oo if A > 0, and the analogous weighted norm inequality for S
holds uniformly in ¢t. He used methods related to factorization theory of operators and the proof
gave no information on how to construct w from W. In [3] the first author explicitly constructed
for every ¢ > 2 an operator W, », bounded on L(R?), such that (1.1) holds for w € L%(R?) and
W = W, aw; in fact given W, y one choses W, yw to be (WQM\(wQ/Q))Q/q. See also Cérdoba [8]
for a related result concerning S7. In [3] it was observed that the operator W, » was bounded on
L"(R?) for ¢ < r < 2q and the question arose whether W, \ can be chosen to be independent of
q. We shall show that this is indeed the case; for each A > 0 we construct an operator W) such
that (1.1) holds with W = W) and W), is bounded on L" if 2 < r < co. Moreover this operator
is pointwise bounded by a positive operator (involving a Besicovich-type maximal function acting
on w2) which itself is bounded on L® for 4 < s < o00.
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Let By be the family of all rectangles centered at the origin, with the property that the eccen-
tricity (the ratio of the larger and the smaller sidelength) is equal to 2V. Define

1
Myg(z) = sup —/ lg(x 4+ y)|dy.
REE%N |R| R

This maximal function is known to be bounded on L?(R?) with norm O(N), moreover for ¢ > 2 it is

bounded with norm O(qTqQNl/Q_l/q) (see [7], [17]). Denote by M the standard Hardy-Littlewood

maximal operator and let Myg = M (|g|*)/*.

Theorem 1. Given A > 0 there is 6, > 0 and an operator W, bounded on L1(R?),2—§y < q < oo,
such that for all admissible weights the inequality

(1.3) sup / 152/ (2)[Pwlz) do < Cy / £ (2) P Wrw(z)da

t>0

holds. Moreover if s > 1 then

(1.4) /

The operator W) satisfies the pointwise estimate

$2f(@)w(e)dr < Ci. / | (2)[2 M (Wyw) () d.

(1.5) Waw(z) < C. Y2795, nlw’) (@))%, e <2

g1

A definition of W) and somewhat sharper results are given in §2. Stein [14, p.7] posed the
question whether W) can be essentially realized as ), 27, 2w, € < 2. An affirmative
answer seems to be known only for radial weights (see Carbery, Romera and Soria [4]), and then
only for the operator S7. Since by (1.4) the L? operator norm of S} is controlled by the square root
of the L(®/2" operator norm of MWy, and since this operator is bounded for all ¢ > 2, Theorem
1.1 implies Carbery’s theorem [2] saying that S? is bounded on LP if A > 0 and 2 < p < 4. The
weaker weighted norm inequality

(1.6) /‘S;\f(g;ﬂzw(x) dz < 057322le/‘f(af)‘QMS[(gﬁl/g‘w‘Q)l/Q]de'

>0

which by (1.5) also holds true implies the known LP result for all A > 0 only for the range
2 < p < 8/3. Moreover our estimate is interesting only for small values of A. In fact for A > 1/6
M. Christ [6] showed that (1.1) holds with W (z) = M [M,w](x) where r > max{2/(2A + 1);1},
s> 1.

The proof of Theorem 1.1 relies on the method used in [3]; the improvement is achieved by using
arguments along the lines of [13].

In what follows ¢ and C' will always be positive numbers which may assume different values in
different formulas.



2. Weighted estimates for square-functions

Let j > 10° and let I be a fixed interval of length 277 contained in [1/2,2]. Let ¢; € C§° be
supported in I and satisfy the estimates

d\» |
(2.1) ‘(@) 1/)1(3)‘ < 0,27,
Let n € C°(R?) supported in {£ € R? : [£;] < 1072} and define
(&) = Yr(l€hn(8)
and an operator T; by - R
Tf(&) = YA f(€).

We are going to derive weighted L? inequalities for the square-functions
2k+1

¢'s@) = ([, M)

6t = (| ms@Pg) "

with suitable bounds depending on j.
Let v € C§°(R) be supported in (2711, 211) such that y(t) = 1 for t € (2710,210). Let ¢ € C5°(R)
be supported in (—1,1) such that
ZqZ)(S—L):l, seR.

LeZ
For 1 < j/2, 7 € Z, |1| < 27/27! let

') = 22 Relol2 AR —

)

and

and define for k € Z an operator Q?''F by

QI g(&) = @' (27%9)9(¢).
In section 2 below we use the notation Q4! for Q7%°.

The multipliers ¢Z!(27*.) are supported in rectangles with a longer side of length C2F+i=7/2
and a shorter side of length C2¥*2/=J; the longer side is parallel to the radial direction (1) where
0(1) = e, /|e,| with e, = (2!79/2,1). The distance of these rectangles to the origin is ~ 2k+!=7/2,

For 6 € S! let #+ be the unit vector the vector perpendicular to 6 such that det(f,6+) = 1.
Define

Hy 'y (2) = 271732 (14 27792 , 0) )N (L + 27 (e, 04) ).
and for k£ € Z the dilates
Hj' (2) = 220 H' (2¥a).

We shall always assume that N > 100 + Ny where Ny is the number in the definition of
admissibility.

Now let A

Wig(e) = sup HyY = |g|(2)

and for [ > 0 A A 1/2
lekg(a:) = sup(Hgé’Tk)’N * |(Q]le)*g\2(x))



Theorem 2.1. For all k € Z, for all Schwartz-functions f, for all admissible weights w

(2.2 [16 s@Pu)ds < 0270 [ 17 PW (s
where
Whw(z) = Whu(z) + \/3( > |W]l-’kw(x)|2> /
o<li<y/2
Moreover if s > 1 then
2 —J z)|? su kwl(z)dz.
(2.3 [167@)Pu@) ds < 277 [ |#@)P M lsupWhul(@)d

The mapping properties of Wf are contained in

Proposition 2.2. The inequalities

IWkgll, < CQ+ 7)Y g|l,

2.4 .
(24) IsupWigly < C(1+ gl

hold for 2 < q < oo; here C does not depend on q, j or k. Moreover there is the pointwise estimate

(2.5) sup (Whg(z)| < Cj(IM;2091*)" 2.

We note that (2.2), (2.4) and a duality argument imply the sharp L* estimate for the square-
function G*, namely ‘
IG"Flla < C(L+4) 27772 f|s.

This estimate implies the known bound ||T}| s+ = O(j/*), obtained by Cérdoba [7]. The
sharpness of the L* estimate for G* follows from the sharpness of Cérdoba’s estimate. For earlier
related results on G see [2], [3].

Remark 2.3. The estimates (2.2) and (2.3) remain true if wa is replaced by

1/2
- - Lk
Wﬁpw:waJr\/]( Z |241(1/p 1/2)Wj,pw\2)
0<i<y/2

where "
L,k . ik i1,k
Wikg(e) = sup(HALS v * (@2 g () "
and 1 < p < 2. The proof of this assertion will be given below.

Standard arguments ([15], [3], [16]) relating maximal operators to square functions can be used
to deduce Theorem 1 from the above results. Namely let W(¢) = (¢, V¥(€)) and and let T} be the
convolution operator with Fourier multiplier (Ivi(tfl-); then 2797, satisfies the same quantitative
properties as T;. Using [16, p.499] one obtains the estimate

sup 1, 2)| < (3 sup [T )

t>0 kGZlSSSQ

) 2 ) 2 4q 2\ 1/2
(S22 meatas) 2 w292 [ ST 0 7] )

kEZ
([~ mars) " e[ msrd)"
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and therefore

/sup|th(x)|2w(x)dx < C/|f(x)|2Ms(supW]kw)(x)dx.
t>0 k

Now Sp = Z;io 279AS; ; where sup,~  |S;,¢f| is pointwise bounded by 27 M f and where for j > 10°
the Fourier multiplier for S;; is Cyr(¢!-) with a suitable ¢; satisfying the bounds (2.1). Therefore
Theorem 2.1, Remark 2.3 and a weighted inequality for M due to Fefferman and Stein ([16, p. 53])
imply that (1.1) holds with W = M (W, pw) s > 1, where

We pw(z) = Z 2" ]ESUP ( )-

j>105

Here 1 < p < 2, ¢ < 2) and Wﬁpw is a sum of less than 10% operators satisfying the same
quantitative estimates as the operator Wﬁp in Remark 2.3 (they are essentially rotates of this
operator). By Proposition 2.2 the operator W, 5 is bounded on L9, for 2 < ¢ < co. An examination
of the operators ’Wf’p and an interpolation argument show that for 1 < p < 2

Isup Wiyl < €27 0720w,

for some a > 0. This implies that given € > 0 there is p < 2 and (e, p) > 0 such that W, , is
bounded on L7 for 2 — §(e,p) < g < co. Theorem 1 follows by choosing 0 < € < 2.

Before proceeding with the proof of Theorem 2.1 we state without proof a lemma which is closely
related to a theorem of Carleson concerning square-functions with equally spaced decompositions.
For published proofs see [7], [12] (and also [13] for a simple proof based on Bernstein’s Theorem).

Lemma 2.4. Let {Q;} be a sequence of disjoint unit cubes and let m; be supported in @Q;; moreover
assume that the estimates

[ 1ogme) o < 2
hold for all multiindices || < N, uniformly inl. Let A € GL(2,R). Then
2 2 2 |det A|71

We now fix 5 > 10. In what follows we shall introduce various decompositions depending on j
without always indicating the dependence on j. Consequently we shall also omit the index j in
H ik]f, or QJ¥!. Various constants C' in inequalities may depend on N.

dy.

Proof of Theorem 2.1. Denote by 6, the dilation operator given by 5 f(x) = f(27*z). Then
Gr. = 0_1Go0r and Wf = 5_kW]05k. A scaling argument shows that in order to prove (2.2) it
suffices to prove (2.2) for kK = 0 which is henceforth assumed.

For m € Z, define operators P™ by

Pmf(€) = ¢(27|¢] —m) f(€)

so that the P/”?f are supported in thin annuli of width 2=™%1 and 3" P™f = f. Observe that for
fixed t there are at most three m such that P™7T; # 0. Therefore

19 @) ds = /A2X[12(szTt (w )iz
C /R STPTf () [*w(@)da @

x[1,2] T

—~
o
(=)

~
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Define for v = (v1,v5) € Z2, |11], |va| < 2072

B f(€) = 6(297%6 — 11)p(27/2€5 — 1) F(€)
Prf(€) = (27/2¢1 — 11)d(27/%65 — o) P (€).

Thus ]51,\]” is supported in a square of sidelength 2'~7/2 and E”?f is supported in the intersection
of such a square with a thin annulus of width 2'77; therefore it is supported in a rectangle of
dimensions C279/2 x C277.

Moreover for fixed | and for u € Z we define operators Plel by

PrIf(e) = o292, — W) B F(€),

so that P! f is supported in a smaller rectangle of dimensions C271-3/2 x 0277,
Finally define operators BL__ by

TOP
— —~

BL,,f(&) = b5, (6)F(€)

where

b, (&) = ' (©)p(27/2(€,0(7)) — p)(27(£,6+ (7)) — o)

here qll and the corresponding operator QJT‘I were defined above.
Let
Zi={(v,v) e 72 x 722t < vy — V| < 2l+1}

and for k € Z, || < 27/2= et

3 = {v:2'(s—1) <v <2k}
e = {p:2%(k—4) < pu<2?(k+4)}.

We shall use the following elementary geometrical facts (2.7-2.15), assuming [ > 10 in what
follows.

(2.7) For each m, vy there are at most three v, such that PJ* # 0 (here v = (v1,12)).
(2.8) For each y there are at most nine v such that P} # 0.
(2.9) If v € 34, (v,V) € Z; then V' € 3;,» with |k — &'| < 1.

(2.10) If v € 3y, with |k — k’'| <1 and if P,fff # 0 then p € Ayy.

(2.11) For each pu € 2, the support of P/lfff\f is contained in a rectangle RL with sidelengths
C127'79/2 and 1277 where the orientation of RL only depends on «; the longer side is parallel
to u, = (—1,2"79/2k). The rectangle is contained in the annulus {¢ : ||¢| — 277m| < C277} (here
279m € [1/2,2]). The differentiability properties of the multiplier corresponding to P],Zl satisfy
the same bounds as a bump function adapted to RL.



2.12) For each pu, 1 the set
( 4, 14

—

supp (P!, f) —supp (P, )

is contained in a rectangle éﬁm’ with sidelengths C»27'=9/2 and C»,277. The rectangle Efw’ is
contained in an annulus {£ : ¢32!79/2 < |¢] < C32179/2}. The longer side is parallel to u, =
(—1,21972g),

(2.13) Fix m, [. Then there is a constant Cy, independent of [, m such that each £ € R? is contained
in at most Cy of the sets supp (P! f) — supp (Pﬁlﬁ/f)

(2.14) Let ppt(€) = (2926 — p)p(27|¢] — m). Let
&7 = {(a,p) : (supp pj"" —supp pii') Nsupp b, # 0}

and 6%, = UTGZZT. Then the cardinality of 6%, is bounded, independently of m,(, u, u’. Like-
wise, if
%Tal; ={(p, 1) € Appe x Ay : (supp pL”l — supp py ) N supp bmp # () for some 7}
and if R ,=U %Tal'; then the cardinality of R ,» 1s bounded, independently of m, [, o, p.
(2.15) The cardinality of the set
T = {r: R £ () for some (o, p,m)}

TOpP

is bounded, independently of /.

//‘PmTt ‘ w(z dx—
// ‘ ZPmTt ‘ w(z da;—
//meca T )w(x)dx%.

v,v!

For fixed m we now write

Then
(2.16) //me:rt Tz )w(a:)da;% <clm+ Y |
v 10<1<j/2
where
//Z ‘ w(z da:—
and

P[] X R BT eeds T

(v,v')ez;



By (2.9)

I = // Y > PITLf(2) PRTf(r)w (x)dx%.

(k,&")  (v,v')EZ
lk—r'|<1 VE3ik

m=>"1r
K

Therefore by (2.10)

where

I = // >N e W(:ﬂ)d:ﬂ%.

(vv)ez (p,u)e
vE3e e XUk

Now we can write

I = / / S>> > BL,[PErTfPEUT, f](x)w(a:)dx%

00 (v )EZ) (' )€
vE3e A XUk

and we obtain using (2.7), (2.8), (2.14) and (2.15) together with various applications of the Cauchy-
Schwarz inequality

EeY [ XX Rni@PIIIE Y (Bl i

TeTL (viveZy (u,p')e (o,p)
VE3Lw ik XAy GGL”;,
mi e A
(X | ¥ mns@PRGie)])
(mp')e  (vv)ez
Q[lnxglln I/EBLN
- 12 dt
(XX X @) @|)" @
(u,p'ye T€TL (o,p)
Ape XAp GGL";/
ml l 2 1/2
gc/ (S | ¥ Ippnie@ Bl ni@)?)
(mp')e  (vv)eZ
Ape XUy VE3w
Y 12 dt
(XX X (Bl w@)) T de
TETL TP ()
e,
m Y w 12 dt
<cff 35 s mp (Sl u@l) i
V€3mll«€mm N
Now an application of Lemma 2.4 yields
Y w 1/2 l Glvk, 12 1/2
(217) (Z! L) w(@)[*) < C(HE Q2 w2 (@) 2.

We summarize:



Lemma 2.5.

J1@r@pu < cX ey 3

m 10<I<j/2

= /;/‘Pﬁth(x)f%w(:ﬂ)dx

where

and

‘<C/ 2 2 2 / P ) S sup (Hyan *1(@3) wl (@) " do

K VE3 . nEU1k

We continue with the proof of Theorem 2.1. One checks by a straightforward integration by
parts using (2.11) that if u € ;. and 7 € T, then

F er ()i ()] < CHE (),

here N >> 2 and pj?' was defined in (2.14). Moreover the t~'dt measure of the set {t: P™T; # 0}

is bounded by ¢277. Also observe that for 7 € . the kernels H L, 4 behave essentially the same;
in fact

(2.18) sup H! ran(®) < C inf H N(z).
TE'ZI TGTI

An application of Lemma 2.4 yields

(2.19) /Z S /|Pml —w( Jdz < C2- J/ S|P f (o) PHL g 5 () de

m vE3. nEA . VE3.

for all 7 € TL.
Next, the convolution kernel of P, is pointwise bounded by

I:jj/2,3N(x) = 220/2)(1 4 29/2|g|) 3N
and by another application of Lemma 2.4 we obtain the inequality
(2.20) /ZZ|Pf )Pw( :c<C’/|f V2H; o35 * w(z)dz.
K VE3.

Since for large N
HT v * Hj /24N () < CHi,sN(x)
we obtain from (2.18), (2.19), (2.20) and Lemma 2.5 the estimate

> 2

10<i<i ™
i 1/2
<2 [ If@ sup HE gy (H ay = @) w(0) ) )
10<l<2 6[216 ! 16]
—j o 2\ 1/2
<2 [It@PVi( X ) ds
10313%



Similarly
S < CQ_j/|f(x)|QSupHg7N*w(x) do
m 0

and we obtain (2.2).
Finally let 3 € C§°(R?) such that 8(&) = 1if 1/4 < |[¢] < 4 and B(€) = 0 if [£] ¢ (1/8,8) and
define the Littlewood-Paley operator L* by

~

LEf(€) = B2 7*E) F(9).
Observe that
GFf = GF(LFf + LFf + LMf).

Now f + {LFf} defines a vector-valued regular singular integral operator and there is the Cérdoba-
Fefferman weighted norm inequality

/Z|ka da;<C’/\f 2Maw(z)dz, s> 1,

see [10]. Consequently (2.2) yields also (2.3). O
Proof of Remark 2.3. This requires a modification of (2.17). Let

~

L, F(6) = 6(2H72(6,0(7)) — p)(27 (&, 6™ (7)) — o) F(£);

then by definition T'Y panl =
Then the cardinality of 4! is bounded by C’24l where C does not depend on j or 7. Since the
convolution kernel of T Q7! is bounded by CH i N We obtain

Tpo

Now let 4! be the set of all pairs (p, o) such that It Q7" £ 0.

Tap Tpo

(3 @) < ety xlglto)

(p,o)esll

An application of Lemma 2.4 and an interpolation argument then show that (2.17) can be replaced
by

(2.21) <Z‘ Tap ) w ‘ )1/2 < C24(1/p=1/2) (H ‘lew|p( ))1/17

if 1 < p < 2. The rest of the proof requires only notational changes. [

Proof of Proposition 2.2. The convolution kernel of Q7!'* is bounded by a constant Cy times
Lk s iy 3 i 3
MUt (@) = 221 232 p(r))]) N (1 22, 0y )
Moreover a straightforward calculation shows that
0 U4 < (jﬁnj/ghﬂ ]

10



pointwise which implies (2.5). For the same reason W]l‘“'l is uniformly bounded on L*> and the
analogue of the inequality

1/2 ) _
(2.22) [ mtel) | < it

0<1<j/2

holds for ¢ = co. On L? we use an orthogonality argument. Since for fixed k, j each & € R? is

contained in only a bounded number of the sets supp Q4"*g, (0 <1< j/2, |7| < 29/21) we obtain

1/2 /2
Lk g2 Lk Lk
S o) = o( X St l@he?)
0<i<j/2 o<li<j/2 T
4 1/2
<o 3 2@ glE) T < gl
o<i<y/2 7

The desired bound (2.22) follows by interpolation.
In order to estimate the maximal function sup,, Wf g in LY we dominate the sup by an £¢ norm
and the asserted inequality follows from

(2.23) (ZH( Y kg 2)1/2

a\ 1/q .
) =e+ ) gl
o<li<y/2 4

Now the analogue of (2.23) for ¢ = oo follows as before. For ¢ = 2 we use the observation that
for fixed j, k the functions ¢Z'(27*-) are supported in an annulus {£ : ¢p2¢¥77/2 < |¢| < ¢;2F).
Therefore the above L? argument yields now an additional factor of /T + j, proving (2.23) for
q=2. U
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