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1. Introduction

For a Schwartz function f ∈ S(R2) let f̂(ξ) =
∫
f(y)e−i〈y,ξ〉dy denote the Fourier transform.

We consider the Bochner-Riesz means of index λ defined by

Sλ
t f(x) =

1

(2π)2

∫

|ξ|≤t

(1 − |ξ|2
t2

)λf̂(ξ)ei〈x,ξ〉 dξ

and the maximal operator
Sλ
∗ f(x) = sup

t>0
|Sλ

t f(x)|

which controls the pointwise behavior of Sλ
t as t→ ∞.

In this paper we prove weighted L2 inequalities

(1.1)

∫ ∣∣Sλ
∗ f(x)

∣∣2w(x)dx ≤ Cλ

∫
|f(x)|2W (x)dx

for appropriate weights w, W . We shall always assume that all weights w under consideration are
nonnegative, locally integrable and satisfy some mild growth condition at infinity, namely

(1.2)

∫
w(x)(1 + |x|)−N0dx <∞

for some fixed large N0; we shall call such weights admissible.

Rubio de Francia [11] showed that for every w ∈ L2(R2) there is a nonnegative W ∈ L2(R2)
such that ‖W‖2 ≤ Cλ‖w‖2, Cλ <∞ if λ > 0, and the analogous weighted norm inequality for Sλ

t

holds uniformly in t. He used methods related to factorization theory of operators and the proof
gave no information on how to construct w from W . In [3] the first author explicitly constructed
for every q ≥ 2 an operator Wq,λ, bounded on Lq(R2), such that (1.1) holds for w ∈ Lq(R2) and

W = Wq,λw; in fact given W2,λ one choses Wq,λw to be (W2,λ(wq/2))2/q. See also Córdoba [8]
for a related result concerning Sλ

t . In [3] it was observed that the operator Wq,λ was bounded on
Lr(R2) for q ≤ r ≤ 2q and the question arose whether Wq,λ can be chosen to be independent of
q. We shall show that this is indeed the case; for each λ > 0 we construct an operator Wλ such
that (1.1) holds with W = Wλ and Wλ is bounded on Lr if 2 ≤ r ≤ ∞. Moreover this operator
is pointwise bounded by a positive operator (involving a Besicovich-type maximal function acting
on w2) which itself is bounded on Ls for 4 ≤ s ≤ ∞.
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Let BN be the family of all rectangles centered at the origin, with the property that the eccen-
tricity (the ratio of the larger and the smaller sidelength) is equal to 2N . Define

MNg(x) = sup
R∈BN
x∈R

1

|R|

∫

R

|g(x+ y)|dy.

This maximal function is known to be bounded on L2(R2) with norm O(N), moreover for q > 2 it is
bounded with norm O( q

q−2
N1/2−1/q) (see [7], [17]). Denote by M the standard Hardy-Littlewood

maximal operator and let Msg = M(|g|s)1/s.

Theorem 1. Given λ > 0 there is δλ > 0 and an operatorWλ, bounded on Lq(R2), 2−δλ ≤ q ≤ ∞,

such that for all admissible weights the inequality

(1.3) sup
t>0

∫ ∣∣Sλ
t f(x)

∣∣2w(x) dx ≤ Cλ

∫
|f(x)|2Wλw(x)dx

holds. Moreover if s > 1 then

(1.4)

∫ ∣∣Sλ
∗ f(x)

∣∣2w(x) dx ≤ Cλ,s

∫
|f(x)|2Ms(Wλw)(x)dx.

The operator Wλ satisfies the pointwise estimate

(1.5) Wλw(x) ≤ Cε

∑

j≥1

2−jε
(
Mj/2[w

2](x)
)1/2

, ε < 2λ.

A definition of Wλ and somewhat sharper results are given in §2. Stein [14, p.7] posed the
question whether Wλ can be essentially realized as

∑
l>0 2−lεMl/2w, ε < 2λ. An affirmative

answer seems to be known only for radial weights (see Carbery, Romera and Soria [4]), and then
only for the operator Sλ

t . Since by (1.4) the Lp operator norm of Sλ
∗ is controlled by the square root

of the L(p/2)′ operator norm of MsWλ, and since this operator is bounded for all q ≥ 2, Theorem
1.1 implies Carbery’s theorem [2] saying that Sλ

∗ is bounded on Lp if λ > 0 and 2 ≤ p ≤ 4. The
weaker weighted norm inequality

(1.6)

∫ ∣∣Sλ
∗ f(x)

∣∣2w(x) dx ≤ Cε,s

∑

l>0

2−lε

∫
|f(x)|2Ms[(Ml/2|w|2)1/2]dx

which by (1.5) also holds true implies the known Lp result for all λ > 0 only for the range
2 ≤ p ≤ 8/3. Moreover our estimate is interesting only for small values of λ. In fact for λ > 1/6
M. Christ [6] showed that (1.1) holds with W (x) = Ms[Mrw](x) where r > max{2/(2λ + 1); 1},
s > 1.

The proof of Theorem 1.1 relies on the method used in [3]; the improvement is achieved by using
arguments along the lines of [13].

In what follows c and C will always be positive numbers which may assume different values in
different formulas.
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2. Weighted estimates for square-functions

Let j > 105 and let I be a fixed interval of length 2−j contained in [1/2, 2]. Let ψI ∈ C∞
0 be

supported in I and satisfy the estimates

(2.1)
∣∣∣
( d

ds

)n

ψI(s)
∣∣∣ ≤ Cn2nj .

Let η ∈ C∞(R2) supported in {ξ ∈ R2 : |ξ1| ≤ 10−2ξ2} and define

Ψ(ξ) = ψI(|ξ|)η(ξ)
and an operator Tt by

T̂tf(ξ) = Ψ(t−1ξ)f̂(ξ).

We are going to derive weighted L2 inequalities for the square-functions

Gkf(x) =
(∫ 2k+1

2k

|Ttf(x)|2 dt
t

)1/2

and

Gf(x) =
(∫ ∞

0

|Ttf(x)|2 dt
t

)1/2

.

with suitable bounds depending on j.
Let γ ∈ C∞

0 (R) be supported in (2−11, 211) such that γ(t) = 1 for t ∈ (2−10, 210). Let φ ∈ C∞
0 (R)

be supported in (−1, 1) such that
∑

L∈Z

φ(s− L) = 1, s ∈ R.

For l ≤ j/2, τ ∈ Z, |τ | ≤ 2j/2−l let

qjl
τ (ξ) = γ(2−l+j/2|ξ|)φ(2−l+j/2 ξ1

|ξ| − τ)

and define for k ∈ Z an operator Qjl,k
τ by

̂
Qjl,k

τ g(ξ) = qjl
τ (2−kξ)ĝ(ξ).

In section 2 below we use the notation Qjl
τ for Qjl,0

τ .
The multipliers qjl

τ (2−k·) are supported in rectangles with a longer side of length C2k+l−j/2

and a shorter side of length C2k+2l−j ; the longer side is parallel to the radial direction θ(τ) where
θ(τ) = eτ/|eτ | with eτ = (2l−j/2, 1). The distance of these rectangles to the origin is ≈ 2k+l−j/2.

For θ ∈ S1 let θ⊥ be the unit vector the vector perpendicular to θ such that det(θ, θ⊥) = 1.
Define

Hjl
θ,N (x) = 2−l−3j/2(1 + 2−l−j/2|〈x, θ〉|)−N (1 + 2−j |〈x, θ⊥〉|)−N .

and for k ∈ Z the dilates
Hjl,k

θ,N (x) = 22kHjl
θ,N (2kx).

We shall always assume that N ≥ 100 + N0 where N0 is the number in the definition of
admissibility.

Now let
Wk

j g(x) = sup
θ
Hj0,k

θ,N ∗ |g|(x)

and for l > 0

W l,k
j g(x) = sup

τ

(
Hjl,k

θ(τ),N ∗ |(Qjl,k
τ )∗g|2(x)

)1/2
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Theorem 2.1. For all k ∈ Z, for all Schwartz-functions f , for all admissible weights w

(2.2)

∫
|Gkf(x)|2w(x) dx ≤ C2−j

∫
|f(x)|2W k

j w(x)dx

where

W k
j w(x) = Wk

j w(x) +
√
j
( ∑

0<l<j/2

|W l,k
j w(x)|2

)1/2

.

Moreover if s > 1 then

(2.3)

∫
|Gf(x)|2w(x) dx ≤ C2−j

∫
|f(x)|2Ms[sup

k
W k

j w](x)dx.

The mapping properties of W k
j are contained in

Proposition 2.2. The inequalities

(2.4)
‖W k

j g‖q ≤ C(1 + j)1−1/q‖g‖q

‖ sup
k
W k

j g‖q ≤ C(1 + j)‖g‖q

hold for 2 ≤ q ≤ ∞; here C does not depend on q, j or k. Moreover there is the pointwise estimate

(2.5) sup
k

|W k
j g(x)| ≤ Cj(Mj/2|g|2)1/2.

We note that (2.2), (2.4) and a duality argument imply the sharp L4 estimate for the square-
function Gk, namely

‖Gkf‖4 ≤ C(1 + j)1/42−j/2‖f‖4.

This estimate implies the known bound ‖Tt‖L4→L4 = O(j1/4), obtained by Córdoba [7]. The
sharpness of the L4 estimate for Gk follows from the sharpness of Córdoba’s estimate. For earlier
related results on Gk see [2], [3].

Remark 2.3. The estimates (2.2) and (2.3) remain true if W k
j w is replaced by

W k
j,pw = Wk

j w +
√
j
( ∑

0<l<j/2

|24l(1/p−1/2)W l,k
j,pw|2

)1/2

where
W l,k

j,pg(x) = sup
τ

(
Hjl,k

θ(τ),N ∗ |(Qjl,k
τ )∗g|p(x)

)1/p

and 1 ≤ p ≤ 2. The proof of this assertion will be given below.

Standard arguments ([15], [3], [16]) relating maximal operators to square functions can be used

to deduce Theorem 1 from the above results. Namely let Ψ̃(ξ) = 〈ξ,∇Ψ(ξ)〉 and and let T̃t be the

convolution operator with Fourier multiplier Ψ̃(t−1·); then 2−jT̃t satisfies the same quantitative
properties as Tt. Using [16, p.499] one obtains the estimate

sup
t>0

|Ttf(x)| ≤
(∑

k∈Z

sup
1≤s≤2

|T2ksf |2
)1/2

≤
(∑

k∈Z

[
2j/2

(∫ 2

1

|T2ksf |2ds
)1/2

+ 2−j/2
(∫ 2

1

| d
ds
T2ksf |2ds

)1/2
]2)1/2

≤ C
[
2j/2

(∫ ∞

0

|Ttf |2
dt

t

)1/2

+ 2−j/2
(∫ ∞

0

|T̃tf |2
dt

t

)1/2]
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and therefore ∫
sup
t>0

|Ttf(x)|2w(x)dx ≤ C

∫
|f(x)|2Ms(sup

k
W k

j w)(x)dx.

Now Sλ
t =

∑∞
j=0 2−jλSj,t where supt>0 |Sj,tf | is pointwise bounded by 2jMf and where for j ≥ 105

the Fourier multiplier for Sj,t is CψI(t
−1·) with a suitable ψI satisfying the bounds (2.1). Therefore

Theorem 2.1, Remark 2.3 and a weighted inequality for M due to Fefferman and Stein ([16, p. 53])
imply that (1.1) holds with W = Ms(Wε,pw), s > 1, where

Wε,pw(x) = Mw(x) +
∑

j≥105

2−jε sup
k
W̃ k

j,pw(x).

Here 1 ≤ p ≤ 2, ε < 2λ and W̃ k
j,pw is a sum of less than 106 operators satisfying the same

quantitative estimates as the operator W k
j,p in Remark 2.3 (they are essentially rotates of this

operator). By Proposition 2.2 the operatorWε,2 is bounded on Lq, for 2 < q ≤ ∞. An examination

of the operators W̃ k
j,p and an interpolation argument show that for 1 < p < 2

‖ sup
k
W̃ k

j,pw‖p ≤ C2ja(1−2/p)‖w‖p

for some a > 0. This implies that given ε > 0 there is p < 2 and δ(ε, p) > 0 such that Wε,p is
bounded on Lq for 2 − δ(ε, p) ≤ q ≤ ∞. Theorem 1 follows by choosing 0 < ε < 2λ.

Before proceeding with the proof of Theorem 2.1 we state without proof a lemma which is closely
related to a theorem of Carleson concerning square-functions with equally spaced decompositions.
For published proofs see [7], [12] (and also [13] for a simple proof based on Bernstein’s Theorem).

Lemma 2.4. Let {Ql} be a sequence of disjoint unit cubes and letml be supported in Ql; moreover

assume that the estimates ∫
|∂α

ξ ml(ξ)|2dξ ≤ B2

hold for all multiindices |α| ≤ N , uniformly in l. Let A ∈ GL(2,R). Then

∑

l

∣∣F−1[ml(A·)Ff ](x)]
∣∣2 ≤ CNB

2

∫
|f(y)|2 |detA|−1

1 + |tA−1(x− y)|2N
dy.

We now fix j ≥ 10. In what follows we shall introduce various decompositions depending on j
without always indicating the dependence on j. Consequently we shall also omit the index j in

Hjkl
τ,N or Qjkl

τ . Various constants C in inequalities may depend on N .

Proof of Theorem 2.1. Denote by δk the dilation operator given by δkf(x) = f(2−kx). Then
Gk = δ−kG0δk and W k

j = δ−kW
0
j δk. A scaling argument shows that in order to prove (2.2) it

suffices to prove (2.2) for k = 0 which is henceforth assumed.
For m ∈ Z, define operators Pm by

P̂mf(ξ) = φ(2j |ξ| −m)f̂(ξ)

so that the P̂mf are supported in thin annuli of width 2−m+1 and
∑
Pmf = f . Observe that for

fixed t there are at most three m such that PmTt 6= 0. Therefore
∫

|G0f(x)|2w(x) dx =

∫∫

R2×[1,2]

∣∣∣
∑

m

PmTtf(x)
∣∣∣
2

w(x)dx
dt

t

≤ C

∫∫

R2×[1,2]

∑

m

∣∣PmTtf(x)
∣∣2w(x)dx

dt

t
.(2.6)
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Define for ν = (ν1, ν2) ∈ Z2, |ν1|, |ν2| ≤ 2j/2

P̂νf(ξ) = φ(2j/2ξ1 − ν1)φ(2j/2ξ2 − ν2)f̂(ξ)

P̂m
ν f(ξ) = φ(2j/2ξ1 − ν1)φ(2j/2ξ2 − ν2)P̂mf(ξ).

Thus P̂νf is supported in a square of sidelength 21−j/2, and P̂m
ν f is supported in the intersection

of such a square with a thin annulus of width 21−j ; therefore it is supported in a rectangle of
dimensions C2−j/2 × C2−j .

Moreover for fixed l and for µ ∈ Z we define operators Pml
νµ by

P̂ml
νµ f(ξ) = φ(2l+j/2ξ1 − µ)P̂m

ν f(ξ).

so that P̂ml
νµ f is supported in a smaller rectangle of dimensions C2−l−j/2 × C2−j .

Finally define operators Bl
τσρ by

B̂l
τσρf(ξ) = blτσρ(ξ)f̂(ξ)

where
blτσρ(ξ) = qjl

τ (ξ)φ(2l+j/2〈ξ, θ(τ)〉 − ρ)φ(2j〈ξ, θ⊥(τ)〉 − σ)

here qjl
τ and the corresponding operator Qjl

τ were defined above.
Let

Zl = {(ν, ν′) ∈ Z2 × Z2 : 2l ≤ |ν1 − ν′1| < 2l+1}

and for κ ∈ Z, |κ| ≤ 2j/2−ℓ let

Zlκ = {ν : 2l(κ− 1) < ν ≤ 2lκ}.
Alκ = {µ : 22l(κ− 4) ≤ µ ≤ 22l(κ+ 4)}.

We shall use the following elementary geometrical facts (2.7-2.15), assuming l ≥ 10 in what
follows.

(2.7) For each m,ν1 there are at most three ν2 such that Pm
ν 6= 0 (here ν = (ν1, ν2)).

(2.8) For each µ there are at most nine ν such that Pml
νµ 6= 0.

(2.9) If ν ∈ Zlκ, (ν, ν′) ∈ Zl then ν′ ∈ Zlκ′ with |κ− κ′| ≤ 1.

(2.10) If ν ∈ Zlκ′ , with |κ− κ′| ≤ 1 and if Pml
νµ 6= 0 then µ ∈ Alκ.

(2.11) For each µ ∈ Alκ the support of P̂ml
νµ f is contained in a rectangle Rl

µ with sidelengths

C12
−l−j/2 and C12

−j where the orientation of Rl
µ only depends on κ; the longer side is parallel

to uκ = (−1, 2l−j/2κ). The rectangle is contained in the annulus {ξ :
∣∣|ξ| − 2−jm

∣∣ ≤ C2−j} (here

2−jm ∈ [1/2, 2]). The differentiability properties of the multiplier corresponding to Pml
νµ satisfy

the same bounds as a bump function adapted to Rl
µ.
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(2.12) For each µ, µ′ the set

supp (P̂ l
νµf) − supp (P̂ l

ν′µ′f)

is contained in a rectangle R̃l
µµ′ with sidelengths C22

−l−j/2 and C22
−j . The rectangle R̃l

µµ′ is

contained in an annulus {ξ : c32
l−j/2 ≤ |ξ| ≤ C32

l−j/2}. The longer side is parallel to uκ =
(−1, 2l−j/2κ).

(2.13) Fix m, l. Then there is a constant C4, independent of l,m such that each ξ ∈ R2 is contained

in at most C4 of the sets supp (P̂ml
νµ f) − supp (P̂ml

ν′µ′f).

(2.14) Let pml
µ (ξ) = φ(2l+j/2ξ1 − µ)φ(2j |ξ| −m). Let

Smlτ
µµ′ = {(σ, ρ) :

(
supp pml

µ − supp pml
µ′

)
∩ supp blτσρ 6= ∅}

and Sml
µµ′ = ∪τSmlτ

µµ′ . Then the cardinality of Sml
µµ′ is bounded, independently of m, l, µ, µ′. Like-

wise, if

Rmlκ
τσρ = {(µ, µ′) ∈ Alκ × Alκ :

(
supp pml

µ − supp pml
µ′

)
∩ supp blτσρ 6= ∅ for some τ}

and if Rml
τσρ = ∪κRmlκ

τσρ then the cardinality of Rml
τσρ is bounded, independently of m, l, σ, ρ.

(2.15) The cardinality of the set

Tl
κ = {τ : Rmlκ

τσρ 6= ∅ for some (σ, ρ,m)}

is bounded, independently of l.

For fixed m we now write
∫∫ ∣∣∣PmTtf(x)

∣∣∣
2

w(x)dx
dt

t

=

∫∫ ∣∣∣
∑

ν

Pm
ν Ttf(x)

∣∣∣
2

w(x)dx
dt

t

=

∫∫ ∑

ν,ν′

Pm
ν Ttf(x)Pm

ν′ Ttf(x)w(x)dx
dt

t
.

Then

(2.16)

∫∫ ∑

ν,ν′

Pm
ν Ttf(x)Pm

ν′ Ttf(x)w(x)dx
dt

t
≤ C

[
Jm +

∑

10≤l≤j/2

|Im
l |

]

where

Jm =

∫∫ ∑

ν

∣∣∣Pm
ν Ttf(x)

∣∣∣
2

w(x)dx
dt

t

and

Im
l =

∫∫ ∑

(ν,ν′)∈Zl

Pm
ν Ttf(x)Pm

ν′ Ttf(x)w(x)dx
dt

t
.
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By (2.9)

Im
l =

∫∫ ∑

(κ,κ′)
|κ−κ′|≤1

∑

(ν,ν′)∈Zl

ν∈Zlκ

Pm
ν Ttf(x)Pm

ν′ Ttf(x)w(x)dx
dt

t
.

Therefore by (2.10)

Im
l =

∑

κ

Im
lκ

where

Im
lκ =

∫∫ ∑

(ν,ν′)∈Zl

ν∈Zlκ

∑

(µ,µ′)∈
Alκ×Alκ

Pml
νµ Ttf(x)Pml

ν′µ′Ttf(x)w(x)dx
dt

t
.

Now we can write

Im
lκ =

∫∫ ∑

τ,ρ,σ

∑

(ν,ν′)∈Zl

ν∈Zlκ

∑

(µ,µ′)∈
Alκ×Alκ

Bl
τσρ

[
P kml

νµ Ttf P kml
ν′µ′Ttf

]
(x)w(x)dx

dt

t

and we obtain using (2.7), (2.8), (2.14) and (2.15) together with various applications of the Cauchy-
Schwarz inequality

Im
lκ ≤

∑

τ∈Tl
κ

∫∫ ∑

(ν,ν′)∈Zl

ν∈Zlκ

∑

(µ,µ′)∈
Alκ×Alκ

Pml
νµ Ttf(x)Pml

ν′µ′Ttf(x)
∑

(σ,ρ)

∈S
ml
µµ′

(Bl
τσρ)

∗w(x)dx
dt

t

≤
∫∫ ( ∑

(µ,µ′)∈
Alκ×Alκ

∣∣∣
∑

(ν,ν′)∈Zl

ν∈Zlκ

Pml
νµ Ttf(x)Pml

ν′µ′Ttf(x)
∣∣∣
2)1/2

×
( ∑

(µ,µ′)∈
Alκ×Alκ

∣∣∣
∑

τ∈Tl
κ

∑

(σ,ρ)

∈S
ml
µµ′

(Bl
τσρ)

∗w(x)
∣∣∣
2)1/2

dx
dt

t

≤ C

∫∫ ( ∑

(µ,µ′)∈
Alκ×Alκ

∣∣∣
∑

(ν,ν′)∈Zl

ν∈Zlκ

|Pml
νµ Ttf(x)Pml

ν′µ′Ttf(x)|2
)1/2

×
( ∑

τ∈Tl
κ

∑

σ,ρ

∑

(µ,µ′)

∈Rml
τσρ

∣∣(Bl
τσρ)

∗w(x)
∣∣2

)1/2

dx
dt

t

≤ C

∫∫ ∑

ν∈Zlκ

∑

µ∈Alκ

∣∣Pml
νµ Ttf

∣∣2 sup
τ∈Tl

κ

(∑

σ,ρ

∣∣(Bl
τσρ)

∗w(x)
∣∣2

)1/2

dx
dt

t
.

Now an application of Lemma 2.4 yields

(2.17)
(∑

σ,ρ

∣∣(Bl
τσρ)

∗w(x)
∣∣2

)1/2

≤ C
(
H l

τ,4N ∗ |(Qjl
τ )∗w|2(x)

)1/2
.

We summarize:
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Lemma 2.5. ∫
|G0f(x)|2w(x)dx ≤ C

∑

m

Jm + C
∑

m

∑

10≤l≤j/2

|Im
l |

where

Jm =

∫ ∑

ν

∫ ∣∣Pm
ν Ttf(x)

∣∣2 dt
t
w(x)dx

and

|Im
l | ≤ C

∫ ∑

κ

∑

ν∈Zlκ

∑

µ∈Alκ

∫ ∣∣Pml
νµ Ttf(x)

∣∣2 dt
t

sup
τ∈Tl

κ

(
H l

τ,4N ∗ |(Qjl
τ )∗w|2(x)

)1/2
dx

We continue with the proof of Theorem 2.1. One checks by a straightforward integration by
parts using (2.11) that if µ ∈ Alκ and τ ∈ Tl

κ then

|F−1[ψI(t
−1·)pml

µ ](x)| ≤ CHkl
τ,4N (x),

here N ≫ 2 and pml
µ was defined in (2.14). Moreover the t−1dt measure of the set {t : PmTt 6= 0}

is bounded by c2−j. Also observe that for τ ∈ Tl
κ the kernels H l

τ ′,4N behave essentially the same;
in fact

(2.18) sup
τ ′∈Tl

κ

H l
τ ′,4N (x) ≤ C inf

τ∈Tl
κ

H l
τ,4N (x).

An application of Lemma 2.4 yields

(2.19)

∫ ∑

m

∑

ν∈Zlκ

∑

µ∈Alκ

∫
|Pml

νµ Ttf(x)|2 dt
t
w(x)dx ≤ C2−j

∫ ∑

ν∈Zlκ

|Pνf(x)|2H l
τ,3N ∗ w(x) dx

for all τ ∈ Tl
κ.

Next, the convolution kernel of Pν is pointwise bounded by

H̃j/2,3N (x) = 22(j/2)(1 + 2j/2|x|)−3N

and by another application of Lemma 2.4 we obtain the inequality

(2.20)

∫ ∑

κ

∑

ν∈Zlκ

|Pνf(x)|2w(x) dx ≤ C

∫
|f(x)|2H̃j/2,3N ∗ w(x)dx.

Since for large N

H l
τ,4N ∗ H̃j/2,4N (x) ≤ CH l

τ,3N (x)

we obtain from (2.18), (2.19), (2.20) and Lemma 2.5 the estimate

∑

10≤l≤ j
2

∑

m

Im
l

≤ C2−j

∫
|f(x)|2

∑

10≤l≤ j
2

sup
2l−j/2τ

∈[16−1,16]

H l
τ,3N ∗

(
H l

τ,3N ∗ |(Qjl
τ )∗w(y)|2

)1/2
(x) dx

≤ C2−j

∫
|f(x)|2

√
j
( ∑

10≤l≤ j
2

|Wjw|2
)1/2

dx

9



Similarly
∑

m

Jm ≤ C2−j

∫
|f(x)|2 sup

θ
H0

θ,N ∗ w(x) dx

and we obtain (2.2).
Finally let β ∈ C∞

0 (R2) such that β(ξ) = 1 if 1/4 ≤ |ξ| ≤ 4 and β(ξ) = 0 if |ξ| /∈ (1/8, 8) and
define the Littlewood-Paley operator Lk by

L̂kf(ξ) = β(2−kξ)f̂(ξ).

Observe that

Gkf = Gk(Lk−1f + Lkf + Lk+1f).

Now f 7→ {Lkf} defines a vector-valued regular singular integral operator and there is the Córdoba-
Fefferman weighted norm inequality

∫ ∑

k

|Lkf(x)|2w(x) dx ≤ Cs

∫
|f(x)|2Msw(x)dx, s > 1,

see [10]. Consequently (2.2) yields also (2.3). �

Proof of Remark 2.3. This requires a modification of (2.17). Let

Γ̂l
τρσf(ξ) = φ(2l+j/2〈ξ, θ(τ)〉 − ρ)φ(2j〈ξ, θ⊥(τ)〉 − σ)f̂(ξ);

then by definition Γl
τρσQ

jl
τ = Bl

τσρ. Now let Ul
τ be the set of all pairs (ρ, σ) such that Γl

τρσQ
jl
τ 6= 0.

Then the cardinality of Ul
τ is bounded by C24l where C does not depend on j or τ . Since the

convolution kernel of Γl
τρσQ

jl
τ is bounded by CH l

τ,N we obtain

( ∑

(ρ,σ)∈Ul
τ

∣∣Γl
τρσg(x)

∣∣2
)1/2

≤ C22lH l
τ,N ∗ |g|(x).

An application of Lemma 2.4 and an interpolation argument then show that (2.17) can be replaced
by

(2.21)
(∑

σ,ρ

∣∣(Bl
τσρ)

∗w(x)
∣∣2

)1/2

≤ C24l(1/p−1/2)
(
H l

τ,N ∗ |Qjl
τ w|p(x)

)1/p

if 1 ≤ p ≤ 2. The rest of the proof requires only notational changes. �

Proof of Proposition 2.2. The convolution kernel of Qjl,k
τ is bounded by a constant CN times

Hl,k
θ(τ),N(x) = 22k+3l−3j/2(1 + 2k+l−j/2|〈x, θ(τ)〉|)−N(1 + 2k+2l−j |〈x, θ(τ)⊥〉|)−N

Moreover a straightforward calculation shows that

H l,k
θ,N ∗ |Hl,k

θ,N ∗ w|2 ≤ CMj/2[w
2]

10



pointwise which implies (2.5). For the same reason Wkl
j is uniformly bounded on L∞ and the

analogue of the inequality

(2.22)
∥∥∥
( ∑

0<l<j/2

|W l,k
j g|2

)1/2∥∥∥
q
≤ Cj1/2−1/q‖g‖q

holds for q = ∞. On L2 we use an orthogonality argument. Since for fixed k, j each ξ ∈ R2 is

contained in only a bounded number of the sets supp
̂
Qjl,k

τ g, (0 < l < j/2, |τ | ≤ 2j/2−l) we obtain

∥∥∥
( ∑

0<l<j/2

|W l,k
j g|2

)1/2∥∥∥
2
≤ C

∥∥∥
( ∑

0<l<j/2

∑

τ

H l,k
θ(τ),N ∗ |(Qjl,k

τ )∗g|2
)1/2∥∥∥

2

≤ C
( ∑

0<l<j/2

∑

τ

‖(Qjl,k
τ )∗g‖2

2

)1/2

≤ C ′‖g‖2.

The desired bound (2.22) follows by interpolation.
In order to estimate the maximal function supk W

k
j g in Lq we dominate the sup by an ℓq norm

and the asserted inequality follows from

(2.23)
(∑

k

∥∥∥
( ∑

0<l<j/2

|W l,k
j g|2

)1/2∥∥∥
q

q

)1/q

≤ C(1 + j)1/2‖g‖q.

Now the analogue of (2.23) for q = ∞ follows as before. For q = 2 we use the observation that
for fixed j, k the functions qjl

τ (2−k·) are supported in an annulus {ξ : c02
k−j/2 ≤ |ξ| ≤ c12

k}.
Therefore the above L2 argument yields now an additional factor of

√
1 + j, proving (2.23) for

q = 2. �
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