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Abstract

We prove a bilinear form sparse domination theorem that applies to many
multi-scale operators beyond Calderén—Zygmund theory, and also establish neces-
sary conditions. Among the applications, we cover large classes of Fourier multi-
pliers, maximal functions, square functions and variation norm operators.

2020 Mathematics Subject Classification. 42B15, 42B20, 42B25.
Key words and phrases. Sparse domination, Fourier multipliers, maximal functions, square
functions, variation norm.






CHAPTER 1
Introduction

Sparse domination results have received considerable interest in recent years
since the fundamental work of Lerner on Calderé6n—Zygmund operators [75], [76],
which provided an alternative proof of the As-theorem [57]. The original Banach
space domination result was refined and streamlined to a pointwise result [3T}
79, 65, [77], but it is the concept of sparse domination in terms of bilinear (or
multilinear) forms [18),[33] that has allowed to extend the subject to many operators
in harmonic analysis beyond the scope of Calderén—Zygmund theory. Among other
examples, one may find the bilinear Hilbert transform [33], singular integrals with
limited regularity assumptions [29), 15}, [78], Bochner-Riesz operators [16, [68],
spherical maximal functions [66], singular Radon transforms [28], [89), [54], pseudo-
differential operators [11], maximally modulated singular integrals [38], [8], non-
integral square functions [6], and variational operators [36, [35), [17], as well as
results in a discrete setting (see for instance [64}, (34}, 2]).

Many operators in analysis have a multiscale structure, either on the space or
frequency side. We consider sums

T=2.T

JEZ

where the Schwartz kernel of T} is supported in a 27 neighborhood of the diagonal
and where suitable rescalings of the individual operators T; and their adjoints sat-
isfy uniform LP — L9 bounds. Moreover we assume that all partial sums Z;\Z ~ L
satisfy uniform LP — LP*> and L%' — L7 bounds. The goal of this memoir is to
show bilinear form (p, ¢')-sparse domination results (with ¢’ = ¢/(¢—1) the dual ex-
ponent) and investigate to which extent our assumptions are necessary. We prove
such results under a very mild additional regularity assumption on the rescaled
pieces; for a precise statement see Theorem below. To increase applicability,
we cover vector-valued situations, thus consider functions with values in a Banach
space Bj and operators that map simple Bj-valued functions to functions with
values in a Banach space Bs. Our results apply to many classes of operators be-
yond Calderén—Zygmund theory, and cover general classes of convolution operators
with weak assumptions on the dyadic frequency localizations, together with asso-
ciated maximal functions, square functions, variation norm operators, and more.
See Theorem for a particularly clean result on translation invariant maximal
functions. We shall formulate the results with respect to cubes in the standard
Euclidean geometry but there are no fundamental obstructions to extend them to
other geometries involving nonisotropic dilations (see e.g. [28]). Our approach to
sparse domination extends ideas in the papers by Lacey [66] on spherical maximal
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2 1. INTRODUCTION

functions and by R. Oberlin [89] on singular Radon transforms to more general
situations.

We now describe the framework for our main theorem and first review basic
definitions. For a Banach space B let Sp be the space of all B-valued simple
functions on R? with compact support, i.e. all functions of the form f = Zi\; a;1lg,
where a; € B and E; are Lebesgue measurable subsets of R? contained in a compact
set. For Banach spaces By, By we consider the space Opp, g, of linear operators
T mapping functions in Sp, to weakly measurable Bs-valued functions (see e.g.
[56] for an exposition of Banach-space integration theory) with the property that
x — (Tf(z),A) is locally integrable for any bounded linear functional A € Bj. If
T € Opg, p,, then the integral

(Thiofe) = [ (TH@). fola)) oo

is well-defined for all f; € Sp, and f, € Sp;. For a Banach space B and p,r € [1, o0
we define the Lorentz space L%" as the space of strongly measurable functions
f : RY* - B so that the function  ~ |f(z)|p is in the scalar Lorentz space
LP" (and we endow L%" with the topology inherited from LP"). In particular,
LY, = L%P coincides with the standard Banach space valued L space as defined
in [56], up to equivalence of norms. If p € (1,00) and 7 € [1,00|, then L%" is
normable and we write || - [[r~ to denote the norm induced by the norm on scalar
LP" defined via the maximal function of the nonincreasing rearrangement [55].

In the definition of sparse forms it is convenient to work with a dyadic lattice
0 = UgezQy of cubes, in the sense of Lerner and Nazarov [T9] §2]. A prototypical
example is when the cubes in the k-th generation 9 are given by

{{Qk;, H[—L27k Lomkilyd 5 c 7d}if k is odd,

Q =
* {27k + [—327FF1 227k 5 € 79} if K is even,

but many other choices are possible. Notice in this example the cubes in Qj have
side length 27%. This family satisfies the three axioms of a dyadic lattice in [79].
We briefly review the definition. £ is a dyadic lattice if

(i) every child of a cube @ € Q is in 9Q,
(ii) every two cubes @, Q" have a common ancestor in £, and
(iii) every compact set in R? is contained in a cube in Q.

For each dyadic lattice there is an « € [1,2) such that all cubes Q € Q are of side
length a2~* for some k € Z. Fixing k we then call the cubes of side length a2~*
the k-th generation cubes in Q. If Q € Q we can, for every [ > 0, tile @) into disjoint
subcubes @ of side length equal to 27 times the side length of . We denote this
family by D;(Q) and let D(Q) = U;>oD;(Q), the family of all dyadic subcubes of
@. Then for every () € Q we have D(Q) C Q. Note that because of condition (iii)
the standard dyadic lattice is not a dyadic lattice in the above sense.

DEFINITION. Let 0 < v < 1. A collection & C 9Q is «y-sparse if for every Q € &
there is a measurable subset Eg C @ such that |[Eg| > 7|Q| and such that the sets
on the family {Eq : Q € &} are pairwise disjoint.

We next review the concept of sparse domination. Given a cube @, 1 < p <
oo and a B-valued strongly measurable locally integrable function f we use the
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notations
1/
anf|Q|1/Qf(x)dx, <f>Q,p,B(QI1/Q|f(x)%dx> g

for the average of f over @ and the L? norm on () with normalized measure, thus
(Fops = (avqlf[%)'/P. For an operator T € Opp, p, We say that pointwise
sparse domination [31, [79] by LP-averages holds if for every f € Sp, there are at
most 3¢ sparse families &;(f) such that

(1.1) ITf(x)|p, < C’Z Z Yop. lo(x) forae. z

=1 Qe&:(f)
and we denote by [|Tlsp_(p,5,,5,) the infimum over all C such that holds for
some collection of 3¢ y-sparse families depending on f.

For many operators it is not possible to obtain pointwise sparse domination
and the concept of sparse domination of bilinear forms, which goes back to [18] and
[33], is an appropriate substitute. Given a vy-sparse collection of cubes & and 1 <
p1,p2 < 00, one defines an associated sparse (p1,p2)-form acting on pairs (fi, f2)
where f; is a simple Bj-valued function and fs is a simple B3-valued function. It
is given by
(1.2) AS Bypams (J1s f2) = D QI @18 (F2) Qo B

QeG

and will be abbrewated by Ap1 o (J1, f2) if the choice of By, B3 is clear from context.
The form acts a bi-sublinear form on (|f1|p,,[f2|B;). All sparse forms are
dominated by a maximal form

(1.3) ;1,B1,p2,B;(f17f2) sup Ap1 B1,p2, B*(fla f2),

S:y-sparse

again also abbreviated by Ay  (fi, f2) if the choice of By, B is clear from the

context. The maximal form may not be a sparse form itself but, obviously, for

every fi, fo there exists a sparse family &(f1, f2) such that A(Sl(gl’f;Z B*(fl, fa) >

A B p; (f1. f2) (¢f. [67], [32] for more explicit constructions). Note from
. that for each pair of simple functions (f1, f2),
Apl,Bl,pz,Bg(flifQ) S 7_1Hf1||00||f2||00meaS(Suppfl Usuppfz) < 0.

We say that T € Opp, p, satisfies a sparse (p1, p2) bound if there is a constant
C so that for all f; € Sp, and fy € Sp; the inequality

(1.4) (T f1, f2)| < CAZI,Bl,pZ,B;(fhﬁ)

is satisfied. The best constant in ) defines a norm || - [lsp_ (5,5 ,p5,55) O1 &
subspace of Opg, p,- Thus ||T\|Sp7(p1731;p2735) is given by

(T f1, f2)|

;1’31472,3; (fla fz)

(15) Sup{ :flesB17f2€SB§‘, fZ?éOaZ:172}7

where f; # 0 means that f;(x) # 0 on a set of positive measure. It is then immediate
that ||T||Spw(p1,Bl)p2,B ) < ||T||bp (p1,B1,Bz) for p2 > 1. It can be shown that the
space of operators in Opg, p, for Wthh . ) holds for all fq, fo with a finite C' does
not depend on . We denote this space by Sp(p1, B1, p2, B3) or simply Sp(p1, p2)
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if the choices of By, B are clear from context. The norms || - [lsp_ (p,,B,,ps,85)
0 < v < 1, are equivalent norms on Sp(p1, B1,pe, B3). Moreover, if By, B are
separable Banach spaces and p; < p < ph, then all operators in Sp(p1, B1, p2, B3)
extend to bounded operators from L} to Ll .

1. The main result

For a function f define Dil; f(x) = f(tx). For an operator T' define the dilated

operator Dil;T by
Dil;T = Dil; o T o Dil,-1.

Note that if T is given by a Schwartz kernel (z,y) — K(x,y), then the Schwartz
kernel of Dil;T is given by (z,y) — t*K (tx, ty).
Basic assumptions. Let {T}};cz be a family of operators in Opg, p,. We shall
make the following assumptions.

Support condition. For all f € Sp,,

(1.6) supp (Dily,; T;) f C {x € R? : dist(z,supp f) < 1}.

This means that if T} is given by integration against a Schwartz kernel K, then
K; lives on a 27-neighborhood of the diagonal.

Weak type (p,p) condition. For all integers N1 < Ns, the sums Z;ENI T; are
of weak type (p,p), with uniform bounds,

N2
> 1
=

Jj=

(1.7a) sup
N1<Nz

< A(p)-

P p,00
LBIALB'2

Restricted strong type (q,q) condition. For all integers N; < Nj, the sums
Z;VZZNI Tj; are of restricted strong type (q,q), with uniform bounds,

Ny
> Tj‘
j=N1

Single scale (p,q) condition. The operators T; satisfy the uniform improving
bounds

(1.7b) sup
N1<N;

< A(g).

1 q
LY —L
By B2

(1.8) sup ||Dilys Tj[| pz, e, < Ao(p,q).
jGZ 1 2

Single scale e-regularity conditions. For some € > 0 the operators T; and the
adjoints T7 satisfy

(1.9a) sup |h|”“sup[|(Dilyi Tj) o Apllpr 1 < B,
|hl<1 jez 1 2

1.9b sup |h|7¢s Dily;TH) o Apll, o ., » < B,

(1.9b) ‘hlgpll | jEIZ>H( 2 T}) h”%f%;

where

(1.10) Apf(z) = f(x +h) — f(x).

The above hypotheses assume certain boundedness assumptions in Lebesgue
or Lorentz spaces of vector-valued functions; it is then implied that all opera-
tors T; map simple Bi-valued functions to Bs-valued functions which are strongly
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measurable with respect to Lebesgue measure. We formulate our main result for
1 < p < ¢ < oo and refer to Appendix [B] for variants with p =1 or ¢ = oco.

THEOREM 1.1. Let 1 < p < ¢ < oco. Let {T;} ez be a family of operators in
Opg, B, such that

o the support condition holds,

the weak type (p,p) condition holds,

the restricted strong type (q,q) condition holds,
the single scale (p,q) condition holds,

the single scale e-regqularity conditions (L.9a]), (1.9b]) hold.

O O O O

Define
(1.11) C=A(p) + Alq) + Ao(p, 9) log (2 + 125)-
Then, for all integers N1, No with N1 < N,

No
(1.12) | > 7
Jj=N1

The estimate implies, via a linearization technique (c¢f. Lemma the
following variant which leads to a sparse domination result for maximal functions,
square functions and variational operators, see Ch.[| Instead of T; € Opp, p, we
use the more restrictive assumption that the 7; map functions in Sp, to locally in-
tegrable By-valued functions. We let L}B%loc be the space of all strongly measurable
Bs-valued functions which are Bochner integrable over compact sets.

5p7q7€,%d C.

Sp., (p,B1,9’,B3)

COROLLARY 1.2. Let 1 < p < g < oo. Let {T}}ez be a family of operators,
with T : Sp, — Lle,loc’ and satisfying the assumptions of Theorem . Let C be
as in . Then for all f € Sp,, all R-valued nonnegative measurable functions
w, and all integers Ny, No with N1 < Na,

(1.13) /R

REMARKS. (i) We emphasize that the implicit constants in (T.12) and (T.13)
are dependent on the input constants in , , , (1.92), (1.9b) but
otherwise not dependent on the specific choices of the Banach spaces By, Bs. In
some applications this enables us to perform certain approximation arguments,
where for example the Banach spaces are replaced by finite-dimensional subspaces
of large dimension.

No
> @), w@)dr Sy e €0 p g m(F0).
j=N

(ii) We note that for operators T; which commute with translations Condition
is implied by Condition .

(iii) The Holder-type regularity assumption for the operator norm can
be further weakened. In applications this will often be used for the situation that
an operator T is split into a sum 3,5, T* where each T* = Y7, T} satisfies the
assumptions with A(p), A(q), Ao(p,q) = O(27%') for some ¢ > 0 and B = 2™,
for a possibly very large M. The conclusion will then say that ||7°¢ HSPw(p»q') =
0(62*56/), which can be summed in ¢, leading to a sparse bound for 7.

(iv) In this memoir we are mainly interested in applications beyond the Calderén—
Zygmund theory and focus on the case p > 1 and ¢ < co. There are some elements
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in our proof such as the property of LP>*° being the dual space of L*"1 for which
there is no analog for p = 1 and similarly the failure of a suitable notion of re-
stricted strong type for ¢ = oco; hence Theorem does not immediately apply to
the situations where p = 1 or ¢ = co. Nevertheless one can formulate variants of
the theorem which cover these missing cases. We treat them in Appendix [B} indeed
they are close to results already covered in other works, in particular [29].

(v) The role of the simple functions is not essential in Theorem and the
sparse bound can be extended to other classes of functions under appropriate hy-
potheses; see Lemma

(vi) We use the Banach space valued formulation only to increase applicability.
We emphasize that we make no specific assumptions on the Banach spaces in our
formulation of Theorem (such as UMD in the theory of Banach space valued
singular integrals). In applications to Banach space valued singular integrals, such
assumptions are made only because they may be needed to verify LP-boundedness
hypotheses but they are not needed to establish the implication in Theorem

2. Necessary conditions

Under the additional assumption that Tj : Sp, — L}32710C, together with p < g,
one has that the weak type (p,p) condition and the restricted strong type
condition are necessary for the conclusion of Theorem to hold. Moreover,
if we strengthen the support condition assuming that the Schwartz kernels of
T; are not only supported in {|z —y| < 27} but actually in {|z — y| &~ 27}, then we
can also show that the single scale (p, q) condition is necessary.

We also have an analogous statement for Corollary[1.2] Indeed, as the corollary
is proved via the implication

) — ).
see Lemma below, we will simply formulate the necessary conditions for the
conclusion in Corollary which will also imply those in Theorem

To be precise in the general setting, let us formulate the following assumption
on a family of operators {7}},cz.

Strengthened support condition. There are §; > d2 > 0 such that for all j € Z
and all f € Sp,

(1.14) supp(Dily; T; f) C {x : 61 < dist(z,suppf) < 1},
whenever diam(suppf) < ds.

If the T} are given by a Schwartz kernel K, then the condition is satisfied provided
that

supp(K;;) C {(2,) : (31 = 62)27 < |z —y| < 27},

THEOREM 1.3. Suppose that 1 < p < q < oo. Let {T;}jez be a family of
operators, with T; : Sp, — L}Bz’loc, and satisfying the support condition .
Assume the conclusion of Corollary[1.3, that is, there exists C > 0 such that for all
N1, Ny with N1 < Nao, all f1 € Sp,, and all nonnegative simple functions w

/d
]RJ

N2
> T (@) w@)de < €Ay g, g g (f.0).
2




3. AN APPLICATION TO MAXIMAL FUNCTIONS 7

Then

(i) Conditions (1.7a)) and (1.7b) hold, i.e., there is a constant ¢ > 0 only
depending on d,p, q,7v such that for all Ny, No with N1 < Na,

Nz N2

> T, <cC, > T
LY — LB

J=Ni B1 "7B2 J=Ni

(i1) If, in addition, the T; satisfy the strengthened support condition (L.14)
then condition (1.8]) holds, i.e., there is a constant ¢ > 0 only depending
on d,p,q,vy such that

<cC.

1
LL " — L1
B1 Ba

jlelIZ) ||D112jTj||L%1—>L%2 S cC.

REMARKS. (i) Note that in Theorem there are no additional assumptions
on the Banach spaces. The a priori assumption 7} : Sp, — L}BLIOC enters in the
proof of necessary conditions for both Theorem [I.I] and Corollary [I.2]

(ii) There is an alternative version for necessary conditions for Theorem
where one a priori assumes merely that the 7} belong to Opp, p, (i.e. T} f is only a
priori weakly integrable for f € Sp, ), but where one imposes the assumption that
By is reflexive. See Theorem [2.5] below.

(iii) We have no necessity statement regarding the regularity conditions (|1.9))
in Theorem[I.1] or Corollary [I.2l However, these conditions enter in the conclusion
of both Theorem and Corollary only in a logarithmic way (see (1.11)),
hence the gap between necessity and sufficiency appears to be small. Note that
the necessary and sufficient conditions are formulated for a uniform statement on
a family of operators {E;Vj ~, Ti}ny N, but, with the generality of our current
formulation, we are unable to prove a necessary condition for sparse domination
for a specific operator in this family. Nevertheless, the formulation allows us to
show necessary conditions for several specific maximal operators, variation norm
operators and other vector-valued variants, in particular those considered in Ch.[5]
(@ @ § and b7 ().

(iv) The constant ¢ in the conclusion of Theorem is independent of the
particular pair of Banach spaces By, Bs. This is significant for applying the theorem
to families of maximal and variational operators where for the necessity conditions
one can replace the spaces ¢*°, L, V" by finite-dimensional subspaces of large
dimension.

(v) Since |T[sp_ (p1,B1,p2,85) < 1T llsp., (p1,B1,B,) for p2 > 1, the necessary condi-
tions in Theorem can also be used to prove the impossibility of pointwise sparse
domination for many of the operators considered in this memoir.

3. An application to maximal functions

We illustrate Remark (iii) above with a brief discussion about maximal oper-
ators associated to a distribution o compactly supported in R¥\ {0} (for example
a measure), for which we have necessary conditions for sparse bounds. Denote
by oy = t~%(t~!) the t-dilate in the sense of distributions. For a dilation set
E C (0,00) we consider the maximal operator

(1.15) Mg f(x) = sup [f * o¢(x)].
tel
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The maximal function is a priori well defined as measurable function if f is in

the Schwartz class; alternatively we may just restrict to countable E (see §1.1|in

Ch. for comments why this is not a significant restriction).
For the formulation of our theorem we also need the rescaled local operators
Mg], with
(1.16) E;=(277E)nIL2].
A model case is given when F consists of all dyadic dilates of a set in [1,2], i.e.
E=|J2E° with E° C [1,2].
JEZ
In this case

ng = Mé_jE)ﬂ[l,Q] = Mgo fOI‘ au ] € Z.

DEFINITION. The Lebesgue exponent set of the pair (o, E), denoted by L(o, E),
consists of all (1/p,1/q) for which

(117) HMEHLZ’-}LF,N + ||Mg||Lq,14)Lq + SulZD HM%J HLP_>L11 < 00.
Jje

The sparse exponent set of Mg, denoted by Sp[Mg] consists of all pairs (1/p1,1/p2)
with 1/ps > 1/py for which there is 0 < v < 1 and a constant C' such that

[ MEf@wla)de < C1;, (/)
for all simple f and simple nonnegative w.

Let € > 0. We let Eann(N) be the space of tempered distributions whose Fourier
transform is supported in {€ : A/2 < |€] < 2A}. We say that the pair (o, E) satisfies
an e-reqularity condition if there exists C' > 0, and an exponent pg > 1 such that
for all A > 2, j € Z, we have

(1.18) ||ngprO <OXTEfllp, forall f € SNEmn(N).
REMARK. The usual lacunary maximal operator correspond to the case where

E; = {1} (so E; = {27}). Under this assumption, Mg satisfies an e-regularity
condition for some € > 0 if and only if there is an & > 0 such that

a(&) = 0(lgI™*).
Moreover the condition sup; ¢z || M E llLr— e < 00 is, in this particular case, equiv-
alent with the LP improving inequality

o fllg < NSy
for all f e LP.

Denote by Int(£2) the interior of a planar set . Define ® : R? — R? by

®(z,y) = (2,1 -y).
We will show that, under the assumption of an e-regularity condition for some
e > 0, the interiors of L(o, E) and Sp[M§] are in unique correspondence under @
(see Figure 1). That is,

(1.19) Int(Sp[MZ)) = ®(Int(£ (o, E)));

this can be deduced as a consequence of Corollary [I.2] and Theorem [I.3] The next
theorem contains a slightly more precise statement.
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1

7

Q=
Q

Sl
D =

FiGure 1. Example for L(o, E) (left) and Sp[Mg] (right). It
may occur that the closure of £(o, E) is not a polygonal region,
see for example [93].

THEOREM 1.4. Suppose that o is a compactly supported distribution supported
in R?\ {0}, and suppose that (o, E) satisfies the e-reqularity condition (T.18)) for
some e > 0. Let 1 < p < q < oco. Then the following implications hold:

(1.20) (5 5) € nt(L(0, B)) = (5, ) € Sp[ME],
(1.21) (3:4) € L(0,E) <= (5, ) € Sp[MZ].

REMARKS. (i) The correspondence is an immediate consequence of The-
orem [[41

(ii) If o is as in Theorem then similar statements characterizing the sparse
exponent set hold for variation norm operators. See the statement of Propositions

(iii) In the case of o being the surface measure on the unit sphere one recovers as
a special case the results by Lacey [66] on the lacunary and full spherical maximal
functions.

4. Fourier multipliers

Given a bounded function m we consider the convolution operator 7 given on
Schwartz functions f : R¢ — C by

(1.22) TFHE) =m(E)f(€), €eRY

ie. Tf = F lm]* f where F~1[m] is the Fourier inverse of m in the sense of
tempered distributions. If 1 < p < oo, we say that m € MP if T extends to a
bounded operator on L? and we define ||m||pr» to be the LP — LP operator norm of
T. A similar definition applies to p = co; however one replaces L by the space Cy
of continuous functions that vanish at co (i.e. the closure of the Schwartz functions
in the L* norm). By duality we have M? = MP? for 1/p" =1 —1/p. Moreover,
M? = L>, MP C L*® and M" is the space of Fourier transforms of finite Borel
measures. Similarly, if 1 < p,¢ < oo, we say that m € MP? if T is bounded from
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L? to LY and we define by ||m|/asr.« to be the LP — L7 operator norm of 7. For
these and other simple facts on Fourier multipliers see [53] or [106].

Let ¢ be a nontrivial radial C2° function compactly supported in R4 \ {0}. A

natural single scale assumption would be to assume a uniform MP?° bound for the
pieces ¢(t~1-)m which is equivalent by dilation-invariance to the condition

(1.23) sup || ¢m(t-)|| aprro < 0.
>0

Inequality is a necessary and sufficient condition for 7 to be bounded on
the homogeneous Besov spaces B;o,w for any s € R,0 < ¢ < oo; see [107], [110]
§2.6]. However, it does not imply boundedness on the Lebesgue spaces, except on
L?. Indeed, Littman, McCarthy and Riviere [84] and Stein and Zygmund [107]
give examples of m satisfying for a pg # 2 for which m ¢ MP for all p # 2.

The papers by Carbery [24] and by one of the authors [98] provide positive
results under an additional dilation invariant regularity condition,

(1.24) sup [[gm(t-)|[c= < oo,
t>0

where C¢ is the standard Hélder space. Indeed, it is shown in [24), [98] that for
1<pp<2,0<e<l,

lmllaze < C(p, €) sup (lem(E)llaeo + llem(t)llc<),  po <p < pp-
>

If the standard Holder condition ||[¢m(t-)||ce = O(1) is replaced by its MP° variant,
SUPysq [|Ar[¢m(t:)]||amro = O(]h|%), one obtains a conclusion for p = py. We will
show that for fixed p € (po,pp), the LP-boundedness self-improves to a sparse
domination inequality.

THEOREM 1.5. Let 1 <py < 2,0 <e <1, and assume that (1.23) and (|1.24)
hold. Then for every p € (po, 2] thereis a § = §(p) > 0 such that T € Sp(p—4,p'—9).

We note that, in view of the compact support, for p < ¢ the quantity ||¢m(¢-)|| are.

can be bounded by C||¢m(t-)||am» via Young’s inequality. In Theorem |1.5] the self-
improvement to a sparse bound is due to a tiny bit of regularity as hypothesized
in (T.24). This together with implies a mild regularity condition for ¢m(t-)
measured in the MP9 norm. If one seeks better results on the sparse bound in
terms of ¢ a further specification of this regularity is needed. For this we use the
iterated difference operators

AN = AR AY T for M > 2,
where Ay, is as in (1.10). With ¢ as above we get the following.

THEOREM 1.6. Let m € L>®(R%) and T as in (1.22). Let 1 < p < q < oo.
Assume that there exists s > d(1/p — 1/q) and an M € N such that

(1.25) sup sup |h|7s||AhM[¢m(t'
>0 |h|<1

)]HMp,q < 0.

Then T € Sp(p,¢').

One should always take M > s. Indeed, note that if M < s, then
implies m = 0. We note that the LP — L% conditions , in Theorem
[I-] correspond in the instance of convolution operators to an M?:9 condition of
derivatives of order s > d(1/p — 1/q) on the localizations of the Fourier multiplier.

Q
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Also, for fixed s > d(1/p — 1/q), if holds with some M > s, then it holds
for all integers M > s. For an illustration of this and the broad scope of Theorem
see the discussion on singular Radon transforms in Ch.[7} and on various
classes of Fourier multipliers related to oscillatory multipliers in Ch.[7] and to
radial multipliers in Ch.[7]

Theorems [I.5] and will be deduced in Ch.[6] from the more precise,
but also more technical Theorem which expresses the regularity via dyadic
decompositions of F~1[¢m(t-)]. Moreover, there we will cover a version involving
Hilbert space valued functions which is useful for sparse domination results for
objects such as Stein’s square function associated with Bochner—Riesz means.

5. Application to weighted norm inequalities

It is well known that sparse domination implies a number of weighted inequali-
ties in the context of Muckenhoupt and reverse Holder classes of weights, and indeed
this serves as a first motivation for the subject; see the lecture notes by Pereyra
[91] for more information. Here we just cite a general result about this connection
which can be directly applied to all of our results on sparse domination and is due
to Bernicot, Frey and Petermichl [I8]. Recall the definition of the Muckenhoupt
class A; consisting of weights for which

[w]a, = Sup (W)g (W) gu_1 < oo,
and the definition of the reverse Holder class RH, consisting of weights for which

=su <w>Q’s
el = Qp <w>Q,1

< 0

In both cases the supremum is taken over all cubes Q in R
ProposITION 1.7 ([18]). If T € Sp(Lf,, Lg;), then one has the weighted norm
inequality

1
T

([, @l i) de)” < 1T, 0,4,

({wla, [l )" ([ V@), wl) do)

Rd

1 q—l)

for allw € A,;, "NRH 4y and p <1 < q, where a := max(r_p7 =)

We refer to [18] §6] for more information and a detailed exposition. See also
[44] for other weighted norm inequalities.

6. Organization, notation and acknowledgements

Structure of the memoir. We begin addressing necessary conditions, and prove
Theorem in Ch.2] In Ch.[3] we review useful preliminary facts needed in the
proof of Theorem regarding the single scale regularity conditions; in particular,
an alternative form for the regularity conditions in . The proof of Theorem
[[1)is presented in Ch.[d The main part of the argument consists of an induction
step, which is contained in Ch.[d] §4 The implication that yields Corollary [I.2]
from Theorem is given in Ch.[] In Ch.[5] we apply Corollary to deduce
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sparse domination results for maximal functions, square functions and variation
norm operators, as well as Cotlar-type operators associated to truncations of op-
erators. In the case of maximal functions, the assumptions of Theorem [I.1] can
be slightly weakened, and we present this in Ch.[f] 4 Theorems [I.5] and [L.0] are
proved in Ch.[f] Finally, in Ch.[7] we apply our main theorems to several specific
examples, including the proof of Theorem in Ch.[7] Moreover, we give
several applications of Theorem [I.6] to specific classes of multipliers. For complete-
ness, we include several appendices. Appendix [A] covers some basic facts on sparse
domination. Appendix [B|covers versions of the main Theorem for p =1 and/or
q¢ = oo. Some basic facts on Fourier multipliers needed in Ch.[f] are covered in
Appendix [C] Theorems, Propositions and Lemmata are numbered as N.Y where
N is the chapter number, likewise displayed formulas may be labelled (N.Y) when
this occurs in chapter N. In cross references we refer to §X as a section in the same
chapter, unless the chapter is explicitly specified.

Notation. The notation A < B will be used to denote that A < C'- B, where the
constant C' may change from line to line. Dependence of C' on various parameters
may be denoted by a subscript or will be clear from the context. We use A ~ B to
denote that A < B and B < A.

We shall use the definition f(ﬁ) = Jpa e "9 f(y)dy for the Fourier
transform on R We let F ~! be the inverse Fourler transform and use the notation
m(D)f = F~}[mf]. We denote by S = S(R?) the space of Schwartz functions on
R?, by S’ the space of tempered distributions on R, and by E,,n(A) the space
of all f € &' such that the Fourier transform fis supported in the open annulus
{€eRT: N/2 < |€] < 2A}.

For a d-dimensional rectangle R = [a1,b1] X - -+ X [aq, bg] we denote by zr the
center of R, i.e. the points with coordinates xgp; = (a; + b;)/2, i = 1,...,d. If
7 > 0, we denote by 7R to be the 7-dilate of R with respect to its center, i.e.

7'R:{gr:€Rd:acR—i—ac RER}.

T

We shall use many spatial or frequency decomposition throughout this work:

o {Ak}r>0, {Xk}kzo are specific families of Littlewood—Paley type operators
that can be used for a reproducing formula (3.1)); they are compactly
supported and have vanishing moments (¢f. Ch.|3| ‘

o {¥y}e>0 is an inhomogeneous dyadic decomposmon in z-space, compactly
supported where |z| ~ 2¢if £ > 0 (¢f Ch. @ ‘

o {n¢}e>o is an inhomogeneous dyadic frequency decomposition so that 7,
is supported where |¢| ~ 2¢ if £ > 0 (¢f. Ch.]3 l ', and Ch.|7 l ‘

Similarly, we shall use the following bump functions:

o ¢ is a radial COO(I@d) function supported in |£] ~ 1 and not identically
zero (cf. Ch. @ ,

o f#isaradial C* (]Rd) function supported in x| < 1 with vanishing moments
and such that 0(5) >0 in €] = 1 (¢f. Ch.
o (3 is any nontrivial C’OO( ) function with compact support in (0,00) (cf.

Chfl §).
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CHAPTER 2
Necessary Conditions

In this chapter we prove Theorem [I.3]and another partial converse for Theorem
namely Theorem [2.5] below.

We begin with an immediate and well known, but significant estimate for the
maximal sparse forms which will lead to simple necessary conditions. In what
follows, let M denote the Hardy—Littlewood maximal operator.

LEMMA 2.1. The following hold for the mazimal forms defined in (1.3)).
(i) For fi1 € Sp,, f2 € Sp;,

1) A b (1 f2) <77 / (MILal, (@) Y7 (M fol 5, ) () /P2 e
(i) If 1 <p; <p, and f1 € L%ll, fa e ng, then
(2.2) A my 3 (Fi f2) S v Al 12l e
2
(iii) If 1 <p<ph, and f € Ly, f» € L', then

(2:3) A Bypa; (15 12) Sppa v I fillg, (12l o
2
PrROOF. For a y-sparse family of cubes we have

A, () € 30 2 [ (MUAIR @) Mol )) /7 da
QES Q

and (2.1) follows by the disjointness of the sets Eg and taking supremum over all
sparse families.
Now let f1 € Sp,, f2 € Sp;. For (2.2) we use (2.1), with p, = p’, together with

the fact that for p; < p the operator g — (M\g|’§l)1/”1 maps Lgf to itself; this
follows by real interpolation from the fact that it maps L? to itself, for all p > p;.
We can now estimate

Ay, sy (P f2) ST MO DY P oo (M2

Son ¥l HfzIILz;g-

’ ’
%5])1/19 [FRRS

Since simple B;-valued functions are dense in L%ll and simple Bj-valued functions

are dense in L%lg we get ([2.7) for all f; € ngll and fy € L%lz*, by a straightforward
limiting argument.

15
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For (2.3) we argue similarly. We use (2.1) with p; = p, together with the fact

that for py < p’ the operator g — (/\/l|g|%?;)1/p2 maps L%zil to itself, and hence
Ap By o (F1s £2) ST HIMI A D) Y2 e (MU f2 5 DY P2
o2 v Ml 2l - 0
2

The estimates in Lemma immediate yield estimates for the forms (T'f1, f2),

since by the definition (|1.5)
‘<Tf17 f2>| < ||T||Sp7(p1,31;p2,B§) AZEBL;DQ,B; (fla f2)

We shall now prove Theorem [1.3]in {I], and a variant under reflexivity of By in

2
1. The local integrability hypothesis

If Tf1 € Lp, 1., Lemma [2.1] further yields bounds for the L or L norms
of T f1 via a duality result for scalar functions.

LEMMA 2.2. Suppose T : Sp, — L}Bz)loc. Then the following hold.

(i) If 1 < p; < p < oo and if for all f € Sp, and all R-valued nonnegative
simple functions w

5@, @) < 4185, 5, s(F)
then T extends to a bounded operator from L’§1 to LY, so that
1 2

(2.4) ||T||Lg;11_>Lg2 Seip LA

(i) If 1 < p < phy and if for all f € Sp, and all R-valued nonnegative simple
functions w

L @) 0(@)dr < A0 5, 5F)
then T extends to a bounded operator from LY, to L', so that
1 2
(2.5) ITlzs, —pe Spap ¥ A2

ProoF. We rely on Lemma For part (i) we use (2.2)) to estimate, for
2 € 8327
[ 5@l w@)de S 97 A g ol
R4 1

By LP duality this implies an LP bound for the locally integrable scalar function
x +— |Tf(z)|p, and consequently T'f € Ll with

||Tf\|L1f32 N ’7_1A1Hf||Lg11

and (2.4)) follows.

For part (ii) we argue similarly. We use ([2.3)) to estimate

[ @ w(@)de v Aal s ol
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By the duality (L?+1)* = LP*° for scalar functions for 1 < p < oo [55] we get
1Tl S 7" Al fulog,
and (2.5)) follows. O

COROLLARY 2.3. Assume that T : Sp, — LlB%lOC and let 1 < py < p < ph. If
for all f € Sp, and all R-valued nonnegative simple functions w

| 5@, @) < AN (),

then T extends to a bounded operator from LY, to LY, so that
1 2

(2'6) HT||L§’5,IHL%2 fSp,pth 7_1‘4'

Proor. Lemmaimplies T maps boundedly L’Z;l — L%;OO and L%l»l — LZZQ
for any py < p1 < p and p < Py < ph; the desired L — L%Q boundedness for
p1 < p < ph then follows by interpolation.

Alternatively, one could deduce this result directly from (2.1)). Arguing as in
the proofs of (ii) or (iii) in Lemma[2.1] by the Hardy-Littlewood theorem and (2.1
one has

(2.7) Ay, By s (F1s 2) Sppripe v I Fallen, 120l

2
for 1 < p; < p < ph. Then one can argue as in the proof of Lemma to deduce
[2:0) from (2.7). 0

We next turn to the necessity of the condition in Corollary and Theo-
rem In this generality, this type of implication appears to be new in the sparse
domination literature. It is inspired by the philosophy of adapting the counterex-
amples for LP — L7 estimates to sparse bounds (see i.e. the examples for spherical
maximal operators in [66]).

LEMMA 2.4. Let {Tj}jez be a family of operators, with T; : Sp, — LlBg,loc’
and satisfying the strengthened support condition . Let 1 < p<q< oo and
suppose that for all f € Sp, and all R-valued nonnegative simple function w, the
estimate

| Tt @)s,w@)de < €55, (1)
holds uniformly in j € Z. Then
sup [|Dily; Tj [z, 19 Sv.d.61,62p.9 C-
JEL L 2

Proor. Fix j € Z and let S = Dily;T;. We first apply a scaling argment. Note
that by assumption

[185@)putade =27 [ 1152w, w2 iz)da
<IN L (F27T),w(2)

If AS B1,q.r 18 asparse form with a y-sparse collection of cubes we form the collection
&, of dilated cubes {277y : y € Q} where Q € &. Then

. . . S,
2 ]dA;gS,Bl,q',IR(f(2 7),w(27) = Ap,Bl’q/JR(f’w)
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and therefore we get the estimate
(2.8) [ 185@)p(e)dn < €} 5, g 5F0)

Suppose that b is the smallest positive integer such that
27 < d72 min{6,/2, 62}
For 3 € Z4 let
Q;={r:27% <z, <273 +1),i=1,...,d}

and let f; = flg,. Let R; the cube of side length 3 centered at 273, Then Sf; is
supported in R;. We decompose R; into 392% cubes R; . of side length 27° here
v € 1; with #I, = 3d20d,

Fix 3,v and a simple nonnegative function w with [jw|| o+ < 1. We first prove
that for v € I

(2:9) [181@g,w@)1r, . ()dz S €1 ug, Il

In this argument we shall not use strong measurability of Sf;. By (2.8)) we have

[ 188,@)p, 0@, (2)ds < €N} 5,y 5 Frlr, )

and therefore we find a sparse family &; , such that
210 [ISA@le@)1r, @)z <2 3 1), w1k, g,
QES;

By the strengthened support condition, (L.14)),
(2.11) Sfilg,, #0 = dist(Q;, R;,) > &1 —27°Vd.
Assuming that the left-hand side is not 0 in (2.10)), and in view of (2.11)), we see
that for a cube () € &; , we have, recalling that J; > Vd 2t
QNQ#0
RiuNQ#0
Hence all cubes that contribute to the sum in (2.10)) have side length > 27°. Denote

the cubes in &;, with side length in [2¢,2¢71) by &; ,(¢) and note that for every
£ > —b there are at most C'(d) many cubes that contribute. Hence we may estimate

Z |Q‘<f3>Q7p<W]lR3,,,>Q)q,

QESG; .

— diam(Q) > &, —27°Vd > 27°Vd.

1
ra

= Z Z |Q|;_é(/@|fa(y) %1dy);(‘/Q|w($)]lR&V(:E)|q,dx)q

L>—bQEG; ,(£)

fd(L—1
<o 3 29Nl 19l Shapa 1l
0>—b

where we used the assumption ¢ > p to sum in ¢. This establishes (2.9).
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By duality combined with (2.9) we have

(212)  ISf3lley, (r,) S sup /\Sfa(w)le w(@) g, , (x)de < C|fllLy, -
WESR 1
lwll g <1
Considering this for various v € Z; we get
15£lzy, < D ISFlzy, ryr S D ClFilley, Sasis Cllfillzy, -
veT; vET;
Then

(213) 57l = | X 84, sca( X Ishy, )
sezd 2 sz ’

1/q 1/p
Sasa €( X NAlE, ) S (XA, )T S el O

3EZ2 3€74

Theorem [[.3] now follows from Lemmata [2.2] and [2.4]

2. The reflexivity hypothesis

In this section we prove a version of Theorem where we drop the a priori
assumption on 7} sending Spg, to LlBg,loc and thus we can no longer assume the
strong Bs measurability of T'f. We still get a partial converse to Theorem [I.1]if we
assume that the Banach space By is reflexive.

THEOREM 2.5. Let By be reflexive and let 1 < p < q < oo. Let {T;}jez be a
family of operators in Opp, p, satisfying the support condition . Assume the
conclusion of Theorem[I.1] that is, there exists C > 0 such that for all Ny, No with
N1 < N3 and every fi € Sp,, f2 € Sp;,

No
(O3 Tt )] < €0y g (1 f2),

j=Ni
Then

(i) Conditions (1.7a)) and (L.7b) hold, i.e., there is a constant ¢ > 0 only
depending on d,p,q,~y such that for all Ny, No with N1 < Na,

Ny N
H E Tj < cG, H E Tj
L% —L%*>
j=N B1 B2 j=Ni

(i) If, in addition, the T; satisfy the strengthened support condition (1.14)
then condition (1.8) holds, i.e., there is a constant ¢ > 0 only depending
on d,p,q,vy such that

<cC.

LLt s
B, LB,

ilo; T | 1. <cC.
3161123 || Dily; Tj||L%1—>L%2 <cC

In the vector valued setting of Theorem we need to use a more abstract
duality argument which requires some care because of a potential lack of strong
local integrability. We briefly discuss the issue of duality.

Let B be a Banach space. Recall that for 1 < p < oo, 1/p+1/p’ = 1, the space

L%'* is embedded in (L%)* via the canonical isometric homomorphism. In the scalar
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case this isometry is also surjective when 1 < p < oo, and the proof of this fact
relies on the Radon—Nikodym theorem. In the vector-valued case the surjectivity
is equivalent with the dual space B* having the Radon—Nikodym property (RNP)
with respect to Lebesgue measure (see [56], Chapter 1.3.b] for the formal definition).

Thus under this assumption we have an identification of the dual of L%, with L’;*.
To summarize,

(2.14) B* € RNP «= (LB)* =1IF. 1<p<oc.
Similarly, the Radon—Nikodym property for B* also implies
(Lgr)*:Lgf/, l<p<oo, 1<7r<oo;

this is not stated in [56] but follows by a similar argument as in the scalar case
[65] (2.7)], essentially with the exception of the application of the Radon—-Nikodym
property in place of the scalar Radon—Nikodym theorem. For a detailed discussion
of the Radon—Nikodym properties and its applications we refer to [566, Chapter
1.3.c]. The class of spaces which have the Radon—Nikodym property with respect
to all o-finite measure spaces includes all reflexive spaces and also all spaces that
have a separable dual (cf. [56 Theorem 1.3.21]). If B is reflexive, so is B*, and
therefore holds for reflexive spaces B.

Under the assumption that the double dual B3* satisfies the Radon-Nikodym
property, we can show that the sparse bound implies that 7' f can be identified with
a B3* strongly measurable function. This leads to a satisfactory conclusion under
the stronger assumption that By is reflexive.

LEMMA 2.6. Assume that T € Oppg, g, and that B3* satisfies the Radon-
Nikodym property. Then the following hold.

(i) If 1 < p1 < p < oo and T € Sp,(p1,B1,p’, B3) then T extends to a
bounded operator from L%ll to L’ég* so that

(2.15) Tl e Spe v T sp, 0By B5) -
2
(i) If 1 < p < ph and T € Sp.(p, B1,p2, B3) then T extends to a bounded
operator from Ll to L% so that

(2.16) Iy, — oz Spa VT llsp, o, 5102, B5) -

PROOF. We rely, as in the proof of Lemma [2.2] on Lemma [2.1
For part (i), we use (2.2)) to obtain

(T f1, fa)l S '7_1HTHSP’Y(P,Bl;pz,B;)HflnLgll ||f2Hng
2

This inequality establishes the form fo — (T'f1, f2) as a linear functional on ng.
Since B3* has the Radon-Nikodym property and thus (ng)* = L%S*’ we can
identify T'f; as a member of L%é‘*' Since

HTHLgll_wP = sup sup  [(T'f1, f2)l,

..
2 Ifill, o, <Tf2ll <1
o]

B3

we have established (2.15)).
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Similarly, for part (ii) we use (2.3) to obtain
(TS F2)l ST o, 01508 1 g, N9l
2

Since L%;f can be identified with (L%/;)* we then get

17| e, oLGE = Sup sup  [(Tf1, f2)l
fillg, <1l <1
v

2

and obtain (2.16)). O

LEMMA 2.7. Assume that B3* satisfies the Radon-Nikodym property. Let
{Tj}jez be a family of operators in Opg, p,, satisfying the strengthened support
condition (1.14). Suppose that 1 < p < q < oo and

sup ||TjHSp7(p,Blyq’,BE) =¢C
JEZ

Then

sup ||D1127T HL” —L%Y 5 57 d,81,62,p,9 c.
JEZ

PrOOF. We let S = Dily; T}, R;, R;,, v € T; as in the proof of Lemma [2.4]
The proof of | . can be modified just with approprlate notational changes, such
as replacing expressions as one the left-hand side of (2.9)) with

)\f7371’(g) = <Sf3’ g]le,u>'
This leads to the inequality

(2.17) (S F5:91R, 0| S Cll il llgllz,

in the place of (2.9). Inequality (2.17) shows that Ay, is a continuous linear
functional on the space LqB; (R;,.); recall that by assumption 1 < ¢/ < co. By
the Radon-Nikodym property of B3*, the linear functional Ay ; , is identified with
a function Sf; restricted to R;,, in the space L..(R;,). Hence we now get a
variant of inequality (2.12), namely

1S fillzs,. < D ISFllcy,. r)

veZ;

< Z p Sf37g]lR3,u> 5d,51752 e”fZaHLZI’3 .
= ngu :

We finish as in ) to bound ||Sf]|1a

B**

S €l fes, - O

CONCLUSION OF THE PROOF OF THEOREM [2.5] Since we are assuming that
By is reflexive we have that By = B3* satisfies the Radon—Nikodym property.
Hence now the necessity of the L%, — L% and L%, — L% conditions follow
from Lemma and the necessity of the single scale LP — L9 conditions follows
from using the assumption with N; = N, and applying Lemma [2.7] O






CHAPTER 3
Single Scale Sparse Domination

We collect some preliminary results which are needed in the proof of Theorem

in!

1. A single scale estimate

We state an elementary lemma which is used to establish the base case in the
induction proof of Theorem [I.I] Recall that for a cube @, we let 3Q denote the
cube centered at the center of () with three times the side length of @, which is
also the union of @) and its neighbors of the same side length.

LEMMA 3.1. Let T; € Opg, p, satisfy (L.6) and (1.8) for some exponents
p,q € [1,00]. Let Q be a cube of side length 27. Then for fi € Sp,, f2 € Sg;,

(5[], f2)] < 3%7 Ao(p, DIQI(1) g {2300

PROOF. By the support property (1.6), Tj[f11g] is supported in 3Q. By re-
scaling we get from (1.8]) that

||TjHLP—>L'1 < Q—jd(l/p—l/q)AO(p’ q)

and thus
(Ti[ATel, f2)l = (T;[filgl, falsq)]
< Ao(p, )27 1PV 1o foLao
= Ao(p, q)3%7 1QI{f1) g p(f2)30.44
as claimed. 0

This implies a sparse bound for the single scale operators T}; indeed the sparse
collection is a disjoint collection of cubes.

COROLLARY 3.2. For0<y<1land1<p,q < oo,
1T 50,y < 3°/PH ) Ao(p. ).

ProOOF. We tile R? by a family 9; of dyadic cubes of side length 2/ and
estimate

(T f1, f2)] < Z (Ti[f11q), f2)] < Ao(p, )37 Z 1QI(f1)g,p(f2)30.4

QeQ; Qe

< Ao(p, )3T N 13QN F)sg . (F2) s
Qeﬂj

23
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The family {3Q : Q € Q,} can be split into 3¢ subfamilies consisting each of disjoint
cubes of side length 3 - 27. This implies the assertion (for every 0 < v < 1) since
for every 3@Q) involved in each subfamily we can choose Fsg = 3Q). O

2. A resolution of the identity

It will be quite convenient to work with a resolution of the identity using
Littlewood—Paley decompositions which are localized in space. We have

(3.1) 1=>" ApAy
k=0

which converges in the strong operator topology on Ll (R%), 1 < p < co. Here Ay,
jN\k are convolution operators with convolution kernels A, X;c such that A\g € C2° has
support in {z : [z < 1/2}, [ Ao = 1, A\ = 2X(2-) = Ao and Ao, A; € S with [Ag =1,
and le = 0. Moreover, for k > 1, A, = 2(k=Dd ) (2k=1.), A\ = 2(’“_1”}1(2’“_1-).
For later applicability we may choose A1, so that

d d
//\1(30) H.I? dx =0, for Zai < 100d
i=1 i=1

and the same for Xl.

A proof of with these specifications can be found in [I00, Lemma 2.1]
(the calculation there shows that Xo, Xl can be chosen with compact support as
well). For later use we let Py be the operator given by convolution with 254 )\q(2*.)
for k > 0, and also set P_; = 0, and observe that by our construction

(32) Ak = Pk — Pkfl, for k Z 1.

3. Single scale regularity

In our proof of Theorem it will be useful to work with other versions of the
regularity conditions which are adapted to the dyadic setting. To formulate
these, we fix a dyadic lattice of cubes Q. Let {E, } ez be the conditional expectation
operators associated to the o-algebra generated by the subfamily ,, of cubes in Q
of side length in [277,217") that is, E, f(x) = avg f for every x € Q with Q € Q,,.
Define the martingale difference operator D,, by

D,=E,—-E,_; forn>1.
We also use the operators Ay, /NXk in the decomposition (3.1]).

LEMMA 3.3. Let T' € Opp, p,-
(i) Let 1 <p<g<oo,0<¥<1/p. Then

(33)  ITEollzy, s, +sup2™|TDy |y s So sup2*||TAk| Ly —re, -
1 2 >0 1 2 k>0 1 2

(i) Let 1 <p<g<oo,0<v<1. Then

. kY9 ~ ) -9
(3.4) 21;132 1T Akl s, —zg, ~o [Tl —rg, +0<6‘%}3<1|h\ ITARlLy, —rg, -
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(iti) Let 1 <p<qg<oo,0<v9¥<1—1/p. Then

(3.5)  sup2*’|TAkllry zs <o lITBollzs, 1 +sup2™|TDy|lLe ps -
k>0 1 2 1 2 n>0 1 2

An immediate consequence is the following.

COROLLARY 3.4. For 1 <p<g<oo and 0 <9 <min{l/p,1—1/p},
ITEollg, g, +5up 2™ ITDullLy, g, ~v

—9
||T||L§gl—>L§32 + 05‘%{11 |hl HTAh|‘L%1—>L‘}32'

Proor oF LEMMA [3.3] We rely on arguments used before in considerations
of variational estimates [58], [59], of basis properties of the Haar system in spaces
measuring smoothness [47] and elsewhere. We use

[AkllLe, —rp =O@M),  [Axlley rp =OW),  [Enllry iz = O(1)
throughout the proof. Since ¥ > 0 we get from (3.1

ko
ITEollzy, —~r3, ]CZ% ITARN Ly, Ly So igl(;? 1T Ak, —rg, -
To estimate TD,, we will need

(3.6) |AkDallzy, oy, < minfL,26-m/7),

and only the case k < n needs a proof. A standard calculation using cancellation
of D, yields (3.6) for p = 1 and the rest follows by interpolation. Consequently we
can estimate

2n19||TD’ﬂHL%1~>LqBZ < 2m9 Z ”TAkAk]D)n”L%lﬁL‘}BQ

k>0
<2y ITAkll s, —zg, [1ARDnllzy, —rr,
k>0
—(n—k)(X—» —(k—
S Z 2kﬂ\|TAk||Lgl—>L§322 (n=k)y )+Z2k0”TAkHL%1—>L%22 (k=n)d
0<k<n k>n

S SUPQMHTAk”L% —L% s
kZO 1 2

where we used ¥ < 1/p for the first sum. This proves (3.3).
We now turn to (3.4) and estimate the left-hand side. By (3.2)) we can write

ITAkNzy, —zg, < ITA—=Polley, zg +1TT= Pea)lley, —rg, -
Note that, as [ Ao =1,

(I— P 1) f(z) = / 2k=Dd )\ (2*=1h) Ay, f (z)dh,

SO

1T = Pe1)flley, Ly, = /Q(k_l)dl/\o@k_lhﬂ||TA—h||L;;ﬁLqB2 dh

S sup [TAwllpy re
|h|<2- 17
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and the same bound for ||T'(I— Py)f||rs, ze . This establishes that the left-hand
1
side is smaller than the right-hand side in (3.4).
We argue similarly for the converse inequality. We estimate

)
1Ty, ~rg, < I;)”TAkHLgl—quz < igISQ ITAkl|z, —rg, -

For the main terms

ITARN Ly, —1g, < I;) ITAkl Ly, g [AxBnllzy, —ip, -

Now
(3.7) 1ReAnllzg —op S DM+ B) = M)l < minL,2|h]}
and therefore

B NTAnly oy, < 3 IT ANy oy, 2 (28R~ min{1, 2¥|hl)
k>0

S S 2T Akl g, g,

since Zk20(2k|h\)_ﬂ min{1,2%|h|} <y 1if 0 <9 < 1. This completes the proof of

g
L=

It remains to prove (3.5). Setting Dy := Ey we observe that I =3 - I, and
D,, = D,D,, and thus B

ITAkll s, —zg, < Z 1Ty, —rg, IDndelre, —rz -
n>0

We use [[Dy Az pe <1 forn >k and
1 1
(3.8) IDnAsllze Spp < 207R0=5) for n < k.
1 1

This is clear for p = 1 and by interpolation it suffices to show it for p = co. Let Q
be a dyadic cube of side length 27"*!. Let Ch(Q) be the set of 2¢ dyadic children
of @ (i.e. the dyadic sub-cubes of side length 27™). Let

Fop = {z : dist(z,0Q) < 27 for some Q € Ch(Q)}.

Then |Fg 1| S 274" Y27k Let g1 = flo\r,, and observe that by Fubini’s
theorem and the cancellation and support properties of A\

E,Argor(z) =0 and E,_1Aggor(zr)=0 forazeQ.
Hence for z € Q,
IDnArf(2)| = DpAr(flr,,)(2)]
sz [ [ =)l F)ldwtrg )y
< 2N Fg -1l fllse S 277 F )1 flloo-

This implies (3.8)) for p = co.
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To finish we write

BT, rg, € 3 ITDully, -z, 2 minfl, 200901/}
n>0

ny
S sup2 ITDnl[Ly, —rg,
where we used Y o, 277 min{1,2*=0M1-1/P)} < 1 provided that 0 < ¥ <
1 —1/p. This proves (3.5). |
In the proof of Theorem [I.I] we use the following Corollary.

COROLLARY 3.5. Let 1 <p<g<oo and0< ¥ <1/p. Then
(i) For any n >0,

—nd -9
17T =En)lLp, ~rs, So 2 Ju BN TAnllzy, —rg, -

(i) If T; is such that (L.9a)) holds then

—ndeg—jd(t -1
IT5(1 = Enj)llLy, 1y, So B27"277 ),
Proor. We write [ = E,, + >, | D44, and thus

o0
1T~ Bz, ey, < S ITDusnlzy oz,
k=1

oo
So »_ 27 snp BN T AR L, 1,

1 0<|h|<1
by combining part (3.3), (3.4) in the statement of Lemma[3.3] We sum and get the
assertion. Part (ii) follows by rescaling and the hypotheses. (]

We finally discuss a formulation of the regularity condition which involves the
Fourier support of the function and is therefore limited to the case where B is a
separable Hilbert space, here denoted by H. It is convenient to use a frequency
decomposition

(3.9) F="mxf,

£>0

with 7 is supported in {€ : [¢| < 1} such that 7jo(£) = 1 for [¢] < 2, and with 7,
defined by 7,(&) = M0 (274€) — (21 7€) for £ > 1, i.e. we have

(3.10) supp(fe) € {€:272 < |¢] < 28}, (> 1.

Recall that E,,n (M) denotes the space of tempered distributions whose Fourier trans-
form is supported in {& : A/2 < [§| < 2A}.

LEMMA 3.6. Let 3 be a separable Hilbert space and T' € Opg¢ p,. Suppose that
T:LL — LqB2 satisfies

(3.11) Tl s, < A,
and for all A > 2 and all H-valued Schwartz functions f € Eann(A),
(3.12) T, < AN N flls
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Then
sup B~ T ARz, —ps, So A
0<|h|<1 2

PrROOF. By the assumptions (3.11) (¢ =0) and (3.12) (¢ > 1) we have
ITlne * Anfllleg, < A20797lne« Apfl| o,
Arguing as in (3.7) we get
e % Anfllze, = 1Anme * fllzz, < minf1, 2°0R [} fllLs, -
Thus using (3.9)) we obtain
ITARfIlzg, < > T (e + Anfllley, S A 27 min{1, 2R} £ e,
=0 =0
and after summing in ¢ we arrive at ||TApfl|ps <o |h\79||f||szo{.
2



CHAPTER 4

Proof of the Main Result

1. A modified version of sparse forms

We fix a dyadic lattice £ in the sense of Lerner and Nazarov, where we assume
that the side length of each cube in  is dyadic, i.e. of the form 2% with k € Z. Also
fixy € (0,1) and 1 < p < g < oco. It will be convenient to use variants &g, = B¢, 4
of the maximal form A; o defined in (1.3). The presence of the triple cubes in the
new form allows one to exploit more effectively the support condition .

DEFINITION 4.1. Given a cube Qp € Q let

&q, (f1, f2) = sup Z |Q|<f1>Q,p,Bl <f2>3Q,qf,B;

QEG

where the supremum is taken over all y-sparse collections & consisting of cubes in

D(Qo)-

Notational convention. From now on in this proof, the dependence on the Banach
spaces By, B; will not be explicitly indicated, i.e. {f;) o.p Should be understood as
(f1)gp., and (f2)q - should be understood as <f2>Q,q'AB;-

The key step towards proving Theorem [T1] is to establish a variant in which
A%, is replaced by B¢, , that is,

p,q
No
(4.1) I Z Tjf1, f2)| Spacdiy CEQo(f1, f2)
Jj=N1

for f € Sp,, f2o €8S B and a sufficiently large cube Qg € Q. The reader will notice
that &g, does not define a sparse form, and we will show in @ how to finish the
proof of Theorem given . The proof of will be done by induction,
which leads us to the following definition.

DEFINITION 4.2. Forn =0,1,2,... let U(n) be the smallest constant U so that
for all families of operators {T};} satisfying the assumptions of Theorem for all
pairs (N1, Na) with 0 < Noy— Ny < n and for all dyadic cubes Qo € Q of side length
2N2 we have

N2
(D" T, fo)| S UGG, (f1, fo)

Jj=N1
whenever f1 € Sp, with supp(f1) C Qo and f2 € Sp;.
Thus, in order to show (4.1)), it suffices to show that
U(n) Spaedn €

29
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uniformly in n € Ny. This will be proven by induction on n. By Lemma [3.] we
have the base case

(4.2) U(0) < 379 Ay(p, q)

and, more generally, U(n) < (n+1)3%9 A, (p, q), which shows the finiteness of the
U(n). The proof then reduces to the verification of the following inductive claim.

CLAIM 4.3. There is a constant ¢ = cp q,e,d,y such that for all n > 0,
U(n) <max{U(n — 1), cC},
with C defined as in (1.11]).

Our proof of the claim is an extension of the proof for sparse bounds of the
prototypical singular Radon transforms in [89], which itself builds on ideas in [66].
It is contained in §4

2. Proof of the main theorem given the inductive claim

We prove Theoremgiven Claim Fix Ny < Ny, f1 € Sp,, f2 € Sp;. We
choose any dyadic lattice with cubes of dyadic side length as in the previous section.
By we may choose a cube Qp € 9 of side length 24(Q0) with L(Q) > Na
such that f; is supported in Qg. Then Z;VZQM T} f1 is supported in 3Qo. Define
the operators S; = T; when N; < j < Ny and S; = 0 otherwise. Then the
assumptions of Theorem apply to the family {S;}. By and Claim
applied to S = Z]L:(%’l) S; = Z;'V:QNI T; we obtain

[(Sf1s f2)| < Cpageay € B (f1, f2)-

In order to complete the proof of Theorem it remains to replace B¢, by the
maximal sparse form A} . This argument relies on facts in dyadic analysis which
we quote from the book by Lerner and Nazarov [79].

We first note that for € > 0 there is a y-sparse collection &, C D(Qo) such that

[(Sf1, £2)] < (CpageanCH+e) D> QUG (f2)s50.q

Qe6.

(4.3) < Sd/pid(cp,q,ad,'y C+e) Z ‘3Q|<f1>3Q,p<f2>3Q,q"
QeG,

By the Three Lattice Theorem [79, Theorem 3.1] there are dyadic lattices IR
v=1,...,3% such that every cube in the collection 36, := {3Q : Q € &.} belongs
to one of the dyadic lattices D*). Moreover, each collection

6™ =36.nDW

is a 3~9y-sparse collection of cubes in D®). Each & is a 3¢y~1-Carleson family
in the sense of [T9, Definition 6.2]. By [79, Lemma 6.6] we can write, for each
integer M > 2, the family GEV) as a union of M sub-families G, each of which

€,1 )

is a M-Carleson family, with M=1+ M~1(3%y~1 —1). By [79, Lemma 6.3] the
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collections 6&? are j-sparse families where 5 = M~1 = (1 + M~1(3%9y~1 = 1))~1,
By choosing M large enough we can have 4 > ~ and then, from (4.3)), one has

[(Sf1, f2)] < 37774 (cp g caqn C+e) Z 13Q[(f1)30.,(f2)30.4

QEeG,
< M?’d/p(cp,q,s,d,’y C+e) sup Z |R‘<f1>R,p<f2>R7q/

i=1,..., )
v=1,...3% ReG,

K3

< Msd/p(cp,q,e,d,’yc =+ 6) A;,q(fla f2)

which gives the desired y-sparse bound with ||S|ls, (5,4 < M34Pc, e aC.

3. Proof of the corollary of the main theorem

We prove Corollary It is a consequence of Theorem [I.1] and the following
. No
lemma, applied to 7' = > 2\ T}

LEMMA 4.4. LetT :Sp, — LlB% and assume that

loc
HT”Spw(p,Bl;tI';Bg) <€

Then we have for all f € Sp, and all nonnegative simple w
(4.4) /Rd |Tf(x)|p,w(x)dx < CA, B, g r(fiw).

ProoF. By the monotone convergence theorem we may assume that w is a
compactly supported simple function. Moreover, since T : Sp, — LlBg,loc we can
approximate, in the L (K) norm for every compact set K, the function T'f (for
f € Sp,) by simple Bs-valued functions. Thus given € > 0 there is h € Sp, such

that
/Rd |Tf(x) — h(m)|32 w(z)de < e.

Moreover, there is a compactly supported A € Sp; with max,cga |A(2)
(depending on h, w) such that

By <1

/ |h(@)|p, w(z)dz < 6+/ (h(z), \(z)) w(z)dz,
R4 Rd
and we also have

| [ @) = T@ M) wl@da] < [ @) =T @), wle)da < c.

R4

Consequently
/ TF ()| yw(x)dz < 3¢ +/ (Tf(2), M) wiz)dz.
Rd Rd
Thus in order to show (4.4) it suffices to show

(4.5) /Rd <Tf(;E)7 A(x))w(x)dx < GA;hBl,szR(ﬁw)
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for any choice of compactly supported A € Sp; such that [[A[[L < 1. Let fo(z) =
2

w(z)A(z). Then fo € Sp; with | f2(x)|p; < w(x) for all z € RY. By the hypothesis,
applied to f and fo = wA,

/Rd (Tf(x),w(x)A(z))de < €A, By pa,B; (fywA).

Since (WA)Q,ps,B; < (W)Q,ps,k, We have established (4.5), and the proof is finished
by letting ¢ — 0. (I

4. The inductive step

In this section we prove Claim the key ingredient in the proof of Theorem
Let Qo be a dyadic cube of side length 22, Recall that f; is supported in Qg
and thus

No N2
( Z Tjf1, f2) = Z Tjf1, f213q,)-
J=Ni j=N1

Hence without loss of generality we may assume that fo is supported in 3Qp.

Let M denote the Hardy-Littlewood maximal operator and let M, f = (M| f[P)!/P.
By the well known weak type (1,1) inequality for M,

meas({z € R*: M, f > A}) < 5N7P| f||p.

Define ) = Q1 U Qs where

(46) O = {z €3Qo: M, fi(z) > (%)Upﬁﬁ@,,p}’
. 1

Q = {2 €3Q0 : My fol) > (227 ()00}
We then have || < Q4|+ Q2] < (1 —7)|Qol| and if we set

Eq, = Qo \ &,

then |[Eq, | > 7|Qol-
We perform a Whitney decomposition of 2. It is shown in [L103] VI.1.2] that

given any 3 > v/d, one can write Q as a union of disjoint dyadic Whitney cubes
W e WP C Q, with side length 2(W) and L(W) € Z, so that

(B — Vd)2LW) < dist(W, QF) < gaL(W)+1

for W € W#. In [103, VL1.1] the choice of 8 = 2v/d is made; here we need to
choose f sufficiently large and 8 = 6+v/d will work for us. We fix this choice and
label as W the corresponding family of Whitney cubes. We then have

(4.7) 5diam (W) < dist(W, QF) < 12diam(W) for all W € W.
We set for i = 1,2,

fiw = filw,
biw = (fi —avy, fi)lw = (1= E_rw)) fiw,
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and
bi= Y biw,
Wew
g9i = filge + Y avyfi Tw,

wew

Then we have the Calderén—Zygmund decompositions f; = g; + b; (using the same
above family of Whitney cubes for f; and f3). For i = 1 we add an observation,

namely that
b= Y biw.

wew

WCQo
Since f7 is supported in Qq, this follows from the fact that
(4.8) WNQRo#0 = W C Q.

Indeed, if (4.8) fails, we must have Q9 C W as W and () are dyadic. But then
|Qo] < |[W| < 9] < (1 —+)|Qo|, which is a contradiction.
We note from (4.7 and the definition of 2 that

(4.92) (Fwp San (Mqep 2wy Sar (f2)30,.
for every W € W, as a fixed dilate of W intersects QF. Indeed,
(4.9b) <f1>Q,p Sdﬁ <f1>Q0,pa <f2>Q,q/ gd,w <f2>3Qo,q’

for every cube ) which contains a W € W. Moreover, by the definition of g; and
Q,

(4.10) lg1llzg, San (f1)qep l92ll252, Sy (f2)30,q'-

o~
Ba

Since supp(f1) C Qo and supp(f2) C 3Qp we also get supp(g1) C Qo and supp(g2) C
3Qo; here we use ([@-8)). Since || 1g||pra Si |Q|Y" for r < 0o, we obtain from ([E10)

that for rq, 79 < 00,

(411) grll s+ Sarw Q™ (Fidg g2l Saraiy 1Q0lY™ (f2)agy 4
2

By

For every dyadic cube @ € 9 we have by disjointness of the W
1/r
< [
H Z bl,WHLT N ( Z [ fiw] LBI)
wWcQ B1 wcQ

and thus
1/r
(412) | 3= o, s (] 16@i5d)"
wcQ Ly Q@

Likewise we get for fa,

HWZC:sz,W‘ L S (/Q | f2()

We now begin the proof of the induction step in Claim [.3] Let

B dm) 1/T.

No
S = SNl,NQ = Z Tj.

Jj=N1
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By the Calderén—Zygmund decomposition for f; we have

(4.13) [(Sf1, f2)| < [(Sg1, f2)| + [(Sb1, fa)|-
Using the L‘gl — L% boundedness of S (from the restricted strong type (g, q)

condition ([1.7b)) and (4.11) with 1 = ¢ < co we get
(4.14) (891, £2)] < 1S1llzg, 1 f2Laqoll Lo
2

< A1l gy 1 f21300l o
1 B
S d,q,wA(Q)|Qo|<f1>QO,p<f2>3Q0,q/~
Define, for each W € W (recalling that the side length of W is 2L(W)),
Swif=Snomlflwl= Y. T[flw]

N1<G<L(W)

We decompose the second term in (4.13)) as in [89] and write
(Sby, fa) =T+ II+ 111,

where
(4.15a) I=(> Swh,fo),
Wew
(4.15b) IT=—{ Z Sw(avw [f1]1w), f2) ,
Wew
(4.15¢) HI={ > (S=Sw)bw,f2).
wew

The first term (4.15a) is handled by the induction hypothesis. In view of (4.8)),
each W that contributes a non-zero summand in (4.15a)) is a proper subcube of Q.
Therefore we have L(W) — N; < n — 1 and thus by the induction hypothesis,

[(Sw f1, f2)| SU(n — 1)&w (filw, f2).

That is, given any € > 0 there is a 7-sparse collection Gy, of subcubes of W such
that

(4.16) (Swhi f)l < U =1 +¢) Y 1QUf1)g,pif)sqm

QEGw,.
Because of the y-sparsity there are measurable subsets Eg of @ with |Eg| > v|Q)|
so that the Fg with @ € G, are disjoint. We combine the various collections
Gw,e and form the collection &, of cubes

Gc:={Qu}u |J Gw..

wew
WCQo

Observe that the collection &, is indeed ~y-sparse: as defined above, Eg, = Qo \ £,
and therefore |Eg,| > v|Qo|- By disjointness of the W C Qq the sets Eq, for
Q@ € &, are disjoint; moreover they satisfy |Eqg| > v|Q|.

We consider the term I7 in . Here we will use that the restricted strong
type (g, q) condition implies HSWH,;gll_”:qB2 < A(g), and

lavw [Aillwll g S lavw [l WY Sq (1) gy, WM
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for ¢ < co. Together with the disjointness of the cubes W and (4.9al), we get

(4.17) 1| < Z 1w (avw [Ai]Tw )l e, ([ foLaw |l o
Wew B3

Sa D (Fw AW IGNWN YT (fo) gy
wew

Sd.gy AlQ) Z IWI{f1) 000 f2) 3004

wew

Sd.ary A@)NQol(F1) g p(f2)30.q -
Regarding the third term in (4.15c|) we claim that

(4.18) |II| Spagean (Al) + Ao(p,0)108(2 + 55055 )Q0l(f1) gy (f2) 30,4 -

Taking (4.18]) for granted we obtain from (4.14)), (4.17), (4.18) and (4.16) that there
exist constants C1(d, q,7) and Ca(p, g, e, d,~y) such that

[(Sf1,f2)] < Cu(d, 4, 7)A@)|Qol{f1) gy p{f2) 300,
T Ca(p 4,60, 7)(A(D) + Ao(p,0) 082 + B Qol (1) oo

+ Z Z (Un—-1)4+¢)|Q|(f >Q,p<f2>3Q»q/'

WeWw QeSw, .
WCQo

This implies

[(Sf1, f2)] < max{U(n — 1) +¢€,¢p 4,4~ C} Z 1QI{f1)0.p([2)30.¢

Qe6,
<max{U(n — 1) +¢€,¢pg,e.drC} B, (f1, f2)

for all € > 0. Letting ¢ — 0 implies Claim We are now coming to the most
technical part of the proof, the estimation of the error term /77 in (4.15c)) for which
we have to establish the claim (4.18]).

PROOF OF . We now use the Calderén— Zygmund decomposition for fo =
g2+ D wew bQ,W as descrlbed above. We split I1] = Z 1 I11; where

(4.19a) I =( Y Shiw,g2),
wew

(419b) III2 - — Z <SWb1,Wa92>a
wew

(4.19¢) MIz= > > > (Tibuw, baw),

N1<j<N; Wew: w' EW
LW)<j L(W")>j

(4.19d) o= > > > (Tibiw,baw).

N1<j<No WeEW: W’'ew:
LW)<j L(W')<j

We use the weak type (p,p) condition ) that S maps Lp to LI, which is
isometrically embedded in Lp r. Asp > 1 we obtain using (4.11]) for ro = p’ < 0o
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115 < (ST buwl]
wew

Sd.p,y ||5\\LgﬁLg;°H > bl,W‘
wew

’
LP:o° ||92||L§;;1
B3* 3

o QoI (f2) 30, '

By
By (4.12) for r = p we obtain
(11| Sapqy AP)IQol(f1) gy p{f2) 300, -

Likewise, the weak type (p,p) condition (1.7a) implies L%, — L3 bounded-
ness of Syy. Using this and supp(Swbi,w) C 3W, (4.94), (4.10), and p > 1 we

estimate,

1L < ) ||SWb1,W||L’;3’§Z
Wew

<AW) Y Inwlizs, lloallnss, [Tswll .
wew 2 B2

21wl

Savy AW®) D WP F)w,llgal g, (W7
wew

sd,'y A(p) Z ‘W|<f1>Q0,p<f2>3Qo,q’

wew

and hence, by the disjointness of the cubes W,

(L] Sapry AP)Qol(f1) gy p{f2)300 .0

Next we estimate 1113 and first show that

Tibiw, baw) # 0
(4.20) Tibrw bow) 7 — J<LW)<LW)+2<j+2.

L(W) < j < L(W')

To see (4.20)) first observe that T;bq w is supported on a cube Ry, centered at xy
with side length 271 +22W) | Hence, if (Tjb1,w, b2, w) # 0, then we get from (4.7)
and the triangle inequality
5diam(W') < dist(W’, QF) < diam(W’) + diam(Ry/) + dist(W, QF)
< diam(W') + (2771 + 2LV/d + 12Va2kMW),
Hence since L(W) < j < L(W') we get 2FW)+1 < 13 . 2L0W) which gives ([4.20).

Also, with these specifications W C 3W" if (T;b1 w, ba,w+) # 0. By the single scale
(p, q) condition ([1.8)),

(421) ||zjoLP—>L‘1 S 27jd(1/p71/q)Ao(p, q)
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Hence using Holder’s inequality, (4.21) and (4.9a) we get
IIIs) < > Z > [(Tjb1,w, b2,w)|

N1<j<Ns wW'e wew:
G<L(W’ )<]+2 L(W")—2<L(W)<j
wc3w’

<Ao(pg) Y, 27709 > b1, wllz, oz w Ly
2

N1 <j<N2 WW'ew: Wc3w’
JSL(W')<j+2
L(W")—2<L(W)<j

,gd,'y Ao(pv Q)<f1>Qo,p<f2>3Q07q/

> Z Z 91 /p=1/a) |y | L/p |yt |11/

N1<j<N2 WW':Wc3w’
JSL(W')<j+2
L(W")=2<L(W)<j

Sd,’y AO(p7q)<f1>Q0,p<f2>3Q0,q/ Z |W/‘

W’ew
and thus, by disjointness of the W/,
113 Saq Ao(p aQ)<f1>Q0,p<f2>3QO,qf|Q0|~

Finally, consider the term

(4.22) =y > (Tibiw,baw).
N1<j<N2 (W,W)HEWxW
L(W)<j
L(W")<j

Let &’ > 0 such that

(4.23) ¢ <min{1/p,1/¢ e}

and let £ be a positive integer so that

(4.24) 28 < — ) <2t

We split
Vj = (_Oovj)z NZ? = Vi1 UV2UVj3
into three regions putting
Vit ={(L1, L) €V;:j -0 <Ly <j, j—L£< Lo <j},
Vi ={(L1,L2) € V;\ V1 : L1 < Ly},
Vj’3 = {(LlaLQ) S Vj \Vj’l : L1 > L2}
Then I11, = % IV, where for i = 1,2,3,

(4.25) W= > > (Tjb1w, ba,w).
N1 <j<N2 WW'ew
(L(W),L(W"))EV;.i
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Let R, be the collection of dyadic subcubes of Qg of side length 27. To estimate
IV} we tile Qg into such cubes and write

(4.26) 1V, = Z Z ( Z Tib1,w, Z bo,w LsR).
Ni<j<N; RER;  WCR G U<L(W')<j
J—LSL(W)<j

By Holder’s inequality and the single scale (p,q) condition (1.8)) (in the form of
(4.21))) we get

Vi < Ao(p,q) Y 27940/p V@)

X Z H Z bl,W‘LP H Z bz,W']lsRHLq,

RER;  WCR PL o j—e<L(W)<j B3
J—e<LW)<j

< Ao(p,q) z Z |R|~(1/p=1/a)

N1<j<N> RER;

(X i) T )

 WCR W’'C3R B3
J—LSL(W)<j J—ULSL(W')<j

and using (4.9a]) this expression is bounded by Cq Ao (p, g) times
Z <f1>Q0,p<f2>3Q0,q, Z |R‘_(1/p—l/q)

N1 <j<Ns> Rem]‘
1/p 1/d’
(X m) T X )
WCR W'C3R
J—l<L(W)<j J—e<L(W')<j
Say Z <f1>Q07P<f2>3Q0,q/
N1<j<N»
e 1/p+1-1/q
~ Z |R|~(/P 1/q)( Z \W|) i
RER; WC3R

J—L<L(W)<j

Using p < ¢ and the disjointness of the W we see that the last expression is
dominated by a constant Cgq  p 4 times

<f1>Q07P<f2>3Qo»q/ Z Z Z |W‘

N1 <j<N2 RENR; WC3R
J—L<L(W)<j

< 3d<f1>Q0,P<f2>3Qo,Q’ Z Z Z ‘W|

N1 <j<N2 RER; WCR
J—LSL(W)<j

Sd <f1>Q0’p<f2>3Qm¢I’ Z |W| Z 1

wWew JiN1<j<N»

L(W)<j<L(W)+£
Sd £|QO|<f1>QO,p<f2>3QO,q’ .

Thus, using the definition of £ in (4.24]) we get

B
(4.27) V1| Sdepq Ao(ps g) log (2 + A (p q))|Q0|<f1>Q0,p<f2>3Qo,q/-
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We now turn to the terms I'V5, I'V3 and claim that
(428) |IV2| + |IV3| Sd,'y,p,q,e Ao(p7 Q)‘QO‘<f1>Q07p<f2>3Q07q/-

We first note that by the single scale e-regularity conditions (1.9al), (1.9b)), and
Corollary

(4.29) 1751~ Eaym)lug, g, S B2 D27,
1 2
* —id(L 1y ¢’
(4.29b) ”Tj (I — ESij)”L;lg’*ﬁLz;* 55 B2 (5 q)2 e's2
2 1

where £’ is as in (4.23).
Write, with 9, as in (4.26)),

(4.30) IVa= > > i i

N1<j<N2 RER; s2=1s;=max{s2,l+1}

( Z Tib1,w, Z bo,w I3R).

WCR W'C3R
L(W)=j—s1 L(W')=j—s2

Note that for L(W) = j — s1, we have byw = (I — E,,—;)fi,w. By Holder’s
inequality and (4.29al) we get for R € R;,

’< Yo Tihwe Y b27W’13R>‘

WCR W'C3R
L(W)=j—s1 L(W')=j—s2
SHT]‘(I—ESPJ‘) Z fl,W‘Lq ‘ Z ba,wr |l
WCER P2 W/C3R B3
L(W)=j—s1 L(W')=j—ss
_e'sy ,(l,i) P 1/p q 1/’1/
B RGO awl, ) (X el )
WCR ! W/ C3R B3
L(W)=j—s1 L(W")=j—s3

In the above formula for IV, we interchange the j-sum and the (si, s2)-sums, write
j=sin+iwithi=1,...,s; and estimate (invoking (4.9a)) again)

VO SEED SIS SR SN SN Ce
=1

s2=1 s;=max{s2,(+1} nez RER nti
s1n+i€[N1,Na]

1
ol

1
)X T )
(X awln,)( oo

WCR W'C3R
L(W)=s1n+i—s1 L(W')=s1n+i—s2

s2=1 s;=max{s2,l+1}

XD Y (Mgeplfeig, TR ),

ne” R6m51n+71
s1n+i€[Ny,N2]
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where
1 1—1
PR =[REG-D( S w) (Y ) "
WCR W'C3R
L(W)=sin+i—s1 L(W")=s1n+i—s2

We crudely estimate, using p < g,

s1n+i—ss

F(R7n7i) < ‘R|7(1/p71/q)( Z Z |W|)1/p+1*1/q

v=sin+i—s; WC3R
L(W)=v

sin+i—sa

< 3d/p=1/9) Z Z

v=sin+i—s1 WC3R
L(W)=v

For fixed W € W consider the set of all triples (R,n,?) such that syn +i—s; <
L(W) < s1n+1i— s2, R € Rg,nti and W C 3R, and observe that the cardinality
of this set is bounded above by 3d(81 — 89+ 1). Combining this with the above
estimates and summing over W € W we obtain the bound

(oo} (oo}
[IVa| Save (f1) gy p(f2)30,.4' Qo0 Z Z B27° % (s1 — 59+ 1)

s2=1 s;=max{so,l+1}

and the double sum is bounded by

41
Cona S B2 1)+ 3 pe)
so=1 so=f+1

Sewag B2+ 1)? Seppg B2 S04 Aol )

by the definition of £ in (4.24). This establishes (4.28) for the term |IV5].
The estimation of I'V3 is very similar. We may write

(4.31) 1Vs= Z Z i i

N1<j<N3 RER; s1=1sy=max{s;+1,0+1}

( Z bi,wlg, Z T; [b2,w L3R])

VII//VEVJ% W'ew:
c DNsss
L(W)=j—s LWh=j=s2

By Holder’s inequality and (4.29b)) we get for R € Ri;

‘< Z b1, w, Z T;[bQ,W’JISRD‘

WCR L(W')=j—s
LOV) Sy sy (Wh=j—s2
s _(1_1 1/p ’ 1/q'
SBr e RTGTV( bl ) (X Il
WCR W'C3R B3
LW)=j—s1 L(W’)C:jfs2

and from here on the argument is analogous to the treatment of the term V5. O
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REMARK. It is instructive to observe that the term 111, can be treated more
crudely if one does not aim to obtain the constant A, (p, q) log(2+ ﬁ) in (1.11]).

More precisely, one simply splits (—oo, j)2NZ? into two regions V.2 and V; 3, where
]’>j72 = {(Ll,LQ) L1 < Lo < ]} and f}j,g, = {(L1,L2) j > Ly > Lg}

Then split 111, = Z?:Q 1V;, where IV; are as in but with V;; replaced by
]}j’i' One then considers the sum in s; in to start directly from so, and the
sum in s9 in to start directly from s; 4+ 1. Using the same arguments, one
obtains
|IV2‘ + |IV3| ,Sd,’y,p,q,e B|QO|<f1>Qo,p<f2>3Qo,q/

instead of (4.28]). Note that, as the term I'V; does not appear in this case (see the
bound his yields sparse domination with the constant C in replaced
by A(p) + Alq) + Ao(p,q) + B.






CHAPTER 5

Maximal Operators, Square Functions and Long
Variations

In this section we show that Corollary yields sparse domination results for
maximal functions, ¢"-valued variants, r-variation norm operators and maximal and
variational truncations of sums of operators. An application of Theorem [I.3] also
yields necessary conditions for our sparse domination inequalities. We will formally
state necessary conditions only for maximal functions and ¢"-valued functions (The-
orem and leave to the reader the analogous formulations of those conditions
for r-variation norm operators (Theor7 maximal truncations (Theorem [5.3)

54).

and variational truncations (Theorem

1. Maximal functions and /¢"-variants

Given a family of operators {T}} ez in Opp, p,, consider the operators

5.1 518 = (DT s@s)

jez
when 1 < r < 0o and also the maximal operator

(5.2) SxeT f(x) = sup T £ ()] g,
JEZ

THEOREM 5.1. Let 1 <p<g<ooandl<r <oo. Let {T;};cz be a family of
operators in Opp, g, satisfying (1.6)).
(i) Suppose that the inequalities

(53) ST APy, and  [IS,TF] <A@

hold for all f € Sp,. Moreover, assume that the rescaled operators Dily; T satisfy
the single scale (p,q) condition and single scale e-regularity conditions ([1.9al)
and . Let C be as in . Then for all f € Sp, and all R-valued nonnegative
measurable functions w,

(5.4) (S:Tf,w) S CAp o (f,w)-

(it) In addition, assume 1 < p < q < oco. If the family of operators {T}};ez
satisfies Tj : Sp, — L}327 and the strengthened support condition (1.14]), then the
condition

loc

||STT||L§’31—>LP=°° + ||STT||L‘}B~11%Lq + 516112 ||D112jTjHL%1—>L‘}32 < 00

is necessary for the conclusion (5.4)) to hold.

43
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Proor or THEOREM [5.1l We begin with the proof for 1 < r < oo.

Let 6z, = 1 and d;;, = 0 if j # k. Let Ny < Ny be integers, and for each
integer j € [N1, NaJ, we define the operator H; sending L, functions to £ -valued
functions by

Ty f(x) if Ny <k < No,

(5.5) H;f(z,k) = {O if k& ¢ [N1, Na).

‘We note that

(5.6) (Z @) = (3 ]iij(x,M\;g)l/r.

Jj=N1 k=—oco j=Ni
By (5.3) we have
J=N1

where we write L”’OO(K’}J,J to denote LZ;:O. The adjoint of H;, acting on ZTIS -valued
2

Na
< A(p), H Z H; < A(9),

L%1—>LP~OO(KTB2) =Ny

LG —La(ey,)

functions g, is given by

N3
v)= Y 0T g(x)

k=N,

The assumptions on Dily;T; can be rewritten as

sup [|Dilys Hjll 1y, —paqey, ) < Ao(p:q)
JEZ

and

sup |h|” ESUPH(DﬂzJ i) oAnlley spoe, ) < B

|h|<1 JEL
lblllp |h| Ebup ||(D112JH*) o Ah“Lq (gﬂ" )*)LP < B.
h|<1

By CorollaryHapplied to the sequence {H;}jcz in Opgp, o, We get the conclusion
7" B2

/ ( Z | Z H; f(a, k)| Q)I/Tw(x)da:§CA;q,(f,w),

=—0c0 j=N;
which by (5.6]) implies

/ ( Z |T; f(z IBQ) rw(x)dmﬁCA;’q,(fjw),

We apply the monotone convergence theorem to let N3 — —oo and Ny — oo and
obtain the desired conclusion. This is possible since the implicit constant in the
conclusion of Corollary does not depend on By, Bs.

The proof for r = oo is essentially the same, with notional changes. Since
H;f(-,k) = 0 when k ¢ [Ny, V], we can work with £ over the finite set Z N
[N1, N2]. Then there are no complications with the dual space, which is ¢ B; over
Z N [Ny, No).
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For part (i) one uses Theorem [1.3]in conjunction with (5.6) and immediately
arrives at the desired conclusion, via the monotone convergence theorem. ([

2. Variation norms

We now turn to the variation norms V3, =V (Z) defined on B-valued func-
tions of the integers n +— a(n). Let |a|V§c2 = \a|LoBo2 and, for 1 <7 < oo,

1/r
61 lahg, = swp lam)ls, + ( Z a(mus) - a(n)l,)
ny<--<nnp
where the supremum is taken over all positive integers M and all finite increasing
sequences of integers nq < ... < nys. Similarly, if In, N, = [N1, N2]NZ we define the
Vg, (IN, n,) norm on functions on Iy, n, in the same way, restricting ni,...,ny
to IN1 Ny -

Given a sequence T' = {T}} ez in Opp, 5, we define V'T f(z) to be the Vg
norm of the sequence j + T)f(x). The LP norm of V'T'f is just the LP(Vg )
norm of the sequence {7 f};ez. We define Vi, n. T f(z) to be the V; norm of the
sequence j — L1y ()T f(x).

The proof of the following theorem is almost identical to that of Theorem

THEOREM 5.2. Let 1 <p<g<oo and1l<r <oo. Let {T;};ez be a family of
operators in Opg, p, satisfying (L.6]). Suppose that the inequalities

(5.8) HVTTfHLP,oo < A(p)”fHL’fBI and ||VTTf||Lq < A(Q)”f”[lell

hold for all f € Sp,. Moreover, assume that the rescaled operators Dily; T satisfy

the single scale (p,q) condition (1.8) and single scale e-regularity conditions (1.9al)
and (1.9b). Let C be asin (1.11). Then for all f € Sp, and all R-valued nonnegative

measurable functions w,

(5.9) V'Tf,w) SCA, (fw).

ProoF. In view of Theorem it suffices to consider the case r < co. Given

Ny < N, we define H; f(x, k) as in (5.5)), for Ny < k < N,. Note that for fixed z,
Ny <mp <---<npy < No,

/r
(510) [Ty f(@)]5, + (mef T f@)lp,)

ok - N r 1/r
:‘ Z ij(x’nl)‘32+(z ‘Zij(xvnu-f—l Z (z,n,) Bg)
Jj=N1 v=1 j=1 j=1
By (5.8) we have
N No
) SO v e
H ;;1 ! Ly —Lee(Vg) ) ; J L‘gllﬁm(v,;z) = A(g)

where V3, is interpreted to be the space V (In, n,) and all the constants in what
follows will be independent of Ny and Np. The pairing between V3 (In, n,) and
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its dual is the standard one,

N2
(@,b) = Y {a(n), b(n)) 5,5
n=N;
and we have,
N2
Blove (v = s | D (@), b)) pms |
‘a‘V§2<1N1,N2)S1 n=Ni

For 6U) = (8; n,,...,0;n,) we have, for j = Ny,..., Na,
‘5(3‘)‘V§2(1N11N2) —9l/"  and |5(j)|(v,;2(1N1,N2)>* — ol/"

The adjoint of Hj, acting on (V3,(In, n,))*-valued functions g = {gk}giNl, is
given by

N2
Hrg(x) = > 6T} gn(x).
k}:Nl

These observations imply

IDilys Hjll Ly, —raqvg) = 21/r||Dﬂijj||LgﬁLqu,
I(Dilys Hj) o AnllLy, —raqvy) = 27| (Dilys Ty) o Anlley, Ly,

||(D1121H;) ¢} AhHLq/( = 21/7"’ H(D112]TJ*) o] Ah”Lq/

(Vg,“)*)—wgT Zs —>L§’5} :
The hypothesis of Theorem are then satisfied for the sequence {Hj}jcz in
Opp, vy - Thus, by Corollary [I.2] we obtain

’" B2

Na
LY )], sl sen (1.0,
J=N1 B2

which by (5.10) implies
/d Vi N T f(@)w(z)de S CA;q,(f, w).
R

As the implicit constant in Corollary does not depend on the Banach spaces
B1, By we may apply the monotone convergence theorem and let Ny — —oco and
Ny — 00 to obtain the desired conclusion ([5.9)). d

3. Truncations of sums

We will give a variant of Corollary in the spirit of Cotlar’s inequality on
maximal operators for truncations of singular integrals.

THEOREM 5.3. Let 1 < p < q < oo. Let {Tj}jez be a family of operators
in Opp, p, satisfying (1.6), (L.8)), (1.9a), and (1.9b). Moreover, assume that the
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estimates
(5.11a) H sup | Z Jf‘B2 )HfHL” ;
(n1,n2): j=n1
N1<n1<nz<N2
(5.11b) H sup |Z Jf|B2 <A@ fll 52
(n1,n2): j=n1
N1<n1<na<N2

hold uniformly for all (N1, No) with Ny < Ny. Let C be as in (1.11)). Then for all
f € Sp,, all R-valued nonnegative measurable functions w, and all integers N1, Na
with N1 S NQ,

/. S Y T, e 508 ()

ni,n2): .
Ni<ni<na<Np 77"

PrOOF. Define U(Ny, N2) = {(n1,n2) : N1 <ny < na < No} and (3 as the
space of all bounded Bs-valued functions on U(Ny, Na). Define operators H; in
OPBl,eoBo2 by

Tif(z) if Ny <ny<j<ny< N,

0 otherwise.

H;f(x,ni,n9) = {

Then apply Corollary to the operators Z;Vj ~, Hj as in the proof of Theorems
b1 O

We also have a variational analogue.

THEOREM 5.4. Let 1 < p < q < oo. Let {Tj}jez be a family of operators

in Opg, p, satisfying (L.6), (1.7a), (1.7b), (1.8), (L.9a), and (1.9b). Moreover,

assume that the estimates

(5.12a) H sup sup ( Z | | Z ﬂf|;2>1/THLPN < A(P)HfHngl

MEN Ny <nj <--<np <N

Gam) s s (XY ), < Ay

MENNi<my<--<npm<N2 > 25 557

hold uniformly for all (N7, Na) with N1 < Ny. Let C be as in (1.11)). Then for all
f € 8Sp,, all R-valued nonnegative measurable functions w, and all integers Ny, Ny
with N1 S NQ,

(5.13) /R sup sup ( |Z T, f(x |Bz)1/rw(m)d:c

d MENN;<ni<---<npy <Ny

SCAL(fow).

Proor. Let Vi = Vg (In, n,) denote the r-variation space of Ba-valued func-
tions over the integers in [Ny, Np] and for Ny < j < Na, N; < n < Ny, define the
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rators H; r
operators H; OPBl,V32 by

Tif(x) if Ny <j<n<N,,
0 if j > n.

ij(x,n) = {

Note that, by definition of Hj, | Zj ~, Hif(z, -)\ng equals to
(5.14)

sup > TG )|, + (Z\ZTf -3 B |B2)
Jj=Ni v=1 j=N J=N1

N1<ni<---<ny <Nz
and |H, f(x, ~)|V]§2 = |T; f(x)|B,- Arguing as in Theorem one may apply Corol-
lary to the operators Z;V:Z N, Hj in Op Bi.VE, Note, in particular, that in view

of ) the conditions ( and ( for > 7.2y, Hj follow from 1} and

5.12b together with the fact that {T }Jez in OpB1 B, satisfy (L.7a) and (L.7H).
This automatically yields (5.13). O

4. Some simplifications for maximal operators

The goal of this section is to remark that the proof of Theorem can be
simplified in the case ¢ < r < oco. Rather than deducing it from Corollary we
shall apply the proof method of Theorem [I:1] to the operators S, and observe that
a Calder6n—Zygmund decomposition on fs is not required for the proof to work. In
particular, this allows us to remove the regularity hypothesis (1.9bf) on the adjoints
T;7. The precise statement reads as follows.

THEOREM 5.5. Let 1 <p < g < oo and q <r <oco. Let {T;}jez be a family of
operators in Opg, p, satisfying (L.6)). Suppose that the inequalities

(515)  [ISTf| e < ADSluy,  and (1SS < A@F] Ly

hold for all f € Sp,. Moreover, assume that the rescaled operators Dily; T satisfy

the single scale (p,q) condition (1.8)) and single scale e-regularity condition (1.9a)).
Let C be as in (1.11)). Then for oll f € Sp, and all R-valued nonnegative measurable

functions w,

<ST’Tfa w> 5 CA;,q’ (f> w)'

PROOF. We sketch the main changes with respect to the proof of Theorem [T.1}
As in Theorem [I.1] it suffices to show

/Rd SrNy N, f1(2) fo(@)de S CA o (f1, f2)

uniformly in Ny < Ny for all f1 € Sp, and fy € Sg, where

Ny

1/r
Srvivad @) = (D 1T/ @), )
Jj=N1
for ¢ <r < oo and
Soo Ny, N, f(2) = sup T f()]B,.

N1<j<N»
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This will in turn follow from verifying the inductive step in Claim [£.3] for the
operators Sy n, N,-
Ifr = oo, let \j(z) € B3 with [\;(z)|p; < 1suchthat |T;f1(x)5, = (Tjf1,Aj)(B..Bs)
and let  — j(z) be a measurable function such that
Soo,Ny No f1(2) < 2Ty f1()| B, -
Setting X; := {x : j(z) = j}, note that
N3
Shi@) = Ty @), = 3 (T fa(@), A (@) x, (@) (5,.55)

Jj=N1
and that the X; are disjoint measurable sets such that Zj 1x;, < 13q,- If ¢ <
r < 00, we linearize the ¢"(Bsy)-norm for each z. That is, there exists {a;(x)};ez €
07 (B3), with llaj(@) | (5, < 1, such that

*
2

N>
Sfi(x) = Sen v fir(@) = Y (T fi(2),a;(2)) (5. 53)-
Jj=N1

Note that we can treat the cases r = oo and ¢ < r < oo together by setting
aj(xz) = Aj(x)1x, (z) for all z € 3Qo and all Ny < j < Ny, and a;j(x) = 0 otherwise;
then {a;(x)}jez € ¢*(Bj3). Clearly, the operator S satisfies the bounds (1.74),
in view of .

We then perform a Calderén-Zygmund decomposition of f; as in . The
first term in 7 corresponding to g;, can be treated analogously. The second

term in (4.13]), corresponding to Y ¢y, b1,w can be further split as in (4.15), and
I and II can be treated analogously. One is then left with proving (4.18]) for I71.

Rather than performing a Calderéon—Zygmund decomposition on fs, we estimate
the term directly.

Indeed, the analysis for 111 amounts to a simplified version of the analysis of
the term I114 in (4.22). One can define ¢ as in (4.24) and split
(—00,j)NZ="V;1UV;j2,
where V; 1 :={L:j—¢<L<j}and V;o ={L:L < j—{}. Note that here there
is no further need to split V; 2, since we do not make use of a Calderén—Zygmund
decomposition of fo. Write 111 = IVlb + IV;7 where for ¢ = 1,2,

IVib:< Z Z ijl,W7f2>-

N1<j<N> Wew,
L(W)eV;;

We first focus on [ Vlb. By Holder’s inequality with respect to x and j

(5.16) vy < IVP TVY,
where
i, = ( i /’ S Thw()| dm)l/q,
DS g

N» , ) / ,
Wiy = (3 /\aj<x)\q32|f2(x)|q ar) "

Jj=N1
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Using that [|a; (@)l g (ps) < laj (@)l gy =11 <7 < ¢, we get

;o\
(5.17) v, 5 /3Q R@)dz) S 1Qol T fadag g

For the term I Vﬂl, introduce as in (4.26]) the family R; of subcubes of Q) of side
length 27 and use the bounded overlap of 3R to write
q )1/ q
Ly, '
J—L<L(W)<j

IV11N<Z ) H Y. Tihww
j=N1 RER; WCR )
The right-hand side above can then be handled essentially as IV in (4.26]) after
using the single scale (p, ¢) condition ([1.8) for each T} (in the form (4.21)); the only
difference is the presence of an £9-sum. More precisely,

WA S SR Y g, )"

j=N1 RER; WCR
J—L<L(W)<j

N 11 a/p\1/q
AP @) () gpp (22 D BTGV X W)

j=N1 RER; WCR
J—LSL(W)<j

Ny 1/q
REITAP O DD SIS |W|)/

j=N1 RE%]‘ WCR
J—E<SL(W)<j

SOYUED o0 o 1Qol M,

and combining this with , the bound for IV} immediately follows.

Regarding IVy, write IV = >°° 41 IV2(s), where IVZ(s) has the sum in
L(W) < j — ¢ further restricted to L(W) = j — s. For each fixed s, one can apply
Holder’s inequality with respect to x and j as in ,

IV (s) < IV31(5)IVy,,

where the term [ VQ"’Q (which is independent of s) can be treated as I Vf’z in (5.17).
For each I VQb’l(s) we write again

mos(s S| s mn, )"

j=N1 RENR; ?
(W):J—s

This term can now be treated as the term IV5 in (4.30) using the e-regularity
condition (T.9a)) to get a decay of 27°¢" (as in (4.29a)). The only difference with
4.30

respect to (4.30) is the presence of the £9-sum, which introduces no difficulty, as
shown above for I Vﬁl. This completes the proof. ]



CHAPTER 6
Fourier Multipliers

In this section we deduce Theorems and from a more general result
which will lead to more precise sparse domination results and also cover Hilbert
space valued versions. We are given two separable Hilbert spaces H;, Hs and
denote by £(H;,Hs) the space of bounded linear operators from H; to Hy (in our
applications one of the Hilbert spaces will be usually C). Consider the translation
invariant operator 7 = 7T, mapping H;-valued functions to Hs-valued functions
given via a multiplier

TF(E) =m(©)F(€),

where m(€) € L(H;y,Hs) for almost every €. For 1 < p < g < oo we write
m € M5 4 if the inequality

I T flla@es) < Clfllze(aey)

holds for all H;-valued Schwartz functions, and the best constant defines the norm

in M7, . We may occasionally drop the Hilbert spaces if it is understood from
1,712

the context and also write M? for MPP. Note that m € Mg;? 5. implies by a duality

argument that m € Mq/;p;{*. The Mz;® ;.. norm is bounded by [m|| where
207 1,712 FHy, 3o

we write L3¢, 4, for L?(;cl,m)- Also note that by the Marcinkiewicz—Zygmund the-

orem [56, §2.1b] any scalar multiplier in M?'? extends naturally, for any separable

Hilbert space H, to a multiplier

R — L(H,H)
m® Iy € MPL | with m ® Iy : e
e £ (v m(§)v)

and we have |[m ® Isc||ppa < C|lm[arp.a where C' does not depend on the Hilbert
space. N

1. The main multiplier theorem

In what follows let ¢ be a radial C*° function supported in {{ € R . 1/2 < ¢ <
2} (not identically zero). Let Wy € C*(R?) be supported in {z € R?: |z| < 1/2}
such that ¥g(z) =1 for |z| < 1/4. For £ > 0 define

(61) \Ifz(x) = \I/(](Z_ZIL') — @()(2_€+1£E)
which is supported in {z : 273 < |z| < 27!}, Define
6.2a Blm| := su m ()] % Wyl yra 204Q/P=1/ D) (1 4 ¢ ,
(6.2a) [m] g sup [|[om ()] * Wellargs (1+2)
(6.2b)  Bofm] =S supl[m(t)] = elluse . .

>0 >0 e
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THEOREM 6.1. Let 1 < p < g < o0, 1/¢ =1—1/q, and assume that m €
L32, g, is such that Bo[m] and B[m] are finite. Then T, € Sp(p, Hi,q', 3H3) with
[ TmlIsp., (p,9¢1,0,3¢5) Sdivip.q Blm] + Bo[m].

The implicit constant does not depend on m,Hy, Hs.

We note that the finiteness of B,[m)] is implied by the finiteness of B[m] in the
case H; = Hy =C.

REMARK 6.2. The function space of all m with Bs[m] + B[m] < oo exhibits
familiar properties of similarly defined function spaces in multiplier theory. For
example:

(1) The space is invariant under multiplication by a standard smooth symbol
of order 0. This fact will be used in the proof of Theorem [6.1] and for the
convenience of the reader, the precise statement and proof are contained
in Appendix [C] {I] below.

(2) The finiteness of B[m] and B,[m] is independent of the choice of the spe-
cific functions ¢ and W. This observation will be convenient in the proof
of Theorem It can be verified by standard arguments but, for com-
pleteness, the proof is provided in Appendix [C] §2] below.

We begin by showing how Theorem [6.1] implies Theorems [I.5] and Then
we review some known facts and estimates for Fourier multipliers and deduce the
proof of Theorem from our main Theorem

Proor or THEOREM [L.5] USING THEOREM We have to check the assump-
tions of Theorem Assumption ([1.24)) is equivalent with
[@m(t)] + Dol ars < 275
Thus interpolating (1.24]) and (1.23]) we get for p € (po, 2),
llgm(t)] * Tellag < 27=® where e(p) = (3 = 3)/ (35 = 3)-

Let x € Cg"(f&d \ {0}) so that x(§) = 1 in a neighborhood of supp(¢). Then by
Young’s convolution inequality for all p € (po,2), ¢ € [p, o], t > 0,

Ix((dm ()] Uo) larma S lgmlt)]  Wellar S 27
On the other hand we claim that
(6.3) 11 = ) ([gm(t)] = To)llarro S lom(t)][127.
Indeed, integration by parts in £ in the integral

/ / e E(1 — ) (©)[om (1)) (24T (2¢(€ — ¢))dedC
implies the pointwise estimate

IFH A =) ([m(t)] « U0)) ()] Sw 27N (1 + [2)~V[gm(e-)]
and now (6.3 follows from Young’s convolution inequality.
Fix p € (po,2). Combining the two estimates we see that condition (6.2al) holds
for a pair of exponents (p1,¢1) if p1 € (po,p), ¢1 > p1 and

d(1/p1 —1/q1) < e(p1)-
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Then Theorem gives T € Sp(p1,¢}). One can then choose § = §(p) > 0 small
enough so that py = p —d and ¢; = p’ — J satisfy the above conditions. This
concludes the proof. O

PRrROOF OF THEOREM [L.6] usSING THEOREM [6.1] We need to check that B[m)]
is finite, which will follow from showing that

(6.4) sup [[[pm(t)] + Tellarna S 27
>

for some s > d(1/p — 1/q). Here we are in the case H; = Hy = C, so this also
implies By[m] < oo.

We decompose Uy into slighly smaller pieces. Recall that ¥ is supported in
{x:1/4 < |z| <1} and ¥y(x) = ¥ (2} ~“x). We form a partition of unity {c, : v €
T} such that ) ;6. (z) = 1 for |z| € [1/8,2], and ¢ is a C*° function supported
in a ball B(z,,r,) centered at z,, with |z,| € [1/4,1] and radius 7, < 1072, Let
T Xy
2 fay|?

so that |u,| € [1,8] and (z,,u,) = 7/2. This implies that | Tm (e*®%) — 1) > 1/2
for x € supp(s,). Define, for M as in ([1.25),

¥1l0) = e W) = V(2

Uy =

and note that \I/L,, is smooth and W,(z) =" ¥, l,(:r)(ei<””’21%“"> —1)M. Hence
) Uy = ZA ey, [om(t)] * Uy,

and by assumption we have for some s > d(1/p — 1/q),
lgm(t-) % el v S Z 1AM, [om ()| ama S 275

This implies (6.4) and now Theorem [1.6] follows from Theorem O

2. A result involving localizations of Fourier multipliers

We recall a theorem from [98] (see also [24] for a similar result) which we will
formulate in the vector-valued version (see also [51]).

Let ¢ be as before, and fix 1 < p < co. Assume

(6.5a) Stl>118||¢m(t')||M§( e, S0
(6.5b) sup [[pm(t-)lLge . < o,
t>0
and
(6.5¢) > sup sup [0 (¢m(t))(€)] e3¢, < b,

laj<d+1 £70 ¢eRd
where o € N¢. Then

(6.6) [lml|arg

Hq,Ho

Of course, in the special case H; = Hy = C the L?-boundedness condition (6.5b))
with a, < a is implied by (6.5a) (cf. an analogous remark following Theorem [6.1)

< a0 + alog(2 + b/a)l v 3,
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3. Proof of the main multiplier theorem

We give the proof of Theorem[6.1} First assume that m is compactly supported
in Rd \ {0} without making any quantitative assumption on the support.

Note that by Remark [6.2] we have some freedom to make a convenient choice
of the localizing function ¢, and we will denote this choice by . In what follows,
let 6 € COO(Rd) be radial such that 6 is supported in {x € R? : |2| < 1/2}, such
that [ 6(z)m(x)dz = 0 for all polynomials 7 of degree at most 10d, and such that

(9\(5) >0 for 1/4 < |€] < 4. We then choose ¢ to be a radial C*° function supported
in {¢ € R?:1/2 < || < 2} such that

> p(2 27%¢) =1
kezZ
for all £ # 0.
We then decompose T by writing

na

=Y 0@ FOm(€)

k= ny
where ny,no € Z. We then decompose
F pm(25))(@) = > FHem(28)](2) Uy ()
£>0
which yields

ST =Y S T )

£>0 £>0 k=n
where .
TERF(E) = 0(27) [pm(2")]x Ty(27%¢).
We can write T5F f = K}  f with

- / Fp@ F)m(@ — y)We(2H (2 - ))2"6(2"y) dy.

Observe that K () is supported in {z € R? : || < 2¢717F} We wish to apply
Theorem to the operators 7* defined by

no l+1—n,
Tf=Y Kixf= Y T/f withT/f=K{, ;[
k=n1 j=L+1—n2

The operators sz satisfy the support condition (1.6]). To check the conditions (1.7a)),
(1.7b) we apply the above mentioned theorem from [98] (see (6.6)). We first claim
that

7l o N T ¢d(1/p—1/q)
6.7 e Z Kz, o, S 00 = sup llpm()] x Wellagge 2707710

kn1

and

68 oS Koz, . S oo = sup [om(t)] * Tl .

kn1
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uniformly in 7y, no. We only give the proof of (6.7) as the the proof of is similar
but more straightforward. To see this we estimate, using dilation invariance,

na

”ﬂZK Motz e, € 3 WA o arllom Tl .,
ny =N1

Since § € S(R?) and since all moments of 1 up to order 10d vanish we get

(6.9) eB(2 ) | are < min{(27%s)104, (27F5)~104,
Moreover,
(610) ”[(Pm(2k)]*\/1\/(”Mp 2Zd(1/p 1/Q)||[<pm(2k )}*\PEHMP‘I

30y,96 Ja

and follows combining the above. To verify - we decompose
f=2 1

where f, = flg,, and the Ry, form a grid of cubes of side length 2¢. Note that

the convolution kernel K, := F~! [gpm(2k')*\fl4] is supported in the ball of radius 2¢
centered at the origin. Hence, by Holder’s inequality

1/p
IKes fllg,, = | Yo Kken ]|, S (D MKex £l )
v I v 2
1/
52€d(1/p_1/q)(z||’Cl*fy||iq ) P
2
< 9td(1/p=1/0) | }C p o\
<2 1Kellasgee e, (21615, )

and since (32, /o[, )P = ||fllzz, we get (6.10).
1
Straightforward calculation using yields

na

610 Y3 o 2GR e < b = I, 26
la|<d+1 k=n, =0 ¢€R?

uniformly in n1,ns. We combine the two estimates , and ([6.11)) and using
we get
170 2, LB, S(A+0 2lay+ ag.
i1

The L7 estimates are similar. For m(§) € L(H;,Hs) denote by m*(€) €
L(H5, HT) its adjoint. Note that

Iliom™ ()] * Well e

}C* J{*

= lllom(e) * Tollusz, ., < o

Since ¢’ < p’ the previous calculation gives
1T, ~r3,, = ||(T£)*||L3{ NT
S (L OF 32D sup lom (05 elygre |+ o
&5
S (14 0)lam 31900 /p=1/0) sup s (t)]5 W sy, 0, T

~

=140 %la) + a0
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To summarize,

(6.12) H >

|z
LP—LpP - Li—La
J

Sﬂo,e+ﬂ€((1+€)|%_%|+(1+€)|%_%|)

To verify the single scale (p, ¢) condition (L.8) we next examine the Lf, — L3, -

norms of the convolution operators Dily; T with convolution kernels 274Ky, | (27-).
We have

||D1121TJ-ZHL§CI—>Lgf2 = 1K, Mg,
and -
Kf (276 =027 9 [em2 )]« (2771,
and we get

1EE 1y (277 g, < 012D P D [om (255179 )] 5 W g0

Hiy,Ho

Hence

(6.13) sup || Dily; T || o o
J

<Clg

~

Next we turn to the e-regularity conditions ([1.9a) and (1.9b)). By translation
(1.94)

invariance of the operators Tf it suffices to verify . Using the above formulas
for the Fourier transform of 2/¢K7,, ;(27-) we get

|l TY) 0 Avllzg, —rs,,

= 8271 )[(pm(2 )« B 27T (M = 1)]arge

Hi,Ho

3 — L ~
< 2D /p=1/0)| G )| | [pm (2017 )] *\pe||M%1q’9{2.
Observe that for 0 < e < 1,

(17281 — 1|, S 2

~

and hence we get

(6.14) sup ||~ sup ||(Dily; T) 0 Apllpr —pe < 2%ay
|hl<1 j ’ L T

In view of (6.12), (6.13) and (6.14) we can now apply Theorem and obtain

, ~
1T Ispp.a) S igg Ilpmit-)]« \IIZHL?L% +

(L4052 4 1+ 0)5 5 4 (140)246-D sup [[pm(t)] + Uellaago -

2

The desired conclusionthen follows from summing in ¢ > 0.

Finally, to remove the assumption of m being compactly supported we observe
that by Lemma it suffices to prove the sparse bound

(6.15) T mAl@/fa(@)de < O(Bolm] + Bim)) A7, 1, (F1. £2)
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for f; in the dense class So(R?, H;) of functions whose Fourier transform is com-
pactly supported in R¢\ {0}. But for those functions we have
Fmf = F mnymo i,
where .
My = 027 (27 E)m(€)
k=n1

with suitable ni,ns € Z (depending on f1). By invariance under multiplication by
smooth symbols (see Lemma |C.3)) we have

sup B[mnl7n2]
ni,n2

and an analogous inequality involving B,[m]. We then get (6.15)) for f; € So(R?, ),
i = 1,2. A second application of Lemma yields ((6.15]) for all f € Lgcl and all

fs € LI;;;. 0

S Blm]

~







CHAPTER 7
Sample Applications

In this section we give a number of specific examples of operators to which
Theorem and its consequences can be applied. Some of the resulting sparse
bounds are well-known and others appear to be new.

1. Operators generated by compactly supported distributions

In what follows let o be a distribution which is compactly supported and let
oy = Dil; ;0 denote the t-dilate t~9o(¢7!+) given by

(o1, f) = (o, f(t))-

Without loss of generality we may assume that the support of ¢ is contained in
{z : |x| < 1}, otherwise argue with a rescaling.

Let
(7.1) Af(@) = [ *ou(z)

which is well defined on Schwartz functions as a continous function of (x,t). Many
interesting operators in harmonic analysis are generated by dilations of such a single
compactly supported distribution (often a measure) and we shall be interested in
the corresponding maximal and variational operators. The domain of the dilation
parameter ¢ will be either (0,00) or [1,2] or a more general subset E of (0, c0).

1.1. Maximal functions. We are interested in sparse domination results for
the maximal functions, as defined in (|1.15)),

ME f(x) = sup [A¢ f ()]
teE

where E C (0, 00).

If we assume that f is a Schwartz function then M7 is well defined as a mea-
surable function, but for general L? functions the measurability of Mg, is a priori
not clear unless we assume that E is countable. In our statements we will restrict
ourselves to a priori estimates, but note that in many applications the proof of
LP bounds shows also a priori estimates for the function ¢ — oy * f(z) in suitable
subspaces of C(R), for almost all z € R?. This observation then ensures the mea-
surability of the maximal functions for f in the relevant LP classes. In the general
case, let I, , = [k27", (k 4+ 1)27™) and pick, for each (k,n) such that E NIy, # 0,
a representative ty,, € £ NI, and let E consist of these picked tx . Then E is
countable and we have Mg f(z) = M2 f(x) for all z € R? and all Schwartz functions
f. Thus one can assume that F is countable without loss of generality.
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We shall now discuss sparse domination inequalities for the operator Mg. Re-
call the local variants M, , with the rescaled sets E; C [1,2] as in (L.16)). In what
follows recall that

A, (fw) = 3 QU guww)o.y

QeG
with A7 (f,w) the supremum of all Ag o (f;w) over all y-sparse families &.

PROPOSITION 7.1. (i) Let 1 < p < q < oco. Let o be a compactly supported
distribution such that

(7.2) |ME[ Le—rpoe + | MEl L1 pa < 00,
(7.3) sup | Mg, || Lo 20 < oo,
JEZ

and assume that there is an € > 0 so that for all A > 2,
(7.4) [ME, fllg < CAfllps, € Eann(A).

Then for all f € LP and all simple non-negative functions w, we have the sparse
domination inequality

(7.5) (MEf,w) S A g (f,w)-

(i) Conversely, if o has compact support in R?\ {0} then the sparse bound (7.5)
for p < q implies that conditions (7.2]) and (7.3) hold.

Proor. We will apply Theorem with r = 00, By = £*°(E'), where E’ is a
finite subset of F, and

oux f(x) ifte B'N[27,20+)
0 otherwise.

(7.6) T f(x,t) = {

Note that

(7.72) SecT'f () = sup T3 f ()|, = Mg, f(2),
J

and, with B} =277E'N[1,2],
(7.7b) Dily, 73 £ ()] 5, = M, f(z),  j €.

As o is supported in {2 : || < 1}, the operators T} satisfy the support condition
. Moreover, and guarantee with 7 = oo, and similarly
and guarantee the single scale (p, ¢) condition . It remains to verify the
single scale e—regularity conditions for the operators T;. But this follows from
(7.4) and via Lemma and the fact that for translation-invariant operators
T;, the conditions and (|1.9b]) are equivalent (alternatively, one can apply
Theorem for maximal functions). All hypotheses in the first part of Theorem
[5.1) are then satisfied and we thus obtain a sparse bound for the maximal operator
M¢,. An application of the monotone convergence theorem then yields the desired
sparse bound for M7 and concludes the proof of part ().

For part (ii) note that the assumption that o is supported away from the origin
corresponds to the strengthened support condition . Thus we can deduce part
(ii) directly from part (ii) of Theorem O
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Proor or THEOREM [I.4l Because of the L? — L9 condition on the operators
ng in and the e-regularity assumption , it follows by interpolation
that the condition (7.4)) is satisfied for all (1/p,1/q) in the interior of L(o, E).
Thus Proposition tablishes the sufficiency of the conditions, that is, .
The converse follows immediately from part (ii) of Proposition O

Prototypical examples for Proposition are the spherical maximal functions
where o is the surface measure on the sphere (for LP bounds see the classical
results by Stein [105] and Bourgain [19], and for LP — L9 bounds see [95}, [96]).
The proposition covers the results by Lacey [66] for the lacunary and full spherical
maximal functions and also the extension to spherical maximal operators with
suitable assumptions about various fractal dimensions of E, see [101, [3, ©93]. In
this context we note that in [5), [45], Lacey’s approach was used to establish sparse
domination results for two versions of lacunary spherical maximal functions on the
Heisenberg group, defined via the automorphic dilations, and essentially optimal
results for the problem considered in [5] can be obtained by combining the sparse
technique developed in that paper with recent LP — L4 bounds in [94].

One can also cover more singular measures with Fourier conditions (as in [39],
[40]) and this leads to questions about the precise range of L? improving estimates
for the local variants of the maximal functions. As an example consider a curve
s +— 7(s) in R? with nonvanishing curvature and torsion, and the measures j; given

by
(F. ) = / F(t(5)x(s)ds

with compactly supported x. A result in [92], applied in combination with decou-
pling results in [I11], 20] yields that the maximal operators Mg are bounded on
LP(R3) for p > 4. The optimal result for p > 3 was recently obtained in [12] and,
independently, in [62]. Moreover, the analysis in these papers yield, for the local
analogues of these maximal functions (i.e. E = [1,2]), certain L? — L? bounds
for some ¢ > p. It would be very interesting to find precise ranges of LP — L4
boundedness of Mg depending on E, and corresponding sparse bounds for related
global maximal functions. Similar questions can be considered in higher dimensions
but the optimal bounds are currently unknown (for partial results see [13], [63]).

1.2. Variational operators. Given 1 < r < oo and a set E C (0,00) we
define the r-variation seminorm | - |,r(g) and the r-variation norm |- [y+g) of a
function a : E — C by

M—-1

1/r
v =sw s (D faltin) —a)]")
MeNt <---<tm -
t,cE i=1

i

la

M—1 1/r
jalv-(py = sup sup {la(t)]+ (D laltisn) —a@)") " }.
MENt1<?“EtM i—1

i

Define the r-variation operators vi; A, Vi, A for the family of operators of convolution
with o, by taking the r-variation norm in ¢,

(7.8) veAf(@) = {oux f(@)} ), VeAS(x) = Howx f(2)}Hvrm)-
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This that the above definition of variation is analogous to the definition in
where we considered the r-variation for functions integers. The results in Ch.[5]
mostly apply to the situation where the current E is a subset of {27 : j € Z}. For
general sets £ C (0,00), we will deduce results directly from Corollary and
Theorem [[3]

As before we may assume that F is countable (as this does not affect priori
estimates). Let E; C [1,2] be the rescaled sets as in (1.16)).

PROPOSITION 7.2. (i) Let 1 < p < q¢ < co. Let o be a compactly supported
distribution such that

(7.9) V5 All oy e + Vi All Lot 10 < 00,

(710) sup ||v%jA||Lp_)Lq < o0
JEZ

and assume that there is an € > 0 so that for all A > 2,
(7.11) Ve, fllg < CAE(fllp, f € Eann(N)-

Then for all f € LP and all simple nonnegative functions w, we have the sparse
domination inequality

(7.12) (Vif,w) S A, o (f,w).

(ii) Conversely, if o has compact support in R?\ {0} then the sparse bound (7.12)
for p < q implies that conditions (7.9) and (7.10) hold.

PROOF. We are aiming to apply Corollary [1.2] with By = V" (E’) for any finite
E' C E. With T} f(z,t) as in (7.6) and E'(Ny, N2) = E' N 2N 2V2F1] e get

Ny
(7.13a) | @), = Ve w AL @)
Jj=N1 B
and
(713b) |Dllg7T}f(.’E)|V£l = ’ngjE/l’T[l,Q]Af(x)'

We need to check the assumptions of Corollary (i.e. the assumptions of Theorem
1.1)). Conditions (T.7al), (1.7b) hold by (7.9) and (7.13a)), condition (1.8} holds by
(7.10) and (7.13b) and condition (L.9a)) follows from (7.10)), (7.11)), and Lemma

Condition ([1.9a)) is equivalent with (1.9b)) in the current translation invariant
setting.

For the necessity, observe that the assumption that o is supported away from
the origin which corresponds to the strengthened support condition in Theorem
A sparse bound for VA implies via a sparse bound for ZNi N, Ty for
any pair of integers N; < Ny. We apply Theorem and obtain via and
that

Ve vy No) Aller s 1o0e + Vi vy Ny AllLan s pa < C,

sup ||V72ﬂ—jE'm[1,2]A||LP—>Lq <C,
N1<j<N>
with the constant C independent of Ni, No and the particular finite subset E’
of E. Applications of the monotone convergence theorem then yield the asserted

necessary conditions for Vi, A, that is, (7.9) and (7.10). O
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Proposition [7.2] can be applied to obtain a sparse domination inequality for the
r-variation operator associated with the spherical means in R?. For the necessary
global LP — LP bounds see [59] and for L? — L? bounds for the local variation
operators we refer to the recent paper [14]. This addresses a question posed in [66]
and [1].

REMARK 7.3. In verifying LP — LP**® and L%! — L4 assumptions for the vari-
ation operators it is (as shown in [58), [59]) often advantageous to write VL Af(z) <
VdTyadAf(m) + VErﬁhAf(x) where

VdfyadAf(x) = vg(l) Af(.’L‘)

is the standard variation norm over 2(%) := {27 : j € Z}, labeled the dyadic or long
variation operator and where

1/r
Vi amAf(x) = (Z |VTEm[2J,21+1]Af(5U>|T) )
jez
is the so-called short variation operator which uses only variation seminorms over
E within dyadic intervals. The LP-boundedness of the long variation operators is
usually reduced to Lepingle’s theorem [73] (which requires r > 2) while the short
variation operator is often estimated using a Sobolev embedding inequality (see
[68], [59]). We note that it is possible to prove results analogous to Proposition
for the long variation operator and the short variation operators individually
as direct consequences of Theorems [5.2] and respectively; the details are left to
the reader.

1.3. Lacunary maximal functions for convolutions associated with
the wave equation. In this section we consider a maximal function generated
by convolutions with dilates of a tempered distribution, which is not compactly
supported (but still concentrated on a compact set). This class is associated with
LP regularity results for solutions of the wave equation. For both simplicity and
definiteness of results we shall only consider a lacunary version, but the argument
to deduce the sparse bound extends to other sets of dilations and also to variational
variants (for which Lemma would be useful to treat nonlocal error terms).

For 3 > 0 define

_ cosf
" = T gy

and let
M} f(x) = sup Ims(2D) f ().

It was shown by Peral in [90] and Miyachi in [87] that mg(D) is bounded on L? for
B> (d-1)|1/p—1/2|,1 < p < co. LP — L9 results for mg go back to [108, 83, 21];
it is known that mg(D) : LP — L7 is bounded if either

W) 1<p<2,p<q<p,8>2d-1)(; -5+, 3 or

(W) 1 <p<oo, max{p,p'} <g<oo, B> (d=1)(3—2)++—1

Note that (W') follows from (W) by duality. Moreover it can be shown that
./\/l‘lilC is bounded on L? for § > (d — 1)|1/p — 1/2| via a single scale analysis,
and either Littlewood—Paley theory for p > 2 or the result stated in Ch.[6 §2 for
l<p<
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We have the following sparse bound for Mgc in the non-endpoint case.

PROPOSITION 7.4. Suppose 1 < p < q < oo and that one of the following two
conditions holds.

(W) 1<p<2,p<q<p,B>d-1)(;—3)+;—

(W)) 1< p<oo, max{p,p'} < qg<oo, > (dfl)(%

Then Mﬁw € Sp(p,¢').

PROOF. Let K = F~'[mg(2-)] so that the singular support of K is {x : |z| =
1/2}. Let K¢ o = Kxng = F~Y[mpi)], with ny defined as in , and split Ky o*f =
Aef + Ref where the convolution kernel Ry of R, is supported in {z : |z| > 1}.
The maximal function associated to Ry is dominated by 27N times the Hardy—
Littlewood maximal function of f, similarly the maximal functions associated to Ay
are controlled by the Hardy—Littlewood maximal function for small ¢ and therefore
satisfy a (p,¢’) sparse bound by Appendix We use the notation Ay, Reo
for the convolution kernels of A, and Ry. Set Ky = 27K, o(27%+), and similarly
define the kernels Ay, and Ry .

By the LP — LP result for mg(D) together with the multiplier result mentioned
in §2| one can easily derive for £ > 0 and any € > 0

|(S e s s2) ) s 2avttieemyy,
p

kEZ

for all 1 < p < oo which of course implies

_ 1_ 1 _
sup Ky 5 f]|, < 2@ D=3+ 7
kEZ

We also have the single scale results
Cq)(l_1yg1_1
(7.14) 2% Koo # fllg S 2°DGmDE D) £,
ifl<p<2 p<qg<yp,and
C1)(l_1yp1_1
(7.15) 28| Ko # fllg S 2 DE=DH-D| £,

fl<p<2p<g<oor2<p<oop<q<oo.

By the above mentioned bounds for the operator R, and the lacunary maximal
operator generated by it we can replace Ky j, and Ky o by Ae, and Ay o, respectively.

Note that the exponents for LP-boundedness and for LY boundedness, i.e.
(d—-1|1/p—1/2|, (d — 1)|1/q — 1/2| are not larger than the exponents in the
displayed inequalities and in their respective ranges. An application
of Proposition gives the desired sparse results for the maximal function gener-
ated by the Ay and then also for the maximal function generated by convolution
with Ky . Summing in £ we can complete the proof of the proposition. ([

REMARK. The multiplier mg can be replaced by other variants such as

sin |¢| 1 ~ Jao1a(1€])
d arepe e ") = T

mﬁ,l(f) =
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2. General classes of multipliers

It is well known that the classical Mikhlin-Hérmander multiplier theorem [53],
103] can be interpolated with the L2-estimate for multiplier transformations m(D)
with bounded multipliers [81], [82]. In particular one gets for 1 < p < 2,

(7.16) lm|lare S sug lom(t-)||lpr, 1/r=1/p—1/2, a>d/r,
>

where ||g||z: = ||(1+ |D[*)*/?g||, and ¢ is a nontrivial radial function supported
with compact support away from the origin.

We give a sparse bound for this class of multipliers.
PROPOSITION 7.5. Let 1 <p <2, 1/r=1/p—1/2 and let m satisfy
(7.17) sup [om(t)]; < A.
t>0

Suppose one of the following holds:
(i) 1<p<q¢<2, anda>d(1l/p—1/2).
(ii) 2<g<ooand a>d(1/p—1/q).
Then
||m(D)||Spﬂ,(p,q’) Sporg.an A

PRrROOF. We deduce this result from Theorem Observe the inequality

Igllaze> < lgllzr,  1/r=1/p—1/2,
valid for 1 < p < 2 which follows by interpolation from the standard cases p = 1
and p = 2. In view of the embedding B, < L" (see [110] for the definition and
properties of Besov spaces) we get, for 1 < p < 2,

(7.18) lgllaee> S llgllpo,,  1/r=1/p—1/2.

Interpolating Bernstein’s theorem 337/12 o Il (which follows from the Cauchy—
Schwarz inequality and Plancherel’s theorem) with the embedding Bgo’l — L,
we also have for 1 <p < 2,

(7.19) lghasms S lgllgarrs  1/r=1/p—1/2
A further interpolation of (7.18) and ([7.19)) yields for 1 <p < ¢ <2

lgllazea SNl act-3y»  Lr=1/p—1/2.
1

Finally, we have for M > s, the well-known inequality
18 gl 5s, < 1019l gem

which we shall use for 8 = d(1/q — 1/2) and which can be deduced from standard
L'-convolution inequalities.

Now let r = 2p/(2 — p), i.e. 1/r =1/p — 1/2. Applying the above inequalities
to g = ¢m(t-) we get for M > s,
sup [ =*[| AR [gm ()] [[arma S (1SmE)]] acs— gy
|h|<1 B

1

Now since o > d(1/p — 1/2) we can find s > d(1/p — 1/q) such that
a>dl/qg—1/2)+s>d(1/p—1/2).
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Thus if « is as in the display, then L. — Bg(ll/q_1/2)+s

Theorem yields the sparse bound stated in [;art (i).
For part (ii) let 2 < g< oo and observe that

and an application of

(7.20) lgllare Sk llgllagee if supp(g) € K, K compact.

To see this take a Schwartz function v whose Fourier transform equals 1 on K and
observe that by Young’s inequality convolution with v maps L? into L. We see

from ([7.20) and (7.18)) that for such compactly supported g and M > s,
B2 1A gllarrs S TR NAY gllso, < Nlgllss,, -

This we use for g = ¢m(t-) and o >s > d(1/p —1/q). Then part (ii) follows by the
embedding L], — B, and an application of Theorem O

REMARK 7.6. The assumption p < 2 is not a significant restriction. Indeed
observe that by definition of the sparse operator classes we have T' € Sp(p1, p2)
if and only if T* € Sp(pa,p1). For multiplier transformations we have m(D)* =
m(—D) and m(—D) f(—z) = m(D)[f(—)](z) which implies that m(D) € Sp(p1, p2)
if and only if m(D) € Sp(p2,p1)-

We can draw two conclusions from this duality argument. First, the range
1 < p <2 ¢g>p in Proposition [7.5| could be deduced from the result in the
range 1 < p <2, 2 < ¢ < p’. Second, the result in Proposition m also implies a
result in the range 2 < p < ¢ < oco. Namely, in this case, if 1/r = 1/2 — 1/q and
o> d(1/2—1/q) then one gets m(D) € Sp(p, ¢') under the assumption (7.17).

2.1. Miyachi classes and subdyadic H6érmander conditions. We now
discuss some consequences for multiplier classes considered by Miyachi [88] and
their corresponding versions under a subdyadic Hérmander-type formulation [10].
Given a > 0,b € R, let Miy(a, b) denote the class of smooth functions m : R* — C
supported on {& : || > 1} and satisfying the differential inequalities

(7.21) j9'm(€)] <, ¢+l

for all |¢] > 1 and all multiindices ¢« € N¢ satisfying |¢| < |d/2] + 1. The oscillatory
multipliers m, ; defined below in are considered model cases, at least in
regards to the LP — LP boundedness properties. It is known that multipliers in
Miy(a,b) belong to MP whenever b > ad|l/p — 1/2| and 1 < p < oo, see [43],
88]. It has also been observed that these endpoint results are special cases of
Hormander-type multiplier theorems involving certain endpoint Besov spaces, see
[4, 99]. Sparse bounds for multipliers in Miy(a,b) in the non-endpoint range b >
ad|1l/p — 1/2| were obtained by Cladek and the first author in [11] via a single
scale analysis, under the additional assumption that hold for all multiindices
+ € Nd. We note that in the range 0 < a < 1 they also extended these results to
larger closely related classes of pseudo-differential operators, c¢f. [41), 1T].

The subdyadic Hérmander-type classes, also extending the class Miy(a, b) are
obtained by replacing the pointwise condition by

1 1/2
(7.22) sup dist(B,O)b+(1_“)|‘|(—/ \DLm(§)|2d§) < oo
B 1Bl J&
for all © € N& with |¢| < |d/2] + 1. Here the supremum is taken over all euclidean

balls B in R? with dist(B,0) > 1 such that r(B) ~ dist(B,0)!7¢, where r(B)
denotes the radius of B. This class was considered in [10] which contains sharp
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weighted inequalities of Fefferman—Stein type that can be used to recover the sharp
L? estimates. In [I1] §3] the question was raised whether the results on sparse
bounds for multiplier transformations in the Miyachi class can be extended to mul-
tipliers satisfying a subdyadic condition above, in the sense that it is sufficient to
assume that or hold for all || < |d/2] + 1 rather than for all + € N¢.
We shall see that this is the case, and that such and more general multi-scale re-
sults can be obtained from Proposition [7.5] The following simple observation will

be helpful; note that condition (7.22]) (and therefore (7.21))) implies (|7.23).

LEMMA 7.7. Let a > 0, 2 < r < 0o, b > ad/r. Suppose my, are supported in
{€:1&| = 1} and suppose that there is a constant C' such that

b—als| [ 1—d 2] ‘i T r
(7.23) sttt (vt [ lelomaol)'ae) <0

for all multiindices v with o] < |d/r| + 1 and for all k € Z. Then the family {my}
satisfies condition

(7.24) sup sup ¢°~ | gmy, (t-)|
keZ t>0

L;‘t < 00
for some oo > d/r.

PRrOOF. A change of variable shows that the condition (7.23]) is equivalent to

0" [pm(s-)]]|, < s°1=°

for all multiindices ¢ with |¢| < |d/r| + 1. Pick a € (d/r, |d/r] + 1) such that
aa < b. Then the condition implies

sup ||¢mk(s-)HLgsb_aa < 00,
S

which implies (7.24) in view of the assumption on the supports since a > d/r. O

We shall now formulate a result for families of multipliers satisfying condition
(7.24). For simplicity of our statements, we consider only the case p < 2 and argue
by duality for p > 2 (see Remark [7.6)).

PROPOSITION 7.8. Let 1 <p<2,r = f_—pp (i.e. % = %—% , and let, for k € Z,
my, be supported in {& : || > 1}. Let a,b > 0 such that b > ad(}% — %) and suppose

that either
(i) 1<p<qg<2 andb>ad(%—%), or
(ii) 2 < g< oo and b > ad(% - %)

Letoz>d(%—%

Then m =Y., mx(2F-) € M, and m(D) € Sp(p,q')

) and assume supycz Supyso 07 || pmu (¢)[ Lr < oo.

Proor. We split, by a dyadic decomposition my(§) = Y07, my,(§) where
My, is supported in an annulus {{ : |£| = 27}, for all k € Z; in fact we can set
Mg (€) = My (€)7,(€) with 7, as in ([3.10). Observe that my7jo = 0 by the support
properties of my, and 7jo. Now form m™(&) = >, o Mk (27¢). We wish to apply
Proposition to m™, for every n > 0.
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Fix any ¢ > 0 and use the assumption to compute

lom™()l|Ly < > [ (2°t-)[|
kEZ:
127 <2k <y 2"

By (7-16) we obtain [|[m"|[a» < 27779 and similarly, by Proposition
obtain [[m™(D)|lsp. (p.e) S 27 n(b=a0) The desired bounds follow by summing in n
as o < b/a. O

. < 27n(b7aa) )

a N

As a consequence we can obtain a sparse bound for the lacunary maximal
function supy [m(2¥D)f| and indeed a square function that dominates it.

COROLLARY 7.9. Let p,r,q,a,b as in Proposition [7.8. Let m be supported in
{€ : €| = 1} satisfying sup;so t"7|[¢m(t-)||r < oo. Then we have the (p,q’)-
sparse bound

/ (Z|m (2*D) f(x)]| ) /2w(g;)dx SA; o (fw).

kEZ

PROOF. Consider the multiplier m, (&) = Y, (v)m(27¢) where (ry)ren
denotes the sequence of Rademacher functions defined on the unit interval. Then
by Proposition [7.8| applied to my (&) = ri(v)m(§) we obtain

(7.25) | [ D) (e ta)a] < 05 1),
with the implicit constant independent of v. Let u,(x) = % so that wu, is

unimodular, and we also get by (7.25) with fo = wu,

/ Imu(D)fIW(x)dx=/ m.y (D) f(x) w(z)u, (z)de
Rd
<qu(f;uv ) pq(f7 )

Integrating in v and using Fubini’s theorem and Khinchine’s inequality, one obtains

/ (Zlmk (2*D fl) dar</Rd/ Imay(D) f(z)| dvw(z) da

kEZ

= [ [ D)@ e £ 8,0
and the proof is complete. [l

REMARK. Similar results can be obtained for versions of the previous multiplier
classes if a < 0 and m is supported in {& : |£| < 1}. We omit the statements.

2.2. Multiscale variants of oscillatory multipliers. Given a > 0, a # 1,
b € R, consider the oscillatory Fourier multipliers

(7.26) Map(€) = Xoo(&)[€] e,

where Yoo € C(RY) is such that x(£) = 0 for |¢| < 1 and xo(€) = 1 for [¢] > 2.
As already mentioned the operators m, (D) are sometimes considered model cases
of the class Miy(a, b), known to be bounded on L? if and only if b > ad|1/p — 1/2]
and 1 < p < oo; see [104], [43], [88]. This result is sharp when a # 1; the case
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FIGURE 1. Sparse bounds for a general multiplier in Miy(a,b)
(left) and for the oscillatory multipliers m,; (right) for given
a,b > 0. The condition (ii) in Proposition can be relaxed
for the specific mq, (Proposition .

a = 1 forms an exceptional case corresponding to the wave multipliers considered
previously in this chapter, in we exclude it in this section.
Given a sequence (ci)kez with |ex| < 1 we form the multiscale variant

(7.27) m(&) = ckmap(27¢)
kEZ

which is bounded on L? for b > ad|l/p — 1/2|. Proposition shows that for
1 < p <2 we have m(D) € Sp(p,2) for ¢ < 2, but in order to get a Sp(p, ¢") bound
for ¢ > 2 we had to impose the more restrictive condition b > ad(1/p —1/q). We
show that this estimate can be improved, in particular an additional restriction is
not necessary for ¢ < p’ and in this range we can upgrade the Sp(p,2) bound to an
Sp(p,p) bound for the multipliers in (see Figure ).

This improvement relies on special features of the multipliers m,; which are
not shared by a general multiplier in the class Miy(a,b). Unlike in the proof of
Proposition [7.8] we can no longer rely on analyzing the problem on the multiplier
side. Instead we have to analyze Schwartz kernels and employ stationary phase
estimates, taking advantage of the fact that the Hessian of the phase function
& — |€]® is nondegenerate when a # 1, a > 0. Incidentally, this also reveals that
the m,; satisfy better LP — L9 mapping properties than a general multiplier in
Miy(a,b) when 1 < p < 2,2 < g < p'. Tt is therefore more natural to base the proof
directly on Theorem [6.I] rather than on the formulation in Theorem

PROPOSITION 7.10. Let1 < p <2, a € (0,00)\ {1}, and m as in (7.27), with
supy, lex| < 1. Let b > ad(1/p —1/2). Then m(D) € Sp(p,p).

PrOOF. We decompose as in the proof of Proposition [7.8] Recall that 7y is
supported in {|¢| < 1} and mg in {|€] > 1}, hence fomg, = 0, and we can write
m =Y, m" where

m"(€) = ermap(2°)hn (25¢).

keZ
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‘We shall show that
(7‘28) Hm ( )”Spﬂ, (p,p) ~ S 2_n6(p)

with £(p) > 0 and then sum in n.

To verify the claim ([7.28]) we use Theorem For this we have to analyze, for
radial ¢ € C2° supported in {£ : 1/2 < |£] < 2}, the expression

[[pm™ ()] * Wel| ppopr < > {6,527 )7 (25)] % Well p v
kez
2%—3§2kt§2n+1
and show that for some € > 0
(729) D sup |[om” (1)) Wl 2007 S e
>0t

To this end, fix k,t with 273 < 2kt < 27+ and analyze the Fourier inverse of
M p (2587, (28L), Le

Ko (2m)” /QJ) thf Xoo(2kt§)(2kt|§|) —bgifz,€)+i(2" )" \€|“d§

The phase function (x, &) + (2¥¢)*|¢|* becomes stationary on the support of ¢ only
when |z| ~ (2¥¢)® ~ 2" and the Hessian of |£|% is nondegenerate there. Thus by
integration by parts we see that there are constants ¢; < 1, C7 > 1 such that

()] < {CNQ_"ZHN) for |a] < 12"
Cn27|z|=N  for |z| > Cy2n@
and by the method of stationary phase
|, ()] S 27nbtad/2) - for ¢2m0 < || < €127

This implies for 2773 < 2kt < 27*! and suitable C, independently of k, ¢,

(7.30)  ||[ém™(25¢-)] % W[ prr.o
- 9—n(b+ad/2) for |¢ —na| < C
min{Cn2 - "+N) Cn2-m02=NY  for | — na| > C.
We also have the M?? bound

(7.31) [|[om" (256)] Vel
< 2—nb for |[¢ —na| < C
~ | min{Cn2~"O+EN=d) Oy 272~ HN=)}  for |0 — na| > C.

Interpolating (7.30) and ( we get
2~ n(btad(1/p=1/2)) for |¢ —na| < C

n th- * (I\l p.p’ <
ligm™ (2t )] Pellagrrr S {2_”bCN min{2~ "N 2Nl for | — na| > C.

Only the five terms with 2773 < 2F¢ < 27+ make a contribution. We sum those
terms, then take a supremum in ¢ (observing that the displayed bound above is
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independent of t) and then sum in ¢ > 0. We obtain
n = 2(d(E—L)te
> sup [[[gm™ ()] Byl gy 219G
>0 1>0
<, 27n(b+ad(%f%))2na((i(%—i)+€) < 27ﬂ(b7@d(%7%76))'

Since we assume b > ad(1/p—1/2) this leads to (7.29)) and then to the claim ([7.28)
via Theorem [6.1] 0

Given Proposition we can now derive an improved sparse bound for a
lacunary maximal function and a corresponding square function associated with
the multipliers mgp; thus for these examples we improve on Corollary [7.9]

COROLLARY 7.11. Let 1 <p<2,a>0,b>ad(l/p—1/2). Then
1/2
[ (Z mas@D)s@P) " wla)de $ 43, (.0,
R M ez

PROOF. Choose ¢, = +1 in (7.26). Then Proposition together with a
randomization argument exactly as in the proof of Corollary [7.9]yields the assertion.
U

3. Prototypical versions of singular Radon transforms

Let o be a bounded Borel measure supported in {z : |2| < 1} and satisfying

(7.32) /do =0 and sup(1+[€)°G(€)| < 0o for some b > 0.
£cRd
Let {a;};jez satisfy
(7.33) ol <1
and define
No
SN f(a) = Y a; 2770 (27 x f(x)
Jj=N1
and
(7.34) Sf(x)= lim SN2 f(x).
Nz*}OO
Ni——o00

This is the “prototypical” singular Radon transform considered by R. Oberlin [89],
see also Duoandikoetxea and Rubio de Francia [39]. It is easy to see using the
cancellation of the kernel that the limit exists pointwise for C2° functions.

In addition, we assume that ¢ is LP° improving, i.e.

(7.35) llo s fllg < All fllpo
for some g with pg < ¢ < co. The following result is due to R. Oberlin.

PROPOSITION 7.12 ([89]). Let o be as in (7.32)), and {a;}jecz, S be as in (7.33),
(7.34]). Let 1 < pp < p < q < oo and assume that (7.35)) holds. Then S satisfies

the (p,q')-sparse bound
(Sfw)| S Ap g (fw).

The same sparse bound holds for the operators Sy, n,, uniformly in Ny, Na.
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We emphasize that Oberlin also proved certain endpoint estimates for p = po,
working with local Orlicz norms in the definition of sparse forms.

One can extend Proposition [7.12] to cover associated maximal truncation and
variational truncation operators defined by

No
S-f() = sw :ZN 0,2 0 (277 )+ f (@),

ViSf(zx)=sup sup ( | Z a; 279G (279.) *f(g;)}r)

MeNm<-<na N = 5
=1 j=n

PROPOSITION 7.13. Let 1 < py < p < ¢ < 00, r > 2 and o, {a;} be as in
7.32)), (7.33), (7.35). Then S, and V.S satisfy the sparse bounds

|<S*f7w>‘ + |<V:Sf7w>| S A;,q’(fvw)'

Proor. We apply Theorems and To verify the assumptions (5.11al),
(5.11b) see [39, Theorem E]. To verify assumptions ([5.12a)), (5.12b) see [59, Theo-

rem 1.2]. Interpolation arguments using the Fourier decay assumption in ((7.32]), and
Lemma can be used to establish the additional Holder condition in (1.9 [

The setup above is also similar in spirit to the theorems on truncations of rough
singular integrals with bounded kernels [37]. We have been deliberately short in
our presentation as the results in this section are essentially known. For a more
detailed exposition the reader may consult below in this chapter, in which a
singular Radon transform built on spherical integrals is considered, and also other
versions of maximal functions associated to singular Radon transforms.

3.1. An approach via Fourier multipliers. In order to understand the
scope of our multiplier theorems, it is instructive to deduce the sparse bounds for
the prototypical singular Radon transform S in Proposition [7.12] from Theorem [6.1]
(or Theorem. Since o is a finite Borel measure we have ||¢7(27¢)||pra.0 = O(1)
for 1 < ¢ < c0. By and interpolation with L? — L? bounds we have for
some g0(q) >0

(7.36) 67 (27¢-) || araa < Cqminf (27¢)50(@ (27¢) 0@} 1 < ¢ < o0,

using either cancellation or decay, and by Young’s inequality we get the same bound
for || (27t-)|| arp.e when 1 < p < g, 1 < ¢ < co. This takes care of the term £ = 0 in
the condition (6.2a]). To verify the remaining hypothesis of Theorem it suffices
to check that for £ > 0 the condition
(7.37) sup Y [|[65(27:)] # Wy|arp.a < 27(A0/P=1/0)40)
>0 %
Jez
is satisfied, as the condition (6.2b]) trivially follows by the assumption (|7.32)).
Since & is smooth we have for 27t < 1
(65 (27¢)] % Wyl arre < Cn2~N, 27t <1,
for 1 < r < s < oo and therefore by interpolation with (7.36]) and taking geometric
means we see that there is an €;(r, s) such that €;(r,s) > 0if 1 <7 < s < 0o and

(7.38) 1[¢5(27¢)] * Wyl arre < COn2710(274) 1 (09) 20 < 1.
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The contributions for 27¢ > 1 are more interesting. Since o is supported in
{z : |z| < 1} we have the kernel estimate
(F o2 t))(x)] Sw |27 for |z > 27F
and hence
(7.39) (65 (27¢)] % Wl agma <27 for 2¢ > 274 > 1.

For 2¢ < 274t we do a rescaling argument to estimate
1[65(278)]  Wellarmoa S 115(278) [ arroa = (278) =4 /P01 D5 prmg 0

and by assumption ¢ € MP0-9. Interpolating with the M%7 estimate in (7.36]) we
get for pp <p <q

7.40 G(278)] % Wy ppoa < (27¢) "4/ =1/ d)=cpd) g6 97 +4¢ > of,
(7.40) ¢ ( S

Combining ([7.38)), (7.39) and (7.40) and summing in j we get (7.37) for a suitable
e=¢(p,q) >0.

4. Densities on spheres: Maximal singular integrals

As discussed in §3]the Corollary [I.2] covers classes of singular Radon transforms
and also associated maximal operators for truncations. Here we will consider a
natural singular integral variant of the spherical maximal function, and obtain a
sparse domination inequality analogous to the one for spherical maximal functions
with specific dilation sets in [3, [93]. Let o be the surface measure on the unit
sphere {z : |z| = 1} in R? for d > 2 and p = Yo with a choice of smooth x such

that
/du =0.

For every t € [1,2] we consider, for fixed ¢ € [1,2], the prototypical singular Radon
transform as in the previous section

N2
(7.41) S = gk f, Sf = lim SN
Jj=N1 Nf—»—oé)

and then form, for E C [1,2], the maximal function

(7.42) Spf(r)= sup |Se.f ()]

For 0 < 3 < a < 1 define R(B,a) C [0,1]? as the union of the interior of the
convex hull of the points

Ql = (0,0), QQ,ﬁ = (dflflﬁa dillflﬂ)a

_(dB 1 _dd-1) a1
Q3= (75551 7571)  @4o = (Frzast #iaa—)

with the open segment connecting (1 and Q)2 3.

For E C [1,2] denote by dimy E the upper Minkowski dimension of F and by
dimga E the quasi-Assouad dimension of E (see [93)] for definitions and background,
and for a discussion of classes of sets F for which the single-scaled LP — L7 results
described above are sharp).
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Q2,8

) Qs
Q4,a

o)

D=

FIGURE 2. The region R(8, ) with 8 = 0.75, « = 0.9, d = 3.

PROPOSITION 7.14. Let d > 2, E C [1,2] and (1/p,1/q) € R(B,«) with 8 =
dimy E, a = dimga E. Then there is the (p,q')-sparse domination inequality

|<8Ef7 w>| S CA;,q’(f7w)'

The two-dimensional version of our operator models a maximal operator as-
sociated to a family of Hilbert transforms on curves considered in [49], [50] where
nonisotropic dilations are used (see also the previous papers [86, [48] for related
problems). In this nonisotropic case one could also consider more general situa-
tions, i.e. when F is not a subset of [1,2] (see also the prior work [86] on maximal
functions) but this involves multi-parameter structures for which sparse domination
result are difficult and in some cases are proved to not hold [7].

PROOF OF PROPOSITION [T.14] Using the density Lemma[A 1] we may assume
that f € C2°. It is then easy to see that for any bounded set U € R"™ we have
toig * f(z) = 0 for all @ € U, t € [1,2] and sufficiently large j. Moreover using
the cancellation of p and the smoothness of f we see that pgs, * f(z) = O(27) as
j — —oo. Thus we see that for f € C2° the function S;f is well defined and

lim  sup [S;f— &M f| =0,

1{;22:300’0 te(1,2]
where the limit is uniform on compact sets. It is therefore sufficient to prove a
sparse bound for the maximal function sup,cz [S;'""* f| which is uniform in Ny,
Ns. In what follows we will drop the superscript in StN N2 [yt assume that we still

working with a truncated sum depending on Ny, Ns.

To verify conditions (1.8)), (1.9) in Corollary [1.2| we first note that for (%, %) €
R(B, ) there is e(p, g¢) > 0 such that for A > 2

(7.43) I sup e * flllg Spia AP fllps f € Eann(N)-

This is coupled with an elementary LP — L7 estimate with constant O(1) estimate
for functions with frequency support near the origin to yield ([1.9a)) via Lemma
this also settles by translation invariance. For inequali we may refer
to [93], Cor. 2.2].
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It remains to verify and which follow by verifying the LP bound-
edness of 8 for (%, %) on the open interval (Q1Q2,5). To accomplish this we make
a further decomposition on the frequency side. Let 1 be as in (3.9), (3.10), and set
Nej = 2779me(277+), so that 7o ; is supported where |¢| < 277 and 77, ; is supported
where |¢] ~ 2¢77. Setting

b

N2
Skf (@) =sup| > s e+ S (@)
tee | X
J 1
it then suffices to show

(7.44) 18511y p 27111l

with §(p) > 0 for (%, %) € (Q1Q2,3). The estimate for £ = 0 reduces to standard
singular integral theory; this uses the cancellation of p. Thus from now on we

assume £ > 0.

We shall first discuss the case when either d > 3 or d = 2, # < 1 where we use
arguments as in [101]. Because of |(&)| < min{[¢], €]~ (4~ D/2} we get

Ny
sup | Y fize (e (§)| S 27N,
EERTj=n,

which implies an L? boundedness result for the operators Sf with constant O(2~¢(4=1)/2),
uniformly in ¢ € [1, 2].
We also have the L? boundedness result

Ny
| 3 e rmg = o] <Gl 1 <p <o
Jj=N1

which is a consequence of results on isotropic singular Radon transforms as, say, in
[39]. By interpolation we get for all € > 0

N3
L _gpd=1 __pd=1
| 32 pasesmey = £ S Cop2 0 min2 5 275 Al 1<p< oo,
J=N,

The same estimate with o5 * 1 ; replaced by 2_52_3"1[%/” % 10](277) also holds.
We cover the set E with O(2¢#+2)) intervals of length 27 and argue as in [T0T],
p.119] to obtain

d

Il

s . _pa=1 __y
185 fllp Se 2979 min(274% 2

This gives ([7.44)), provided that d >3 or d =2, 8 < 1.

For the case d = 2, 8 = 1, we need to show LP boundedness for p > 2. By a
Sobolev embedding argument this follows from the inequality

(7.45)

2 N3
(/ H D ok x f
L j=n

p \1/p 200 N2 p \1/p
)t (f 7 3 v« o)
P 1 atj:Nl P

S 2t g,
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where a(p) > 0 for 2 < p < co. By Littlewood—Paley theory we see that the bound
for the first term in ([7.45)) reduces to

2 N> /
@0 ([ (3 twermg = £i2) "
Jj=N1

for 2 < p < 0. is established by a local smoothing argument as in [49] (see
in particular an isotropic version of Corollary 3.6 of that paper). We thus have
established the bound for the first term in , and the argument for the second
term is analogous. Finally from we obtain by another application of
Littlewood—Paley theory (applying the inequality to functions f; with J?J supported
where [¢] ~ 2¢77). O

)" e (Sisr) ),

P -
J

5. On radial Fourier multipliers

We consider radial Fourier multipliers on R? with d > 2, of the form m(&) =
h(|¢[) where h satisfies the condition sup,;.q [|Bh(t)|[zz < oo for suitable o; here
L? is the usual Sobolev space on the real line and 3 is any nontrivial CS° function
with compact support in (0,00). By duality we only need to consider the range
p <2

The inequality

1_1
(7.47) IRl Dllagra S iglgtd(f’ D|Bh(t)ez, > d(1/q—1/2)

is known to hold for 1 < p < 2(d+1)

a+3
2(d+1) 2d

for = T3 <P< &7 and p<g< %p' . Indeed, as a straightforward consequence

of the Stein—Tomas restriction theorem and Littlewood—Paley theory one gets for
Q(ﬁ;), q = 2, a = 0, a complete characterization of radial Fourier
multipliers in MP+?; namely

2t
1.1 ds\1/2
I Dl ~ sp =9 ([ i) 7))
t>0 t 5

p < ¢ < 2 and one may conjecture that it holds

the endpoint p =

see e.g. [46]. The case p = q = dQ—fll

[22], [25], but remains open in three and higher dimensions. Note that as a special

case one has the Bochner-Riesz conjecture when h(s) = (1 — s?)}. For partial

LP — LP results in higher dimensions (via the connection [25] with Stein’s square
function) we refer to [27, 97 [70] [69], cf. below.

We formulate sparse bounds for the multipliers satisfying (7.47); in fact our
hypotheses will involve the single scale variant

(7.48) lg(l- Dllarea < Cle)llgllzz, > d(1/q—1/2), supp(g) C [1/2,2].

Typically, the assumption ([7.48]) will be applied to g of the form Sh(t-).
Theorem [6.1] leads to the following result.

has been settled only in two dimensions in

PropPOSITION 7.15. Let 1 < p < g < 2 and let Ty, be the convolution operator
with multiplier h(| - |). Then
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(i) Assume ) holds for a specific exponent pair (p,q) with 1 < p <
p<qg< min{gﬁp' 2} and all o > d(1/q — 1/2). Then

(7.49) [Thlls, gy < Chosup [8h(E) 1z, b> d(1/p=1/2).

e

(ii) In particular, ) holds true for 1 < p < ( )

PROOF. We need to verify the assumptions of Theorem This amounts
to veryfing the finiteness of the condition (6.2a)). Setting g = Sh(t-) and fixing
b > d(1/p — 1/2) this follows from proving that for £ > 1 we have

(7.50) lg(1 1) * Tellarma S 27573 F=D g

~

for some e(b) > 0.

Let vg be supported in {s € R : |s| < 1/2} such that [wvo(s)ds =1. For n >1
let v,(s) = vo(2"s) — vp(2" !s), and define g,(s) = g * v,(s). By assumption
(7.48), we have ||gn(] - )| arpa S llgnllzz for any a > d(1/q —1/2) and hence also

(7.51) lgn (1 1) * Cellarra < llgn(l - Dllazea < llgnllze < 27" lgll 2.

For our fixed choice of b > d(1/p—1/2), we choose by < b such that d(1/p—1/2) <

by < b, so that (7.51)) holds for the choice a = by —d(1/p—1/q) > d(1/q —1/2).
We let € = (b—b1)(2d)~! and use (7.51) for n > (1 +¢€)~!. Since

di—1)+b—b 1 1. b—b—edi-%) p_p
P q —d(= — =) = P97 <« L 0
1+4+e€ (p q) 1+e ~ 1+e =(b) >
we get
37 lgn(l- 1) Vellarra S 27T G740 g L2 < 27 G =T H D g
n>—— £

T+e

For n < £/(1+¢) we observe that any derivative of order k of g,,(|-|) is O(2¥"||g]1)
and an N-fold integration by parts gives | F~*[g,(|-])](z)| < Cn2"~ON for |z| ~ 2¢,
for all N € N. We use this with N := 10d1¢. By Young’s inequality

Z I gn (|- 1)+ Tllarma S Cnf2" @462~ N) < ()25

TLS 1+51

and (7.50)) is verified. O

As an example in the above class of multiplier transformations we consider a
multi-scale version of Bochner—Riesz operators. The Bochner—Riesz means of the
Fourier integral are defined by

(7.52) S (€ = (1— P/} Fle)

and are conjectured to be bounded from LP — L7 if A > d(1/q —1/2) — 1/2 and
1 <p < ¢ < min{4p, 2}, with operator norm O(t¥1/?=1/4)). One may reduce
to t = 1 by scaling, and if hy(s) = (1 — s?)} then hy € LZ for A > v+ 1/2.
Therefore, Proposition [7.15] immediate leads to sparse bounds for operators such
as Zk__oo ( SA — S;‘Hl), with uniform bounds in the choice of the sequence of
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signs. After a standard averaging argument using Rademacher functions this im-
plies sparse bounds for lacunary square functions; indeed the vector-valued version
of Theorem leads to sparse domination for the lacunary square-function

(153 s - Shont?)”

kEZ

and consequently to sparse bounds for lacunary Bochner—Riesz maximal functions
M f = supyez |So f|. These results can be viewed as a natural multi-scale gener-
alization of the sparse domination results for Bochner-Riesz means in [16] [68]. In
this context, we remark that there are sharper endpoint sparse domination result
for Bochner—Riesz means [61] which yield back some of the known weak type (p, p)
endpoint bounds for

A=d(1/p—1/2) —1/2.

However, currently there are no satisfactory sparse bound for analogous endpoint
situations which involve multiple frequency scales. We hope to return to this ques-
tion in the future.

6. Stein’s square function

In [102] Stein introduced the square function defined via Bochner—Riesz means

by,
G f(x) = (/0 )8Saf | tdt)1/2

o [ 157 @) - ses@Pg)

in order to establish pointwise convergence and strong summability results. Another
important connection was established in [25], namely that an LP-boundedness result
for G* implies that the condition sup,. [|8h(t)|[z2 < oo is sufficient for h(| - |) €
M,. Moreover, G* also controls maximal operators associated to radial Fourier
multipliers [23].

The expression G®f(x) is almost everywhere equivalent to many alternative
square functions, which can be obtained via versions of Plancherel’s theorem with
respect to the t-variable; see the paper by Kaneko and Sunouchi [60]. We dis-
tinguish the cases 1 < p < 2, in which by a result of Sunouchi [I09] we have LP
boundedness for o« > d(1/p—1/2)+1/2, and the more Subtle case 2 < p < oo, where
LP(R%) boundedness for d > 2 is conjectured for p > 2% and a > d(1/2 — 1/p),
and known if d = 2 [22]. LP boundedness in the latter problem is closely related to
the multiplier problem discussed in see [27), (97, [70}, 69] for partial results and
[71], [72] for certain endpoint and weighted bounds.

We recall some basic decompositions of the Bochner—Riesz means. One splits

(L= P == leP)E =D 27" Dy (€)),

n>0
where uo(0) = 0, the u,, are smooth, and for n > 1 we have

supp(u,) C (1 — 271 1 — 2771
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and | 2, (s)| < C;27 for j € No. Let Ky, = Fun (| - )], Kn,s = 5K, (s-) and
oo dS 1/2
Gutl) = ([ 1 r@P2) "
0

so that
z) <Y 27eTDG, f(x).
=0

We shall rely on the standard pointwise estimates obtained by stationary phase
calculations,

(7.53) Ko (@) Sn (14 [2) =% (14 27"a]) 7N

6.1. The case 1 < p < 2. A pointwise sparse domination result for o >
(d+1)/2 was proved by Carro and Domingo-Salazar [26]. For 1/2 < a < (d+1)/2
we have LP boundedness (p < 2) only in the restricted range %fﬁ <p <2,
by Sunouchi’s result, which is sharp. Thus in this range we are seeking sparse

domination results for the forms (G*fi, f2). Theorem yields the following.

PrOPOSITION 7.16. Let d > 2, % <a< %. Then for <p <2 we

have the (p,p)-sparse domination inequality
(G f,w)| < CAp L (f,w).

PrOOF. The operators G,, are defined through smooth kernels and therefore
the result in [26] yields pointwise sparse bounds, with norms depending on n. This
settles the case of small values of n. For large values of n, given € > 0 we have to
show

(7.54) (G frw)| Se 2MG 75735 AY= (£, )

p,p

2+2d1

since in the assumed range of p we have o — 1 > d/p — d/2 — 1/2 and therefore we
can sum in n to obtain the result for G*. Let H be the Hilbert space L*(R™, 42).
By the linearization argument in Ch.[4] §3] the inequality (7.54)) follows, for a scalar
function f; and an H-valued function fo = {f2,}, from
4_d_1,,
’//Kns*fl )fo,s(w)— dx‘ Se2nmEmat )A;h pac (f1: f2).
By Theorem [6.1] this follows from

(7.55) up [[8(1 [y (] D] # Tel]ppr 2575+ 5 97547049

for some €; > 0. To verify (7.55) we argue by interpolation and reduce to the cases
p =2 and p = 1. It will be helpful to observe that for 1/8 < t/s < 8 we can replace
the kernel K, on the left hand side of the inequality in (7.53) by F~[B(]-[)un(£]-])].
Thus

@56) (177080 DunCt]- DI@P%) " o (1 )P (2

Here we used that given ¢ the integrand is zero unless s € [t/2,2t]. Hence for any
€2 > 0 (which we choose < min{e, €1}) we get

(7.57) sup H Dun(t] - )] * \TJ@HMM Sea N 27N i > n(l 4+ €).
C,H*
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If p = 2 we have also have, for £ < n(1+ €2),

€1 €1 t 2ds 1/2
(1.58) 80 Dol D]x el g 20 52 s ([ 180D EleDEL)

C,H*
< 2(6127”/2 < 2TL61(1+62)277’L/2'

Furthermore, for p =1 and ¢ < n(1 + e2) we use (|7.56)) to see that

(7.59) 1181 - Dun(t] - )] * @HMCI,; gl(d+er)
< 2€(d+51) —n(d+1)/2 < 2n(1+€2)(d+61)—n(d+1)/2 < 2n(d—1)/2+5
Combining with ( we obtain the cases of (| - ) for p =1 and
=2 and 1 ) in the full range 1 < p < 2 follows by interpolation.

6.2. The case 2 < p < co. The reduction to sparse bounds will be similar as
in the case p < 2, but the input information is more subtle. Instead of the pointwise

bounds (7.53|) we now use that
8 1/2 d_d_

(7.60) |([ s g2 7| s 2t=20p,,
1/8 P

for2 <r<p, p> Q(dd"'ll), which was proved using the Stein— Tomas restriction

theorem [27, 97, [71]. We then obtain a satisfactory result for o > 2% +1

ProPOSITION 7.17. Letd > 2, d_‘il <a<d 5- Then for dzga < p < o0 we have

the (2,p)-sparse domination inequality
(G f,w) < CAS (f,w).
PRrOOF. Note that in the given p-range, p > % when a > ﬁ. We use
the notation in the proof of the preceding proposition. By linearization (see the
argument in Ch. it suffices to prove

[ Ko @) ) Tta] < 222903
and by Theorem [6.1] this follows, given € > 0, from
(7.61) 1B Dun(t] - ] * ‘I’eHMz 2fs—pte) <, gn(a=51+e)

for some €; > 0, uniformly in ¢t > 0. For £ < n(1+ €3) the left hand side is bounded
by a constant times

(7.62) grl+e)(s-F+a) | (.
Using (7.60) for r = 2 we get

I( / FB( - Dua 21 AR | <270

Dyzr
MC}(*

and thus the expression in (7.62) is O(2"(+<) %_%"'61)_"). Finally, we choose
€1,€62 < ¢ and combine this with the error estimates (7.57)). This completes the
verification of (|7.61)). O



APPENDIX A
Facts About Sparse Domination

For completeness, we collect a number of auxiliary results, some of them well-
known, about sparse domination.

1. Replacing simple functions

It is often convenient to replace the spaces Sp, and Spy in the definition of the
Sp7 (p1, B1, p2, B3) norms by other suitable test function classes such as the spaces
of compactly supported C'*° functions or Schwartz functions. This is justified by
the following Lemma.

LeEMMA A.1. Suppose 1 < p; < p; and py < p < py and let T € Sp.,(p1,p2)-

Let V1 be a dense subspace of L%l and Vo be a dense subspace of Lp/;. Then

I(Tf1, f2)]
Al T ») = sup
( )l HSP«,(Pl,Bl’pz’Bg) {A;,Bl,pg,Bg (f1, f2)

S €V fi£0,i=12},

PROOF. We first assume that V; = L%l and Vo = L%,;. In what follows we
omit the reference to By, B3. The right-hand side of (A.1)) dominates ||T'[|sp_ (p p»)
defined in ([1.5)). In order to verify the reverse inequality we have to show that given
¢ > 0 and given f; € LP, fo € LP" we have the inequality

(A.2) (T frs £2)] < (1T llsp, 1 ,p2) +€) Apy o (f15 f2)-

This is clear if one of the f; is zero almost everywhere. We may thus assume
that || fill, > 0, || f2llx > 0. For any &1 > 0 choose g1 € Sp,, g2 € Sp; so that

11 = g1llp < €, [[fo = gallpr < €1, and also [[gal, < 2[[filly , [lg2llpr < 2[[f2]l and

estimate, using the definition of ||T'|lsp_ (p,,p.),

(T fr, f2)l < KT[fr — gl o)l + KT fr, f2 = 920 + [{T'g1, 92)|
<N Tlp—p (11 = grllpll follyr + 1 frllpll f2 = 921l ) + I T llsp., (or,p2) Ay s (915 92)
< HT”pfp(EleQHp’ + ||f1||p€1) + ||T||Spw(p1,p2)A;1,p2 (91,92)-
Moreover, for p; < p < pj, one has using (ii) in Lemma A.2. that
AL 5o (91,92) <A L (91— f1,92) + Ay, b, (f1.92 — fa) + A, L, (1, f2)
< Ci(p, p1,p2)(l91 = fullpllgzlly + [1/1llpllg2 = fallp) + Ay, p, (f1, f2)
< Ci(p, p1,p2) @l f2llprer + ([ f1llper) + Ap, 5, (f1: f2)
and thus
(T f1s 20l < I Tllsp, 1.p2) My (F15 f2) +E,

81
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with &€ < C(f1, f2,p,p1,p2, T)e1. Choosing a suitable €; depending on € we obtain
the assertion (A.2]), for the case V; = LP, Vo = LP.

In the general case we replace the couple of pairs (Sp,,Sp;) and (L?, Lpl) by

the couple of pairs (V1,Vs) and (Lp,Lp/) and see that a repetition of the above
arguments settles this case as well. O

2. The Hardy—Littlewood maximal function

It is a well-known fact that the Hardy—Littlewood maximal operator, denoted
by M, satisfies a sparse domination inequality. We have not been able to identify
the original reference for this fact and refer to Lerner’s expository lecture [74]
instead. This constitutes a first nontrivial example for sparse domination and we
include a standard proof for completeness.

LEMMA A.2. Let f € L} _(R?). Then there exist y-sparse families &;(f),
i=1,...,3% such that

M) <291 =9">0 > (fHoalel).

i=1 Qe&;(f)

PROOF. Let © be a dyadic lattice and let M® denote the dyadic maximal
function associated to D, that is, M® f(z) := sup@sa (f)q- Let
QeED

(A.3) a=241—~)""
For each k € Z, define the sets
Q= {z € RY: M® f(z) > a*}.

Let Q(k) = {Qfﬂ}j be the collection of maximal dyadic cubes with the property
<f>Q > aF. If par(Q) denotes the parent cube of Q then <f>par(Qf€) < a* and hence
we have

(A.4) ak < <f>Q§€ < ak2?

for all j. Observe that Qi C Q and Q, C UjQi. Moreover, the cubes in (k) are
disjoint, and hence €y, is the disjoint union of the cubes in Q(k).

Define the sets EJ := QJ\Qxy1, and note that the family of sets {E]}; is
pairwise disjoint and |EY| > (1 — %”Q“ for the last claim, note that

Q7. N ey :Z‘Qika—Hﬂ = Z [o} ey

i:Q};+1CQf;
1 1 2¢
J
< X gmf W<gaf 1<l
= b .

using the disjointness of the cubes @} | and (A.4) for Q}_ , and Qi. By our choice
(A.3) we see that |E]| > ~|Q7| and thus &(f) := {Q7.}r,; is a y-sparse family.
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Moreover,

Mgf(I) = ZMQf(I)]le\QkH () < ZZ akJrl]lEi- ()

kez kEZ Qk

< az <f>ch]lQ£ (z) =a Z <f>Q]lQ(93) )
k,j QES(f)
by (A4). Finally, the result for the maximal function M follows from the 3¢-
trick (see [79, Remark 3.2]), which ensures that there exist 3¢ dyadic lattices D,
i=1,...,3%such that

3d,
Mf(x) <YM f(x). O
i=1

REMARK. If f has values in a Banach space B, the same argument applies to
f = M(|f|B)- However, there are more interesting vector-valued extensions such as
in the Fefferman—Stein theorem [42], and corresponding general sparse domination
results with additional hypotheses on the Banach space are discussed in a paper by
Hénninen and Lorist [52].

3. Operators associated with dilates of Schwartz functions

It is convenient in many applications to observe that maximal functions and
variation operators generated by convolution operators with Schwarz functions sat-
isfy sparse bounds. We choose to deduce the variational statements as a conse-
quence of our Theorems in Ch. but it could also be based e.g. on [37]. For the
definition of the dyadic and short variation operators we refer to Remark here
VJ, is understood with E = (0, 00).

LEMMA A.3. Let K € C?(R?) be a convolution kernel satisfying, for all multi-
indices o € N3 with Y-, |a| < 2,
0K ()] < (14 |z)~"2
Let Ky(x) =t K (t~'x) and let Kif = K; % f(x). Then for 1 <p<q < 00
[(sup K¢ fl, w) S Ap g (f5w)
>0
|<Vdryadlcfa W>| S A;,q’(fa UJ), 2<r< 00,
(VIKS,w)| < Ay o (fiw), 2 <71 <oo.
PROOF. Since sup, |K; * f| is pointwise dominated by the Hardy-Littlewood

maximal function the sparse bound for (sup,. |KC;f],w) can be directly deduced
from the sparse bound for the Hardy—Littlewood maximal function M in

For the variation norm inequalities we decompose K = ZSLO:O K" where K™
denotes convolution with K™ := KV,, (here ¥,, is supported where |z| ~ 2™ when
n > 0, see ) We can form the long and short variation operators with respect
to the family of operators {K}'};~o where K} denotes convolution with K}' :=
t=@Km(t~1). Using the pointwise bound on VK and results in [58] or [59] we have

VdyadK" fllp Sp 27"l fllp, 1 <p<o0, 7>2,
IVa K" fllp Sp 27" fllpy 1 <p<oo, r=>2.
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The kernel K is supported in {x : |z| < 2”7t} and from our assumptions it is
easy to see that the rescaled estimate

Vit o (2K 27) % fY], S 27"l 1<p<g<oo,1<r <00,
holds. Moreover, using the bound for VK and V2K we also get
Vi g {2 K7 2m) « AnfH, S 20 D17 £

for 1 <p<g<oo,1<r < oo Applications of Theorem [5.2] and Theorem [5.1]
(for £"-sums and with the choice of By a subspace of V[q 3] of large finite dimension)
together with the monotone convergence theorem yield

|<Vdryadlcnf7w>| S 2_nA;,q’ (fvw)7 r> 27
(VaK" fow) S 27"07VIAL L (fuw), 2 2,

The proof is completed by summation in n. (Il




APPENDIX B
Sparse Domination: Cases where p =1 or ¢ = c©

Here we describe analogues of our main result Theorem which cover cases
where p = 1 or ¢ = oo; we refer to Remark (iv) following the statement of Theorem
for an explanation of why these cases need to be treated separately. We formu-
late three different results, one for p = 1, ¢ < oo, one for ¢ = 0o, p > 1, and one for
p =1, ¢ = oo. This allows us to recover the classical case of Calderén—Zygmund
operators, although we do not claim universality of sparse-domination results here:
for example, we do not recover the sparse domination for Carleson-type operators
from [38, 9, 8], neither the works for p = 1 by Conde-Alonso, Culiuc, Di Plinio
and Ou [29] and by Lerner [78] which also treat results on rough singular integrals,
nor the works for ¢ = oo which can often be upgraded to stronger pointwise sparse
domination results of the type (1.1)) (see in particular [77], [80], [85]).

We will sketch the proofs of our results, indicating only what modifications need

to be made compared to the proof of Theorem Theorems and

below have applications to maximal operators, square functions and long variation
operators (as formulated in Ch. similar to those of Theorem We leave the
details to the interested reader.

1. The case p=1,g < >

If p = 1, one can drop the condition of weak type (1,1). Our variant of Theorem
[L1lis then as follows.

THEOREM B.1. Let 1 < ¢ < oo. Let {Tj}jez be a family of operators in
Opp, B, such that

o the support condition (1.6) holds,
the restricted strong type (q,q) condition (1.7b)) holds,
the single scale (1,q) condition (1.8]) holds,

the single scale e-regularity conditions (1.9a]), (1.9b)) hold with p = 1.

O O O

Define
C=A(g) + As(L,9)10g (2 + 1-0)-
Then, for all integers Ny, No with N1 < No,

No
J ~,E,7, .
1,B1,q’,B3
J=N1 Sp’y( ,b1,9, 2)

PrOOF. We argue as in the proof of Theorem with the decomposition

(4.13) and the bound (4.14)). The terms (4.15a]), (4.15b]) are handled exactly as in
the proof of Theorem Consider the splitting of I11 as in (4.19)). The terms

85
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(4.19c) and ([4.19d)) are estimated as in the proof of Theorem We are thus only
left with estimating the term

IIL+1TL= Y > (Tibiw,g).

N1<j<Ny Wew
L(W)<j

The argument in the proof of Theorem does no longer work; recall that for
p > 1 these terms were bounded immediately via the weak type (p,p) condition

(1.72) and the duality of L%;ff and LY léll. Instead, here we will bound I11; + I11,

using (1.8) and the regularity condition ([1.9a)), close in spirit to the bounds of the
terms IV; and IV; (defined in (4.25)) in the proof of Theorem

We let 0 < ¢’ < min{1/¢,e} and ¢ > 0 be as in (4.24), that is,

B
AO(LQ)

Let R, be the collection of dyadic subcubes of Qq of side length 27. We tile Qo into
such cubes and write

100

/

2@ < (2+ ) S 2@+1'

€
IIL +1IL, =Y 111,
where

(B.1) I, = Z Z< Z Tibyw, g2l3R)-

N1<j<N2 Rem]‘ WCR

L(W)=j—s
We first note
_; _1
(B.2a) ITjllzy, —zg, S Ao(l,q)2 =),
(B.2b) 1750~ By, g, <e B2 990D,

where (B.2a)) follows from the single scale (1, ¢) condition ([1.8) and (B.2b)) follows
from the single scale e-regularity condition (1.9a]) and Corollary

For L(W) = j — s, we have by w = (I —E,_;) fi,w. Let R € R;. By (B.24) we
get

‘( Z T;b1,w, 92]13R>’

L(W)=j—s

SHTJ' > ble‘
WCR L
L(W)=j—s

SALIRITD 3T bl IRV (f)sg,.q

WCR
L(W)=j—s

(B.3a) SA(La) Do W) g (f2)sgeg

WCR
L(W)=j—s
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and by ,
‘( Z ijl,W79213R>‘

WCR
L(W)=j—s
<fru-ee 3w, letanly,
WCR bs, "2
L(W)=j—s
—e’s -(1-1 '
<. B2 <¢|R|~(~3) Z ||f1,W||L}31|R\1/q {230,
WCR
L(W)=j—s
(B.3b) SB270 Y W) gy (f2)sgee
WCR
L(W)=j—s

Note that in obtaining the above bounds we have used (4.9a) and (4.10)).

In the above definition (B.1]) for IA/HS we write j = sn 44 withi=1,...,s so
that

|1T1,| S min{Ao(1,q), B2~}

> X > Wl F)sgna
WCR

i=1 ne” RERn+i C
sn+i€[N1,Nas] L(W)=sn+i—s

Now interchange the order of summation; here consider for fixed W € W the set
of all triples (R,n,4) such that L(W) = s(n — 1) + i, R € Rspy; and W C 3R,
and observe that the cardinality of this set is 1. Combining this with the above
estimates and summing over the disjoint cubes W € W we obtain the bound

1Ty + I113| Sa.y.e <f1>Q0,1<f2>3Q0,q/ Z W Zmin{Ao(l,q)ng_g/s}
wew s=1

B
m)|Q0|<f1>Q0,1<f2>3Q07q/7

as desired. 0

< Ao(1,q)log (2 +

In the spirit of Ch.[2] it is possible to deduce that the sparse bound in Theorem
implies that the multi-scale sums Z;Vj ~, T are of weak-type (1,1). The proof
of this fact is slightly different than the one given in Ch.[2 for p > 1, as it cannot
rely on the duality between LP*>° and LP'!. We refer to the reader to [29, Appendix
B] for details.

2. Thecasep>1, ¢g= 0

If ¢ = oo one can drop the restricted strong type (g,q) condition (1.7b]). Our
variant of Theorem [[]is then as follows.

THEOREM B.2. Let 1 < p < oo. Let {Tj}jez be a family of operators in
Opp, B, such that
o the support condition (1.6) holds,
o the weak type (p,p) condition (L.7a]) holds,

the single scale (p,00) condition (1.8) holds,

o
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o the single scale e-reqularity conditions ((1.9a), (1.9b) hold with ¢ = co

Define
C = A(p) + Ao(p, o) log (2 + ﬁio@)'
Then, for all integers N, NQ with N1 < Na,

H

PROOF. Again we argue as in the proof of Theorem [I.I] and describe the main
induction step. Using the previous notations we now decompose

(B.4) (Sfi,fo) =T+ T+ T+ 1V

where

< C
p,€,Y,d &
Spﬂ,(%Bl,LB )~

I= > (Swh,fo)

wew
1= ((S — Z Sw)f1,92)
wew
M= ((S— > Sw)gba)
wew
=((S= > Sw)b,ba).
wew

Note that the numbering here is slightly different from the one in the proof of
Theorem We deal with the term I using the induction hypothesis as in the
proof of Theorem and, using the argument therein, it suffices to show that the
terms II, III and IV are bounded by ¢C|Qol{f1)q, ,(f2)30,.1-
We first consider II = II; — II; where
I = (Sfi.g2), = (Swh,g)
w

Here we use the weak type (p,p) assumption (1.7a)) for p > 1 and (4.11)) for ro =
p' < oo to get

(Sf1,92) <[ISfillpee

B**

Al (F2)30,11Qol 7
A(P)\Qo\(fﬁp,g)o (f2>3Q0,1

92500

and
Z (Sw f1,92) < Z”SW filw] HLgf: |92HL°° ||]13W||Lp'*,1
Wew W B3
SA®) Y MATwllp(f2)sge, WY
wew
) Z |W|<f1>Q0,p<f2>3Qo,1
wew

and hence, by the disjointness of the cubes W € W,
(B.5) | < | + 2| < A)|Qol{f1)p,q,(f2)300,1-
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The last term IV corresponds exactly to the sum 1113 + II1; in the proof of
Theorem defined in , , and it is therefore treated in the same
way; here the weak type and restricted strong type assumptions are not used. In
particular, we obtain

B

(B.6) [IV] < Aq(p, 00) log (2 + m) |Qol{f1).00 {f2)300.1-

It remains to bound the term III. By the definition of g; and Sy we have

> Swar= ) Z Tjlavw [f1]1w] = Z > Tilavw [fi]1w]

Wew WEW j=N, Jj=N1 Wew
JSL(W)

and thus we may split III = III; + III; where
I, = <S[91]19'3] ba)

Il = Z Y (Tjlavw[filw], b2) -

j=N1 Wew
L(W)<j

Let R, be the collection of dyadic subcubes of Qg of side length 27. We tile Qp into
such cubes and write

IHl— Z Z gllchmR b2 Z Z gllgcmR Z b2W’]]-3R>

j=N1 RER; j=N1 RER; W'ew

Next, note that in order to have (Tj[g1 Loengl, > ey b2,w 13r) # 0 we must have
that QN R # 0 and W/ N3R # 0. As W’ € W, the above implies

5diam(W’) < dist(W’, Q%) < 3diam(R)
and therefore L(W') < j. Thus,

(B.7) 1111_2 Y (Tilglgongl, Y. bawlsg).

j=Ni RER; W’'ew
L(W")<j

We next decompose IIly = IIl5 ; 4 III5 2, where

(B.8a) Iy, = Z (Ty] Z avw [f1]1w], Z ba,w )
j=N1 Wew W’ew
L(W)<j L(W")>j
(B.8b) MM, 5 = Z > (GlavwlAllwl, Y bawr)
Jj=N1 WEW‘ W’'ew
L(W)<j L(W')<j

The term IIl;; can be treated as in the estimation of the term I7/3 in the
proof of Theorem [L.1] defined in ([£.19d), as cancellation does not play a role in this
argument. The geometry expressed in (4.20) is crucial, i.e. we have likewise

Bo) (Llvwhlwlbaw:) #0 —  J<LW)<LW)+2<j+2.

L(W) <j < LW’
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This implies

LISTESEY Z > (T lavw [f1]1w], bo,w)|

N1 <j<N2 w'e Wew:
SV L4 LW )< L(W)<j
Wc3w'
< Ao(pyoo) > 277 > lavw [fi]lw Ly, l1bowllzy,
N1<j<N; W,W eW: W 3w’ 2

JSL(W')<j+2
L(W')—2<L(W)<j

S Ao (P, 20)(f1) gy p{f2)300 1

% Z Z ijd/p|w‘1/p|wf|

N1<j<N2» W,W:Wc3w’
JSL(W')<j+2
L(W")—2<L(W)<j

SAo(pvoo)<fl>Q07p<f2>3Q0,1 Z |WI|gAo(p7OO)‘QO‘<f1>QO7p<f2>3QO71'

w’'ew

The terms III; and III; » can be treated in a similar way as in the estimation

of the terms I'Vy, IV (defined in (4.25)) in the proof of Theorem Let 0 < ¢’ <
min{l/p,e} and £ > 0 be as in (4.24). Then we split

I = I8 + 105", 1o = 1§, + 11137

where
IIIlng Z Z Z gl]lQGﬂR Z bQ’W/]lgR>
j=N; RER; s=1 L(VMI;:)E :
=j—s
N2 oo
™ = Z Z Z (911genp: T} | Z bo,w 3R] )
j=N1 RER; s=(+1 (W’)EW
L(W')=j—s
and

N2 I
I1112%2: Z Z Z< Z Tilavw [f1]1w], Z bo,w13R),

j=Ni RER; s=1 WCR W'ew
L(W)<j L(W')=j—s
N2 oo
%= > > > (> avwlAllw,T;[ Y. bawlsr)).
j=N1 RER; s=0+1 WCR wW’'ew
L(W)<j L(W")y=j—

Observe that the terms ITI7™, I1I5 involve very small cubes W’ for which the can-

cellation of by 1 can be most effectively used. The terms IIIllg, IIIIQg’2 involve larger
cubes; for these terms it is more effective to use the single scale (p,q) conditions
3.

We note that the terms Hlllg and HIIQ%2 behave very similarly, and also the terms
HIT™ and IT157%.
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Indeed, if hg, h r denote either of the first functions on the bilinear form,

hp(@) = g1(2)lgonp,  hr(z) = > avw[Allw (@),
WCR
L(W)<j

then it follows from the definition of OF and the disjointness of the W € W that
hgr, hr share the relevant property

IhrllLy, » [1hRlLy, < IRIY™ (1) g, 1<T <00,

which we will use with r = p.
By the above considerations, the hypothesis (|1.8]) and (4.9al) we have

I = Z > ZThR, > bawilsg)

j=N; RER; s=1 W'ew
L(W')=j—s3
N2
SY Y 3 Ao lhaluy, | X bewtanl|,
s=1j=N; RER, W'ew B3
L(W')=j—s
¢ Na
S Aopoo) Mgy 2. 2. Do el
s=1 j=N1 RER; W’'C3R ?
L(W')=j—s

¢ N
Ao(p. o) F)gy pif)sgen Do D Do W

s=1j=N1  W’'ew
L(W")=j—s
S LAs(p, OO)|QO|<f1>Q07p<f2>3QO,1
and hence, by the definition of ¢,

II1E < Ao (p, 00) log(2 + ﬁ)lQoKfﬁQo,gfz)ng,l

Similarly we show (after replacing hp with h r in the above calculation)

B
Ilega < Ao(p, 00) log(2 + m)@o\<f1>@0,p<f2>3@0,1-

For the estimation of IIT7™, 113", we use the e-regularity property (1.9b) and
Corollary [3:5] to get

S BaTId/rgEs,

(BlO) HT‘;‘(I_Has*.j)”[‘lBl*>LI}’32
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Moreover we use the formula be y+ = (I — Es_;)fow, valid for L(IW') = j — s.
Thus, via Holder’s inequality

N2 o
Z Z Z (hr, T [ Z bo,w 13r])

j=N1 RGERJ' s={+1 W’'ew

L(W')=j—s
N2
S Il ITE =Bl || D fowrlar
=Ny s=0+1 2 Y owrew B3
L(W")=j—s
N2 o0
1/ —e'sg—jd/
S Z > > IRMP(f1)g, B2 027 pH > f2,W’]13R‘ .
j=N1 RER; s=0+1 W'ew B3
LW )=j—s5
N2 (o]
S22 B Mg 2. X Ifwilly,
=Ny s=0+1 RER; W'C3R
LW )=j—s
N2 o0
SO > B gulsgun > XL WL
j=N;7 s=¢+1 ReR; W'C3R
L(W")=j—s
We sum in W’ and then use > 07, | B27<'s < A,(p, o) to obtain
I S Ao (p, 00)|Q0l{f1) 0. (f2)300,1-
In exactly the same way (replacing hr by h Rr) we obtain
55| S Ao (P, 00)[Qol(f1) g p{f2)300.1-
This concludes the proof. ([

3. The case p=1 and ¢ = x©

In this case we can get rid of both the weak (p,p) and restricted strong type
(¢,q) hypotheses, but we shall still assume either a weak-type estimate (r,r) or
restricted strong type (r,r) for some 1 < r < 0.

THEOREM B.3. Let {T}}jecz be a family of operators in Opg, p, such that

o the support condition (1.6) holds,
o there exists r € (1,00) so that either the weak type (r,r) condition (1.7a))
holds or the restricted strong type (r,r) condition (1.7b)) holds,
o the single scale (1,00) condition (1.8]) holds,
o the single scale e-reqularity conditions (L.9a)), (1.9b) hold with p =1 and
q = o0.
Define
C=A(r)+ As(1,00) log (2 + 7{40(’?’00)).
Then, for all integers N1, No with N1 < Na,

N2
| > 7 Sremd €
J ~TiEy,d Y
Sp. (1,B1,1,Bz
=N, p'y(7 1, 2)
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SKETCH OF PROOF. We use the terminology in the proofs of Theorems [B.]]
and [B.2] An examination of the proofs reveals that it only remains to establish the
inequality

(B.11) (S = > Sw)grg2)l S AM)IQol(f1) gy (f2)ag.1-

wew

either under the restricted strong type (r,7) assumption (1.7bf), or under the weak
type (r,r) assumption (1.7a)). Here we will strongly use (4.10]) for both g; and gs.

We first verify assuming . By Holder’s inequality,
(591, 92) S [1Sg1ll, HgQHng S A(r)llgal LgilQoll/TlllgzllL;o;
S A(T)|Q0|<f1>Q07p<f2>3Q0,1'
Moreover for each W € W
[(Swg1,92)| = [{SwlonTwl, g2Taw)| < [I1SwlgTwllleg, llgoTawlly

S A(T)HgﬂleLg;IWl”’" lg2Lsw g, S AMIWI(f1) Qo p(f2)30,10
and by summing over the disjoint cubes W € W we obtain

Z |(Swyt,92)| S A(r)|Qol{f1) gy p{f2)300.1-

wew

Combining the two bounds yields (B.11)) (under the assumption (1.7h)).
We now verify (B.11]) assuming (1.7a)). First, by Holder’s inequality for Lorentz
spaces,

(Sg1,92)| S 1Sg1llyyeellgzliprrn S A)llgnllcy, Qo' g2l s,
2
S |Q0|<f1>Q0,p<f2>3Q0,1-
Similarly, for all W € W,

[(Swar, 92)| S IWI(F1) g0 (f2) 3001

and then after summation

Z [(Swg1,92)| S 1Qol{f1) g, »{f2)30,.1-

wew
This yields (B.11]) (under the assumption (1.7a))). O






APPENDIX C
Facts About Fourier Multipliers

For completeness, we provide proofs of the facts stated in the remark after the
definition of the B[m]. The proofs will be given for scalar multipliers but they carry
over to the setting with £(JH;, Hs)-valued multipliers. We start with the following
simple observations.

LEMMA C.1. Let ¥ € C2(R?) be supported in {x € R : 1/2 < |x| < 2}. Let
® € C(R?) be supported in {x € R : |x| < 2}. Let N > d and k be such that
sup (1+ [a)V]r(2)] < 1.
z€R?
Then the following hold.
(i) Let 1 < p < R/8. Then

[[Rm « RIG(R))] 5 p*® ()| gy S RN REE(R) [y,
(i) Let 1 < p < R/8. Then
[[FOm o' ®(p))] 5 REGR gy S RN 5 @0 g
PROOF. Let K = F~m] and set ||K||cy(p,q) = HIA(HMp,q. The expression in
(i) is equal to
e [ rwre-puwtc -

Observe that by the support properties of ®, ¥ the integral in y is extended over
R/2 —2p < |y| < 2R + 2p, hence |y| € (R/4,4R). Thus the displayed quantity is
bounded by

/ KK =)W (R =) levipa) By
R/A<|y|<AR

S/ |5(y)| dy [[m « RYW(R-)|[aro.a
R/A<|y|<4R

and the desired bound follows from the hypothesis on . Part (ii) is proved in the
same way. (Il

LEMMA C.2. Let U, n >0, be as in Ch.[6, {1 Let N > d and let x be such
that ||8f xll1 < A for all & € Ny such that |a| < N. Let h € L! (Rd) be supported in

(e eR:1/2 < |¢| <2}. Then

1(7x) * el arra S AD " Coy—aln, )7 Ty || aro.a
n=0
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for any £ > 0, where

1 if 0 —5<n<l+5,
C.1) Cny(n,0) =< 27N 4f0<n< -5,
( A

271 if 045 < .

Proor. We write (hy) * T, = S ol(h* (I\Jn)x] * Uy, The result then follows
by noting that |F~1[x](x)| < (1 + |z|)~" and an application of Lemma O

1. Multiplication by smooth symbols

The above observations can be applied to show that the space defined by the
finiteness of B[m] in is invariant under multiplication with multipliers satisfy-
ing a standard symbol of order 0 assumption. There is of course also a corresponding
similar and immediate statement for B,[m].

LEmMA C.3. Leta € C’OO(]IA%d). Then
Blam] < Blm] ) sup [¢[*|0%a(€)],

|| <2d+1 EER?

where a € Ny. Consequently, if [0%a(&)] Sa (1 + €))7 for all € € R? and all
a € N&, we have Blam] < B[m].

PRrOOF. Let ¢ e Cx (R?) be supported in {{ € R?:1/4 < |¢] < 4} and such
that ¢(&) =1 for 1/2 < |€] < 2. Let a?(€) = ¢(&)a(tf). We may write
[pa(t)m(t:)] * ‘/I\lg = i [([(pm(t)} * \f'n)at] * \/I;g.
n=0
Observe <2441 |0%at(€)| < 1, uniformly in ¢. By Lemmawith Ny =2d+1,
S+ 02219 [ ga(t)m(t)]  Tellases

£=0
0o 0o

<SS Caga(n, )1+ 0248 21D | (g (t)] 5 T i
£=0 n=0

o0
<3+ 02D [om(t)] 5« U | age.a

n=0

where in the last line we used that

L4+ 0 o myait
su — ot = 0yt (0, €) < 0. O
nzlg% T+n at+1(n, )

2. Independence of ¢, ¥ in the finiteness of B[m)

The previous argument in Lemma can also be used to show that the space
defined by the finiteness of B[m], B,[m] is independent of the specific choices of ¢,
¥ in Ch.[6] We only give the argument for B[m| and a similar reasoning applies
to Bo[m).
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Lemma C.4. Denote the left hand side of (6.2a) by Blm, ¢, ¥]. Given two
choices of (¢, ¥) and (p, V) with the specifications in the first paragraph of Ch'@
there is a constant C = C(¢, V) > 1 such that

C~'B[m, ¢, ¥] < Blm, ¢, ] < CBlm, ¢, ¥].

PRrOOF. We show the second inequality. Note that [, [|¢(s&)[*4 > ¢ > 0 for
& # 0. Let 8° be defined by

o Hs ()
PO = T los 1o P

We then have, in view of the support conditions on ¢ and qg,

4 —
P(&) = [ B(s§)e(sE)

1/4

ds
s
and hence

~ = 4 =
e+ Bl < [ IF )60 Wl
= [ S ERIFOmsT ) e R T

oo 4 ~
B35 m sil' * T * s*dN s*1~ —.
< / N @o0mis™ 1= 8) 5=ty

By Lemma, this is dominated by
4
_ ~ ds
Cnatn) [ 6m s~ B, 2
1/4 S
where Cn_g4(n,£) is as in (C.1). It is now easy to see that for N > 2d + 1
D2 DA 0l gm () el
£>0

4
1 1 = d
5/ > Cnoaln, 02 (1+€)||[¢(~)m(ts*1~)]*\IlnHMm—s
1/4 4>0 n>0 s

Ssup Y 26D [[g()m(r)] % U -
T n=0

This establishes the inequality B[m, o, \Tl] < CB[m, ¢, V] and the converse follows
by interchanging the roles of (¢, ¥) and (¢, ¥). O






(1]
2]
(3]
(4]
(5]

6

(7]

8

(9]
[10]
(11]
(12]
(13]
(14]

(15]

(16]
(17]
(18]
[19]
20]
21]

22]

Bibliography

AimPL, Sparse domination of singular integral operators, American Institute of Mathematics
Problem List, edited by Dario Mena, available at http://aimpl.org/sparsedomop.

Theresa C. Anderson, Bingyang Hu, and Joris Roos, Sparse bounds for discrete singular
Radon transforms, Colloq. Math. 165 (2021), no. 2, 199-217.

Theresa C. Anderson, Kevin Hughes, Joris Roos, and Andreas Seeger, L? — L9 bounds for
spherical maximal operators, Math. Z. 297 (2021), no. 3-4, 1057-1074.

Albert Baernstein, II and Eric T. Sawyer, Embedding and multiplier theorems for HP(R"™),
Mem. Amer. Math. Soc. 53 (1985), no. 318, iv+82. MR 776176

Sayan Bagchi, Sourav Hait, Luz Roncal, and Sundaram Thangavelu, On the mazimal function
associated to the spherical means on the Heisenberg group, New York J. Math. 27 (2021),
631-675.

Julian Bailey, Gianmarco Brocchi, and Maria Carmen Reguera, Quadratic sparse domination
and weighted estimates for non-integral square functions, 2020, arXiv:2007.15928.

Alex Barron, José M. Conde-Alonso, Yumeng Ou, and Guillermo Rey, Sparse domination
and the strong mazimal function, Adv. Math. 345 (2019), 1-26. MR 3897437

David Beltran, Geometric control of oscillatory integrals, Ph.D. thesis, University of Birm-
ingham, 2017.

, A Fefferman-Stein inequality for the Carleson operator. Rev. Mat. Iberoam. 34
(2018), no. 1, 221-244. MR 3763345

David Beltran and Jonathan Bennett, Subdyadic square functions and applications to
weighted harmonic analysis, Adv. Math. 307 (2017), 72-99. MR 3590514

David Beltran and Laura Cladek, Sparse bounds for pseudodifferential operators, J. Anal.
Math. 140 (2020), no. 1, 89-116. MR 4094458

David Beltran, Shaoming Guo, Jonathan Hickman and Andreas Seeger, Sharp LP bounds for
the helical mazimal function. Preprint February 2021, arXiv 2102.08272.

, Sobolev improving for averages over curves in R*. Adv. Math. 393 (2021), Paper
No. 108089.

David Beltran, Richard Oberlin, Luz Roncal, Andreas Seeger, and Betsy Stovall, Variation
bounds for spherical averages, arXiv 2009.07366. To appear in Math. Ann.

Cristina Benea and Frédéric Bernicot, Conservation de certaines propriétés a travers un
controle épars d’un opérateur et applications au projecteur de Leray-Hopf, Ann. Inst. Fourier
(Grenoble) 68 (2018), no. 6, 2329-2379. MR 3897969

Cristina Benea, Frédéric Bernicot, and Teresa Luque, Sparse bilinear forms for Bochner Riesz
multipliers and applications, Trans. London Math. Soc. 4 (2017), no. 1, 110-128. MR 3653057
Cristina Benea and Camil Muscalu, Sparse domination via the helicoidal method, 2017,
arXiv:1707.05484. To appear in Revista Mat. Iberoamericana.

Frédéric Bernicot, Dorothee Frey, and Stefanie Petermichl, Sharp weighted norm estimates
beyond Calderdén-Zygmund theory, Anal. PDE 9 (2016), no. 5, 1079-1113. MR 3531367
Jean Bourgain, Averages in the plane over convex curves and mazimal operators, J. Analyse
Math. 47 (1986), 69-85. MR 874045

Jean Bourgain and Ciprian Demeter, The proof of the 12 decoupling conjecture, Ann. of Math.
(2) 182 (2015), no. 1, 351-389. MR 3374964

Philip Brenner, On L, — L,/ estimates for the wave-equation, Math. Z. 145 (1975), no. 3,
251-254. MR 387819

Anthony Carbery, The boundedness of the mazimal Bochner-Riesz operator on L*(R?), Duke
Math. J. 50 (1983), no. 2, 409-416. MR 705033

P

99



23]

24]
[25]
[26]
27]
(28]

29]

30]
(31]

(32]

33]

(34]
(35]

(36]

37]

(38]
(39]

[40]

[41]
[42]

[43]
[44]

[45]

[46]

(47)

BIBLIOGRAPHY

, Radial Fourier multipliers and associated mazimal functions, Recent progress in
Fourier analysis (El Escorial, 1983), North-Holland Math. Stud., vol. 111, North-Holland,
Amsterdam, 1985, pp. 49-56. MR 848141

, Variants of the Calderdn-Zygmund theory for LP-spaces, Rev. Mat. Iberoamericana
2 (1986), no. 4, 381-396. MR 913694

Anthony Carbery, George Gasper, and Walter Trebels, Radial Fourier multipliers of LP(R2),
Proc. Nat. Acad. Sci. U.S.A. 81 (1984), no. 10, , Phys. Sci., 3254-3255. MR 747595

Maria J. Carro and Carlos Domingo-Salazar, Stein’s square function G and sparse operators,
J. Geom. Anal. 27 (2017), no. 2, 1624-1635. MR 3625166

Michael Christ, On almost everywhere convergence of Bochner-Riesz means in higher dimen-
stons, Proc. Amer. Math. Soc. 95 (1985), no. 1, 16-20. MR 796439

Laura Cladek and Yumeng Ou, Sparse domination of Hilbert transforms along curves, Math.
Res. Lett. 25 (2018), no. 2, 415-436. MR, 3826828

José M. Conde-Alonso, Amalia Culiuc, Francesco Di Plinio, and Yumeng Ou, A sparse
domination principle for rough singular integrals, Anal. PDE 10 (2017), no. 5, 1255-1284.
MR 3668591

José M. Conde-Alonso, Francesco Di Plinio, Ioannis Parissis and Manasa M. Vempati, A
metric approach to sparse domination. Preprint, arXiv 2009.00336

José M. Conde-Alonso and Guillermo Rey, A pointwise estimate for positive dyadic shifts
and some applications, Math. Ann. 365 (2016), no. 3-4, 1111-1135. MR 3521084

Amalia Culiuc, Francesco Di Plinio, Yumeng Ou, A sparse estimate for multisublinear forms
inwvolving vector-valued mazimal functions. Bruno Pini Mathematical Analysis Seminar 2017,
168—-184, Bruno Pini Math. Anal. Semin., 8, Univ. Bologna, Alma Mater Stud., Bologna,
2017. MR3893587

Amalia Culiuc, Francesco Di Plinio, and Yumeng Ou, Domination of multilinear singu-
lar integrals by positive sparse forms, J. Lond. Math. Soc. (2) 98 (2018), no. 2, 369-392.
MR 3873113

Amalia Culiuc, Robert Kesler, and Michael T. Lacey, Sparse bounds for the discrete cubic
Hilbert transform, Anal. PDE 12 (2019), no. 5, 1259-1272. MR 3892403

Fernanda Clara de Franca Silva and Pavel Zorin-Kranich, Sparse domination of sharp vari-
ational truncations, 2016, arXiv:1604.05506.

Francesco Di Plinio, Yen Q. Do, and Gennady N. Uraltsev, Positive sparse domination of
variational Carleson operators, Ann. Sc. Norm. Super. Pisa Cl. Sci. (5) 18 (2018), no. 4,
1443-1458. MR 3829751

Francesco Di Plinio, Tuomas Hytonen, and Kangwei Li, Sparse bounds for mazimal rough
singular integrals via the Fourier transform, Ann. Inst. Fourier (Grenoble) 70 (2020), no. 5,
1871-1902.

Francesco Di Plinio and Andrei K. Lerner, On weighted norm inequalities for the Carleson
and Walsh-Carleson operator, J. Lond. Math. Soc. (2) 90 (2014), no. 3, 654-674. MR 3291794
Javier Duoandikoetxea and José L. Rubio de Francia, Mazimal and singular integral operators
via Fourier transform estimates, Invent. Math. 84 (1986), no. 3, 541-561. MR 837527
Javier Duoandikoetxea and Ana Vargas, Maximal operators associated to Fourier multipliers
with an arbitrary set of parameters, Proc. Roy. Soc. Edinburgh Sect. A 128 (1998), no. 4,
683-696. MR 1635404

Charles Fefferman, LP bounds for pseudo-differential operators, Israel J. Math. 14 (1973),
413-417. MR 336453

Charles Fefferman and Elias M. Stein, Some mazimal inequalities, Amer. J. Math. 93 (1971),
107-115. MR 0284802 (44 #2026)

, HP spaces of several variables, Acta Math. 129 (1972), no. 3-4, 137-193. MR 447953
Dorothee Frey, Bas Nieraeth, Weak and strong type A1 — A estimates for sparsely dominated
operators, J. Geom. Anal. 29 (2019), no. 1, 247-282.

Pritam Ganguly and Sundaram Thangavelu, On the lacunary spherical mazimal function
Heisenberg group, arXiv:1912.11302. J. Funct. Anal. 280 (2021), no. 3, Paper No. 108832, 32
pp-

Gustavo Garrigds and Andreas Seeger, Characterizations of Hankel multipliers, Math. Ann.
342 (2008), no. 1, 31-68. MR 2415314

Gustavo Garrigés, Andreas Seeger, and Tino Ullrich, The Haar system as a Schauder basis in
spaces of Hardy-Sobolev type, J. Fourier Anal. Appl. 24 (2018), no. 5, 1319-1339. MR 3856231




(48]

[49]

(50]
[51]
[52]
[53]
[54]

[55]
[56]

[57]
[58]
[59]
(60]
[61]
(62]
[63]
[64]
[65)
(6]
[67)
(68]
[69]
[70]

[71]

[72]

73]

BIBLIOGRAPHY 101

Shaoming Guo, Jonathan Hickman, Victor Lie, and Joris Roos, Mazimal operators and
Hilbert transforms along variable non-flat homogeneous curves, Proc. Lond. Math. Soc. (3)
115 (2017), no. 1, 177-219. MR 3669936

Shaoming Guo, Joris Roos, Andreas Seeger, and Po-Lam Yung, A maximal function for
families of Hilbert transforms along homogeneous curves, Math. Ann. 377 (2020), no. 1-2,
69-114. MR 4099627

, Mazimal functions associated with families of homogeneous curves: LP bounds for
p < 2, Proc. Edinb. Math. Soc. (2) 63 (2020), no. 2, 398-412. MR 4089381

Shaoming Guo, Joris Roos, and Po-Lam Yung, Sharp variation-norm estimates for oscillatory
integrals related to Carleson’s theorem, Analysis & PDE 13 (2020), no. 5, 1457-1500.

Timo S. Hanninen and Emiel Lorist, Sparse domination for the lattice Hardy-Littlewood
mazimal operator, Proc. Amer. Math. Soc. 147 (2019), no. 1, 271-284. MR 3876748

Lars Hormander, Estimates for translation invariant operators in LP spaces, Acta Math. 104
(1960), 93-140. MR 121655

Bingyang Hu, Sparse domination of singular Radon transform, J. Math. Pures Appl. (9) 139
(2020), 235-316.

Richard A. Hunt, On L(p, q) spaces, Enseign. Math. (2) 12 (1966), 249-276. MR, 223874
Tuomas Hytonen, Jan van Neerven, Mark Veraar, and Lutz Weis, Analysis in Banach spaces.
Vol. I. Martingales and Littlewood-Paley theory, Ergebnisse der Mathematik und ihrer Gren-
zgebiete. 3. Folge. A Series of Modern Surveys in Mathematics [Results in Mathematics and
Related Areas. 3rd Series. A Series of Modern Surveys in Mathematics], vol. 63, Springer,
Cham, 2016. MR 3617205

Tuomas P. Hytonen, The sharp weighted bound for general Calderén-Zygmund operators,
Ann. of Math. (2) 175 (2012), no. 3, 1473-1506. MR 2912709

Roger L. Jones, Robert Kaufman, Joseph M. Rosenblatt, and Maté Wierdl, Oscillation in
ergodic theory, Ergodic Theory Dynam. Systems 18 (1998), no. 4, 889-935. MR 1645330
Roger L. Jones, Andreas Seeger, and James Wright, Strong variational and jump inequalities
in harmonic analysis, Trans. Amer. Math. Soc. 360 (2008), no. 12, 6711-6742. MR 2434308
Makoto Kaneko and Gen-ichiré6 Sunouchi, On the Littlewood-Paley and Marcinkiewicz func-
tions in higher dimensions, Tohoku Math. J. (2) 87 (1985), no. 3, 343-365. MR 799527
Robert Kesler and Michael T. Lacey, Sparse endpoint estimates for Bochner-Riesz multipliers
on the plane, Collect. Math. 69 (2018), no. 3, 427-435. MR 3842215

Hyerim Ko, Sanghyuk Lee and Sewook Oh, Maximal estimate for average over space curve.
Preprint February 2021, arXiv 2102.07175.

, Sharp smoothing properties of averages over curves, arXiv 2105.01628.

Ben Krause and Michael T. Lacey, Sparse bounds for random discrete Carleson theorems,
50 years with Hardy spaces, Oper. Theory Adv. Appl., vol. 261, Birkh&user/Springer, Cham,
2018, pp. 317-332. MR 3792103

Michael T. Lacey, An elementary proof of the Az bound, Israel J. Math. 217 (2017), no. 1,
181-195. MR 3625108

, Sparse bounds for spherical mazimal functions, J. Anal. Math. 139 (2019), no. 2,
613-635. MR 4041115

Michael T. Lacey, Dario Mena Arias. The sparse T1 theorem. Houston J. Math. 43 (2017),
no. 1, 111-127. MR3647935.

Michael T. Lacey, Dario Mena, and Maria Carmen Reguera, Sparse bounds for Bochner-Riesz
multipliers, J. Fourier Anal. Appl. 25 (2019), no. 2, 523-537. MR 3917956

Sanghyuk Lee, Square function estimates for the Bochner-Riesz means, Anal. PDE 11 (2018),
no. 6, 1535-1586. MR 3803718

Sanghyuk Lee, Keith M. Rogers, and Andreas Seeger, Improved bounds for Stein’s square
functions, Proc. Lond. Math. Soc. (3) 104 (2012), no. 6, 1198-1234. MR 2946085

, Square functions and mazimal operators associated with radial Fourier multipliers,
Chapter 12 in Advances in analysis: the legacy of Elias M. Stein, Princeton Math. Ser.,
vol. 50, Princeton Univ. Press, Princeton, NJ, 2014, pp. 273-302. MR 3329855

Sanghyuk Lee and Andreas Seeger, On radial Fourier multipliers and almost everywhere
convergence, J. Lond. Math. Soc. (2) 91 (2015), no. 1, 105-126. MR 3338611

Dominique Lépingle, La variation d’ordre p des semi-martingales, Z. Wahrscheinlichkeitsthe-
orie und Verw. Gebiete 36 (1976), no. 4, 295-316. MR 420837




102

[74]

[75]
[76]
[77]
78]
[79]
(80]
(81]
(82]

(83]

(84]
(85]
(86]
(87]
(88]
(89]
[90]

[91]

(92]
(93]

[94]

[95]
[96]
[97)
(98]

[99]

BIBLIOGRAPHY

Andrei K. Lerner, On  pointwise  estimates  involving  sparse  operators,
10th  International  Conference on  Harmonic  Analysis and  Partial Dif-
ferential ~ Equations, El  Escorial, Madrid  (Spain) June  12-17, 2016.
matematicas.uam.es/"AFA/Escorial/2016/SlidesTalks/Lerner-Escorial-2016.pdf.

, On an estimate of Calderon-Zygmund operators by dyadic positive operators, J.
Anal. Math. 121 (2013), 141-161. MR 3127380

, A simple proof of the Aa conjecture, Int. Math. Res. Not. IMRN (2013), no. 14,
3159-3170. MR 3085756

, On pointwise estimates involving sparse operators, New York J. Math. 22 (2016),
341-349. MR 3484688

, A weak type estimate for rough singular integrals, Rev. Mat. Iberoam. 35 (2019),
no. 5, 1583-1602. MR 4018107

Andrei K. Lerner and Fedor Nazarov, Intuitive dyadic calculus: the basics, Expo. Math. 37
(2019), no. 3, 225-265. MR 4007575

Andrei K. Lerner; Sheldy Ombrosi. Some remarks on the pointwise sparse domination. J.
Geom. Anal. 30 (2020), no. 1, 1011-1027. MR 4058547

Jacques-Louis Lions and Jaak Peetre, Sur une classe d’espaces d’interpolation, Inst. Hautes
Etudes Sci. Publ. Math. (1964), no. 19, 5-68. MR 165343

Walter Littman, Multipliers in LP and interpolation, Bull. Amer. Math. Soc. 71 (1965),
764-766. MR 179544

, LP — Li-estimates for singular integral operators arising from hyperbolic equations,
Partial differential equations (Proc. Sympos. Pure Math., Vol. XXIII, Univ. California, Berke-
ley, Calif., 1971), 1973, pp. 479-481. MR 0358443

Walter Littman, Charles McCarthy, and Nestor Riviere, LP-multiplier theorems, Studia Math.
30 (1968), 193-217. MR 231126

Emiel Lorist, On pointwise £2 sparse domination in a space of homogeneous type, J. Geom.
Anal. 31 (2021), no. 9, 9366-9405. MR 4302224

Gianfranco Marletta and Fulvio Ricci, Two-parameter maximal functions associated with
homogeneous surfaces in R™, Studia Math. 130 (1998), no. 1, 53-65. MR 1623004

Akihiko Miyachi, On some estimates for the wave equation in LP and HP, J. Fac. Sci. Univ.
Tokyo Sect. IA Math. 27 (1980), no. 2, 331-354. MR 586454

, On some Fourier multipliers for HP(R™), J. Fac. Sci. Univ. Tokyo Sect. IA Math.
27 (1980), no. 1, 157-179. MR 573335

Richard Oberlin, Sparse bounds for a prototypical singular Radon transform, Canad. Math.
Bull. 62 (2019), no. 2, 405-415. MR 3952528

Juan C. Peral, L? estimates for the wave equation, J. Functional Analysis 36 (1980), no. 1,
114-145. MR 568979

Maria Cristina Pereyra, Dyadic harmonic analysis and weighted inequalities: the sparse
revolution. New trends in applied harmonic analysis. Vol. 2, 159-239, Appl. Numer. Harmon.
Anal., Birkhduser/Springer, Cham, 2019. MR 4311199

Malabika Pramanik and Andreas Seeger, LP regularity of averages over curves and bounds
for associated maximal operators, Amer. J. Math. 129 (2007), no. 1, 61-103. MR 2288738
Joris Roos and Andreas Seeger, Spherical mazimal functions and fractal dimensions of dila-
tion sets, arXiv:2004.00984, 2020. To appear in Amer. J. Math.

Joris Roos, Andreas Seeger, and Rajula Srivastava, Lebesgue space estimates for spherical
mazimal functions on Heisenberg groups, preprint arXiv 2103.09734 (2021). To appear in
IMRN.

Wilhelm Schlag, A generalization of Bourgain’s circular mazimal theorem, J. Amer. Math.
Soc. 10 (1997), no. 1, 103-122. MR 1388870

Wilhelm Schlag and Christopher D. Sogge, Local smoothing estimates related to the circular
mazimal theorem, Math. Res. Lett. 4 (1997), no. 1, 1-15. MR 1432805

Andreas Seeger, On quasiradial Fourier multipliers and their mazimal functions, J. Reine
Angew. Math. 370 (1986), 61-73. MR 852510

, Some inequalities for singular convolution operators in LP-spaces, Trans. Amer.
Math. Soc. 308 (1988), no. 1, 259-272. MR 955772

, Remarks on singular convolution operators, Studia Math. 97 (1990), no. 2, 91-114.
MR 1083340




BIBLIOGRAPHY 103

[100] Andreas Seeger and Terence Tao, Sharp Lorentz space estimates for rough operators, Math.
Ann. 320 (2001), no. 2, 381-415. MR 1839769

[101] Andreas Seeger, Stephen Wainger, and James Wright, Pointwise convergence of spherical
means, Math. Proc. Cambridge Philos. Soc. 118 (1995), no. 1, 115-124. MR 1329463

[102] Elias M. Stein, Localization and summability of multiple Fourier series, Acta Math. 100
(1958), 93-147. MR 105592

, Singular integrals and differentiability properties of functions, Princeton Mathe-
matical Series, No. 30, Princeton University Press, Princeton, N.J., 1970. MR 0290095 (44
#7280)

[104] —, LP boundedness of certain convolution operators, Bull. Amer. Math. Soc. 77 (1971),
404-405. MR 276757

, Mazimal functions. 1. Spherical means, Proc. Nat. Acad. Sci. U.S.A. 73 (1976),
no. 7, 2174-2175. MR 420116

[106] Elias M. Stein and Guido Weiss, Introduction to Fourier analysis on Euclidean spaces,
Princeton University Press, Princeton, N.J., 1971, Princeton Mathematical Series, No. 32.
MR 0304972

[107] Elias M. Stein and Antoni Zygmund, Boundedness of translation invariant operators on
Holder spaces and LP-spaces, Ann. of Math. (2) 85 (1967), 337-349. MR 215121

[108] Robert S. Strichartz, Convolutions with kernels having singularities on a sphere, Trans.
Amer. Math. Soc. 148 (1970), 461-471. MR 256219

[109] Gen-ichird Sunouchi, On the Littlewood-Paley function g* of multiple Fourier integrals and
Hankel multiplier transformations, Tohoku Math. J. (2) 19 (1967), 496-511. MR 225097

[110] Hans Triebel, Theory of function spaces, Monographs in Mathematics, vol. 78, Birkhéauser
Verlag, Basel, 1983. MR 781540

[111] Thomas Wolff, Local smoothing type estimates on LP for large p, Geom. Funct. Anal. 10
(2000), no. 5, 1237-1288. MR 1800068

[103]

[105]



	Chapter 1. Introduction
	1. The main result
	2. Necessary conditions
	3. An application to maximal functions
	4. Fourier multipliers
	5. Application to weighted norm inequalities
	6. Organization, notation and acknowledgements

	Chapter 2. Necessary Conditions
	1. The local integrability hypothesis
	2. The reflexivity hypothesis

	Chapter 3. Single Scale Sparse Domination
	1. A single scale estimate
	2. A resolution of the identity
	3. Single scale regularity

	Chapter 4. Proof of the Main Result
	1. A modified version of sparse forms
	2. Proof of the main theorem given the inductive claim
	3. Proof of the corollary of the main theorem
	4. The inductive step

	Chapter 5. Maximal Operators, Square Functions and Long Variations
	1. Maximal functions and variants
	2. Variation norms
	3. Truncations of sums
	4. Some simplifications for maximal operators

	Chapter 6. Fourier Multipliers
	1. The main multiplier theorem
	2. A result involving localizations of Fourier multipliers
	3. Proof of the main multiplier theorem

	Chapter 7. Sample Applications
	1. Operators generated by compactly supported distributions
	1.1. Maximal functions
	1.2. Variational operators
	1.3. Lacunary maximal functions for convolutions associated with the wave equation

	2. General classes of multipliers
	2.1. Miyachi classes and subdyadic Hörmander conditions
	2.2. Multiscale variants of oscillatory multipliers

	3. Prototypical versions of singular Radon transforms
	3.1. An approach via Fourier multipliers

	4. Densities on spheres: Maximal singular integrals
	5. On radial Fourier multipliers
	6. Stein's square function
	6.1. The case p < 2
	6.2. The case p>2


	Appendix A. Facts About Sparse Domination
	1. Replacing simple functions
	2. The Hardy–Littlewood maximal function
	3. Operators associated with dilates of Schwartz functions

	Appendix B. Sparse Domination: Cases where p=1 or q=
	1. The case p=1, q< 
	2. The case p>1, q=
	3. The case p=1 and q=

	Appendix C. Facts About Fourier Multipliers
	1. Multiplication by smooth symbols
	2. Independence of bump functions

	Bibliography

