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1. Introduction

The purpose of this note is to prove Lp → Lq inequalities for averaging operators in the plane
(also known as generalized Radon transforms). To describe our setup let ΩL and ΩR be open sets in
R

2 and let M be a submanifold in ΩL ×ΩR which will contain the singular support of the kernel of
our operator. We assume that the projections M → ΩL and M → ΩR have surjective differential;
thus the varieties

(1.1)
Mx = {y ∈ ΩR; (x, y) ∈ M}

My = {x ∈ ΩL; (x, y) ∈ M}

are smooth immersed curves in ΩL and ΩR, respectively.

Let χ ∈ C∞(ΩL × ΩR) be compactly supported. We consider the operator

(1.2) Rf(x) =

∫

Mx

χ(x, y)f(y) dσx(y);

where dσx is a smooth density on Mx depending smoothly on x ∈ ΩL.

The regularity properties of R depend on certain finite type conditions, formulated in [15]. We
recall that a vector field V on M is of type (1, 0) on an open subset U of M if for every P ∈ U
we have VP ∈ TPM ∩ (TP ΩL × {0}). V is of type (0, 1) on U if VP ∈ TPM ∩ ({0} × TP ΩR}) for
every P ∈ U . The C∞(U) modules of vector fields of type (1, 0) and (0, 1) on U are denoted by
V1,0(U) and V0,1(U), respectively. Since M is three-dimensional there is a nonvanishing one-form
ω which annihilates (1, 0) and (0, 1) vectors. If X and Y are nonvanishing vector fields of type
(1, 0) and (0, 1), respectively, then the quantity 〈ω, [X, Y ]〉 is comparable to the rotational curvature
introduced by Phong and Stein. In fact if M is given by the equation Φ(x, y) = 0 with Φx 6= 0,
Φy 6= 0 and if we choose X = Φx2∂x1 − Φx1∂x2 , Y = Φy2∂y1 − Φy1∂y2 and ω = Φxdx − Φydy, then
〈ω, [X, Y ]〉/2 is equal to

J = det

(
Φxy Φt

x

Φy 0

)
,

the rotational curvature. The generalized Radon transform R is a Fourier integral operator of class
I−1/2(ΩL, ΩR; N∗M′) in the sense of [5], and N∗M′ is a local canonical graph if and only if J does
not vanish.

We now recall the notion of finite type (µ, ν). We write adV (W ) = [V, W ] for the commutator
of V and W and for integers µ ≥ 1, ν ≥ 1, we let Vµ,ν(U) denote the C∞(U)-module generated by
all vector fields in V1,0(U) ∪ V0,1(U) and all vector fields of the form g adV1 · · · adVn−1(Vn), where
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g is smooth, Vi ∈ V1,0(U) ∪ V0,1(U), at most µ of the Vi are in V1,0(U) and at most ν of the Vi are
in V0,1(U). We say that M is of type (µ, ν) at P if there is an open neighborhood U and a vector
field V ∈ Vµ,ν(U) so that 〈ωP , VP 〉 6= 0 but 〈ωP , WP 〉 = 0 for all W ∈ Vµ−1,ν(U)∪Vµ,ν−1(U). Thus
type (1, 1) corresponds to the nondegenerate situation of nonvanishing rotational curvature.

Let n ≥ 2, m ≥ 2. Following [14] we also say that M satisfies a left finite type condition of degree
n in U if M is of finite type (1, k) for some k with k ∈ {1, . . . , n − 1}, for every P ∈ U . We note
(see [15]) that M satisfies this condition if only if for all (x0, y0) ∈ U the quantity J(x0, y) when
restricted to the curve Mx0 vanishes of order at most n − 2 at y = y0. Likewise M satisfies a right
finite type condition of degree m in U if M is of finite type (j, 1) at P for some j ∈ {1, . . . , m − 1},
for every P ∈ U . Again an equivalent formulation is that for all P0 = (x0, y0) ∈ U the quantity
J(x, y0) when restricted to the curve My0 vanishes of order at most m − 2 at x = x0.

We now state an endpoint Lp → Lq estimate for two-sided finite type conditions. In fact a
sharper statement can be obtained by working with Lorentz-spaces Lp,q; note that Lp ⊂ Lp,r, if
r ≥ p, with continuous embedding.

Theorem 1.1. Suppose that M satisfies a left finite type condition of degree n and a right finite
type condition of degree m.

(i) Suppose that (1/p, 1/q) belongs to the closed trapezoid T (m, n) with corners (0, 0), (1, 1),
( m

m+1 , m−1
m+1 ), ( 2

n+1 , 1
n+1 ). Then R maps Lp boundedly to Lq.

(ii) R maps L
n+1
2 ,n+1 to Ln+1 and L

m+1
m to L

m+1
m−1 , m+1

m .

(iii) If there is a point P such that χ(P ) 6= 0 and M is of type (1, n − 1) at P then R does

not map L
n+1
2 ,r to Ln+1 if r > n + 1. If there is a point P such that χ(P ) 6= 0 and M is of type

(m − 1, 1) at P then R does not map L
m+1

m to L
m+1
m−1 ,s for s < (m + 1)/m.

Remarks.

(a) Let G(P ) be the graph connecting (0, 0) and (1, 1) with the points ( µ+1
µ+ν+1 , µ

µ+ν+1 ) for which

M is of type (µ, ν) at P and suppose that (1/p, 1/q) lies above G(P ). Then a result in [15] states
that R maps Lp to Lq provided that the cutoff function has sufficiently small support close to P ; see
also Phong-Stein [6], [7] for sharp endpoint bounds in several model cases. If (1/p, 1/q) lies below
G(P ) and χ(P ) 6= 0 then Lp → Lq boundedness fails ([15]). In the present situation this implies
the following: If there is a point P with χ(P ) 6= 0 such that M is of type (1, n − 1) and of type
(m− 1, 1) and if M is not of type (µ, ν) at P for all (µ, ν) with ( µ+1

µ+ν+1 , µ
µ+ν+1 ) /∈ T (m, n) then the

result in part (i) of Theorem 1.1 is sharp. In particular, the L(n+1)/2,n+1 → Ln+1 estimate is best
possible if M is of type (1, n − 1) and of type of type (m − 1, 1) for some m.

(b) The sharp bounds for p > (n + 1)/2, q = 2p, and p < m/(m − 1), 1/q = 2/p − 1 are
in [14], [15]. The L(n+1)/2,n+1 → Ln+1 endpoint inequality for polynomial surfaces of the form

M = {(x, y) : y2 = x2 +
∑

j+k≤n aj,kxj
1y

k
1}, with a1,n−1 6= 0 was obtained by the first author in [1]

based on multilinear arguments in [3], [11]; our proofs of Theorem 1.1 and Theorem 1.2 below rely
on this technique as well.

(c) Let M be defined by a polynomial as in (b) . Then M is of type (µ, ν) at the origin if
aµ,ν 6= 0 but aj,k = 0 whenever j ≤ µ and k ≤ ν − 1 or j ≤ µ − 1, k ≤ ν.

Our second result concerns weighted Radon transforms which incorporate the rotational curva-
ture J as an improving factor (see e.g. [16]), namely for γ > 0 one defines

Rγf(x) =

∫

Mx

χ(x, y)|J(x, y)|γf(y) dσx(y).

It is known ([15]) that Rγ maps L2 into the Sobolev space L2
1/2, provided that γ > 1/2. By standard

arguments combining Littlewood-Paley theory and (complex) interpolation (cf. [2]) one can see that
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Rγ : Lp → Lp′

α if α ≤ 2 − 3/p, γ > 1/p′ and 1 < p ≤ 2, in particular it maps L3/2 → L3 for
γ > 1/3. In various cases the endpoint bounds for γ = 1/3 are known. If M is given by the equation
y2 = x2 + S(x1, y1) then J = Sx1y1 and for real analytic S the endpoint L3/2 → L3 estimate can
be deduced from the endpoint L2 estimates for damped oscillatory integrals in Phong-Stein [9]. We
shall prove an L3/2 → L3 endpoint estimate for the case where S is a polynomial of degree ≤ N ,
which will have the added feature that the operator norms depend only on N . In the translation
invariant case such theorems were obtained by the second author in [10], [13]. As in [7] our operator
is now globally defined (without inserting cutoff-functions) and we obtain an improved inequality
using Lorentz-spaces. We note that the standard interpolation argument alluded to above does not
seem to yield this estimate since one uses analytic interpolation with changing powers of γ.

Theorem 1.2. Define

(1.3) Af(x1, x2) =

∫ ∞

−∞

∣∣ ∂2P

∂x1∂y1

∣∣1/3
f(y1, x2 + P (x1, y1)) dy1

where P is a polynomial in (x1, y1) of degree at most N . Then there is a constant C(N) (independent
of the particular polynomial) so that for 3/2 ≤ r ≤ 3

(1.4)
∥∥Af

∥∥
L3,r ≤ C(N)‖f‖

L
3
2

,r

for all f ∈ L
3
2 ,r(R2).

If ∂2P/(∂x1∂y1) does not vanish identically then the operator A does not map L3/2,r to L3,s for
any s < r.

In particular A maps L3/2 to L3.

The proof of Theorem 1.1 will be given in §2, and the proof of Theorem 1.2 in §3. We shall use
the notation . for inequalities involving admissible constants; here the definition of admissibility
depends on the context and will be made precise in §2 and §3, respectively.

2. Boundedness under finite type assumptions

In this section we give a proof of the boundedness result in Theorem 1.1. It suffices to establish

the L
n+1
2 ,n+1 → Ln+1 inequality. This also implies the L

m+1
2 ,m+1 → Lm+1 inequality for the adjoint

operator R∗ and thus the L
m+1

m → L
m+1
m−1 , m+1

m inequality for R.

By compactness arguments it suffices to prove the theorem for the case that our cutoff function
χ is supported in a small neighborhood of a fixed point P ∈ M; by performing translations we may
assume that the coordinates vanish at P .

We may assume that M is given as

M = {(x, y) : y2 = G(x1, x2, y1), |x1|, |x2|, |y1| ≤ 2}

where G is a Cn+1 function defined on [−2, 2]3 and G satisfies

(2.1) G(0, 0) = 0, Gx1(0, 0) = Gy1(0, 0) = 0, Gx2(0, 0) = 1, 1/2 ≤ Gx2(x, y1) ≤ 2.

We then also have for x1, x2, y1 ∈ [−1, 1]

y2 = G(x, y1) ⇐⇒ x2 = H(y, x1)

where H is defined on [−1, 1]3 and satisfies

(2.2) H(0, 0) = 0, Hy1(0, 0) = Hx1(0, 0) = 0, Hy2(0, 0) = 1, 1/2 ≤ Hy2(y, x1) ≤ 2.
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Let M = max{n + 1, m + 1}. We let ‖(G, H)‖CM be the maximum of any derivative of order at
most M of G or H in the cube [−1, 1]4 and assume that

(2.3) ‖(G, H)‖CM ≤ B;

note that B ≥ 1.

The rotational curvature (with respect to the defining function Φ(x, y) = y2 −G(x, y1)) is given
by

(2.4) J(x, y1) = det

(
Gx1y1(x, y1) Gx1(x, y1)
Gx2y1(x, y1) Gx2(x, y1)

)
.

By our finite type assumptions there are constants aL > 0 and aR > 0 so that

min
x

max
0≤k≤n−2

∣∣∣
∂k

(∂y1)k
J(x, y1)

∣∣∣ ≥ aL(2.5-L)

min
y

max
0≤j≤m−2

∣∣∣
∂j

(∂x1)j

[
J(x1, H(y, x1), y1)

]∣∣∣ ≥ aR;(2.5-R)

(2.5-L) means that M is of type (1, k) (some k ≤ n− 1) and (2.5-R) means that M is of type (j, 1)
(some j ≤ m − 1), for any point under consideration, cf. the discussion in [15].

In what follows we choose

(2.6) 0 < ε ≤
1

4
min{((m + 1)!)−1B−maR, 2−n−5n−1B−2aL}.

We define

Rf(x) =

∫ ε

−ε

χ(x1, x2, y1, G(x, y1))f(y1, G(x, y1))dy1

where χ is the characteristic function of [−ε, ε]4. Note that if x1, x2, y1 ∈ [−ε, ε] then |G(x, y1)| ≤ 2ε.

It suffices to show that
‖Rf‖Ln+1 . ‖f‖

L
n+1

2
,n+1

where the notation α . β means α ≤ Cβ where C depends only on B, m, n, aL, aR. Since R is a
positive operator we may assume that f is nonnegative.

As in [1] we use a multilinear interpolation argument due to M. Christ [3]. In order to establish

that R maps L
n+1

2 ,n+1 to Ln+1 one shows the more general multilinear estimate

∫ n+1∏

i=1

Rfi(x)dx .

n+1∏

i=1

‖fi‖
L

n+1
2

,n+1

and by symmetry and real interpolation ([3]) this will follow from

∫ n+1∏

i=1

Rfi(x)dx . ‖f1‖1

n+1∏

i=2

‖fi‖Ln,1.

Now we use the change of variable x2 7→ u2 = G(x1, x2, u1) and write

∫ n+1∏

k=1

Rfk(x)dx =

∫ ∫
χ(x1, x2, u1, G(x, u1))f1(u1, G(x, u1))

n+1∏

i=2

Rfi(x)dx du1

=

∫ ∫
χ(x1, H(u, x1), u1, u2)f1(u1, u2)

n+1∏

k=2

Rfk(x1, H(u, x1))
∣∣ ∂H

∂u2
(u1, u2, x1)

∣∣du dx1
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and, since |(∂H)/(∂y2)| is bounded by B, we may omit this factor. We have reduced matters to the
estimate

(2.7)

∫ n+1∏

k=2

Rfk(x1, H(u, x1))dx1 .

n+1∏

i=2

‖fi‖Ln,1

for every u with |u1| ≤ ε, |u2| ≤ 2ε. In what follows we fix u. By Hölder’s inequality it suffices to
show

(2.8)
(∫

[Rf(x1, H(u, x1))]
ndx1

)1/n

. ‖f‖Ln,1.

By duality (2.8) is implied by

∫
Rf(s, H(u, s))g(s)ds . ‖f‖Ln,1(R2)‖g‖Ln/(n−1)(R),

for any nonnegative step function g. The left hand side is equal to

(2.9)

∫ ∫
χ(s, H(u, s), y1, G(s, H(u, s), y1))f(y1, G(s, H(u, s), y1))g(s)dy1ds

and we define
ωy1,u(s) = G(s, H(u, s), y1)

to change variables in this integral (after interchanging the order of integration).

Lemma 2.1. (i)

(ωy1,u)′(s) =
(y1 − u1)E(s, u, y1)

Gx2(s, H(u, s), u1)

where

(2.10) E(s, u, y1) =

∫ 1

0

det

(
Gx1y1(s, H(u, s), u1 + τ(y1 − u1)) Gx1(s, H(u, s), u1)
Gx2y1(s, H(u, s), u1 + τ(y1 − u1)) Gx2(s, H(u, s), u1)

)
dτ.

(ii) Suppose that u1, y1, s ∈ [−ε, ε], |u2| ≤ 2ε and y1 6= u1. Then the derivative of ωy1,u vanishes
at no more than m − 2 points in [−ε, ε].

The elementary proof will be given below. Given y1, u there are intervals Iy1,u
i , i = 1, . . . , m

with ∪m
i=1I

y1,u
i = [−ε, ε] whose boundary points are measurable functions on (y1, u) so that ωy1,u

has nonzero derivative in the interior of Iy1,u
i . On each interval Iy1,u

i let ω 7→ sy1,u
i (ω) be the inverse

function of ωy1,u and let Ĩy1,u
i the image of Iy1,u

i under ωy1,u. Then the integral (2.9) becomes

m∑

i=1

∫ ε

−ε

∫

I
y1,u

i

χ(s, H(u, s), y1, ω
y1,u(s))f(y1, ω

y1,u(s))g(s)dsdy1

=

m∑

i=1

∫ ε

−ε

∫

ω∈eI
y1,u
i

χ(sy1,u
i (ω), H(u, sy1,u

i (ω)), y1, ω)f(y1, ω)g(sy1,u
i (ω))

∣∣dsy1,u
i

dω

∣∣dωdy1

≤

m∑

i=1

‖f‖Ln,1‖Ti,u‖L
n

n−1
,∞

where

Ti,ug(y1, ω) = χ[−ε,ε](y1)χeI
y1,u
i

(ω)g(sy1,u
i (ω))

dsy1,u
i

dω
.
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In order to finish the proof we have to show that Ti,u maps Ln/(n−1) to Ln/(n−1),∞, that is

(2.11) meas
(
{(y1, ω) : |Ti,ug(y1, ω)| > λ}

)
.

‖g‖
n/(n−1)

Ln/(n−1)(R)

λn/(n−1)
.

The left hand side of (2.11) is equal to
∫∫

{(y1,s)∈[−ε,ε]2, s∈I
y1,u

i ,

g(s)≥λ|(ωy1,u)′(s)|}

|(ωy1,u)′(s)|dy1ds

.

∫ ε

−ε

|g(s)|

λ
meas

(
{y1 : |y1 − u1||E(s, u, y1)| ≤ 2|g(s)|/λ}

)
ds(2.12)

where we have used that |Gx2 | ≤ 2. We now employ the following standard

Sublevel set estimate [4]. For any positive integer ℓ there is a constant Cℓ such that for any
interval I ⊂ R, any h ∈ Cℓ(I) and any γ > 0 the inequality

meas{x ∈ I : |h(x)| ≤ γ} ≤ Cℓγ
1/ℓ inf

x∈I
|h(ℓ)(x)|−1/ℓ

holds.

In order to apply this we use

Lemma 2.2. For u1, s, y1 ∈ [−ε, ε], |u2| ≤ ε we have

max
1≤k≤n−1

∣∣∣
∂k

(∂y1)k

[
(y1 − u1)E(s, u, y1)

]∣∣∣ ≥ 2−n−2n−1aL.

Taking Lemma 2.2 for granted we apply the sublevel estimate for suitable ℓ ≤ n − 1 and γ =
2|g(s)|/λ if g(s)/λ ≤ 1 (otherwise estimate the size of any sublevel set by 2ε). We obtain

(2.13) meas
(
{y1 ∈ [−ε, ε] :

∣∣(y1 − u1)E(s, u, y1)
∣∣ ≤ 2|g(s)|/λ}

)

≤ min{2ε, max
1≤ℓ≤n−1

Cℓ(2
n+3na−1

L |g(s)|/λ)1/ℓ} . (|g(s)|/λ)1/(n−1)

and thus by (2.12), (2.13)

meas
(
{(y1, ω) : |Ti,ug(y1, ω)| > λ}

)
≤ C

∫
|g(s)|

λ

( |g(s)|

λ

)1/(n−1)

ds = C
‖g‖

n/(n−1)

Ln/(n−1)(R)

λn/(n−1)
.

Proof of Lemmas 2.1 and 2.2. We need the following elementary

Sublemma. Let g, h be functions having N derivatives at a point x and suppose that
maxj≤r |u

(j)(x)| ≤ Br, r ≤ N . Suppose that max0≤j≤N−1 |(uh′ − u′h)(j)(x)| ≥ αN . Then also

max
1≤j≤N

|h(j)(x)| ≥ 2−NαN − BN |h(x)|.

Proof. By the Leibniz rule (h′u − hu′)(k−1) =
∑k

l=1 bklh
(l) − hu(k) where the coefficients are given

by bkl(x) = [
(
k−1
l−1

)
−

(
k−1

l

)
]u(k−l)(x) if 1 ≤ l < k, and bkk(x) = u(x). Thus

max
1≤k≤N−1

|(h′u − hu′)(k−1)| ≤ sup
k

∑

l

|bkl(x)| max
1≤j≤N

|h(j)(x)| + |h(x)| max
1≤k≤N−1

|u(k)(x)|

≤ 2N−1BN max
1≤j≤N

|h(j)(x)| + BN |h(x)|
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which implies the assertion.

Proof of Lemma 2.1. Note that

(ωy1,u)′(s) = Gx1(s, H(u, s), y1) + Gx2(s, H(u, s), y1)Hx1(u, s).

The defining equation for H is x2 = G(u1, H(x1, x2, u1), x1). Implicit differentiation yields that
Hx1(u1, G(x, u1), x1) = −(Gx1/Gx2)(x, u1) or

Hx1(u1, u2, x1) = −
Gx1(x1, H(u, x1), u1)

Gx2(x1, H(u, x1), u1)
.

Thus

(ωy1,u)′(s) =

[
1

Gx2(x, u1)
det

(
Gx1(x, y1) Gx1(x, u1)
Gx2(x, y1) Gx2(x, u1)

) ]

x=(s,H(u,s))

=
(y1 − u1)E(s, u, y1)

Gx2(s, H(u, s), u1)
.

Now we prove (ii). Since Gx2 does not vanish it suffices to show that

(2.14) max
0≤j≤m−2

∣∣∣
( ∂

∂s

)j

E(s, u, y1)
∣∣∣ ≥

aR

2
.

We expand

(2.15) E(s, u, y1) = E(s, u, u1) + (y1 − u1)r(s, u, y1)

where E(s, u, u1) = J(u1, H(u, s), s) and

r(s, u, y1) =

∫ 1

0

∫ 1

0

[
Gx1y1y1(X, U1)Gx2(X, u1) − Gx2y1y1(X, U1)Gx1(X, u1)

]
X=(s,H(u,s))

U1=u1+στ(y1−u1)

dστdτ.

By assumption (2.5-R) we have

(2.16) max
0≤j≤m−2

∣∣∂j
sE(s, u, u1)

∣∣ ≥ aR.

To get a concrete upper bound for the derivatives of r we need a well known fact about multiple
applications of the chain rule. Namely let v be R

d-valued and let η be a scalar function on the

range of µ, both in Ck. Then (η ◦ v)(k) is a sum of at most
∏k−1

i=0 (d + i) terms each of which
is of the form ξw1 · · ·wℓ where ξ is a derivative of η, of order ≤ k, the wi are derivatives of a
component of v, of order at most k, and ℓ ≤ k. Of course more explicit formulas are known (such
as the Faà di Bruno formula) but we don’t need these here. Applying this with d = 2 we see that
a derivative of order k of s 7→ Gx1(s, H(u, s), y1) can be estimated by (k + 1)!Bk+1, and a similar
remark applies to the other terms in the integrand defining r. Thus by the Leibniz rule we have the

bound |∂jr/(∂s)j | ≤
∑j

l=0

(
j
l

)
(l + 1)!Bl+1(j − l + 1)!Bj−l+1 ≤ (j + 3)!Bj+2, j ≤ m− 2. Combining

this with (2.16) and |y1 − u1| ≤ 2ε we see that the left hand side of (2.14) has a lower bound
aR − 2ε(m + 1)!Bm. Thus (2.14) follows by our choice of ε in (2.6).

Proof of Lemma 2.2. First

∂k

(∂y1)k

[
(y1 − u1)E(s, u, y1)

]
=

∂k−1E

(∂y1)k−1
(s, u, y1) + (y1 − u1)

∂kE

(∂y1)k
(s, u, y1).
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Now we expand the kth derivative of the integrand in (2.10) about u1 and get ∂kE
(∂y1)k (s, u, y1) =

Mk(s, u) + ρk(s, u, y1) where

Mk(s, u) =
1

k + 1

[
Gx2

∂k+1Gx1

(∂y1)k+1

]

(s,H(s,u),u1)

and

ρk(s, u, y1) = −
1

k + 1

[
Gx1

∂k+1Gx2

(∂y1)k+1

]

(s,H(s,u),u1)

+ (y1 − u1)×

∫ 1

0

∫ 1

0

[
Gx2(x, u1)

∂k+1Gx1

(∂y1)k+1
(x, U1) − Gx1(x, u1)

∂k+1Gx2

(∂y1)k+1
(x, U1)

]
x=(s,H(u,s))

U1=u1+στ(y1−u1)

dστkdτ.

Since |Gx1 | ≤ 8εB it is easy to see that |ρk(s, u, y1)| ≤ 12εB2, moreover the term |(y1 −
u1)∂

k
y1

E(s, u, y1)| above is bounded by 8εB2/(k + 1). Since Gx2 ≥ 1/2 we obtain by the Sublemma
that

max
k=0,...,n−2

|Mk(s, u)|

≥ (n − 1)−121−n max
k=0,...,n−2

∣∣∣
∂k

(∂y1)k
[Gx1y1Gx2 − Gx2y1Gx1 ](s,H(u,s),u1)

∣∣∣ − B‖Gx1‖∞

≥ 21−nn−1aL − 8εB2.

Here the L∞ norm of Gx1 is taken over the cube [−2ε, 2ε]4. We finally get

∣∣∣
∂k

(∂y1)k

[
(y1 − u1)E(s, u, y1)

]∣∣∣ ≥ 2−nn−1aL − 20B2ε

and the assertion follows from our choice of ε in (2.6).

Remark. For the L(n+1)/2,n+1 → Ln+1 inequality the lower bound aR in (2.5-R) enters only in the
definition of ε in (2.6), the bounds depend on m but not on aR. Indeed the type (m, 1) assumption
can be replaced by an assumption of bounded multiplicity; i.e. there is ℓ ∈ N so that for almost all
u (sufficiently small) the inverse images of the maps s 7→ G(s, H(u, s), y1) have cardinality ≤ ℓ.

Sharpness of Lorentz exponents. It is well known that the necessary condition 1/q ≥ 2/p − 1
follows by testing R on characteristic functions of small balls. We assume 1/q = 2/p−1, 1 < r < ∞,
and verify that R does not map Lp,r → Lq,r−ε. Then applying this to the adjoint operator one also
obtains the necessary condition 1/q ≥ 1/(2p) and also that R does not map Lp,r → L2p,r−ε.

It suffices to consider 1 ≤ p < 2. We assume that near the origin M is defined by y2 = G(x, y1)
as in (2.1). For a large positive integer ℓ let f ≡ fℓ(y) = |y|−2/p for 2−4ℓ ≤ |y| ≤ 2−ℓ/2. Then
if |x2 − H(0, x1)| ≈ 2−k and ℓ ≤ k ≤ 2ℓ then |Rf(x)| ≥ c2−k(1−2/p) and this happens on a set of
measure ≈ 2−k. Thus if λRf denotes the distribution function of Rf then λRf (2−k(1−2/p)) & 2−k

and

‖Rf‖Lq,s &
( ∫

[αλ
1
q

Rf (α)]s
dα

α

)1/s

&
( 2ℓ∑

k=ℓ

[
c2−k(1−2/p)λ

1/q
Rf (c2−k(1−2/p))

]s
)1/s

&
( 2ℓ∑

k=ℓ

c′2−k(1−2/p+1/q)s
)1/s

& ℓ1/s

if 1/q = −1 + 2/p, and by a similar computation ‖f‖Lp,r . ℓ1/r. Thus R does not map Lp,r → Lq,s

if s < r.
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3. Polynomial Radon transforms with weights

We now give a proof of Theorem 1.2. Fix a real-valued polynomial P (s, t) of degree ≤ N ; we
may assume that (∂2P )/(∂s∂t) is not identically zero (otherwise there is nothing to prove).

In this section the notation α . β means α ≤ Cβ where C depends only on N . It suffices to
establish the L3/2,3 → L3 boundedness since applying this result to the polynomial P (y1, x1) and
using duality implies the L3/2 → L3,3/2 boundedness and then by real interpolation the L3/2,r → L3,r

boundedness for 3/2 ≤ r ≤ 3. The sharpness assertion is proved as in the previous section (by
working close to points with (∂2P )/(∂s∂t) 6= 0).

We use the argument of the previous section; now G(x, y1) = x2 + P (x1, y1), H(y, x1) = y2 −
P (x1, y1) and J(x1, y1) = (∂2P )/(∂x1∂y1) are globally defined. For each s ∈ R, let Is

1 , Is
2 , . . . , Is

M(N)

be disjoint intervals with union R so that t 7→ ∂s∂tP (s, t) has constant sign on the interior of each
Is
j . For 1 ≤ j ≤ M(N) let Uj be the set of all (s, t) such that t ∈ Is

j and we can choose the Is
j so

that the Uj are measurable. Let χj be the characteristic function of Uj and define the operator Aj

by

Ajf(x) =

∫
f
(
y1, x2 + P (x1, y1)

)
|J(x1, y1)|

1/3χj(x1, y1)dy1.

It is enough to prove that Aj maps L3/2,3 to L3, for any j. The goal is to show

∫

R2

3∏

k=1

Ajfk(x)dx .

3∏

k=1

‖fk‖L3/2,3 ,

and the argument in §2 reduces this to the following analogue of (2.8),

sup
u∈R2

( ∫
|J(x1, u1)|

1/3|Ajf(x1, u2 − P (x1, u1))|
2dx1

)1/2

. ‖f‖L2,1(R2),

or, with the measure dµu(s) = |J(s, u1)|
1/3ds, to

∫
|J(s, u1)|

1/3Ajf(s, u2 − P (s, u1))χj(s, u1)g(s)ds

=

∫∫
χj(s, t)|J(s, t)|1/3|J(s, u1)|

1/3f(t, u2 + P (s, t) − P (s, u1))g(s)dsdt

. ‖f‖L2,1(R)‖g‖L2(R,dµ).(3.1)

In view of the assumption that J is not identically zero it is not hard to see that for every u1 the
function s 7→ P (s, t)− P (s, u1) is not constant except for a finite set of values of t. Thus for almost

all t there are intervals It,u
i , i = 1, . . . , N with ∪N

i=1I
t,u
i = R whose boundary points are measurable

functions on (t, u) so that
ωt,u(s) = u2 + P (s, t) − P (s, u1)

has nonzero derivative in the interior of It,u
i and, as in the previous section, we denote by ω 7→ st,u

i (ω)

the inverse function of ωt,u on It,u
i and let Ĩt,u

i be the image of It,u
i under ωt,u. Let

Si,j,ug(t, ω) = χeIt,u
i

(ω)
dst,u

i

dω
χj(s, t)|J(s, t)|1/3|J(s, u1)|

1/3g(s)
∣∣∣
s=st,u

i (ω)

and, arguing as in the proof of Theorem 1.1, we see that (3.1) follows from

(3.2) meas
(
{(t, ω) : |Si,j,ug(t, ω)| > λ}

)
. λ−2

∫
|g(s)|2|J(s, u1)|

1/3ds.
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The left hand side of (3.2) is equal to

∫∫

{(s,t):s∈It,u
i ,(s,t)∈Uj ,

|J(s,t)|1/3|J(s,u1)|
1/3g(s)≥

λ|(ωt,u)′(s)|}

|(ωt,u)′(s)|dsdt

≤

∫ ∞

−∞

∫

{t∈Is
j :

|J(s,t)|1/3|J(s,u1)|
1/3g(s)

≥λ| ∂P
∂s (s,t)− ∂P

∂s (s,u1)|}

∣∣∣
∂P

∂s
(s, t) −

∂P

∂s
(s, u1)

∣∣∣ dt ds(3.3)

and we have to show that the right hand side is controlled by λ−2
∫

R
|g(s)|2|J(s, u1)|

1/3ds, with
constant only depending on N . This is accomplished by applying the following lemma to the inner
integral in (3.3), with p(t) = ∂P

∂s (s, t) (which has constant sign on Is
j ).

Lemma 3.1. There is a constant C(N) such that the following is true: If p is a real-valued poly-
nomial of degree ≤ N − 1 and I is an interval with p′ of constant sign on I, then for all t1 ∈ I and
all B > 0 the inequality

(3.4)

∫

{t∈I:B|p′(t)p′(t1)|1/3

≥|p(t)−p(t1)|}

|p(t) − p(t1)|dt ≤ C(N) B2|p′(t1)|
1/3

holds.

Proof. Note that the integration in (3.4) is always extended over a finite interval, thus we may
assume that I is finite.

We begin by observing that there is C1(N) such that for 0 ≤ θ ≤ 1

(3.5) |b − a||p′(a)|1−θ|p′(b)|θ ≤ C1(N)

∫

[a,b]

|p′(u)|du.

If a = 0, b = 1 this is true because the L1([0, 1]) and L∞([0, 1]) norms are equivalent on the (finite-
dimensional) space of polynomials of degree bounded by N − 2. For other intervals [a, b] an affine
change of variables reduces to the case a = 0, b = 1.

Continuing the proof of the lemma, the set {t ∈ I : B|p′(t)p′(t1)|
1/3 ≥ |p(t) − p(t1)|} is contained

in the union of two minimal subintervals [t0, t1] and [t1, t2] of I (so that the defining inequality holds
for t = t0 and t = t2). It is enough to bound the integral of |p(t)− p(t1)| over each of these intervals
by C1(N) B2|p′(t1)|

1/3. The argument is the same in both cases, so we consider the integral over
[t0, t1]. Clearly

(3.6)

∫ t1

t0

|p(t) − p(t1)|dt ≤

∫ t1

t0

∫ t1

t

|p′(v)|dvdt ≤ (t1 − t0)

∫ t1

t0

|p′(v)|dv.

We apply (3.5) with θ = 1/3 and see that the right hand side of (3.6) is dominated by

(3.7) C1(N)
(∫ t1

t0

|p′(v)|dv
)2

|p′(t0)|
−2/3|p′(t1)|

−1/3 ≤ C1(N)B2|p′(t1)|
1/3

where the last inequality holds since B|p′(t0)p
′(t1)|

1/3 ≥ |
∫ t1

t0
p′(v)dv| and p′ is of constant sign on

[t0, t1]. The assertion follows from (3.6), (3.7). �
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Remark. Suppose that the polynomial P (s, t) is replaced by a C2 function S(s, t) with the property
that for almost all t1 the generic multiplicities of the maps (s, t) 7→ (S(s, t) − S(s, t1), t) and s 7→
Ss(s, t) − Ss(s, t1) are bounded by some number ℓ (here we say that F : R

d → R
d has generic

multiplicity bounded by ℓ if F−1(y) has cardinality ≤ ℓ for almost all y ∈ R
n). In this case a

variant of the argument used by the second author in [12] can be employed to show a slightly weaker
inequality, namely that A is of restricted strong type (3/2, 3); i.e. it maps L3/2,1 to L3, with operator
norm depending only on ℓ.
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