TWO ENDPOINT BOUNDS FOR GENERALIZED
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1. Introduction

The purpose of this note is to prove LP — L9 inequalities for averaging operators in the plane
(also known as generalized Radon transforms). To describe our setup let 7, and Qi be open sets in
R? and let M be a submanifold in Q, x Qg which will contain the singular support of the kernel of
our operator. We assume that the projections M — € and M — Qg have surjective differential;
thus the varieties

1.1) M, = {y € Qr; (z,y) € M}
" MY = {z € Qp; (2,y) € M}

are smooth immersed curves in {27, and g, respectively.

Let x € C°° (2 x Qr) be compactly supported. We consider the operator

(1.2) Rf(z) = /M ©(&. ) () dos(4);

where do, is a smooth density on M, depending smoothly on =z € Q.

The regularity properties of R depend on certain finite type conditions, formulated in [15]. We
recall that a vector field V on M is of type (1,0) on an open subset U of M if for every P € U
we have Vp € TpM N (Tp2r x {0}). V is of type (0,1) on U if Vp € TpM N ({0} x TpQAr}) for
every P € U. The C*°(U) modules of vector fields of type (1,0) and (0,1) on U are denoted by
VIO(U) and VO1(U), respectively. Since M is three-dimensional there is a nonvanishing one-form
w which annihilates (1,0) and (0,1) vectors. If X and Y are nonvanishing vector fields of type
(1,0) and (0, 1), respectively, then the quantity (w, [X,Y]) is comparable to the rotational curvature
introduced by Phong and Stein. In fact if M is given by the equation ®(z,y) = 0 with &, # 0,
®, # 0 and if we choose X = ©,,0,, — ®3,04,, ¥ = ®,0y, — Py, 0y, and w = ®,dz — ¢, dy, then

(w,[X,Y])/2 is equal to
_ Ty O
J =det ( ®, 0 ) ,
the rotational curvature. The generalized Radon transform R is a Fourier integral operator of class
I7Y2(Qp, Qr; N*M’) in the sense of [5], and N* M’ is a local canonical graph if and only if J does
not vanish.
We now recall the notion of finite type (u,v). We write adV (W) = [V, W] for the commutator

of V- and W and for integers p > 1, v > 1, we let V**(U) denote the C*°(U)-module generated by
all vector fields in V1.0(U) U V%1 (U) and all vector fields of the form gadVi - --adV,,_1(V},), where
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g is smooth, V; € V1O(U) U VOL(U), at most u of the V; are in V1:%(U) and at most v of the V; are
in VO1(U). We say that M is of type (u,v) at P if there is an open neighborhood U and a vector
field V € V#¥(U) so that (wp, Vp) # 0 but (wp, Wp) =0 for all W € VA=LV(U) U V#Y~1(U). Thus
type (1, 1) corresponds to the nondegenerate situation of nonvanishing rotational curvature.

Let n > 2, m > 2. Following [14] we also say that M satisfies a left finite type condition of degree
n in U if M is of finite type (1,k) for some k with k € {1,...,n — 1}, for every P € U. We note
(see [15]) that M satisfies this condition if only if for all (zg,y0) € U the quantity J(xp,y) when
restricted to the curve M,, vanishes of order at most n — 2 at y = yo. Likewise M satisfies a right
finite type condition of degree m in U if M is of finite type (j,1) at P for some j € {1,...,m — 1},
for every P € U. Again an equivalent formulation is that for all Py = (z¢,y0) € U the quantity
J(x,yo) when restricted to the curve M¥° vanishes of order at most m — 2 at « = xg.

We now state an endpoint LP — L9 estimate for two-sided finite type conditions. In fact a

sharper statement can be obtained by working with Lorentz-spaces LP'?; note that LP C LP7, if
r > p, with continuous embedding.

Theorem 1.1. Suppose that M satisfies a left finite type condition of degree n and a right finite
type condition of degree m.

(i) Suppose that (1/p,1/q) belongs to the closed trapezoid T (m,n) with corners (0,0), (1,1),
(s er}) (n+1’ n}rl) Then R maps LP boundedly to L9.
m+1l m+1

(ii) R maps L™ "+1 to L™ and L™ to Lw1 5 .
(ii3) If there is a point P such that x(P) # 0 and M is of type (1,n — 1) at P then R does
not map L™ to Lntl ifr >mn-+1. ]f there 18 a point P such that x(P) # 0 and M is of type

(m —1,1) at P then R does not map L™“m o L1 for s < (m+1)/m.

Remarks.

(a) Let G(P) be the graph connecting (0,0) and (1, 1) with the points (-t"—— +U+1, u+V+1) for which
M is of type (u,v) at P and suppose that (1/p,1/q) lies above G(P). Then a result in [15] states
that R maps LP to L? provided that the cutoff function has sufficiently small support close to P; see
also Phong-Stein [6], [7] for sharp endpoint bounds in several model cases. If (1/p,1/q) lies below
G(P) and x(P) # 0 then LP — L9 boundedness fails ([15]). In the present situation this implies
the following: If there is a point P with x(P) # 0 such that M is of type (1,n — 1) and of type

(m—1,1) and if M is not of type (u,v) at P for all (u,v) with (#flfil, —771) € 7(m,n) then the

result in part (i) of Theorem 1.1 is sharp. In particular, the L(+D)/2n+1 _, [l estimate is best
possible if M is of type (1,n — 1) and of type of type (m — 1,1) for some m.

(b) The sharp bounds for p > (n+1)/2, ¢ = 2p, and p < m/(m —1), 1/¢ = 2/p — 1 are
n [14], [15]. The L(+D/2n+l — [ endpoint inequality for polynomial surfaces of the form
M={(z,y) Y2 =22+ D 1 hen a;jkriyt}, with ai,—1 # 0 was obtained by the first author in [1]
based on multilinear arguments in [3], [11]; our proofs of Theorem 1.1 and Theorem 1.2 below rely
on this technique as well.

(c) Let M be defined by a polynomial as in (b) . Then M is of type (u,v) at the origin if
auy # 0 but ajr =0 whenever j <pandk<v—-lorj<pu—1k<v.

Our second result concerns weighted Radon transforms which incorporate the rotational curva-
ture J as an improving factor (see e.g. [16]), namely for v > 0 one defines

R f(x) =/ x(@, )| (z, )" f(y) dow(y).

x

It is known ([15]) that R., maps L? into the Sobolev space L1/2v provided that v > 1/2. By standard

arguments combining Littlewood-Paley theory and (complex) interpolation (c¢f. [2]) one can see that
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Ry : LP — LP if o < 2—3/p, v > 1/p' and 1 < p < 2, in particular it maps L3/2 — L3 for
~ > 1/3. In various cases the endpoint bounds for v = 1/3 are known. If M is given by the equation
Y2 = x2 + S(x1,y1) then J = Sy, and for real analytic S the endpoint L3/2 = L3 estimate can
be deduced from the endpoint L? estimates for damped oscillatory integrals in Phong-Stein [9]. We
shall prove an L3/?2 — L? endpoint estimate for the case where S is a polynomial of degree < N,
which will have the added feature that the operator norms depend only on N. In the translation
invariant case such theorems were obtained by the second author in [10], [13]. As in [7] our operator
is now globally defined (without inserting cutoff-functions) and we obtain an improved inequality
using Lorentz-spaces. We note that the standard interpolation argument alluded to above does not
seem to yield this estimate since one uses analytic interpolation with changing powers of ~.

Theorem 1.2. Define

0 2
(1.3) Af(a:l,@):/ TP s

. |3I13y1 f(y1, 22 + P(x1,91)) dys

where P is a polynomial in (x1,y1) of degree at most N. Then there is a constant C(N) (independent
of the particular polynomial) so that for 3/2 <r <3

(1.4) [Af[[ o < CANDISIL, 5.0

for all f € L7 (R?).
If 0?P/(0x,0y,) does not vanish identically then the operator A does not map L3/%" to L>* for
any s <.

In particular A maps L3/2 to L5.

The proof of Theorem 1.1 will be given in §2, and the proof of Theorem 1.2 in §3. We shall use
the notation < for inequalities involving admissible constants; here the definition of admissibility
depends on the context and will be made precise in §2 and §3, respectively.

2. Boundedness under finite type assumptions

In this section we give a proof of the boundedness result in Theorem 1.1. It suffices to establish
the L3 "+ — L"F1 inequality. This also implies the L™~ ™+ — Lm+1 inequality for the adjoint
m+1 m-+41

operator R* and thus the L% — Lm-1"m inequality for R.

By compactness arguments it suffices to prove the theorem for the case that our cutoff function
X is supported in a small neighborhood of a fixed point P € M; by performing translations we may
assume that the coordinates vanish at P.

We may assume that M is given as
M ={(z,y) : y2 = G(z1,22,31), [71], |22, [ | < 2}
where G is a C"T! function defined on [—2,2]® and G satisfies
(2.1) G(0,0) =0, G4 (0,0) =Gy, (0,0) =0, G4,(0,0) =1, 1/2 < Ggy(z,y1) < 2.
We then also have for x1,z2,y; € [-1,1]
y2 = Gz, y1) < z2 = H(y,11)
where H is defined on [—1,1] and satisfies

(2.2) H(0,0) =0, Hy,(0,0)=H,, (0,0) =0, H,(0,0)=1, 1/2<H,,(y,z1) <2.
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Let M = max{n + 1,m + 1}. We let ||(G, H)||c» be the maximum of any derivative of order at
most M of G or H in the cube [—1,1]* and assume that

(2.3) (G, H)l[cm < B;

note that B > 1.

The rotational curvature (with respect to the defining function ®(z,y) = y2 — G(z,y1)) is given
by

G;E (:Euyl) Gw (xayl))
24 J = det 1 ! .
( ) ($7y1) ¢ (Giﬂgyl (‘r7y1) Gwz(x7yl)

By our finite type assumptions there are constants ar, > 0 and ar > 0 so that

ak
.0~ i —_— >
(2.5-1) mm ogﬁ?ﬁiz ‘ (Oy1)*k J(:c,yl)‘ = ar
. o
(2.5-R) min | max | [T, Hsm), )] | 2 o

(2.5-L) means that M is of type (1, k) (some k <n — 1) and (2.5-R) means that M is of type (4, 1)
(some j < m — 1), for any point under consideration, ¢f. the discussion in [15].

In what follows we choose
1 : —1p-—-m -n—5_—-1p-—2
(2.6) 0<e< 1 min{((m + 1)1)""B™"ag, 2 n~ "B “ar}.

We define .
Rf(x) = / (@1, 2, y1, G, y) £ (1, Gl )y

—e
where Y is the characteristic function of [—¢,e]*. Note that if z1, 22,1 € [—¢, €] then |G(x,y1)| < 2e.
It suffices to show that
IR f Lt SFI, mgr
where the notation o < 8 means o < C3 where C depends only on B, m, n, ar, ag. Since R is a
positive operator we may assume that f is nonnegative.
As in [1] we use a multilinear interpolation argument due to M. Christ [3]. In order to establish

that R maps L™+ to L™+ one shows the more general multilinear estimate

n+1 n+1

JRVEZEZE | (T
=1 =1

and by symmetry and real interpolation ([3]) this will follow from

n+1 n+1

/I_IRJCZ d$<||f1|\1HHfZHLn1

Now we use the change of variable zo — us = G(x1, z2,u1) and write
n+1

n+1
/HRfk dz—// (x1,22,u1, G(x,u1)) f1(ur, Gz, ug) HRfZ Ydx duy

n+1

0H
// w1, H(u, 21), u1, u2) fi(ur, ug HRfk x1, H(u 561))’8 (u1, u2, 1)|du dry
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and, since |(0H)/(0y2)| is bounded by B, we may omit this factor. We have reduced matters to the
estimate

n+1 n+1

(2.7) /H Rfi(x1, H(u,21))dzy < H 1 fill Ln

for every u with |ui| < €, |us| < 2e. In what follows we fix u. By Holder’s inequality it suffices to
show

(28) ([1rstr mdn) " < 171z

By duality (2.8) is implied by

/Rf(saH(uas))g(S)dS S A lzma @) llgllpnro-n @)

for any nonnegative step function g. The left hand side is equal to

(2.9) / / (s, H(u, ), 1, G(s, H(u, ), 92)) f (yr, G5, H (u,5),11))g (s)dyn s

and we define
Wyt (s) = G(s, H(u,8),y1)

to change variables in this integral (after interchanging the order of integration).

Lemma 2.1. (3)

v (G —u)E(s,u,y1)
(W) (s) = Ga, (s, H(u,8),u1)

where

1
_ GIlyl(SvH(uv S)aul +T(y1 _ul)) Gzl(S,H(’UJ, S)aul)
(2.10) E(s,u,y1) = /0 det <Gz2y1 (s H(us).us + 7(gn — u1)  Gan(s H dr.

(i) Suppose that ui,y1,s € [—&,¢], |ua| < 2e and y1 # ui. Then the derivative of w¥*" vanishes
at no more than m — 2 points in [—¢,€].

The elementary proof will be given below. Given y;,u there are intervals I/, i = 1,...,m
with U2 TPV = [—&,e] whose boundary points are measurable functions on (y1,u) so that w¥':*
has nonzero derivative in the interior of I/, On each interval I/"" let w +— sY*"(w) be the inverse
function of w¥** and let IV*"* the image of I’ under w¥*. Then the integral (2.9) becomes

Z /_ E /l oo X0 H (1 8), 51,0 (5)) f (1, 0" () g (5) sy

Y1,u
ds;

- Z/—a /welyl u zyhu(w)aH(uvSz‘ylyu(w))aylaw)f(ylvw)g(szyhu(w))‘ ‘deyl

< S 1 Toal e
=1

where i
ds;

dw

Tiug(y1,w) = Xj—e.c) (Y1) X (@)g (57" (w))
5



In order to finish the proof we have to show that T; ,, maps L/ (=1 to [/ (n=1):%0 “that is

gl
(2.11) meas({(yl,w) N wg(yr,w)| > )\}) W
The left hand side of (2.11) is equal to
I ey
{(y1,8)€l—e,e]?, s€It™,
g(8)>A[(w¥1") ()]}

° g(s)l
212) < [ a1, )| < 2la()]/AY) s

—E&

where we have used that |Gy,| < 2. We now employ the following standard

Sublevel set estimate [4]. For any positive integer { there is a constant Cy such that for any
interval I C R, any h € C*(I) and any v > 0 the inequality

meas{z € I : |h(z)| <~} < CyY* ian 1O ()|~
paS
holds.

In order to apply this we use

Lemma 2.2. For ui,s,y1 € [—¢,¢], |uz| <& we have

ak
1<kt ‘ (Oyq)*

[(yl —u1)E(s, u,yl)]‘ > 27" 2",

Taking Lemma 2.2 for granted we apply the sublevel estimate for suitable £ < n — 1 and v =
2|g(s)|/A if g(s)/A < 1 (otherwise estimate the size of any sublevel set by 2¢). We obtain
(2.13) meas({y1 € [~e,] : |(y1 —w1) E(s,u,y1)| < 2|g(s)|/A})
< minf2e, max  Co(2"na; g(s) /A7) £ (lg(s)]/2) "

and thus by (2.12), (2.13)

n/(n—1)
: |g(8)| |g($)| 1/(”’71) ||gHLn/(n 1)( )
meas ({(y1,w) : |Ti,ug(y1,w)| > A}) < C/ ) ( s ) ds — Sl

Proof of Lemmas 2.1 and 2.2. We need the following elementary

Sublemma. Let g, h be functions having N derivatives at a point = and suppose that
max;<, [u) (z)| < B, r < N. Suppose that maxo<j<n—1|(uh’ —u'h)9) (z)| > ay. Then also
hU >2"Nay — By|h(z)|.
max b0 ()| > 2 Vay — By|h(z)|

Proof. By the Leibniz rule (h'u — hu')*~1) = Zle brh® — hu®) where the coefficients are given

by b (z) = [(57]) — (*7)]u*D(2) if 1 <1 < k, and by (z) = u(z). Thus

L YD < ) (k)
g, 00 = 1)) < 3w 3 @) g, 109 @) + ol g 1)

<2N-'By max |h(j)(ar)| + Bylh(x)]
1<j<N
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which implies the assertion.
Proof of Lemma 2.1. Note that
(wyl,u)/(s) = Gwl (Sv H(UJ 8)7 yl) + Gwz (Sv H(UJ 8)7 yl)le (uv 8)'

The defining equation for H is xo = G(u1, H(x1,22,u1),x1). Implicit differentiation yields that
Hzl(ula G(:E,’U,l), Il) = _(Gzl/sz)(xv’UJl) or

2 (@1, H(u
12(‘T17H u

8
—
~—

£
—
~—

G
Hy (u1,uz,21) = e

8
hy
—

<
iy
N

Thus

Yy1,u\/ _ det 1\ 1\
(W ) (5) |:Gm2_($,ul) € <Gz2 (.I,yl) Gz2 (I,Ul) o= (s,H (u,s))

(y1 —w)E(s,u, 1)
G, (s, H(u,8),u1)

Now we prove (ii). Since G, does not vanish it suffices to show that

0\J aRr
. — > —.
(2.14) ogglg%{—zl(@s) E(s,u,yl)’ -2
We expand
(215) E(Svuvyl) :E(Sauuul)+(y1 _ul)r(sauuyl)

where E(s,u,u1) = J(u1, H(u, s), s) and

1 1
r(s,u,41) = /O /0 |Gy (X, U1 G (X, 1) = Gy (X, UG (X, )| oy doTdr.

Ur=ui+o7(y1—u1)

By assumption (2.5-R) we have

: J > ag.
(2.16) o RBX |0 E(s, u,u1)| > ag

To get a concrete upper bound for the derivatives of r we need a well known fact about multiple
applications of the chain rule. Namely let v be R%valued and let n be a scalar function on the
range of y, both in C*. Then (o v)® is a sum of at most Hf;ol(d + 4) terms each of which
is of the form &w; ---wy where £ is a derivative of 7, of order < k, the w; are derivatives of a
component of v, of order at most k, and ¢ < k. Of course more explicit formulas are known (such
as the Faa di Bruno formula) but we don’t need these here. Applying this with d = 2 we see that
a derivative of order k of s — Gy, (s, H(u,s),y1) can be estimated by (k + 1)!B**! and a similar
remark applies to the other terms in the integrand defining r. Thus by the Leibniz rule we have the
bound |87r/(ds)7| < >71_, (i) (I+D)!BHL(j — 1+ 1)!BI~1H < (5 +3)!B/*2 j < m — 2. Combining
this with (2.16) and |y; — u1] < 2e we see that the left hand side of (2.14) has a lower bound
ar — 2e(m + 1)!B™. Thus (2.14) follows by our choice of ¢ in (2.6).

Proof of Lemma 2.2. First
oF o E O*E
Oy [(y1 —w1)E(s,u,y1)] = W(S,U,yl) + (y1 —w) Oy (s,u, 1)
7




Now we expand the kth derivative of the integrand in (2.10) about u; and get (;;C—IE),c(s,u,yl) =
My(s,u) + pi(s,u,y1) where

1 ak-ﬁ-lG
Mk (87 u) = |: x . :|
k + 1 : (ayl)kJrl (sﬁH(s;u‘)’ul)
and
1 oG,
o) = = (G Oy (1 — ) x
k + 1 ! (ayl)k+1 (57H(51u)7u1)

1 1 ak-ﬁ-lel ak-ﬁ-lez .
/0/0|:Gx2(IaU1>W(x7U1)_Gml(xvul>W(val):| w=(s,H(u,s)) doT dT.

Ur=u1+o7(y1—u1)

Since |G,,| < 8¢B it is easy to see that |pr(s,u,y1)] < 12eB?, moreover the term |(y; —
ul)aglle(s, u,y1)| above is bounded by 82B2%/(k + 1). Since G, > 1/2 we obtain by the Sublemma
that

max | M(s,u)]

k=0,..., n—2

191 "
>(n-1)"2""
>(n-1) P (Oy1)*

> 27"l — 8eB2.

[Gw1y1 G:Ez - Gwzyle](s,H(u,s),ul) - BHGM ”oo

Here the L™ norm of G, is taken over the cube [—2¢,2¢]*. We finally get

ak
’ (Oy1)*k

and the assertion follows from our choice of ¢ in (2.6).

[(yl —uy1)E(s, u,yl)]’ >27"n"lq;, — 20B%

Remark. For the L(»+1)/2n+1 _ [n+1 inequality the lower bound ag in (2.5-R) enters only in the
definition of € in (2.6), the bounds depend on m but not on ag. Indeed the type (m, 1) assumption
can be replaced by an assumption of bounded multiplicity; i.e. there is £ € N so that for almost all
u (sufficiently small) the inverse images of the maps s — G(s, H(u, s), y1) have cardinality < /.

Sharpness of Lorentz exponents. It is well known that the necessary condition 1/¢ > 2/p — 1
follows by testing R on characteristic functions of small balls. We assume 1/¢=2/p—1,1 < r < oo,
and verify that R does not map LP'" — L%"~¢. Then applying this to the adjoint operator one also
obtains the necessary condition 1/¢ > 1/(2p) and also that R does not map LP" — L*7~¢,

It suffices to consider 1 < p < 2. We assume that near the origin M is defined by yo = G(z,y1)
as in (2.1). For a large positive integer £ let f = fo(y) = |y|=2/P for 274 < |y| < 272, Then
if |2g — H(0,21)| =~ 27% and £ < k < 2¢ then |Rf(z)| > ¢27#(1-2/P) and this happens on a set of
measure ~ 2~%. Thus if Ag; denotes the distribution function of Rf then g (27 F(1=2/p)) > 2=k
and

RS 2 ( floxk @)

(0%
20 1/s 2¢ 1/s
> (Z [c2=k(1=2/p) A;{g(cr“l*/m)f) > (Zcfgfkufz/pﬂ/q)s) > gi/s
k=¢ k=¢

if 1/g = —1+2/p, and by a similar computation || f||z».- < £*/7. Thus R does not map LP" — L9*
if s <r.
8



3. Polynomial Radon transforms with weights

We now give a proof of Theorem 1.2. Fix a real-valued polynomial P(s,t) of degree < N; we
may assume that (92P)/(9s0t) is not identically zero (otherwise there is nothing to prove).

In this section the notation a@ < 8 means o« < C3 where C' depends only on N. It suffices to
establish the L3/2® — L3 boundedness since applying this result to the polynomial P (y1,21) and
using duality implies the L3/2 — L3:3/2 boundedness and then by real interpolation the L3/27 — L3
boundedness for 3/2 < r < 3. The sharpness assertion is proved as in the previous section (by
working close to points with (92 P)/(0sdt) # 0).

We use the argument of the previous section; now G(z,y1) = x2 + P(x1,y1), H(y,z1) = y2 —
P(z1,y1) and J(x1,11) = (02P)/(0z10y1) are globally defined. For each s € R, let I, I3, ... I
be disjoint intervals with union R so that ¢ — 0,0;P(s,t) has constant sign on the interior of each
I3. For 1 < j < M(N) let U; be the set of all (s,t) such that ¢ € I and we can choose the I7 so
that the U; are measurable. Let x; be the characteristic function of U; and define the operator A;
by

Ajf(z) = /f(y17562 +P(iﬁlayl))|J($17y1)|l/3Xj($1ayl)dyl-

It is enough to prove that .4; maps L3/23 to L3, for any j. The goal is to show

3 3
[ L As@dr s TL16uleres
B k=1 k=1

and the argument in §2 reduces this to the following analogue of (2.8),

1/2
sup ([ 17r,u) V1 o, va = Plar,un))Pdan) S [l e,
ue

or, with the measure du,(s) = |J(s,u1)|*/3ds, to
/|J(87U1)|1/3Ajf(sau2 — P(s,u1))x; (s, u1)g(s)ds

=//m@wu@wﬁﬂﬂamw“ﬂmu+P@w—P@wmmawﬁ

(3.1) S ez @ llgll 2 ®,dp)-

In view of the assumption that J is not identically zero it is not hard to see that for every u; the
function s — P(s,t) — P(s,u1) is not constant except for a finite set of values of t. Thus for almost
all t there are intervals I, i = 1,..., N with UY, I"'* = R whose boundary points are measurable
functions on (¢,u) so that

wh(s) = ug + P(s,t) — P(s,u1)
has nonzero derivative in the interior of I and, as in the previous section, we denote by w > s5*(w)
the inverse function of w'* on I'"* and let I'"* be the image of I""* under w'*. Let
_ ds;" 1/3 1/3
Sijug(t,w) = Xgeu (W) —=x; (s, DI (s, )T (s,ua)[7g(s)|
i dw s=s;"" (w)

and, arguing as in the proof of Theorem 1.1, we see that (3.1) follows from

(3.2) meas({(t,w) 1S5 jug(t,w)| > ,\}) < )‘_2/|g(5)|2|J(S,U1)|1/3dS.
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The left hand side of (3.2) is equal to

/] (' (3)]dsdt

{(s,t):sEIf’u,(s,t)EUj,
[T (s,0)[M 21 (s,u0) [V P g(5)>
Al@5™) ()1}

(3.3) < /°° / %—]:(s,t) - %—f(s,ul)‘ dt ds

o {ters:
|7 (s,0)|"/ 21T (s, m)ll/3 (s)
A GE (s,8) = G5 (s,un)[}

and we have to show that the right hand side is controlled by A~2 [, |g(s)|?|J(s,u1)|/3ds, with
constant only depending on N. This is accomplished by applying the following lemma to the inner

integral in (3.3), with p(t) = %1; (s,t) (which has constant sign on I?).

Lemma 3.1. There is a constant C(N) such that the following is true: If p is a real-valued poly-

nomial of degree < N — 1 and I is an interval with p' of constant sign on I, then for all t; € I and
all B > 0 the inequality

(3.4) / Ip(t) — p(t)|dt < C(N) B2/ ()]

{te:Blp’ (1)’ (t1)[*/*
>|p(t)—p(t1)]}

holds.

Proof. Note that the integration in (3.4) is always extended over a finite interval, thus we may
assume that I is finite.

We begin by observing that there is Cy (V) such that for 0 <6 <1

(35) b alp @O <) [ e

If a = 0, b =1 this is true because the L'(]0,1]) and L>°([0,1]) norms are equivalent on the (finite-
dimensional) space of polynomials of degree bounded by N — 2. For other intervals [a, b] an affine
change of variables reduces to the case a =0, b = 1.

Continuing the proof of the lemma, the set {t € I : B|p/(t)p' (t1)[*/? > |p(t) — p(t1)|} is contained
in the union of two minimal subintervals [to, t1] and [t1, 2] of I (so that the defining inequality holds
for t =ty and t = t2). It is enough to bound the integral of |p(t) — p(t1)| over each of these intervals
by C1(N) B2?|p/(t1)|'/?. The argument is the same in both cases, so we consider the integral over
[to, tl]. Clearly

(3.6) /tt () — p(ts |dt</ / o) |dvdt < (t _to)/: 1P/ (0)|do.

We apply (3.5) with # = 1/3 and see that the right hand side of (3.6) is dominated by

(3.7) ([ o) Tl ()] < G B 1)

to

where the last inequality holds since Bp/(to)p/ (t1)|'/? > | f i /(v)dv| and p’ is of constant sign on
[to, t1]. The assertion follows from (3.6), (3.7). O
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Remark. Suppose that the polynomial P(s,t) is replaced by a C? function S(s,t) with the property
that for almost all ¢; the generic multiplicities of the maps (s,t) — (S(s,t) — S(s,t1),t) and s —
Ss(s,t) — Ss(s,t1) are bounded by some number £ (here we say that F : R — RY has generic
multiplicity bounded by ¢ if F~1(y) has cardinality < ¢ for almost all y € R?). In this case a
variant of the argument used by the second author in [12] can be employed to show a slightly weaker
inequality, namely that A is of restricted strong type (3/2,3); i.e. it maps L3/%! to L*, with operator
norm depending only on £.
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