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ABSTRACT. Lebesgue space estimates are obtained for the circular maximal
function on the Heisenberg group H' restricted to a class of Heisenberg radial
functions. Under this assumption, the problem reduces to studying a maximal
operator on the Euclidean plane. This operator has a number of interesting
features: it is associated to a non-smooth curve distribution and, furthermore,
fails both the usual rotational curvature and cinematic curvature conditions.

1. INTRODUCTION

Let H™ denote the Heisenberg group given by endowing R x R?” with the non-
commutative group operation

(w,z) - (v,9) == (u+v+z" By, +7y) for all (u, ), (v,y) € R x R*"
0 _In
I, O

plectic form on R?" and b # 0 (usually one takes b = 1/2).
Let 1 = p1 denote the normalised surface measure on the sphere

{0} x $*" 1= {(0,y) e R x R*" : |y| = 1}.

If Dil¢(u, z) := (t*u, tx) are the automorphic dilations on H", then the normalised
surface measure u; supported on t52"~1 can be viewed as a dilate of y; in the sense

Given a function f on H™ belonging to a suitable a priori class consider the
spherical means

where B = bJ with J := ( > the matrix associated to the standard sym-

frp(u,z) = / f(u—tx" By, z —ty)du(y) for (u,z) € H" and t > 0.
S2n—1

For smooth functions f one has f * pi(u,z) — f(u,x) pointwise as ¢ — 0. It is

of interest to extend this convergence result to an almost everywhere convergence

result for functions on LP(H™), in a suitable range of p. Such a result follows from

LP bounds for the associated spherical maximal function

M f(u,z) :==sup |f * i (u, x)|. (1.1)
>0

The operator M can be understood as a Heisenberg analogue of the classical
(Euclidean) spherical maximal function of Stein [31] and Bourgain [5] (see also
[19, 29, 28]). The maximal function (1.1) was introduced by Nevo and Thangavelu
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in [23] where LP estimates were proven in dimensions n > 2 for p belonging to a
non-sharp range. By choosing f to be the standard example

Flu,z) = (|z|log(1/|z])) " x(u, )

for an appropriate choice of cutoff function y, it follows that LP — LP estimates
can only hold for p > 22111. For n > 2 the sufficiency of this condition was
established independently by Miiller and the fourth author [21] and by Narayanan
and Thangavelu [22]; the work in [21] also treats a wider class of operators defined on
Métivier groups. Results in a more general variable coefficient setting can be found
in a recent paper by Kim [15]. Related to these investigations the LP results of [21,
22] were extended in [1] to deal with variants of the operator (1.1) where the original
sphere, centred at the origin, does not lie in the subspace {0} x R?" (that is, the
corresponding dilates of 1 are no longer supported in a fixed hyperplane). The latter
paper is closely related to [26], [27] which establish sharp LP-Sobolev bounds for
certain Radon-type operators associated to curves in three-dimensional manifolds;
in particular [27] covers the averages f + f * y; in H', and perturbations of these
operators, when acting on compactly supported functions. Mapping properties and
sparse domination for a lacunary version of M have been recently studied in [2], also
under the assumption n > 2. We note that for the proofs of the positive results on
the Heisenberg spherical maximal functions mentioned above it was essential that
a boundedness result holds for p = 2, which leads to the restriction n > 2. Such
an L? result fails to hold on H', and it is currently not known whether the circular
maximal operator (1.1) on the Heisenberg group H' is bounded on LP(H?!) for any
p < 00.

In this paper we consider the problem of estimating the maximal function (1.1) on
the sub-algebra of Heisenberg-radial (or H-radial) functions on H'. Here a function
f:H! — C is said to be H-radial if f(u, Rz) = f(u,z) for all R € SO(2). Given
the underlying symmetries of the maximal operator, this is a natural condition to
impose on the input function: indeed, if f is H-radial then, M f is also H-radial.
Our main theorem characterises the LP mapping properties of M acting on H-radial
functions.

Theorem 1.1. For 2 < p < oo the a priori estimate
M fllLo@ry < Cpll fllor @)
holds for H-radial functions on H'. Here C, is a constant depending only on p.

We shall reduce Theorem 1.1 to bounding a maximal function sup, | A¢ f| where
the A; are non-convolution averaging operators in two dimensions. We aim to follow
the strategy used in [19, 20] to study the Euclidean circular maximal function and
its relatives. However, in comparison with [20], substantial new difficulties arise.
First, we need to consider a distribution of curves which is not smooth. Moreover,
the rotational curvature and cinematic curvature conditions (as formulated in [30,
20]) fail to hold, and hence sup,~ |A:f| does not belong to the classes of variable
coefficient maximal functions considered in [20]. Significant technical challenges are
encountered when dealing with the various singularities of the operator, and our
arguments are based on the analysis of a class of oscillatory integral operators with
2-sided fold singularities which extends the work in [25] and [8]. A more detailed
discussion of the proof strategy can be found in §2 below.
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FIGURE 1. The unit circle tilts and stretches as it is translated
along the zs-axis under the Heisenberg operation.

Structure of the paper. Section 2 reviews the strategy for bounding the Euclidean
circular maximal function based on local smoothing estimates. The difficulties
encountered in our particular situation are also described. In Sections 3 — 8 we prove
bounds for a local variant of M, where the supremum is restricted to 1 < ¢ < 2.
In particular, Section 3 reduces Theorem 1.1 to a bound for a maximal function
in two dimensions. Section 4 describes notions of curvature which feature in the
analysis of M. In Section 5 the maximal function is decomposed into different pieces
according to curvature considerations. In Section 6 we consider classes of oscillatory
integral operators depending on two parameters which are crucial for the relevant
L?-theory, mainly based on a ‘fixed-time’ analysis. In Section 7 we apply these L?
estimates to the problem on the Heisenberg group. In Section 8 we discuss the L?
theory, based on LP space-time (‘local smoothing’) estimates. Finally, in Section 9
the bounds for the local maximal function are extended to bounds for M. Two
appendices are included for the reader’s convenience, providing useful integration-
by-parts lemmata and many explicit computations helpful to the analysis.

Notational conventions. Given a (possibly empty) list of objects L, for real numbers
Ap, By, > 0 depending on some Lebesgue exponent p the notation A, <p By,
A, = Or(Bp) or B, Z5 A, signifies that A, < CB, for some constant C' =
Crp > 0 depending on the objects in the list and p. In addition, A, ~1 B, is
used to signify that both A, S; B, and A, 21 B, hold. Given a, b € R we
write a A b := min{a,b} and a V b := max{a,b}. Given z = (z1,72,73) € R3
we will often write z = (z1,2”) € R x R? or = (2/,23) € R?> x R. Given
r € R? and t € R we will also often write ¥ = (z,t) € R? x R. Throughout the
article N denotes some fixed large integer, chosen so as to satisfy the forthcoming
requirements of the proofs. The choice of N = 10'°% is permissible (and in the
d-dimensional version of estimates in Sections 6 and 7, it never needs to exceed
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10%09). For a phase function ¢(z;2) the notation 92, ¢ refers to the matrix A
with entries A;; = 8§izjcp while the notation 0% ¢ refers to its transpose. The

length of a multiindex o € N¢ is given by |a| = Z?Zl a;. The CV norm of
(z;2) = a(z;z) is given by max|q|45<n [|0507aloo. We also use the notation
lallen for sup, [la(x;-)||c~. For a linear operator T bounded from LP to L? we use
both | T||rr—ra, |T|lp—q as a notation for the operator norm. For a one-parameter
family of linear operators {T }ick, || sup;cg |Tt||lp—q denotes the LP — L9 operator
norm of the sublinear operator f — sup,cp |T:f].
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2. PROOF STRATEGY

Theorem 1.1 easily reduces to bounding a maximal function sup, | A¢f| where
the A; are averaging operators on the Euclidean plane. We aim to follow the broad
strategy introduced in [19] to study the Euclidean circular maximal function, which
we now recall. Define A$"!f by taking ASu“!f(z) to be the average of f over the
circle %! in the plane centred at 2 with radius ¢. Note that the associated curve
distribution is described by the defining function

<I>e”°1(x,t;y) — |x—y|2—t2 for (x’t;y) ERQ XRXRQ;

eucl
x,t

in particular, X! = {y € R? : ®(x,t;y) = 0}. The associated maximal function

MeUCIf(m') ;= sup |A(§udf($)|
t>0

is the classical circular maximal function studied by Bourgain [5] and also in [19]. A
Littlewood—Paley argument reduces the problem of bounding A" f to bounding
the local maximal function
sup_[ 4511 ()]
1<t<2

Decompose the averaging operator ASU“! f as a sum of pieces AfUd’j f localised at
frequency scale 27. The sum of the low frequency pieces (5 < 0) can be bounded in
one go via comparison with the Hardy-Littlewood maximal operator and it remains
to bound the high frequency pieces. There are two steps in the argument:
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i) The first step is to show that the inequality
eucl,j
I sup 148 Al o ey < CU N2y (2.1)

holds uniformly in j. An elementary Sobolev embedding reduces (2.1) to prov-
ing L? estimates for certain oscillatory integral operators. A T*T argument
further reduces (2.1) to bounding the corresponding kernels, which are then
amenable to stationary phase analysis.

ii) Interpolating (2.1) with the trivial L estimate,

sup |ASuehd <C (R for all 2 < p < o0. 2.2
||1St22|t fIIILp(RQ)_ £l Lo (r2) <p< (2.2)

The problem here is that (2.2) does not sum in j. If, however, there exists
some 2 < p, < 0o and &(po) > 0 such that

ouchy —je(po)
H 12:22|At f|HLpo(R2) <C2 ||f||LPo(]R2)7 (2.3)

then one may interpolate (2.2) and (2.3) to obtain favourable j dependence
for all 2 < p < oo, concluding the proof. The strategy in [19] is to prove a
bound of the form (2.3) via local in time L? space-time bounds (so-called local
smoothing estimates) for the wave equation.

There are two key properties of the circular maximal function which allow the
above analysis to be carried out, both of which can be expressed in terms of the
defining function ®°°!. The first is the standard decay properties of the Fourier
transform of surface carried measure which correspond to nonvanishing of the
Phong-Stein rotational curvature (see, for instance, [32, Chapter IX, §3.1],!). This
is used to prove the oscillatory integral estimates i). The second is that the cine-
matic curvature (see, [30]) is non-vanishing, which features in the proof of the local
smoothing estimates used in ii). The analysis can be generalised to variable coeffi-
cient maximal functions formed by averaging operators on the plane associated to
defining functions ® which satisfy these two conditions [30].

Now suppose A, f denote the averaging operators on R? which arises in the study
of our maximal operator acting on H-radial functions. This family of operators has
an associated defining function ®, which is described in (3.2) below. As before,
one may decompose A;f as a sum of pieces A{ f localised at a frequency scale 27.
Significant issues arise, however, when it comes to implementing either of the above
steps to analyse the A f in this case:

i) The defining function ® has vanishing rotational curvature. Indeed, the oscil-
latory integral estimates in the above proof sketch of (2.1) do not hold in this
case.

ii’) The defining function ® also has vanishing cinematic curvature. This precludes
direct application of local smoothing estimates in the proof of (2.3).

In order to deal with these issues it is necessary decompose the operator A; with
respect to the various curvatures and to prove bounds of the form (2.1), (2.2) and
(2.3) for each of the localised pieces.

In bounding the localised pieces of A;, the main difficulty is caused by the vanish-
ing of the rotational curvature. In particular, here the L? theory relies on certain

IThe definitions of the rotational curvature and other concepts featured in this discussion are
also reviewed in §4 below.
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two parameter variants of estimates for oscillatory integral operators with two-
sided fold singularities. Our arguments build on the techniques in [8, 11]. This is
in contrast with the analysis of the Euclidean maximal function, where the clas-
sical estimates for non-degenerate oscillatory integral operators of Hérmander [13]
suffice. The presence of a two-sided fold incurs a (necessary) loss in the oscillatory
integral estimates (compared with the non-vanishing rotational curvature case), but
special properties of the Heisenberg maximal function allow one to compensate for
this. A similar phenomenon was previously observed in the analysis of the spherical
maximal function in H" for n > 1 in [21].

The vanishing of the cinematic curvature presents less of a problem, essentially
because the desired bound (2.3) is non-quantitative: all that is required is for (2.3)
to hold for some p, and some e(p,) > 0. Roughly speaking, the strategy is to
decompose the operator into two parts: one piece supported on the J-neighbourhood
of the variety where the cinematic curvature vanishes and a complementary piece.
The former is dealt using a variant of (2.2) which includes a gain in § arising from
the additional localisation. The latter piece has non-vanishing cinematic curvature
and can be dealt with using local smoothing estimates. Choosing § appropriately,
one obtains the desired bound. Similar ideas were used by Kung [17] to treat a
family of Fourier integral operators with vanishing cinematic curvature.

3. REDUCTION TO A MAXIMAL OPERATOR IN THE PLANE

3.1. Singular support of the Schwartz kernel and implicit definition. A
computation shows that f * u(u, x) corresponds to an average of f over the ellipse
in R? given by

Suet = {(v,z) ERxR?:v —u+b(r129 —2921) =0, |z-— z|2 — 2= 0}.

Furthermore, using the identity (r121 + @222)% + (2122 — 7221)? = |2|?|2|%, one
checks that (v, z) € Sy, 4, satisfies
(I)t(u,|x|;v, |Z|) =0 (31)
where @ (u,r;v,p) := ®(u,r, t;v,p) and
bA 2
O(u,r,t;v,p) = (u—v)* — (5) (4r%p* — (r* + p* — *)?). (3.2)

Below we relate explicitly f % pu; to an operator acting on functions of the two
variables (v, p), with a Schwartz kernel § o ® which will define this integral operator
as a weakly singular Radon transform.

In the forthcoming sections it will be necessary to carry out many computations
involving ®. For the reader’s convenience, a dictionary of derivatives of this function
is provided in Appendix B.1.

3.2. Properties of H-radial functions. A function f: H! — C is H-radial if and
only if there exists some function fo: R x [0, 00) — C such that

flu,z) = fo(u, [z]). (3.3)
Using the fact that RT BR = B for R € SO(2), if f and g are H-radial, then f * g
is H-radial, and we have

2m oS}
(fxg)o(u,r) :/ // fo(v, p)go(u—v—brpsin®d, /12 + p2 — 2rpcos?) pdpdvdd.
o JrJo
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This observation extends to H-radial measures and, in particular, if f is H-radial,
then f * p; is H-radial, and we get

1
(f * p)o(u,r) = | fg(u — btrsind, /2 + 2 — 2rt cosd) dv
7

Z — / folu = btrsin 9, /72 + t2 — 2rt cos ¥) dd. (3.4)
T 2T 0

Applying polar coordinates in the planar slices {u} x R?, given p > 2 and f as
, the goal is to establish the 1nequahty

/ / (M f)o(u,)[r drdu) / / yfovp|ppdpdv) " (35)

3.3. A weakly singular Radon-type operator on R?. By the implicit definition
of the circle Sy 4 from (3.1), the function (f * p;)o corresponds to an integral
operator associated with the curve

Sunt = {(v,p) € R % [0,00) : ®4(u,r;v,p) =0}.

It is easy to see that 3, ,; is smooth whenever r # ¢ > 0. If » =t > 0, then there
is a unique singular point on the curve at the point where it touches the v axis. See
Figure 2. Furthermore, any (v, p) € X, satisfies

r—t|<p<r+4+t and |u—v|<|b|min{rp,rt, tp}; (3.6)
these bounds follow since for (v, p) € Xy, ¢
0<(b/2) % (u—v)* =dr?p® — (r* + p* = £*)°
— 422 (52 42— )2
=4t2p* — (2 + p* —1?)% (3.7)

Consider the integral operator in two dimensions defined on functions of the
variables (v, p) by

Auf(urr) = Ap o flu,r) o= / h /0 T f0, o) p 05 (@, 73 0, ) dudp. (3.8)

In view of (3.5), Theorem 1.1 will be a consequence of the following maximal
estimate in the Euclidean plane.

Theorem 3.1. For allp > 2,

1/p
/ / sup\Atf U 7“)|) dudr / / (v,p |pdvdp) )
t>0

Note that the 1/Pp~1/? factor featured in the averaging operator in (3.8) arises
from the weights induced by the polar coordinates in (3.5). In order to relate The-
orem 1.1 to Theorem 3.1 we have to write for H-radial test functions the expression
(f * p)o(u,r) in terms of the distribution § o ®; which is understood as a weak
limit of y. o ®; as ¢ — 0. The calculation, which is given in the proof of Lemma
3.2 below, is standard, (cf. [32, p.498] which provides a proof for a local version).
For the sake of convenience we include below a direct proof for our example.

In what follows We shall use for a continuous compactly supported function g the
integral notation g(c) = [ g(v)d(c—v) dv for the pairing of g with the Dirac measure
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p p p

FIGURE 2. The curves X, for t fixed and r < t (left), r = ¢
(centre) and 7 > t (right). When r = ¢ the curve has a unique
singular point on the v axis.

at c. We also let x.(s) = e tx(e7's) with x even and supported in (—1/2,1/2)

such that [ xds = 1. We shall prove the following.
Lemma 3.2. Let f € CY(H') be H-radial and compactly supported in {(v,p) €
R?: p > 0}. Then, for any r > 0,
bl .. *°
(= o) = Dim [ [ xc@tusrs ) so(o. pppavan
o Jr

T €—0
b oo

. 1 / / 8(®4(u, 5, p)) fo v, p)p v dp.
™ Jo R

With the above lemma in hand, Theorem 3.1 immediately implies Theorem 1.1.

Proof that Theorem 3.1 implies Theorem 1.1. We prove the a priori inequality for
smooth H-radial functions which are compactly supported in {(u,y) € R : |y| # 0}.
By Lemma 3.2

PO Po(usr) = 2 sup A7 fo)u, ),
T >0

and the assertion follows. O

Proof of Lemma 3.2. We use (3.4) and make a change of variable by setting

p=p) =\r2+12—2rtcos?, 0<V<m.
Observe that the condition 0 < ¥ < 7 is equivalent with |r —¢| < p < r +¢. Then

r2 412 — p?

u:l:btrsinﬁ:u:tbtr\/l— (
2rt

2 b
) =uzt §G(r,t,p)
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where

G(r,t,p) == /422 — (r2 + 12 — p2)2.

For the relevant range |r —t| < p < r+t the root is well defined (as sin® > 0), and
we have the factorisation

1/2
G(r,hp):((r-i—t—i—p)(r-l—t—p)(r—t+p)(t—r+p)) . (3.9)
We calculate
% pirtsin() = (2) Gt )
and thus
r+t p
= + b _r
o) =3 [ ol 560001 o
r+t b 1
= lim / v, (ux 2G(r,t,p) —v)dv ——dp.
;HO oy Jo PO PIXelu £ Gt p) ) dv e dp

Let U be an open interval with compact closure contained in (0, 00) such that
supp (fo(u,-)) C U for all w € R. Let U(r,t) = {p € U : |r —t| < p < r+t}.
We observe from (3.9) that for fixed r, ¢ with r # ¢, the function p — |G(r,t, p)|~*
satisfies

/ |G(r,t,p)| " Pdp < C(r,t) < oo for1<p<2, (3.10)
U(r,t)

which we use for p > 1. Let E.(r,t) = {p € U(r,t) : G(r,t,p) < &'/?} and
F.(r,t) =U(r,t) \ Ec(r,t). We use Holder’s inequality to bound
1
plfo(v, plIxe(ut §G(r,t,p) —v)|dv =——=d
/E(T,t)/DQ ’ : 2 G(r7t7p)

Sr,t,f |E5(7’, t)|1/p'C(r, t)l/p — O(Z_:(pfl)/2)7

P

noting that (3.10) implies |E.| <,.; e?/2. For p € F.(r,t,p) we use the change of
variable

b b2
w— ve(w) =u+ §G(7‘,t,p) — (u—w)?* + ZG(r,t,p)2

which is one-to-one on (u,00) and on (—oo,u) and satisfies

2
u—vy(w) £ gG(T,t,p) = (u—w)? - %G(r,t,p)?

We have [v/(w)] = 2|u—w]|, and |v(w) —w| = O(g) on the support of the integrand,
and therefore also |u — w| = G(r,t,p)[b|/2 + O(e). Hence, by Taylor expansion of
7(v, p) around (w, p),

1
/E(r,t) [Rpfo (’U, p)XE (U + %G(T, ta P) - U) dv G(

——d
rtp)

2|u — w

1
=3 /E(m) /Rﬂfo(v(w),f’)xe((u —w)® — (%G(r,t,p))z)m dwdp

= |l2)|/5(7‘)t) /RpfO(w,p)XE((u — w)2 — (%G(T,t,p))Q) dw dp—|- 0(61/2)
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and by using the estimate |E.(r,t)| <,.¢ €?/2 the last displayed expression is equal
to

b r+t 9 2 1/2
|2|/r—t| /R'Ofo<waP)Xe((U —w)? = (3G(r,1,p))*) dwdp + O(e"/?),

for both choices of +. We sum in + and, using (3.7), obtain, for r # t,

r+t
oty = 2 [ pfola @i w, p))w dp +0E02),
™ Jir—t| JR

Letting € — 0 concludes the proof. O

3.4. A local variant of the maximal operator. The main work in proving
Theorem 3.1 will be to establish the following local variant.

Theorem 3.3. For all p > 2,
sup |A < ) .
| 52, 40 a0y I

This will be established in §4 — §8. The passage from Theorem 3.3 to the global
result in Theorem 3.1 is postponed until §9.

4. CURVATURE CONSIDERATIONS

As indicated in the introduction and Section 2, various ‘curvatures’, which fea-
ture extensively in the analysis of generalised Radon transforms, are fundamental
to the proof of Theorem 3.3. In this section these concepts are reviewed and some
calculations are carried out in relation to the operator A; introduced above.

Definition 4.1. A smooth family of defining pairs [®;a] consists of a pair of
functions a € C*°(R? x R x R?) and ® € C*™ defined on a neighbourhood of supp a
satisfying

Vi, ®(x,t;2) #0 for (z,t;2) € suppa.

The t variable will play a preferred role in the forthcoming analysis. For any fixed
t € R let ®4(x;2) := @(x,¢;2) and as(z; 2) := a(w, t;2); then [®y; as] is referred to
as a defining pair . The Schwartz kernel ad o ® is then well defined, and the corre-
sponding integral operator A[®;; a;]f(z) mapping test functions to distributions is
given by the pairing

(A[®s;a0)f, g) == //R2 . 9(z) f(2)ae(x; 2)0 (P4 (3 2)) dz da. (4.1)

Key example. For the defining function ®; in (3.2), where ¢t ~ 1, with the iden-
tification of coordinates (u,r) = (21,x2), (v,p) = (21,22), the distribution 6 o @
is defined when paired with g(u,r)f(v, p) where g and f are compactly supported
C* functions with support away from {r = 0} and {p = 0} respectively. The
calculations in Lemma 3.2 show that in this case A[®;; a;]f(x) is pointwise defined
for x5 # 0, as long as f € C§°(R?) with supp f C {y € R? : yo # 0}.
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4.1. Rotational curvature. Given a defining pair [®¢; a;] the rotational curvature
Rot(®;) is defined to be the function of (z;2) € R? x R? given by the determinant
of the Monge—Ampere matrix

M(D,) = [ Dy (3zq’t)T] .

u®y  07,P,

Note that 9t(®;) is the mixed Hessian D(Qe,z),(S,z)‘I't|9:s:1 of the function
(0,,8,2) — U (0,258, 2) = 0Py (x; 2)

and, more generally,

5 . P, Sazq);,r
D(g’z),(s,z)\]?t = [9335‘1’15 050, Dy |-

It is well-known (see, for instance, [32, Chapter XI, §3]) that the behaviour of
Rot(®;) on the incidence relation {® = 0} plays an important role in determining
the mapping properties of averaging operators A[®;;a;] on L2-Sobolev spaces as
well as the LP theory of their maximal variants. It is of particular interest to
identify points where the rotational curvature vanishes together with the defining
function.

Key example. For the defining function ®; in question, as introduced in (3.2), we
now have (z1,z2) = (u,r) and (21, 22) = (v, p) and

[ @, 0v®: 0,9y

M(Py) = [0uPy 82,80 O2,Py

10,y O,y OF,Py

i D, —2(u—v) —b%p(r? — p? +1?)
= 2(u—wv) -2 0
_—b2r(p2 — 72 +12) 0 —2b%rp

Then, one computes that
det M(Py) = 2b°rp(b*(p° — r* + £2)(r® — p* + %) — 4(u — v)* + 2®)
=2b'rp((p* —r? + ) (1% — p* + 12) — 4r?p® + (r* + p* — 17)?) + 4brp®;,.
Setting ®; = 0 one obtains after further computation
Rot(®;)(u, r; v, p) = 4b*rt?p(t? — r* — p?) for (v,p) € Ty rt- (4.2)

Thus, Rot(®;) vanishes along the co-ordinate hyperplanes r =0, ¢t =0 and p =0
and also, more significantly, along the hypersurface t? = 2 + p?.

Continuing with @, as in (3.2), the rotational curvature and ¢-derivative of the
defining function are related via the identity

Rot(®;)(u, r; v, p) = 4b%rtp(0,®;) (u, 730, p). (4.3)

A relationship of this kind was previously noted in [21] in the context of the spherical
maximal operator on H" for n > 2. Here, in close analogy with [21], the identity
(4.3) will be important in the analysis near the singular hypersurface t? = r? + p?.

Rather than freezing t for the computation of the rotational curvature, it is
sometimes useful to freeze r and set

Q7 (u, t; v, p) 1= Pe(u, 150, p).
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A similar computation to the one above yields in this case
Rot(®7) (u, t; v, p) = 4b*r?tp(r® —t* — p?)  for (v,p) € Tupp.  (44)

4.2. The fold conditions. For the defining function from (3.2), the vanishing
of the rotational curvature along the hypersurface t? = 72 4 p? corresponds to a
two-sided fold singularity.

Definition 4.2. A defining function ®;, satisfies the two-sided fold condition at
(w0; 20) € R? x R? if the following hold:
i) @4, (x0;20) = 0 and Rank M (D, ) (xo; 20) = 2.

ii) If U = (u1,uz,u3) and V = (v, v9,v3) € R3 span the cokernel and kernel of
M (Py, ) (xo; 20), respectively, then

(00 o, v vy #0
<a2 < {aégtﬂ] > (m;Zo) U”> £ 0,

where U"” = (ug,u3) and V" = (vq, v3).

As a consequence of the fold condition, M (P, )(xo; 20) may be transformed into
a ‘normal form’. In particular, there exist X, Z € GL(3,R) satisfying

e Xesz = U and Xey, Xey are orthogonal to

(0024 ot |2

e Zes =V and Zeq, Zes are orthogonal to

(0’6§Z<U’ [3;I)$to] > (xo;zo)vu)’

where e; denote the standard basis vectors in R3, and therefore

X" o M(®y, ) (03 20) 0 Z = M(zobto; 20) 8}

for M(xo, to; z0) a non-singular 2 x 2 matrix.
Key example. For the defining function ®; from (3.2), if ®;, and Rot(Ps,) both
vanish at (xo;20) = (o, r0; vo, po) and rotopo # 0, then

1 1
U .= —(uO — ’UO) and V= [uo—vo (4~5)
—To —Po

span the cokernel and kernel of (P, )(xo; 20), respectively. Moreover,

2 (I)to " "\ _ 2 27,2 2
<8 < |:8 (I’to > (l’o;zo)v ’ v =2 Po(ro +Po) ” 07

2 (I>t0 " 11 2
(0 ot o) =t )20

and the matrices X and Z can be taken to be

1 0 1 1 0 1
X:= 10 —b27"8 —(UO - U(]) s Z:= |0 bgpg Ug — Vo | - (46)
0 wuy—wp -7 0 uwp—wvo —po
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Remark. For standard incidence relations M C R? xR%,, where R? = R% = R? and
M ={® = 0} with V® bounded below, the two sided fold condition is equivalent
to the more common assumption ([18], [25]) that the projections 7y, 7g mapping
the conormal bundle N*M to T*R%, T*R% have fold singularities.

4.3. Individual curves. It is also useful to consider the curvatures of the individ-
ual curves in the curve distribution induced by a defining family ®. In particular,
for fixed (z,t) the non-vanishing of the curvature of 3, ; 1= {2 € R? : ®;(x;2) = 0}
is equivalent to the non-vanishing (on £, ;) of

0 (0.94) " (25 2)
0.9(x;2) 02, Py(;2)

Key example. For the defining family ® as introduced in (3.2), the curves have
non-vanishing curvature whenever r # t. To see this, note that

[, 0,9 0,9

Ki(q)t) = det 8U(I>t (951}(1),5 83,}1%

10, 831,(1% 6§p<1>t

K(P¢)(x; 2) := det (4.7

D, —2(u—v) =b?p(t? +r? — p?)
= det —2(u — v) 2 0 ,
| —b%p(t? + 1% — p?) 0 —b2(t2 +r? - 3p?)

which after a computation reduces, for (v, p) € Xy, i.e. &, =0, to
k(P4 (u, 7, 50, p) = b (p° = 3(r? + £2)p* + 3(r® — %)% — (r® — £2)%(r* +%)).

Thus, £(®;)(u,r,t;v,p) = Er4+(p?), where p,.; is a cubic polynomial with coefficients
depending on r,t. We first calculate p((r —t)?) = —8b*2t?(r —t)2. One may verify
that @, is a decreasing function on the interval [(r —¢)2, (r + t)?], leading to the
lower bound

|k(®) (u, r, t; v, p)| > 822 (r — t)? for all (v, p) € Ty r s (4.8)
Thus, the curves have non-vanishing curvature if r # ¢, as claimed.
4.4. Cinematic curvature. It is also necessary to analyse the average operator
from the perspective of the cinematic curvature condition of [30].
Definition 4.3. A smooth family of defining pairs [®;a] is said to satisfy the
projection condition if

Proj(®) := det [0z ® 02,9]

is non-vanishing on an open neighbourhood U of supp a. Here ¥ = (x,t) € R? x R.

Fixing # € R? x R, the projection condition implies that the map
(UNZz) xR =R (2;0) — 00:9(7; 2)

is a diffeomorphism and therefore its image I'z is an immersed submanifold of R3.
If ¢ := 003P(Z; ) € I'z, then a basis for T:I'z is given by the vector fields

T! .= 9; P, T? := (T}, T5,T3) where T3 :=det [0, 8.0,,®]  (4.9)

evaluated at (&; z); this may be seen computing the tangent vectors of the parametri-
sation oz below. Note that I'z is clearly a cone and therefore has everywhere van-
ishing Gaussian curvature. If at every point on I'z there is a non-zero principal
curvature, then [®;a] is said to satisfy the cinematic curvature condition (see [30]
or [20] for further details).
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Definition 4.4. For any defining family @ let
Cin(®) :=det [S T! T?
where S = S — S? where S* = (S¢, S5, S) for

1L 0 (2:9)7 2._ 0 (0:05,9)7
S; :=det {@(I) 3§z3x_,»q> , S5 i=det 0,0 92 ®

If [®;a] satisfies the projection condition, then the cinematic curvature condi-
tion is equivalent to the non-vanishing of Cin(®)(Z; z) whenever z € ¥z. Indeed,
fix # and let vz: [0,1] — Xz denote a unit speed parametrisation of Xz; this in-
duces a parametrisation oz: (6, s) — 00z®(Z; vz(s)) of the cone I'z. The cinematic
curvature condition is then equivalent to the non-vanishing of

det [83305(9, s) Opoz(0,s) 0Osoz(0, s)] (4.10)
and a computation shows that (4.10) is equal to —|6]2|0,®|3Cin(®).
Key example. For the defining family ® as introduced in (3.2) one has
Proj(®)(u,r, t;v, p) = —8b*rtp(r? — t?), (4.11)
Cin(®)(u, r, t; v, p) = 64b°r>t3p (12 — 12). (4.12)
Thus, [®; a] satisfies the cinematic curvature condition whenever supp a avoids the

hyperplanes 7 = 0, t = 0 and r = t.? For reference, Appendix B.1 contains the
formulee for the various derivatives featured in these computations.

5. THE INITIAL DECOMPOSITION

For ® as defined in (3.2) both the rotational and cinematic curvature condi-
tions fail. In this section, the operator A; is decomposed in order to isolate the
singularities corresponding to the failure of these curvature conditions.

5.1. Spatial decomposition. The operator A; is first decomposed dyadically with
respect to the r variable. To this end, fix a nonnegative n € C2°(R) such that

n(r)=1 ifre[-1,1] and suppn C[-2,2] (5.1a)
and define 8 € C°(R) and n™, 5™ € C°(R) by
B(r) = 1(0,00)(r)(n(r) — n(2r)) (5.1b)

and, for each m € Z,
n™(r):=n2 ™r) and B"(r):=p27™r). (5.2)
One may then decompose
Aiflu,r) = Z B (r)As f (u,r) for (u,r) € R x (0,00).
meZ
The r-localisation induces various spatial orthogonality relations via (3.6). In
particular, if » € supp ™, then r ~ 2™ and it follows from (3.6) that
lu—v] <2™, jr—p|S1 and |t—p| 2™ for (v,p) € Zyry- (5.3)

2In this case, one may further deduce that I'y .+ is the cone defined implicitly by the equation
G &

=0.
b2(2 —r2) | b2(12 — r2)

G-
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To exploit this, given m, o € Z define
0™ (w,0) = (27— o)p(CH 2T — o),

where C' > 1 is an absolute constant which is chosen to be sufficiently large for the
purposes of the forthcoming arguments. We define

o’ (u, 1,80, p) = Br)rt/Ppt =P,
a™% (u, 7, t; v, p) = B ()™ (w, v)n* 2 (r, p),  if m >0, (5.4)
a™ (w7, t; 0, p) = B ()™ (u, v)™ 02 (L, p),  if m <0,
so that for m > 0, a”% is supported where
r~2"0 lu—2"01] 2™, Jv—=2"0y| S2™, |r—o9| <1, |p—oo S1.
Moreover for m < 0, a™? is supported where
r~2"0 Ju—2M01| 2™, v —=2"0q| 2™, |t—o09| S2™, |p—oo] S 2™
In view of (5.3), one may bound (using the notation in (4.1))
Af SA@sa))f+ > > MA@ AT f + Y > 2 PA® 0] f, (5.5)
Fez2 m>0 F€72 m<0

whenever f is a (say) continuous, non-negative function.

The unit scale piece a? is supported where 7 ~ 1 and it is now further dyadically
decomposed with respect to both the p variable and |r — ¢|. The rationale behind
this decomposition is to quantify the value of Rot(®;): in view of (4.2), the function
Rot(®;) can vanish on supp a’. If 7 ~ 1 and p ~ 27% | then it follows from (3.6)
that |u —v| < 27% for (v,p) € Lyrp. Thus, given a function k 1 ((k) on Z to be
defined momentarily we set

"7, ts 0, p) = B(r) BT () (w,0) B ([ — =07 (rt), €< L(k),
7 (u, 7,850, p) = B(r) 8" ()™ (w, 0)n~ B (|1t 2 (1),
so that on the support of a**7 ¢*7 we have
re~1l, p~27F Ju—27F0 | <27F and  |jv—27F0 | S27F;
moreover

lr—t] ~ 275 jr—27f <27 [t—27f0y <27
on supp a¥47 and

P —t] <2740 p — 9t gy < 9 tR) g 9tk gy | < 9K

on supp ¢®?. One may bound

Alesallf S >0 D0 270D A0S (5.6)
GEL? (k,0)€?
e<t(k)

+ >0 2 FOUP AP, 7). (5.7)
GEZ2 kEL

For the purposes of our proof, we let
(k) =2k 4+ Cirot

for some (absolute) constant Cyo; > 1, suitably chosen so as to satisfy the forth-
coming requirements. Furthermore, by the first inequality in (3.6), one may in fact
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restrict the range of the k summation in the above expression to k > —4 and of the
(k, ¢) summation to the parameter set

L= {(k,f)erZ:k2—4andk—3§€<£(k)}.
We show presently that the following bounds imply Theorem 3.3.
Theorem 5.1. For all 2 < p < oo there exists some €, > 0 such that
i) | sup [Alsap U], S 272 A, for (ki) € B

it) || Sup |A[®,; cF ]f\”p < 2*4(76)/17*’@6;)2(1*1/17)’6||pr for all k > —4

1<t<2 )
iii) || sup [A[®g a7 1f[|| S 27" F form >0
1<t<2
w) H sup |A[®y;a)" f|H 2mep2_m/p||f||p form <0
<t<2

uniformly in & € Z2. The above a priori estimates hold for all f € C§°(R?) with
support in {y € R? : yy # 0}.

Proof of Theorem 3.3 assuming Theorem 5.1 holds. Consider the second and third
terms on the right-hand side of (5.5).

When m > 0 there is spatial orthogonality among the pieces of the decomposition
in both & and m. This observation combined with Theorem 5.1 iii) above yields

H Z ZZm sup |A[®;; a7 f|Hp

dez2m 1<t<2

1/
S (X X2l s 1awsat ) <11,

FeZ? m>0

as desired.
When m < 0, note that by the support properties of a;",

sup Y [A[®y;af™ U< sup  sup  |A[®g; a7 f]
1<t<2 02€Z  1<t<2

oo€Z m m
‘t—2 0'2‘52

. 1/
<(X e, Msage)

02€7Z |t72m0'2|§2m

Furthermore, applying spatial orthogonality in the & parameter, the triangle in-
equality to the sum in m and Theorem 5.1 iv), one deduces that

H 22’"/? sup Z |A[®y; )™ ]f|Hp

1<t<2

1/
- ZQm/p(Z | sop Ao} NE) " S 11

m<0

where the last step uses the exponential decay 2™¢» to sum in m.
Next, consider the sums in (5.6). Again, there is spatial orthogonality in the o1
parameter. This fact and Theorem 5.1 1) yield

| 2 20 sup (@ af T fl| 22 g,
o1€Z 1<t<2 p
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uniformly in o2. As the parameter oo corresponds to a decomposition of the r
spatial variable,

‘ 22—k(1—1/P) sup |A[(I)t;af’é75]f|H
p

Fez? 1st<2

(X | X0 s ja@sal s

02€ZL o1E€EZL 1st<
lo2| S2¢

Sake (N0 27 AR T S 2k £

02 EL
oz | <2°

P)l/P
p

The desired result then follows from the triangle inequality in (k,¢), using the
exponential decay 27%¢» to sum over k and ¢ < {(k). The sum in (5.7) is bounded
in a similar manner. (]

5.2. Rescaling. Each piece of the decomposition is appropriately rescaled in order
to obtain, wherever possible, favourable bounds on the various curvatures. For
the reader’s convenience, Appendix B.2 describes the behaviour of the functions
®, Rot(®), Cin(P), etc under general rescalings. These rescalings lead to phase
functions satisfying certain nonisotropic conditions which will require extensions of
some classical results on oscillatory integral operators (see §6 below).

5.2.1. The case m = 0. For (k,{) € P we define the dilations

DR (u,r t; 0, p) i= (27%u, 27, 27,27 %0, 27 ).
Let

e(k, 0) = 0 — 2% + 0 A2k = {;% iiii:

and define . .
(I)k’é = 2216-‘1—6(/6,@)/3@ o Dk,ﬁ, ak,e,a = ak,f,o’ ° Dk,e’

q)k: R @k‘,e(k) Ek,g — Ck’a o Dk"e(k) (58)
= , = .

Note that a*%? is supported where

p~1, 128 |r—t| ~1, Ju—o1| <1, |v—01| <1, |r—oo| S1 |t—o2| S 1.

The support of ¢¥:% has similar properties, with £(k) in place of £ and |r —t| < 1.
The appearance of the factor 22kT¢(5:0/3 is motivated by the fact that

Rot(®F') ~ 1 on suppa®®? if [( — 2k| > Cror, (5.9)
Rot(®¥) ~1 on suppe®?, (5.10)
Rot((®*)*) ~1 on suppe*? (5.11)

where (®%)%(u, t; v, p) := ®¥(u,r; v, p). Note, however, that Rot(®F*) may vanish
on supp ¥ if [€ — 2k| < Crog.

Setting f (v, p) = f(27%v,27%p), and using that § is homogeneous of degree —1
one has

Al®y ey a7 F(27 w27 0) = 22RO AP a7 fi (u, 1),

ARy 6500 1 (27 Fu, 277) = 2" BB AR B fr(u, ).
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Thus, by rescaling to prove Theorem 5.1 i) and ii) it suffices to show that

H Slip |A[(I)i~c7€; af,&&'HHLP_)LP 5 2—e(k,€)/3—|-(1—2/p)k—ka,,7 (512)
[ sup [AI@EEE 7Y |, S 27020k (5.13)

where (by a slight abuse of notation) we indicate the operator norms of the maximal
operators on the left-hand side. We note that in view of the support properties of
ak4% %9 the global supremum in the definition of the maximal operator reduces
to a supremum over an interval I of length |I] ~ 1 centered at o9.

It is helpful to isolate the key features of the rescaled averaging operators used
to prove the above inequality. As a first step in this direction, note that each
[@f £ ay ’g"?] belongs to the class in the following definition. We use coordinates
(x; z) for the rescaled phase functions where (21, 22) corresponds to a scaled version
of (u,r) and (z1, 22) to a scaled version of (v, p).

We define collections A¥¢ of defining pairs [®; a] involving inequalities and sup-
port assumptions that are uniform in k, ¢.

Definition 5.2. Let A¥* denote the set of all smooth families of defining pairs
[®; a] for which the following conditions hold:

e 00020 a(z,t,2)| <1 and diamsuppa < 1
2-2¢(k0/3 if ay or ¥ # 0
a 9B gy < 2 0r7y
®ue 0202000 S Snss e
Do) Op®y(z;2) = 272¢(ROBe(1 t; 2)Rot (D) (x; 2) for some ¢ € C* depending
on [®;a] and with uniform C'* bounds on supp a.

y 10,P¢ (5 2)| ~ 28(16,@)/37

These estimates are understood to hold on supp a, with the constants only depend-
ing on the multiindices a, 3,7 € NZ . That is, if we fix a large N then we get
uniform estimates for ||, |B], |[v] < N.

For [@kvé; El’“e"?] it is easy to see that a) ¢ and ®1)g ¢ hold via a direct compu-
tation (the lower bound in ®1)j ¢ is a little trickier and uses (3.7)). The remaining
condition @) ¢ follows from an appropriately rescaled variant of the key identity
(4.3). Indeed, note that

1
k.0 . _ o—2e(k,0)/3 ke .
oD (u,r; v, p) = 272 4b2(2*5r)(2*4t)pROt((Dt ) (u, 50, p)
where r ~ t ~ 2¢ and p ~ 1 on supp df’é’a. Similarly, each [@k;ﬁk"?] belongs to

Q) = gk,

5.2.2. The cases m # 0. For m € Z \ {0}, define® (recalling m A 0 = min{m, 0})
D™ (u,r, t; v, p) == (2™u,r, 2™ 0; 2™y, 20 ),
P :=272MPpo D™ g™ = q™% 0 D™, (5.14)
and let (®™)*(u,t;v, p) := @™ (u,r, t;v, p). It follows from (4.2) and (4.4) that
Rot(®]") ~1 ifm >0 and Rot((®™);)~1 ifm <0 onsuppa™?;
(5.15)

3The ®™ notation in (5.14) conflicts with the ®* notation introduced in (5.8). Nevertheless,
it shall always be clear from the context which definition is intended.
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this observation motivates the choice of normalising factor 272™.
Note that for m > 0 the new amplitude a”? is supported where

r~2" Ju—on[S1, Ju—oi[S1, [r—oa S1 |p—oaf S,
and if m < 0 then a™? is supported where
r~2" |Ju—01| <1, |v—01| <1, |t—09| S1, |p—o9o S 1.
Setting f™ (v, p) = f(2™v,2™"\%p) a computation shows
A@gmnog; agi o, (27, 7) = 272N A[DY, &) 7 (u, 7).
Thus by rescaling, to prove Theorem 5.1 iii) and iv) it suffices to show that

Moo e S 200205, (5.16)

[ sup |A[@f"; &7

t
Note that in view of the support properties of ﬁ;"’a, the global supremum in the
definition of the maximal operator reduces to a supremum over an interval I which
equals [1,2] if m > 0 and has length |I| ~ 1 and it is centered at o9 if m < 0; in

e

the case m > 0 we abuse of notation and assume that a;"” is supported on ¢ ~ 1,
adding a cut-off function if necessary.

If m > 0, then a simple computation shows that [®™;a™7] € 2%0 =: 2°. On
the other hand, if m < 0, then [®™; ﬁm"?] belongs to the following class classes 2,

in the following definition where the implicit constants are uniform in m.

Definition 5.3. For m < 0 let 2™ denote the set of all smooth families of defining
pairs [®; a] satisfying:

2maz if gy £ ()

a)m |05070]a(x,t;2) S L
1 otherwise

diam suppa < 1, and the

projection of supp a in the xo-variable lies in an interval of length < 2™

272m if qy £ 0

1 otherwise ’ 0= ®¢(; 2)] ~ 1

B (05020 0 5 {
on suppa for all «, 8,7 € N3 with ||, |8], |y| < N.

The derivative bounds on the amplitude for ay = 0, which are uniformly bounded,
are used for the L?-estimates in Section 7. The bounds for as # 0 are used for the
LP-estimates in Section 8, although they do not introduce any loss for the purposes
of the desired inequality (8.1).

5.3. Cinematic curvature decomposition. The decomposition described in §5.1
automatically isolates the region where the cinematic curvature vanishes.

5.3.1. The case m = 0. By (4.8), (4.11) and (4.12), each [®*;a*%7] belongs to
the following class.

Definition 5.4. Let Qllé’fn denote the set of all [®;a] € AR* satisfying:
O |K(®)(F;2)], |Proj(®)(7;2)|, |Cin(®)(F;2)| = 2~M+  for (7;2) € suppa.

Here M > 1 is an appropriate chosen absolute constant.
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Observe, however, that the [®*; ¢%7] lie in 2A**(*) but do not belong to Ql’éﬁ(k);

it is for this reason that this part of the operator is isolated in the analysis. Indeed,
the amplitude ¢®7 is supported on the region |r — t| < 27¢(*) and therefore x(®),
Proj(®) and Cin(®) can vanish on supp ¢®“. Nevertheless, these quantities only
vanish on a small set and, in particular, [®*;¢*?] belongs to the following class.

Definition 5.5. Let €%, denote the set of all [®;c] € A***) such that, for all
0 >0, if (x,t;2) € supp ¢ with |t — x5| > J, then
Colic IK(®@)(,1:2)], [Proj(®)(z,t:2)], [Cin(®)(x,t: 2)| 2 62~V

As before, M > 1 is an appropriately chosen absolute constant.

5.3.2. The cases m # 0. If m > 0, then (4.8), (4.11) and (4.12) show that [®™;a"7]
belongs to i’lg’& =: 22, . On the other hand, if m < 0, then [®™; ﬁm";] belongs to
the following class.

Definition 5.6. For m < 0 let ¢ denote the set of [®;¢] € A™ satisfying C)_,,.
5.4. Rotational curvature decomposition. Further decomposition is required
in order to isolate the regions where the rotational curvature vanishes.
5.4.1. The case m = 0. Let €, > 0 be a fixed constant, chosen small enough to
satisfy the requirements of the forthcoming proof, and define

bk’e";(u, r it v, p) = ﬁk’[’ﬁ(u,7"7t;v,p)n(sglRot(q)f’e)(u,r; v,p))).
In view of (5.9), one may readily verify that b¥*7 is identically zero unless |[¢—2k| <

. : 5 k,2k
1, in which case [®%¢; b%6] € AL =: BE, .

Vanishing rotational curvature. To analyse the operators A[<I>,’f e bf ’5’6] it is neces-
sary to exploit the fold conditions discussed in §4.1. The observations of §4.1 imply
that [®%; b*7] belongs to the following class.

Definition 5.7. Let Bf . denote the set of all smooth families of defining pairs
[®;b] € A¥2F that, in addition to a)y 2k, P1)k.2k, P2)k.ok, satisfy:

The support condition:

b)i supp b; is contained in an O(e,)-neighbourhood of supp b; N Z; where Z;
denotes the fold surface

Zy = {(2;2) € R* x R* : ®4(x;2) = Rot(®;)(z;2) = 0}. (5.17)
The fold conditions: For every (xo; z9) € supp by, N Z;, there exist:
F1)r Vectors U = (uy, ug,u3),V = (v1,ve,v3) € R3 satisfying

2 (I)tg 11 17 —4k/3
‘<82Z<U’ {800(1)% > (Io;ZO)V v 2 ’

[, )

where U” = (ug,u3) and V" = (ve, v3).
Fo)r 3 x 3 real matrices X and Z such that:
i) If X% and Z% denote the (i, j) entry of X and Z, respectively, then

y =2k 3£ (7 5 y
|X”§{ 2 if (i,7) € {(1,3),(2,3)} 1z <.

U//7 U//>‘ ~ 2—4k/37

(z0520)

1 otherwise
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i) Xes =U, Zeg =V and |det X| ~ |det Z| ~ 1.
iii) The matrices X, Z transform 9(®;, )(zo; 20) into the normal form

XT Oim(q)to)(l’o;zo) 07 = |:Mto('go;z()) 8:| ,

where the 2 x 2 principal minor satisfies | det My, (2¢; z0)| ~ 24%/3.

For [®%¢; b%4:7] the support condition is satisfied owing to the choice of locali-
sation whilst, for the fold conditions, U, V and X, Z can be taken to be suitably
rescaled versions of the vectors in (4.5) and the matrices in (4.6), respectively.

Nonvanishing rotational curvature. By (5.9), each [®%*; ak%% — p*47] helongs to
the following class.

Definition 5.8. Let ng’ft denote the set of all [®;a] € A** that satisfy
R)i¢ Rot(®;) ~ 1 on suppa,.

Recalling (5.12), to prove Lemma 5.1 i) it therefore suffices to show:

_ 2k 2V .
Isup AW belll] -, 1 <2 FH=Dkken p]| o if [@; 6] € B, N B,
S
_e(k,0) _2\L_ .
IsuplA@ssalll| g0 S 27 B TP if [@0] € AGE NARS,,
S

where I is an interval of length |I| ~ 1 containing the ¢-support of a or b.
Similarly, by (5.10) and (5.11), each [®*;¢*7] belongs to the following class.
Definition 5.9. Let ¢& . denote the set of all [®;c] € €* that satisfy R)y,e(k) and

R*)r  Rot(®},) ~ 1 on suppc},
where @} (x1,t;2) 1= ®4(x1,20; 2) and ¢, (x1,1; 2) 1= ¢;(@1, T2; 2).

Thus, recalling (5.13), to prove Lemma 5.1 ii) it suffices to show:

< 27 F =Dk ken )| oy if [@;¢] € ey, N ek,

I sup|A[<I)t;Ct”HLp_>Lv ~
tel

where [ is an interval of length |I| ~ 1 containing the t-support of c.

5.4.2. The cases m # 0. If m > 0, then it follows from (5.15) that [®™;a™] €

2[%’2,6 =: A% .. On the other hand, if m < 0, then (5.15) implies that [®™;a™°] has

favourable rotational curvature properties once the roles of the r and t variables are

interchanged. In particular, in this case [®"*; "] belongs to the following class.

Definition 5.10. For m < 0 let 2AF., denote the set of all [®;a] € A™ that satisfy
R*),n  Rot(®},) ~ 1 on suppaj,

where ®% (21,1;2) := ®¢(w1, 225 2) and a} (21,1 2) := ap(z1, 225 2).

Thus, recalling (5.16), to prove Lemma 5.1 iii) and iv) it suffices to show that

| sup | A[®y; oy S llallon if [®5a] € ALy, N A
I btlelll) Al alll|,, ., S 27 sup ||a||03¥1,z¢ if [®;a] € AT, NAR.,, m <0,
2

where I is an interval of length |I| ~ 1 containing the ¢-support of a.
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5.5. Frequency decomposition. Given a smooth family of defining pairs [®; a]
note that, since the inverse Fourier transform 7 of the cutoff n from (5.1a) has unit
mean,

Ao fla) = tim 20 [ 25 2))au(a2)(2) d,
J]—00 R2
where 7 is a bump function as in (5.1a). The integral formula for 7 then yields
o0
Ay a¢] = A<g[®y; 0] + Z Aj [P o]

Jj=J

for any J € Z where
1 ; .
Acs@salf(@) =5 [ [ P antasn’ (0)d6 £(2) dz,
T JrR2 JR

Alwsalf@) =5 [ @0 fe) e (618)

This provides a frequency decomposition of (4.1). The low frequency part of the
operator (corresponding to A< ;[®,; a;] for a suitable choice of J) can be dealt with
via pointwise comparison with the Hardy—Littlewood maximal operator, and so the
remainder of the article will focus on the high frequency parts. In view of this and
the observations of the preceding subsection, Theorem 5.1 is a consequence of the
following proposition, which will be proved in §7 and §8 using the theory developed
in §6.

Proposition 5.11. There exists N € N, g, > 0 such that for all k > —4, (k,0) €
B, j > —e(k,£)/3 and 2 < p < oo, the following bounds hold, with the implicit
constants depending on p. In each inequality, I denotes an interval of length |I| ~ 1
containing the t-support of the amplitude.

(i) For [®;b] € BE, NBE ..
—(iV0)es o—2E 4+ (1—2)k—
[ sup 14, (@03 bi] 1], 5 270527 SO ol | £
te
.. k.l k.l
(i) For [®;a] € Ay, N ARy,
[sup [ A;[@4; 0.l ], < 270V 2 A=DEk g o | £
tel
(iii) For [®;¢] € €&, nek
(3 _ 2k 2y _
[sup 14, (@ el ], S 27OV 2TE TR e o [ ]
te
(iv) For [®;a] € AL, NAL .,
[ supl4; (@0 adlf1], S 277 lallow I 1
(v) For m <0 and [®;a] € AT, NAF.,,

[ sup | A; (@] f] [1£[lp-
tel

—jepome
’p < 277Ermep sﬂlulj) Ha”c«i}sz’t
Remark. Here cases i), iii), iv) and v) are understood to hold for ¢ = 2k so that
j ranges over values j > —2k/3, with k = 0 in the cases iv) and v). In each case,
similar estimates hold for A<_ . ¢)/3[®:; a;] (corresponding to the low frequency
part), which can be proved by elementary means.
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6. L? BOUNDS FOR TWO PARAMETER OSCILLATORY INTEGRAL OPERATORS

The first step towards establishing Proposition 5.11 is to obtain L? bounds for
the frequency localised pieces with favourable dependence in the parameters & and
£. This will follow from certain estimates for maximal functions associated to two
parameter oscillatory integrals, which will be proven in this section.

To this end, let U € R? x R¢ be an open set, ¥ : U — R be a smooth phase
function and a € C§°(U). Consider, for A > 1, the oscillatory integral operator
associated to the phase/amplitude pair [¥;al,

T f(z) = TMV;d]f(x) := / M @2 g (2 2) f(2) de. (6.1)
Rd
We now let 0 < 0, < 1 and we shall assume that the following nonisotropic
derivative estimates

|02 07W (2; 2)| + 85110707 00, V(w3 2)| < Cays (6.2)

hold for all (z;2) € U and all o, 8 € N&. We shall then derive estimates in terms
of the two parameters A > 1 and J§, < 1. Our results could be rewritten as a two
parameter oscillatory integral estimates with phase A(p(z'; 2) + dot0(x; 2)), where
x = (2/,z4), and uniform upper bound derivative estimates on ¢ and ).

6.1. The nondegenerate case. We first formulate a variant of the classical L?
result of Hormander in [13] under the assumption (6.2).

Proposition 6.1. Let A > 1,0 < d, <1, ¥ be as in (6.2) and suppose that there
is ¢ > 0 such that |det 02, W (xo; 20)| > o for some (zo;20) € U. Then there
erist €0 > 0 and N > 0, independent of A and o, such that for all smooth a with
supp a C Be_(xo; 20),
_d=1 _
1T 2 (ray s p2ray S AT 2 min{(Ade) ™2, 1} |lall v

Proof. After applying translation operators we may assume (x;zp) = (0;0). The
kernel of TA(T*)* is given by

Kz, y) ::/ e ANV @)=Y Wi2) g (2 2)a(y; 2) dz,
Rd
and by the Schur’s test, the desired estimate follows from the bounds

sup/ \K’\(a?,y)|dy, sup/ |K>‘(x,y)|da: 5)\_(d_l)min{(Aéo)_l,l}HaHéN.
zeRd JR4 yeRd JRd

(6.3)
We have

V. (¥(z;2) — U(y;2)) = As, (z,9; 2) [5O(xf;d_y/yd)}

where z = (2/,24),y = (v, ya) and
1 _
0% U 6107 \IJ]
A AT, Y3 2) = / |: 5° i 5 Td ’ dS
’ ( Y ) 0 azdiﬁll:[l 50 183dzdl:[} (y""s(m_y)?'z)

By (6.2) we have || 45, ||c~v Sy 1. Also clearly |det As, (0,0;0)| > ¢ and thus there
is an €, > 0 such that for |(z,y; 2)| < &, the matrix A; is invertible and we obtain
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the estimate |02, A5 (z,y;2)|| < Cq for all a € N§¢ for the matrix norms of the

derivatives of Agol. Hence for |z|, |y, |2] < e
V(0 (x5 2) = U(y: 2))| = e(|a” — y'| + dolza — yal)-
By (6.2) we have
|02(¥ (x5 2) — Uy 2))| < C]2" — /[ + do|a — yal)
for all o € Nd. By repeated integration-by-parts in the form of Corollary A.2, with
the choices of p(x,y) = |2’ — ¢'| + do|Ta — ya| and Ro(z,y) = 1, one obtains
[, 9)| S llallEs (L4 Alz" = y'| + Adolza — yal) ™.
In view of the compact support of a, the desired bounds (6.3) follow from integrating

in x € supp a for fixed y € supp a, and in y € supp a for fixed x € supp a
respectively. (I

6.2. A two parameter oscillatory integral estimate under two-sided fold
conditions. We shall also formulate a variant of the L? estimates for oscillatory
integral operators with fold singularities of Pan and Sogge [24], which are based on
the previous work on Fourier integral operators by Melrose and Taylor [18], under
the assumption (6.2). We will instead follow the approach in the works of Phong
and Stein [25], Cuccagna [8] and Greenleaf and the fourth author [11].

Proposition 6.2. Let A > 1, 0 < §, < 1, ¥ be as in (6.2) and suppose that for
some (xo;20) € U there is ¢ > 0 such that

| det 02, W (z0; 20)| > c, (6.4a)
agmd\ll(l'o; Zo) = O, 8§dI\II(x0, Zo) = 0, (64b)
|8§d2d2d\11(330; 20)| > ¢do, |8§d$d$d\11(m0; 20)| > cdo. (6.4c)

Then there exist e, > 0 and N > 0, independent of A\ and d,, such that for all
smooth a with supp a C Be_(xo; 20),
d—1

1Tz () p2eay S A™7% min{(Ad6) ™%, 1} lallow .

Following [25, 8, 11], we decompose dyadically our operator according to the size
of det 92, W. It is useful to consider the auxiliary quantity

o=0o(U) =02, U—02 [0, 0)] 02,0, (6.5)

Tdzd
which measures the size of the mixed Hessian. In fact, note that if A is an invertible
(d—1) x (d — 1) matrix, b,c € R¥"! and d € R, one has the identity

I 0][A bl _[A b
—c"A™Y 1] |eT d| |07 d—cTA Y

det 92, W (x; 2) = o(z; 2) det 02, U(x; 2) (6.6)
for (z;2) near (xo;20). Hence we get, assuming that e, is small enough,
lo(z;2)| ~ | det 92, W(x; 2)
The fold conditions (6.4c) together with (6.4b) imply that
00,0 (23 2)| = 103 10,2, ¥ (23 2)| + Oleado),
10200 (25 2) = 163 12,2, (@3 2)| + O(ecds),

and therefore
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and using (6.4c) we get

|0z, 0(x; 2)] ~ b0, |0,,0(z; 2)| ~ do. (6.7)
Finally, note that the assumption (6.2) implies
05070 (23 2)| Sanp 0o (6.8)

for all o, 8 € Ng.
Let ng,n be C*° functions on the real line with
supp 1o C [-2, 2], supp 1 C [-2,—1/2]U[1/2,2].
For A\ > 1, set
M := max{|logy(A\'/?)],0} (6.9)
and define

TN () = / AT s 2 (275, o (2 f(2) dz, 0 <m < M, (6.10)
Rd

T f (1) ;:/ e @2) g (25 ) (2M 65 o (2 2)) f(2) dz. (6.11)
Rd'

By (6.6) and (6.8) we have |det 2, ¥| ~ 27™§, on the support of the amplitude
in TA™ if 0 < m < M and |det 82, 9| < 27Mg, < A~1/25, on the support of the
amplitude in TMM .

Proposition 6.3. Let A > 1, §, < 1, [¥;a] be as in Proposition 6.2 and M as in
(6.9).
(i) If X > 651 then, for 0 <m < M,

d—1

1T ™ || L2y 2y S AT min{(27/(A60)) 2,27 Y al o
Moreover,
HT)\’MHLZ(Rd)%LZ(Rd) < )‘_%HGHCN-
(ii) If 1 < X <651 then, for0<m < M
17" 2y 12 ey S 27277 allow.
Moreover,
I M 2y s 12y S A% lalo
We first note that the bounds in Proposition 6.3 imply Proposition 6.2 by sum-
ming in the m-parameter.

Proof of Proposition 6.2, assuming Proposition 6.3. Let n, 8 be defined as in (5.1a),
(5.1b). Taking n1 = S(] - |) and 19 = n in the definitions (6.10), (6.11), we have
™ =M A

If Ado < 1, the bound trivially follows from summing in m the estimates in (ii)
in Proposition 6.3.

If Ado > 1, note that the bounds in (i) in Proposition 6.3 imply

_d-1 . _ _
ITM 2o S A2 ( > 272 (A\6o) 1% + > 2 m)||a||cN
1§2mg(>\60)1/3 ()\60)1/3<27n§>\1/2
< AT (M) T3 aow,

as desired. O
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6.3. Proof of Proposition 6.3. We fix N > 100d. As the operators depend linearly
on a we may assume ||a||c, < 1. The proof is based on a variant of the arguments in
[25], [8], [11]; the latter two are themselves inspired by the Calderén—Vaillancourt
theorem on the L? boundedness of pseudo-differential operators [6]. Again, by
performing translations we may take (xg;z9) = (0;0).

Recall that, by hypothesis, ¢(0;0) = 0 and by (6.8) and (6.7) we have that
02,0| ~ 66, |0:,0| ~ 66 and |020%0| <a.p do in B, (0;0) for some small e, > 0.
By an application of a quantitative version of the implicit function theorem (see for
example [7, §8]) there exist smooth functions

(25 2) = u(2'; 2) and (x;2") = v(z;2'),
defined for |2'| < 2e,, |2| < 2e, and |z| < 2e,, |2'| < 2e, respectively, such that
oz u(@’;2);2) =0 and o(x; 2’ 0(x;2") = 0.
Furthermore, by (6.7)
lu(z’; 2) — zql, [0(2;2") — 24| ~ 6, |o(; 2)].

We may expand |zg — yq| < |zq —u(2’; 2)| + |u(z’; 2) —u(y’; 2)| + |w(y’; 2) — ya| and
obtain the crucial estimate

|o(52)] ~ 270, o (y; 2)| ~ 2700 = |wa—yal S27" + 12" —y|  (6.12)
and similarly (using v)

lo(z;w)| ~ 27™8, lo(x;2)] ~ 2700 = |wg — 24| S27™ + Jw' — 2.

These observations suggest further decomposing the amplitude into functions
supported essentially on Ce,2™™ cubes. Let ¢ € C§°(R) supported in (—1,1) such

that >° ., C(-—n) =1. Set
d
b (5 2) = a(w; 2)m(2m6; Yo (a; z))(H Clegt2mw; — pj)C(es 2™z — I/j))
j=1

and write the corresponding decomposition

T>\;m — T)\,m
E nv
(p,v)€EZEXZ4

y Y uv

where T2, f := TA[W; b7 ] f. Observe that

82950™ (2 2)| < 2mUel+1BD

zpv
for all a, 8 € N¢. By the Cotlar-Stein lemma (see, for instance, [32, Chapter VII,
§2.1]), the proof of the proposition reduces to showing the estimates
A~E@=D min{2™ /(\6,), 2727}
(L+ |p— fl + v = 7))

1T (T s + (L) T35 22 < (6.13)

pv

for all (u,v), (i,7) € Z% x Z4. The proof of (6.13) is divided in two cases.
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Off-diagonal estimates. The first step is to establish (6.13) in the off-diagonal case
where

max{|p — fil, [V = 7} > Cainges ! (6.14)
for a large absolute constant Cgiag > 2, chosen independently of €,. To this end, it
is convenient to introduce the kernels associated to the operators of the type T7T*
and T*T. The Schwartz kernel of T:‘l;m(Tg‘ém)* is given by

pv, v nv, i

KN (2,y) = / eV (@) =T yzDpm (g 2) de, (6.15)
Rd
and the Schwartz kernel of (T, ;I\llm)*Tﬁ\ém is given by

jnZan% %

K™ (2, w) ::/ e"AW(@z) =Wz pm (2 w) da;
Rd

here the symbols are given by
bzlz/ ;,w(x’y;z) = le/(x7z)b:2nD(y7z)7 b:Lnu,ﬂﬁ(x;Z’w) b[“/( )byu(x UJ)
Lemma 6.4 (Off-diagonal estimate). Let 1 < 2™ < \'/2 and suppose that (6.14)

holds.
i) If | — fi| > Caiages !, then (T™)* Tf\~m =0 and

uv
T (T ™) lloe Sav 2720 (A272" | — i)™

it) If [v — 0| > Caiages t, then T, m(Tflm)* =0 and
(T T llome Sav 2724 (A272 ™ v — o)™V,

Proof. Ounly the proof of i) is given; the same argument can be applied to ii) mu-
tatis mutandis (the asymmetry of assumptions regarding the x4 dependence does
not make a difference for the current proof). Furthermore, if |i— | > 2, then it im-
mediately follows from the support properties of the symbols that (T)‘ oy T =0

av
and it only remains to consider the Schwartz kernel Kﬁ‘y”;”m( ,y) of of T, (T, é\l-,m) .
By Schur’s test, the desired estimate follows from
2—2dm(2—2m)\)—N
=N
First note that, provided Cging is suitably chosen, combining the hypothesis
| — fi| > Caiages ! with (6.12) yields

sup [ eldy. sup [ K (@) do S (6.16)
R

R4 yERd

|xd - yd‘ rg |.’E, - yl‘ on supp bp,y v (617)
Thus, by Taylor’s theorem and (6.17)
92, (W(as2) — (55 )| S |2/ /] (6.183)

For the lower bounds we use (6.4a) and, from (6.4b), 92, ¥(0;0) = 0, to deduce

0,V (x;2) — 0. (y; 2 /8zx,\11 y+s(z—y);2)ds(z' —y') + O(eo|za — yal)-

Thus, from (6.17) we obtain that, for (x,y; z) near (0,0;0),
|02 (U (2;2) — W(y; 2))| > cla’ — o/ (6.18b)
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Finally, [03b77), 23] Sa 2mleland the z-integration is extended over a set of diameter
O(27™). By (6.18b) and (6.18a), we may use repeated integration-by-parts in the
form of Corollary A.2; with the choices of p(z,y) := |2’ — ¢/| and R(z,y) := 1, to

obtain
(K, y)| S 27027 A2 — o).

jyny
By (6.12), the kernel is identically zero unless |p3—fiz| < max{1l, |u’'—f'|}. Provided
Cdiag is sufficiently large, ¢/ — @'| ~ |pn — | and, furthermore, ¢/ — /| > 2.
Consequently, e;12™|2" — /| ~ | — fi| and so

[EN" (2, y)] S 27272 A\ — ).

%
For fixed z, the support of y — K;‘l’,’zﬁ(x,y) is a set of measure O(2-%™) and
likewise, for fixed y the support of z — K;);TM (z,y), and (6.16) follows. O

Diagonal estimates. The proof of (6.13) has now been reduced to the following two
lemmata.

Lemma 6.5. Suppose that X > 1 and 1 < 2™ < \Y2. Then, for all (u,v) € Z4x 7%,
T2 lose S 27 AT/,
Furthermore,
T2 M o S A2
Lemma 6.6. Suppose that A6, > 1 and 1 < 2™ < (A6,)'/3. Then for all (u,v) €
74 x 7.2,
1T sz S 27265 2N/,

Note that the estimate in Lemma 6.6 is better than the estimate in Lemma 6.5
in the range Ad, > 1, 1 < 2™ < ()\(50)1/3.

Proof of Lemma 6.5. Let I,,,, J,, denote the intervals of length £,2'~™ centered
at T, = €02 Mg , 2u, = €027 "1y , respectively. For g € L?(R4™1) define

T:\l,/m,xd,zdg(x/) — / eiA\I/(x’,a:d;z’,zd)bZI;V(x; z)g(z’) dZ/
Rd—1
and observe that
T (@) = L, (w0) [ T () dea
vd

The Schwartz kernel Kﬁ‘,;m’“’zd («',y") of T:‘,;m’“’zd (T[L\;,M’“’zd)* is equal to

iU (2 xq;2",20) =V (y ,xq;2" 24 m / ) . /
/ M@ wai2’za) =W (Y za f’))bw(x s xa; 25 2a)b (Y wa; 25 z2q) 2
Rd—1

We use integration-by-parts based on (6.4a); that is, we use the (d — 1)-dimensional
case of Corollary A.2 with the choices p(z',y’) := |2’ —y/|, R(z,y) := 1 and the fact
that 0% applied to the amplitude yields a term which is O(2™*). This implies

IK’)L\;/m,zd,zd (.Z‘/,y/)| SN 2—m(d—1)(1 + /\2—m|x/ _ yll)—N
uniformly in x4, z4, and by the Schur’s test one has

[T %4 | o ga-1y po(ra—1y S A™@D/2)



THE CIRCULAR MAXIMAL OPERATOR ON HEISENBERG RADIAL FUNCTIONS 29

Consequently,

1/2
HT/\ mf||L2 R4) / / ”T)\mmd’zd[ ( Zd)]”%Q(Rd—l)dxd) dzq
T,

/—b

< 2,m/2)\7(d71)/2/ |Hf(.’zd)]||L2(Rd_1)dzd

vy

S 27N D2 f o e

~

and hence [T |la2 S 27™A(@7D/2 as desired. The arguments for Ty is

analogous. [
Proof of Lemma 6.6. Let Kﬁ‘;,m = Kﬁ‘;,’zl, denote the kernel of T;},;m(TI;\,;m)*, as
given by the formula in (6.15). It will also be useful to write b}, for the symbol
bm By the Schur test, the problem is reduced to showing

N2
sup / KN (2, y)| de < 2785 A, (6.192)
yeR JR4
sup / |K;>;,m(x,y)\ dy < 2me A~ (6.19b)
z€eR4 JR4

Since Tli‘,;m(T/j‘l;m)* is self-adjoint (6.19b) follows from (6.19a). We proceed to show
(6.19a).

Since the partial mixed Hessian 92, , ¥ is non-singular, there exist local solutions
in 2’ to the implicit equation V., ¥ (x;z) = V., ¥U(y; 2z). In particular, by applying
a quantitative version of the implicit function theorem (see, for instance, [7, §8]),
provided €, is chosen suitably small, there exists a smooth R4~ !-valued function
(x4,y,2) — X(xq;y; z) defined by

0, V(X (xg;y;2), a5 2) = 0.V (y; 2), (6.20)
X(yasy;2) =y (6.21)

Implicit differentiation yields
ade(xtﬂ Y; Z) = _(az’z’ql) 182

Z:Ed

. 6.22
‘(X(de;Z))a:d;Z) ( )

From this formula, the chain rule and the definition of ¢ one deduces that
02y [0:0V (X (24595 2), 245 2)) | = 0(X (2a; 95 2), 245 2). (6.23)

Notice that the right hand side of (6.22) vanishes at (z4;y;2) = (0;0;0) and that
0y X (wq;y;2) = O(d,). Hence we get

|02, X (245 Y 2)| < €00o- (6.24)
Moreover, implicit differentiation of (6.20) with respect to z yields
020 V(X (223 Y5 2), ya; 2)0: X (a3 y3 2) = 02V (Y, yas 2) — 02, V(X (243 Y3 2), 2a; 2)
Sy = X(2a3y;2)| + dolzd — yal

= O(0olza — yal),
where we have used (6.21) and (6.24). This gives
0: X (za;y; 2)| S Golwa — yal- (6.25)

We shall now state the inequalities for the integration-by-parts argument which
will allow us to prove (6.19a). In what follows we write X := X(z4;y;2) and
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X, := X(xq;y;2,) where z, := £,2™v, noting that the z-support of by, lies in a
ball of radius O(g,2~™) about this point. We claim that
1020 (23 2) — 02y 2)] < Ca (| — Xo| + ol — yal) (6.26)
and
VoW (z;2) — Vo U(y; 2)| > c(|2’ — Xo| + 6027 wa — yal)- (6.27)

To see (6.26), by Taylor expansion the left-hand side is dominated by a constant
times |2/ — y'| + do|zq — ya|- We then bound |z’ — | < |z’ — X, | + |y’ — X, | and,
using (6.21), by the mean value theorem, (6.24) and (6.25) one has

Iy — Xo| < |X(za5y;2) — X (Wa; 5 2)| + | X (yas v 2) — X (Ya; 5 20)|
S dolxd — Yal-

Now (6.26) easily follows.
We turn to (6.27). Taking a Taylor expansion in the 2’ variables,

0,V (x;2) — 0. V(y; 2) = 0,V (x5 2) — 0 V(X 4; 2)
=02, V(X,z4;2)(z — X)+O(]2' — X|?) (6.28)
whilst, by a Taylor expansion in the z-variables, the last expression is equal to
2 U(X, 2q;2) (2 — X)) + O(|2 — Xp|? 4+ €027 66 |24 — yal)- (6.29)

Here the additional error term arises by applying the mean value theorem to | X —
X, | together with (6.25).
On the other hand, one may write 9,,¥(x; 2) — 0,,%(y; ) = I+ II where

1:=0,,U(X,xq;2) — 0,,9(y; 2), I1:=0,,V(x;z)— 0,,¥(X,x4;2).

To estimate I, take a Taylor expansion first in the x4 variable and then in the z
variable to obtain

1= 0(y;2)(xa — ya) + O(do|za — yal®)
= 0(y; 20)(xa — ya) + O(£027 s |za — yal)- (6.30)

Here o appears owing to (6.23) and (6.21). The second estimate holds due to (6.8)
and the localisation of the (z, y; z)-support of by~ To estimate the II term, arguing
as in (6.28), take a Taylor expansion in the &’ variable and then in the z variable
to obtain
II=02,9(X,z42)(2' — X)+ O(J2' — X|?)
=02 o U(X,2q;2) (2 — X)) + O(eo|2’ — X| + €027 00 |zq — yal).  (6.31)

24T

In the last step we applied (6.25). From (6.29), (6.30) and (6.31) we get (assuming
€ is chosen sufficiently small) that

0.0 (2;2) — 029 (y;2)| > erla’ — X,| i 2" — Xo| > Creo27 " dolxa — yadl
and
0., ¥ (2;2) = 05,9 (y; 2)| > (06/2)27 " |2a — Y
lf |.Z'/ — Xy| S 01502_7?7’50'-%(1 - yd|7

and these inequalities imply (6.27).
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We now estimate K 2’Vm(x,y). Using just the size and support of the integrand
we get

(K" (zy) S 27 (6.32)

which we use for |2/ — X, | + 27" |wg — ya| < X7 L.

Now assume |2/ — X, | + 27" 0o|xq — ya| > A™1; we use integration-by-parts to
improve on (6.32). By (6.26), (6.27) we can apply Corollary A.2 with the choices
R(z,y) :=2™ and p(x,y) := |2’ — X, (24, y; 20)| + 27 ™ 6|24 — ya|. We also use that
for fixed x, y the amplitude is supported in a set of diameter 2~™ and the estimates

|02 by, (. 2)b), (y, 2)]| S 21,
Altogether, Corollary A.2 yields, for z # vy,
K ()] S 27NN (2! = X+ A2 Golea — yal)
Combining this with (6.32) we obtain
KN (@, y)] S 271+ X272 — X, |+ A272 80 |2g — yal))

Fixing y and integrating in x yields
/d |K,i\l,lm(x, y>| dz 5 2_md(2m)\_1)d_122m)\_1(50_1 5 2m60—1)\—d’
R

which is the desired estimate for the first term in (6.19a). This finishes the proof
of (6.19a) and the proof of the lemma. O

6.4. Uniform estimates depending on a t-variable. The estimates obtained
in Propositions 6.1, 6.2 and 6.3 will be used to obtain L?-bounds for the operators
A;[®;;a4]. To this end, we shall allow a t-dependence in our operator and obtain
uniform estimates in t. Consider now an open set U C R? xR xR?, a phase function
U : U — R and an amplitude a € C§°(U), and define

U(x;2) = W(x;t;2)  and  ag(x;2) = a(x;t; 2). (6.33)

Given A > 1, let T} denote the oscillatory integral associated to the pair [¥;; a;] as
in (6.1), given by T} = T*[¥,;a,]. For 0 < §, < 1, we assume that the condition
(6.2) continues to hold under t-derivatives. That is, the estimates

1020207 (w3 2)| + 051102020 00, V(3 2)| < Capy (6.34)

hold for all (z;t;2) € U and all o, 3 € N&, v € Ng. Thus, if the condition
| det 92,0, (20; 20)| > cdo holds for some (z¢;to;20) € U, Proposition 6.1 in con-
junction with (6.34) immediately extends to a uniform estimate for the operators
T for all |t — to| < o, for suitable &,. Likewise if (6.34) holds and the conditions
(6.4a), (6.4b) and (6.4c) are satisfied at a certain (xzo;to; z0) € U, Propositions 6.2
and 6.3 also extend to the operators T} for all |t — to| < &5, with uniform bounds
on t; note that (6.34) implies that the quantity o.(x;z) = o(x;t;2) defined as in
(6.5), also satisfies the derivative bounds (6.8) under ¢-differentiation, that is,

105020] 04(x; 2)| Sapy 0o (6.35)
holds for all (z;t;2) € U and all o, 8 € N, v € Ny.
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6.5. Estimates for maximal oscillatory integrals. We now state the version
of the estimates in Propositions 6.1 and 6.2 for the maximal functions associated
to the oscillatory integral operators T}

To obtain such maximal estimates we will assume that (6.34) holds and that, in
addition, there is d,-smallness when we differentiate with respect to the t-variable;
more precisely we assume that

|00 000] W (5 2)| Sy b (6.36)
holds for all (z;t;2) € U and all o, 8 € N&, v > 0.

Proposition 6.7. Let [U; a] be as in (6.33). Suppose ¥ satisfies (6.34), (6.36)
and | det 92,9y, (w0; 20)| > o for some (xo;to; z0) € U. Then there is e, > 0 and
N > 0 such that, under the assumption of a; supported in Be (g, 20),

SA T laflon.

H sup |T)\[\Ilt;at””L2(Rd)_)L2(Rd) ~

‘t*to‘gso
Proposition 6.8. Let [U; a] be as in (6.33). Assume that U satisfies (6.4a), (6.4b)

(6.4c) at a certain (xo;to; 20) € U, the estimates (6.34) and (6.36) and, in addition,
assume that

04V (z;2) = ci(x; 2) det 92, W4 (25 2) (6.37)

for some ¢ € C*° in a neighbourhood of supp a. Then there is €5 > 0 and N > 0
such that, under the assumption of a; supported in Be_ (g, 20)

_d-1
H‘t sup T )| ooy poray S A7 10g(24 Ado)allen.
—10|S€0

The proofs rely on a standard Sobolev embedding inequality (see for instance [32,

Chapter XI, §3.2]). Namely, for a C! function ¢ — g(t) supported on an interval I,
with tg € I, we have, for 1 < p < o0,

-1
Sup lg®)” < lg(to)” +pllgll Lo pll9 Il (6.38)

which follows by the fundamental theorem of calculus applied to |g|? and Holder’s
inequality. We can apply this to F(z,t) with F' € LP(R%; C'), and after integrating
in x and another application of Holder’s inequality, (6.38) gives

: -1
”StlelllﬂF('vt)ngp(Rd) < tIOIgIHF('atO)Hip(Rd) +pHF||1£p(Rd><1)”atF”LP(Rde)- (6-39)

Proof of Proposition 6.7. Note that if T := T*[Uy;aq], then 0T} = TAVy;dy,
where d; := (iA0;V4)a; + Oiar. By (6.36) one has ||diflcv S (1 4+ Ao)||at||on+r-
Thus, by the hypothesis and Proposition 6.1 applied to T;* and 9,7} (as discussed
in §6.4), there exist e, and N > 0 such that, if a; is supported in B._(xo; z0), the
bounds

d—1
(14 28) 2T fl oy + (4 A8) 210 L2 aey S A lallow s 1y

hold uniformly in |t — o] < ;. Now the assertion follows immediately by the
Sobolev inequality (6.39) for the exponent p = 2. a
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Proof of Proposition 6.8. Given 0 < m < M, let

TN f(z) = /Rd eV @2 g, (25 2) B(2M07 oy (2 2) ) f(2) dz, 0 <m < M,

T fa) = [ N (M o ) () d
Rd
that is, (6.10) and (6.11) with B(] - |), n in place of 71, no and with the phase-
amplitude pair [¥s; ay].
Using (6.37) and (6.6) we compute

8tTt)"mf(x) = /\50277”/ 6iA\Pf(w;z)5t(x; z)a(x; z)m(?mé;lat(:c; 2))f(z)dz
Rd

+om / N2 97 mY, a4 (25 2) B(2767 o (25 2)|) f(2) dz
Rd

+ Qm/ ei’\‘l’t(m;z)éoflatat(x;z)at(:c;z)ﬁl(Qméglat(x;z))f(z) dz
Rd

where ¢ = ¢,02,,, ¥y, is smooth and 7; (s) = sB(|s|), 1(s) = L (B(]s])). Form = M
we have a similar formula with S replaced by 7. Note that in view of (6.35) we
have |8§8§ [5618t0tat]| 5 Ca,,B~

Assume 1 < 2™ < (AJ,)Y/3. By the hypothesis and Proposition 6.3 applied
to T)"™ and 8,T)"™, there exist ¢, and N > 0 such that, if a; is supported in
Be,(x0;20), one has the bounds

Al Ca—1 2™\ 1/2
1T ey SXF (55) I lzecen
and
_az1 2N\ 1/2 | om
10T Fllieey S AT (55) (027 4+ 27) | flaeay
Ao
_d=1 2™\ —1/2
SAT 2 ()TSO) £ 1l L2 ey

uniformly in [t — tg| < &5, where the last inequality follows because we are under
the assumption 1 < 2™ < ()\50)1/3 < ()\50)1/2. Therefore, the above estimates
combined with (6.39) yield

m _d=1
|| sup \T{\’ f|||L2(Rd)§10g(2+>\5o))\ 2 ||f||L2(Rd)-

0<m< |logy (ASo)1/8)  [ttol<eo

Similarly, if A1/2 > 2™ > min{(\d,)'/3,1}, Proposition 6.3 implies
_d-1
T fll 2 ray S A7 27| 22 ey
and
m 4=l m —m m
10T fll 2y S AT 27 (Ao ™™ +2) || fl| 2o
uniformly in |t — tg] < &,. The above bounds imply, by (6.39), that

=1 ,-m -m m
| sup T gy S AT 27 (A2 22 £ 2 gy,

[t—to|<eo
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and thus

A _as1
Z H sup ‘Tt mf|HL2(Rd) 5 AT ”fHLQ(le)
llog, (A60)1/3 | Al<m<pr  [ttol<eo

follows from summing a geometric series, as A\§,2~™ < 22™ in the range of summa-
tion. Combining both sums one obtains the desired bound by the triangle inequality,
which concludes the proof of the proposition. O

6.6. Radon-type operators in d dimensions versus oscillatory integral op-
erators in d+1 dimensions. In this section we use variables (7; z) € R*! x R4+1
and split z = (z1,2"), 2z = (21,2") with 2" € R?, 2 € R% Recall that the fre-
quency localised Radon-type operators in (5.18) are of the form (with d = 2)

",

Alpsalf) = [ o) [ a@loer e 5 dpas

",

= 9 / a, (" 2)B(lw)e™ ** =D f() dwdz",(6.40)
RxR4

We rely on an idea in [32, Chapter XI, §3.2.1] to show that a LP(R?) estimate for
sup,e; |A;[®¢; ae] f| is implied by a LP-estimate for a maximal function associated
with a closely related family of oscillatory integral operators acting on functions on
R4 which we will presently define. N

Recall that § is supported in [1/2,2]. Let 8 be supported in (1/4,4) such that
also B(s) = 1 for s € [1/3,3]. Notice that 3(s)3(us) = B(us) for 2/3 < u < 3/2.
Now let x1 € C§°(R) so that x1(r) =1 on J := [2/3,3/2]. Consider the family of
oscillatory integral operators T2 [¢;; as], as defined in (6.1) but acting on functions
g on R*1 where

br(z;2) = 212194 (2"52"),  and  ar(w;2) = x1(w1)zrae (2”5 2") B(21]21]). (6.41)

Lemma 6.9. Let E C (0,00), @, ¢, a, a as in (6.41), and define

M;[®;a]f :=sup|A;[Ps; a¢] f], M;lp;alg = sup |T2J [; atlgl.
teE teE
Then

| M [®; a] || p (rt)— Lr (re) < 2j(6/5)1/p“§”LP(R)”Mj (93 a]|l Lr (ret+1)— Lp (R+1) -

Proof. For fixed x1 we change variables w = x121 in (6.40). We use that x(z1) =1
for 1 € J and that 5(|z1|)B(x1|z1]|) = B(x1]21]) for (z1,21) € J X R to obtain the
identity

A @y ] f(2") = 2i? (b4 at](§® f)(x,2")  for all z, € J.
This identity implies that
277(|M;[@; a] f || 1o ey < T2 MG (65 a) (B @ £l o(rxmey
< (3/2—2/3)"7| M, a) (B @ f)ll Lo a1y
< (6/5)"7||M;[; alll Lo ra+1)— Lo ras) | Bll o @y Lf | o ey

which implies the assertion. [
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7. PROOF OF PROPOSITION 5.11: L? BOUNDS

In this section we apply the maximal function results in §6 to deduce favourable
L? bounds which will feature in the proof of Proposition 5.11.

Proposition 7.1. For allm < 0, k > —4, (k,£) € P and j > —e(k,0)/3, the
following bounds hold, where in each inequality I denotes an interval of length
|[I| ~ 1 containing the t-support of the amplitude.

D 1500145 005 0y sy S GV D2 bl if 010] € B
i) ” SUII)|A [(I)tvat]|HL2(R2)—>L2(R2) S 2_6(&@)/3”““01\’ if [®;a] € Q[lk{’ft;
i) 500 1A, @03l gy 2 el i [#:6] €
)50 143001 2 g ey S el if [@10] € Ay,
v) H sup | A;[®y; a] |HL2(R2)HL2(]R2) S 2m/? SUP ||“HCN if [®;a] € AR,

As in Section 5, the cases i), iii), iv) and v) are understood to hold for ¢ = 2k,
with k = 0 in the cases iv) and v).

The proof of Proposition 7.1 is presented in what follows. Observe that, by the
definition of the classes, iii) and iv) are both just special cases of ii). Thus, it will
suffice to prove i) , ii) and v) only.

Remark. Only rotational curvature considerations are required to establish the
above L? bounds. The cinematic curvature is used in §8 to deduce local smoothing
estimates in order to obtain summable bounds in the j parameter.

Using Lemma 6.9 the estimates in Proposition 7.1 may be deduced from esti-
mates on oscillatory integral operators acting on functions in R?; in particular, our
assumptions on the phase/amplitude pairs allow direct applications of Propositions
6.7 and 6.8 with suitable choices of the parameters A and .

7.1. Proof of Proposition 7.1 (i). By Lemma 6.9, it suffices to show that

| sup IT% (663 bellll 2 (r3) L2y S 277GV 12722l on,
S

where ¢,(z; 2) = 121@(a”, £; 2”) and by(w; 2) = x(21)1by(2"; 2)B(an|2a]).

First we use the fold conditions, inherent in the hypotheses F1); and Fs); in
the definition of %’ﬁot, to place the operator in a normal form. By assumption
b)k, one may assume without loss of generality, decomposing b; into at most O(1)
pieces, that supp b is contained in an e,-ball centred at some point (z(; to; 2 ) with
(x5 2) € Zi,. Here Z,, is as defined in (5.17). Fix a pair of 3 x 3 matrices X and Z
satisfying the properties enumerated in property Fs);. Since |det X| ~ |det Z| ~ 1,
by a change of variables it suffices to show the L? bound for the maximal function
SUP|t—tg|<eo |T2] (@43 be] f(2)] in R?, where

ét(:c;z) = e (X; Z2), Et(x;z) = b(Xx; Zz).

Now the assumption [®;b] € SB Rot implies that the support of by is contained in
a go-ball centred at (o, to; 20) = (0,2, t0; 1, 2§) € R3 x R x R?; moreover we have
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the following conditions on the derivatives of o

- 2743 if g #£0
0300y (w;2)| < ’
1020 ¢1(w52)] 5 {22k/3 otherwise,

02, .01 (05 20) = 02, b1 (203 20) = 0 and | det 2, by, (03 20)| ~ 2*¥/3,  (7.1b)
|623Z3Z3 gbto (%0; Zo)|, |8§3w3z3 (bto (l‘o; ZO)‘ ~ 2_4k/3’ (710)
109028] ¢y (x;2)| < 274%/3 for v > 0, (7.1d)
Dy (3 2) = &(x, t; 2)27**/3 det H2_ ¢y (x; 2) for some & € C with (7.1e)

uniform C* bounds on supp b.

k

o of defining functions

The following table shows which conditions for the class 8B
imply the conditions in (7.1).

(71&) (I’l)k,Qk and F2)k 1) (71(1) (I)l)k,Qk and F2)k 1)
(7.1b) | Fa)y iii) (7.1e) | ®2)y.0x and Fa)y, ii)
(7.1c¢) | F1)i and Fo)y ii)

One now checks that the phase function
Uy (z;2) = 2_2’“/3%,5(:16; 2)

satisfies the assumptions in Proposition 6.8 with d = 3 and d, = 272% via (7.1). If
we put A = 2772k/3 then AW = 27 ¢ and we can apply Proposition 6.8 to obtain

| sup T [p; billl| L2 (ko) L2 (r3) S AT log(2 4 Ado)[[bllen S 277723 v 1)]b|cw,
as desired .

7.2. Proof of Proposition 7.1 (ii). We again use the reduction in §6.6 so that it
suffices to show

| sup 1T [p4; ad||l L2@e)s Lo(rey S 27727°F0 3 a]| o,
te

where ¢u(1;2) = 2121®(2”, 15 2") and au(e; 2) = x(e)era(e”s )8 |al). The
condition [®;a] € Ql’lf{’ft implies that the phase function ¢.(x;z) = x121P¢(z";2")
satisfies the inequalities

272ekO/3if g #£ 0
0002 ¢y (;2)| < 7.2
10z0:6u(@; 2)| S {26(’“’5)/3 otherwise (7.2)
| det 07, ¢4 (w;2)| ~ 1 (7.3)
020°0) gy (a; 2)| S 272¢RD/3 for 4 > 0. (7.4)

These estimates are understood to hold on suppa; (which has diameter < 1) for
all o, 8 € N3, v € N with implicit constants depending on the multiindices. One
checks that (7.2) and (7.4) are implied by ®1)y, ¢ in the definition of A while (7.3)
is implied by the additional rotational curvature condition in Definition 5.8.

We can now verify that the phase function

Uy(x;2) = 276(’“’4)/3425,5(39; 2)
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satisfies the assumptions in Proposition 6.7 with d = 3 and d, = 27¢*:0_ If we put
= 2+ek0/3 then AU = 27¢$ and by Proposition 6.7 we get

| sup T (615 allll L2 @) 2 @ey S A Hlalley S 27774F03a]| o,
te
as desired. R

7.3. Proof of Proposition 7.1 (v). Again, by Lemma 6.9, it suffices to show that

| sup T2 (45 ar) | 2wy > L2 ey S 2772777 sup |l (7.5)
te T3

@1,w0,2,t
where U(w;t;2) = 21219(2",4;2") and a¢(;2) = x(21)w104(2”;2")B(x1|21]). By
the condition [®;a] € AR, the diameter of the support of a is O(1) and moreover
the following conditions hold (see Definitions 5.3 and 5.10). First, there exists
an interval I, of length < 2™ so that a(x;t;z) = 0 when z3 ¢ I,,. Next, if
Uy (21, 20,15 2) := 2121®(2", 1; 2”") then U} satisfies

272M if g £ 0

o (7.6a)
1 otherwise

02020, V7, (21, 22,1 2)| S {

2
‘det a(m17z27t)7(217227z3)\1/;3| ~ 1 (76b)

In what follows we will freeze z3, so the derivatives with respect to zg in (7.6a) will
be irrelevant for our purposes.
To establish (7.5) we show that if
SZ f(w1,2,t) = T (W} s ab | f (w1, 02,1) = T [Wy; a] f (21, 2, 23),

T3’ x3

where a}_(r1,72,t; 2) = a(x; 2), then we have, for all 3 € I,,,,

GRES i [las2 2 v
s 1,$2,t)| dxq dxo dt + 2 |c’)t5z3f(x1,m2,t)| dxq dxo dt
R3

< 27% 2 sup [|af| o [fll2- (7.7)
x3

T1,%,2,t

Indeed, note that 3t55if(x1, zo,t) = T2 [U% ;% | f(x1,20,t), where

x3) T3

d;S = (223@\1/;3) a+ 3ta*

T3’

and, in view of (7.6a) and (7.6b), the estimate (7.7) is now an immediate conse-
quence of the oscillatory integral estimate in Proposition 6.1 with d, = 1, which
holds uniformly in x5 € I,,. Note that, in this case, our application of Proposi-
tion 6.1 corresponds to the classical Hrmander L2-estimate for oscillatory integrals
[13]. Integrating the square of the left-hand side of (7.7) over z3 € I,,, and using
[Im] < 2™, we get

, . . 1/2
(/ T2 [ Wy a0) f () +272|0, 1% [04; a4) f ()| dary dao dt dm)
I, JR3

1£112-

< 273292 qup ||al| ¢
T3

Z1,29,2,t

By the Sobolev inequality (6.39) and Fubini’s theorem, the desired estimate (7.5)
immediately follows. O
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8. PROOF OF PROPOSITION 5.11: LP THEORY

This section deals with the remainder of the proof of Proposition 5.11. Local
space-time LP estimates are used to establish L? bounds with favourable j depen-
dence when p > 2. These bounds can be combined with the L? estimates from
Proposition 7.1 and L*° estimates to yield the desired results.

8.1. LP bounds. It is first noted that the L? bounds of the previous section imply
LP estimates via interpolation with straightforward L*° bounds.

Corollary 8.1. For allm < 0, (k,£) € B, j > —e(k,£)/3 and 2 < p < oo, there
ezists N € N such that the following bounds hold. In each inequality, I denotes an
interval of length ~ 1 containing the t-support of the amplitude.

i) H sul? |A;[Py; bt]‘HLP R2)sLp(R2) ~ SV 1)2/p2 Qk/SHbH v if [@;0] € B,
i6) - [|sup |45 (@0 0l gy ey S 270 Pllallen if [®:0] € Ay,
iii) | Stlell?m e elll| Lo o)y Lo 2y S <2728 |eflon if [@; 0] € Chey.
i) [ sup |45 @il oy oy S lallon if [@:a] € 29,
v) H sup [A;[®y; at”HLp(W)%Lp(Rz) S2m/p S}EZP ”C‘HCQ’IYM: if [®;a] € AR,

Remark. The estimates from Corollary 8.1 are not summable in the j parameter,

so alone they do not imply Proposition 5.11. However, i), ii) and iii) have better k

dependence than what is required in Proposition 5.11 (by a factor of 2(1_%)k_kep)

and, similarly, v) has a better m dependence (by a factor of 2™/P~™er). This
observation is used below to mitigate losses in £ and m in Proposition 8.2.

Proof of Corollary 8.1. We will only consider i) since the proofs of the remaining
cases are similar. For p = 2 the desired bound is precisely Proposition 7.1 i). By
interpolation, it suffices to verify the bound for p = cc.

Let [®;b] € BE . and recall from (5.18) that

Aj[@s; b4 f(2) = - f(2)by (x5 2)27 (27 @y (25 2) ) d.

Further recall that ®; satisfies Definition 5.7 and, in particular, the condition
®1) 21 as stated in Definition 5.2. Thus, on the support of b, we have

|0.®4(x3 2)| 2 2°H°
and so the desired L*> estimate follows. O
The following proposition provides the crucial j summability for j > 0.
Proposition 8.2. There exist N,M € N and e, > 0 such that for all (k,£) € P,
the inequality

| supIA [ ]| < 2M*277% la]| o (8.1)

L6 (R2)—L6(R2) ~
holds if [®; a] belongs to any one of the following classes:
i) BE., w) AL, taking k =0 in (8.1),
i) Qlcln, v) AT, m <0, taking k = —m in (8.1).
i) CE, NER .
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In (8.1), I denotes an interval of length ~ 1 containing the t-support of a.

Remark. The exponent p = 6 does not play a significant role and is used merely for
convenience (one could equally work with other p values). See the comments after
Theorem 8.5 below.

Assuming this result, Proposition 5.11 easily follows by interpolation with the
estimates in Corollary 8.1.

Proof of Proposition 5.11 assuming Proposition 8.2 holds. For —e(k,£)/3 < j <0
the asserted bounds are an immediate consequence of Corollary 8.1. For j > 0 it
suffices, by Corollary 8.1, to show each of the five estimates in Proposition 5.11
hold for a single value 2 < p, < oo: indeed, once this is established, one may
interpolate the p, estimates with the p = 2 and p = oo cases of Corollary 8.1 to
obtain Proposition 5.11 for all 2 < p < oc.

We interpolate the inequalities from Proposition 8.2 with the corresponding L>°
estimates of Corollary 8.1, or the L? estimate in case v). In the case v), note that
laler < 279WM)™ wwhich is harmless in view of the 2™ loss in (8.1). Therefore,
it follows that Proposition 5.11 holds for some p, in the range 6 < p, < oo for the
cases 1) to iv), or in the range 2 < p, < 6 for case v), concluding the proof. O

It remains to prove Proposition 8.2. By the definition of the classes, Proposi-
tion 8.2 i) and iv) automatically follow from ii). Furthermore, for the purposes of
the argument, the cases ii) and v) are essentially simplified variants of case iii). In
particular, the main difficulties occur in the proof of iii).

8.2. Reduction to Fourier integral estimates. Following the strategy of [19,
20], Proposition 8.2 is derived from local smoothing estimates for Fourier integral
operators. In order to invoke the local smoothing inequalities, it desirable to ex-
press A;[®;; a;] as a Fourier integral operator with two Fourier variables. That such
a representation is possible is a standard result, referred to as the equivalence of
phase theorem (see, for instance, [12] or [9]). Since here, however, the estimates are
required to be quantitative, at least in some weak sense, basic stationary phase tech-
niques are instead applied to obtain an explicit two Fourier variable representation
of the frequency localised averaging operators.

Fourier integral representation. Fix a smooth family of defining pairs [®;a] and,
for the purposes of this subsection, assume that

|k(@)(Z; 2)], |Proj(®)(Z;2)|, |Cin(®)(Z;z2)| > ecin > 0 for all (&; z) € supp a;

moreover, assume that upper bounds for the derivatives of ® depend polynomially
on 2% where k is as in Proposition 8.2. Here ¥ = (z,t) € R? x R. Owing to the
nature of the estimates in Proposition 8.2, here one does not need to be very precise
about dependencies involving various derivatives of ® and a and the bounds on the
curvatures (as opposed to the situation in §7). For instance, the constant e, may
depend on the parameters k,/ and m. In what follows, we will not determine the
precise dependence of our estimates on these parameters but will only be concerned
with showing that it is not worse than 2* for some large constant M > 1.

Given a phase/amplitude pair [®¢;a:], from (5.18) and the Fourier inversion
formula,

Aj[8s; 0,]f () = / R (#:6)(€) de
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where
1 . "

0@+ q(7; 2)B(0/\) df d2. 8.2
o | e (@ 2)6(0/N A0z (82)
This function can be analysed via stationary phase arguments. The critical points
(zer, Ocr) of the phase function

(2,0) = W(z,0;7;) = 09(T; 2) + (2,6) (8.3)

satisfy ®(&; z.,) = 0 and 6.0, P(&; z.) + £ = 0. The former condition implies that
Zer € Bz = {2 € R? : ®;(x;2) = 0} while the latter implies that the normal to ¥z
at z., is parallel to +€. We also have |det 8(2z79)\11| = |0|%k(®) so that the critical
points are nondegenerate.

Let C, > 1 satisfy

(Co/10)71 < |0,®(3;2)| < Co/10 for all (&; z) € suppa.

There are no critical points for the phase if || > 4C. A or €| < A/4C,. Thus, by
repeated integration-by-parts

KN#;€) =

EAN#56) = KM#OB(EI/N) + BN €) (8:4)
where 3(r) := n(C5'r) — n(Cor) and the error E* satisfies
0g[e O BN )] S CNANTN2(1+ €)™ for all [a] < N, (8.5)

with implicit bounds depending on ||a||c~. Note that the value of C, will generally
depend on k or m for the classes considered in Proposition 8.2, but this dependence
is admissible in our forthcoming analysis.

Key example. Let [®;a] € ¢ N &k . The condition ®1)g2; ensures that
10.®(F; 2)| ~ 22#/3 and so C, ~ 22F/3 in this case.

We further analyse K*(T; &) for C51/4 < |€] < 4C, |¢|. Decompose
EN@OB(El/N) = 3 KN )

ISV
where the cardinality of the index set J is polynomial in e¢;, and C, and each K ;\
is of the form

K (7€) = X (7 s>ﬁ / 2 / FOPEIC (7 2)B(0/N) d0dz,  (8.6)

with x, 3, a supported on sets of diameter ¢ with ¢&; < ¢ < ecin.

It suffices to consider the kernel (8.6). If ®(&; z) does not vanish in the neighbor-
hood of the support then the integral represents a smooth function with derivative
bounds polynomial in sailn, Cs. Otherwise we may use the method of stationary
phase, using that the critical points of (8.3) are nondegenerate. In a neighborhood
of the support of the symbol, we can then solve the equation Vg ,U(z,60;%,£) = 0
in (z,0) with z = v(Z; ), 0 = O(Z;£) denoting the solutions; moreover v is homo-
geneous of degree 0 in £ and © is homogeneous of degree 1 in £. Hence

(T v(:€) =0
{G(f;§)8z<b(f;u(f;g))+§ —0 - (8.7)

Furthermore, if
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then (8.7) implies that

p(5€) = (V(7;€), €)- (8.8)
By rescaling and applying the method of stationary phase [14, Theorem 7.7.5], one
deduces that

;E/A
JA@) = T e f, f/ )1)/4 + B(T56/)) (8.9)

where, for some My > 0:
e The symbol a is supported in {C; 1 < [¢] < C,} and satisfies

10507 (& 6)| S (egin + Co + [ @llcavsz + [lafcan )™
and all (o, ) € N3 x N2 with |a/,|8] < N.
e The error term F is rapidly decaying in the sense that
02 [e™" S E(@ /M S (et + [ @lloswsa + [lafloan ) AN (8.10)
for any o € N with |a| < N.
One is therefore led to consider operators belonging to the following class.

Definition 8.3. An FIO pair [p;a] consists of a pair of functions ¢,a € C*°(R3 x
Rz) with & supported in a compact set of diameter 1. For any such pair [p;a] and
1 € R define Fourier integral operators of order p by
Noral f(7) [ eire(@e/n _MTEA)
Rl @) = [
Local smoothing estimates. Under certain ‘geometric’ hypotheses on the phase,
L? — L%, estimates are known for the operators (8.11) with good A decay (in-
deed, the best possible decay (up to e losses) for 6 < p < oo). Here the relevant
hypotheses are stated in a weakly quantitative form. In what follows we use the
notation /\i:1 ¥, for the standard vector product ¥, x ¥ for vectors in R3.

B(El/NF(E)de  for A >1. (8.11)

Definition 8.4. For R > 1 let A(R) denote the class of all [p; a] satisfying
H0) 0207 ¢(@:6)| S R for o] < N and 0 <|B] < N,

) ‘k/i\laskﬁfsﬁ(f;ﬁ)‘ >R,

H2) max ‘<3&5J z (T /\8§k zo(Z >’ > R!

1<4,5<2
for all (#;&) € supp a.
The following theorem is the key ingredient in the proof of Proposition 8.2.
Theorem 8.5 ([3]). There exist N,M € N such that
1723 alll Lo r2)— Lors) Se MMV e lallen for all [¢;a] € A(R).

This weakly quantitative statement is not explicit in [3] or the corresponding
survey [4] but it may be extracted from the proof. It is remarked that Theorem 8.5
is more than enough for the purposes of this article and, indeed, any non-trivial
local smoothing estimate (that is, a gain of an epsilon derivative over the fixed term
estimate) would suffice. Thus one could equally appeal to the older results of [20]
(see also the related work [16, Chapter 3], or the more recent work [10]).
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Relating the phase functions. In order to apply Theorem 8.5 we analyse the hy-
potheses HO), H1) and H2) for the specific case of the phase ¢ arising from the
averaging operators A[®y; a;]f.

Let ¢ be of the form (8.8), induced by some defining function ®. Implicit differ-
entiation of (8.7) yields

-1

0:0] 0 (8.7 0
[%V] o {@cb 0820 | |Idy)’ (8.12)
070 0 9.d T1-1 -

[5”] - [6 ® (@(’92 )<I>} [0z ©5z.2] , (8.13)

where the right-hand matrices are evaluated at z = v(Z;&). In particular, (8.12)
implies that J¢,v1 = O¢, 2 and combining this with Euler’s homogeneity relation

(75 €) = (Oep(T;€), &) yields

Dep =v. (8.14)
Consequently, one can check that if (a, 3) € NJ x N2 satisfies |al, |3] < N, then
0307 o(# ) v (1Pllew + egi) ™™ (8.15)

for a certain My > 0.
Furthermore, (8.13) and (8.14) also imply that

9z0(T; €)
dzv(Z:§)
These inequalities allow one to deduce HO) and H1); the condition H2) requires a

slightly more involved analysis.
Letting o1 := 2 and o9 := 1, the identities in (8.12) and (8.13) give

(1)1, &,

2 1
‘ /\ e, 0z0(T: )| 2 Wdet } > Proj(®)(%;€) - | @] 3. (8.16)

Jj=1

Vi = 3 ].
85.71/ @(@21%(@)) (8 7)
—1)¢ 0., 02, @
Ozv; = (H @)) <det laz o o ol T (azgié)T2>, (8.18)

where k(®) is as defined in (4.7) and the T? are the tangent vector fields from
(4.9). Recalling (8.14), the condition H2) for the phase function (8.8) involves
mixed second order derivatives of v; by (8.17), computing these derivatives boils

down to differentiating (@25(@))71@*1 with respect to Z. Recalling the definition
of © and v from (8.7) and the identities of (8.13),

0 &7
£ 0.0

_ o2ql 0. © 2 1 2
}_es, 070 = H((I))(det[@z(l)]T +8%)

where the S? are as in Definition 4.4. The product rule then yields

Oz (@2,‘6(@)) = Oz det |:

0z ((@%(@))’1@*1) = —O 3k(®)2(S — det [02,0] T). (8.19)
Combining (8.14), (8.17), (8.18) and (8.19), one deduces that
02 ¢ 0z (T : o
g, 07 (% €) _cyn _Sm@@EVED) o)

O(&; )?k(®) (T v(T;€))°
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The identities (8.15), (8.16) and (8.20) allow one to relate the conditions HO0),
H1) and H2) of the phase ¢ to properties of the underlying defining function (and,
in particular, bounds on ||®||c~, £(®), Proj(®) and Cin(®)).

8.3. Application of local smoothing. Theorem 8.5 can now be applied to yield
Proposition 8.2.

Proof of Proposition 8.2. The main difficulty is to prove iii). Fix [®;¢] € €&, nek
and § > 0; it Let I denote an interval of length |I| ~ 1. The Sobolev embedding
argument used to prove (6.39) yields

||Stlé?|Aj[(I)t§ct]f|”%5(R2) <17 A [ ] f11G o oy

+ 6/ A [@4; i) 170 mawry 145 (@50 fll Lo ey, (8:21)
where 0; := 2mi27 (0;®;)¢; + O;¢..* By the definition of the class Qf’éin,
|5(®)(2,t;2)], [Proj(®)(z,t;2)l, |Cin(®)(,t;2)| 2 27M*d (8.22)
whenever (z,t;z) € supp ¢ and |t — 25| 2> §. Decompose ¢ := ¢(®) 4 ¢ where
¢ (z,t; 2) == c(x, t; 2)n((t — x2)/100)

so that the estimates (8.22) hold on the support of ¢f.
The piece corresponding to ¢(®) can be bounded using the theory from Sections
6.1 and 6.6. Indeed, let G(x1,xa,t, 2) := (x1,22 + t,t; 2) and define

é::(bog, .= RONYe

Note that |za| < § in supp ¢, Performing the above change of variables, by
Fubini’s theorem

)
145 @4 €D e, = /

5
S 1A 1(®)55 EO)31 £ 116 g2y dr
where
(®)*(u,t, 50, p) := D(u, 7, t;0,p) and  (E9)*(u,t,ri0, p) 1= (u, 7, t;0, p).

Since [@;¢] € €k ,, it follows that [(®)*; (£®))*] € Qllf{’ft(k). Combining Proposition
6.1 with Lemma 6.9 we get an L?(R?) estimate for fixed r,

1A [( D)5 8 22y L2y S (2772 A272H2)| o
Interpolating this bound with the L> estimate from Corollary 8.1 iii) one gets
145 [(®@);5 &2 Lo 2y po ) S (279/° A272H3) ||| o
and therefore

s iy - iy
||Aj[<I>t;c§ )]HLG(WHLG(R%I) S 61/0(279/8 272K |Ie|| on < 6027975 ]| o

(8.23)
On the other hand, Theorem 8.5 can be used to show that
—MoMko—35(1/3—

1451945 11| o oy ooy Se 022 cllon. (8.24)

4To be more precise, one may write Aj[®e;0:]) = Aj[@¢;0}] + Aj[@4;02] where d} =

2mi27 (0¢ P+ )¢t and the average corresponding to 97 is defined with the frequency cut-off 6 — 63(6),
rather than just 5. It is remarked that this ambiguity in the definition has no bearing on the
analysis.
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Temporarily assuming (8.24), by taking ¢ := 277/4M) and ¢ := 1/12, we get

|A4;[®e; ]Il Lo (rey—s o (raxpy S 2MEQ7I/3=1/1221/20) ||

and hence combining this with (8.23) we obtain

|4 [®s5 0] | Lo mey s o mexry Se 2MF279/6(273/24 4 =3/ (WAM)y 1|l
< 2Mho=i/675%0| ¢|| o (8.25)

for some g9 > 0 (indeed g9 = (144M)~1'). This gives a favourable bound for the
terms on the right-hand side of (8.21) involving ¢;. For the amplitude 9; it suffices
to note that ||d]| < 27||c|| and that [®;0] € €&, N € .. Therefore

14 (@404 [l 6 (Rey s LoRax ) Se 2MF27G/670) ¢l o (8.26)

Combining (8.25) and (8.26) in (8.21) concludes the argument of Proposition 8.2
for [@;c] € €&, Nk ..

It remains to prove (8.24). Let [p; ¢] be the FIO pair associated to [®;¢f] € €§; |
defined as in (8.8) and (8.9). Thus,

Aj[@; c])f(x) = F2 Lo el f() + € £(T),

where the operator &; arises from the errors in (8.4) and (8.9). The smoothing term
&; can be easily estimated using repeated integration-by-parts and the rapid decay
from (8.5) and (8.10).

Turning to the main term }"3'71/2[@; c]f, the condition Cy) together with (8.15),
(8.16) and (8.20) imply that [p;c] € AF := A(6-M2MF) (in the sense of Defini-
tion 8.4) for some absolute constant M, > 1. Thus, Theorem 8.5 implies that

‘|-7'—2[<P;<B]HL6(R2)—>L6(R3) Se 6 MOMENV/6T1te | ¢f| .
The case of interest is given by p = —1/2; note that for this value the A exponent
is —1/3 + ¢, corresponding to the 27 exponent in (8.24).

For the remaining cases i), ii), iv) and v) of the proposition the argument is
similar but somewhat easier. Indeed, here the condition C); provides favourable
lower bounds for the various curvatures and this obviates the need to form any
decomposition a = a(®) + af (one may bound A;[®;a] directly using Theorem 8.5).

|

9. THE GLOBAL MAXIMAL FUNCTION

It remains to extend the bound for the local maximal function from Theorem 3.3
to the bound on the ‘global’ maximal function from Theorem 3.1. This is the last
step in the proof of Theorem 1.1.

Proof of Theorem 3.1. Break the operator according to the relative size of r with
respect to t, thus:

sup[Aif(ur)l =sup sup (> + 3, + D BT ()l

T T+1
TEL2T<t<2TH 1,510 m<—10  |m|<10

Each of the three terms is estimated separately. Of these, the first case (corre-
sponding to ¢t < r) presents the most interesting features.
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The first term: ¢ < r. The orthogonality relation (3.6) induces spatial orthogo-
nality and it therefore suffices to show that

Hsup sup Y ﬁerT"Atﬂ‘

S ||fXR><[2W*1,2W+2]||p7
TeZ2T<t<2T+1 "=,

Lp(Rx[2W 2W+1])

uniformly in W € Z. By the rescaling (u,r,t;v, p) = (22Ww, 2Wr 2W¢;22Wy 2W )
the problem reduces to the case W = 0, and therefore one needs to only show that

| supsup 014 S
T<—52T <t<2T+1 Lr(Rx[1,2])

For fixed T' < —5, decompose f into frequency localised pieces

f=P<_rnf+Y Popf,
k=1

~ ~

where (Pe f) ™ (€) == ™ (1€} F(€) and (P f) ™ (€) = 87 (J¢[)F(€) for the functions

7™ and B defined in (5.2). A routine computation shows that the precomposition
of the above maximal operator with P<_r is pointwise dominated by the Hardy—
Littlewood maximal function. Consequently, for p > 2 it suffices to show that

| swp sup AP gfl|| S 27 f
T<—52T<t<2T+1 P

and Littlewood—Paley theory further reduces the problem to proving

| s, B lAP-rifl] S 2 (9.1)

2T§t§2T+l
uniformly in 7" < —5. The rescaling (u,r,t;v,p) + (22Tu,2Tr, 27¢; 22Ty, 27 p)
transforms (9.1) into

| sup 87 4RI <27 Al

1<t<2

where P denotes the anisotropic frequency projection associated to the multiplier
B (27761, ).

The situation in the last display is close to the case m = —T > 0 in the decom-
position (5.5), although a direct application of Theorem 5.1 iii) will not give the
desired decay in j. Instead, we decompose the operator A as a sum of frequency
localised operators A; as in (5.18) and appeal to Proposition 5.11 iv). First, for
fixed T < —5, write

B7I(r) - APL f(ur) =Y 27T A[® 0, 7P f(u, ),
GEZ2

where a; 77 is as in (5.4). The relations (3.6) ensure that |r —p| < 1 and |u—v| <
2-T | so by spatial orthogonality it suffices to prove

| sup_Af@i o, "7IPE S| S 272k g,
1<t<2 P
uniformly in & € Z2. A further rescaling (u,v) = (27Tu,27Tv) transforms the
above estimate into

| sup [A[@; 58 TIPS S 27 £l (9.2)
1<t<2
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where now Py is the usual dyadic frequency projection at scale 2¥ and ®~7 and
a~T'% are defined as in (5.14); in particular, [®~7;a=17] € A2, NAYL .. Decompose
Al@; T 0,77 = dis0 4 [®;7;a; 77 asin (5.18). Then, for fixed k > 0, one needs

to understand

-T. ~T, i ;
A7 0 NP () = | K (u, 5:6)8(€)F(€) de (9:3)
R
for j > 0, where K2’ is as in (8.2).
The main contribution arises from the terms with |j — k| < 5. Here we appeal
to Proposition 5.11 iv), which yields
T, =~T -
H sup |A;[®; T§at ' ]Pkf|||p S2 kap”f”pv
1<t<2
with some €, > 0 when p > 2.

Now consider the case |j — k| > 5 in (9.3). In our present rescaled situation
we have [0, ,®~7| ~ 1 and also favourable upper bounds for the higher (v, p)-
derivatives. Hence, arguing as in §8.2, using repeated integration-by-parts, we
obtain

0 e 72O K (u,r, #€)]| S minf279N/2, 27N/ (14 ¢) V2

for all (u,r,t) € supp a~ 1%, ¢ € supp B*, a € N2 such that |a] < N. This yields,
via another integration-by-parts,

H—T. 1.0 —jN/2 —kN/2 f(v,p)
|A; (@7, )P f (u, )| S (2772 A2 )/R2 Tl = 0 ) dv dp,

which readily implies that
| sup [A;(®; "sa; TIPS, S (27N A 27N 1
1<t<2

for 1 < p < oo, whenever |j — k| > 5. Combining the above observations, one
obtains the desired estimate (9.2).

The second term: t > r. By the triangle inequality, for all p > 2 it suffices to
show that

[sup —sup BT Af]] S 27| fl
TEZ 2T <t<2T+1

holds uniformly in m for some ¢, > 0. The orthogonality relation (3.6) ensures
that |t — p| < 7 ~ 2mTT < 27 This induces spatial orthogonality between the ¢
and p variables and reduces the analysis to proving

| sw 87 A, < 25
<t<

uniformly in 7' € Z. By the rescaling (u,r,t;v, p) — (227,277, 27t; 2270, 27 p), it
suffices to consider the case T' = 0. The resulting term corresponds to

> 2P A a7 f(u,r)

Fez?

in (5.5), whose L? norm is bounded by 2™¢» for some €, > 0if p > 2 via Theorem 5.1
iv), using the orthogonality arguments in the proof of Theorem 3.3.
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The third term: ¢ ~ r. Without loss of generality, by replacing 8 with a cutoff
function with slightly larger support, it suffices to bound the term corresponding
to m = 0. Assuming f is non-negative, for each fixed T perform a decomposition
of the operator similar to that in (5.6) and (5.7) by dominating

BU(r) - Aflur) S D Y 2T AR (")) f

(k,0)ez? GeZ?

k>—4
k—3<t<é(k)
+ Z Z2k(1 1/p)+TA[ (kf(r) ]f
kEZ G€72
k>—4
where
a?eg(u,nt;v,p):::ahﬂa(Z_QTu,2_7}y2_7f;2_2TU,2_TpL < Uk),

c?g(u,r,t;v,p) = (27 Ty, 27T 27T 2721y 27T ).

By the triangle inequality, for all p > 2 it suffices to prove
I TD DD DR A T <ai;’“>t1pr S 275K £,

T T+1
TEL2T<t<2TH p 3cpcp(k) 5ez?

|sup sup 37 2O A (AN <2
TEL2T<t<2T+1 27,

for some e, > 0. After fixing k, spatial orthogonality becomes available: the variable
p is localised at p ~ 27%*T. Therefore, in order to show the above estimates, it
suffices to prove

‘ sup Z Z 2k(1 1/P)+TA[ ( k.G fH < 2—£pk||pr,

T T+1
2Est=2TH p 3<e<a(k) Fer?

| s 3 2O AR ()| <27

2T <t<2TH 572
uniformly in 7. By the rescaling (u,r,t;v,p) — (22Tu, 277, 27t; 22Ty, 27 p), it suf-
fices to only consider the case T = 0. This follows from Theorem 5.1 i) and ii)
using the arguments in the proof of Theorem 3.3 (following the statement of The-
orem 5.1). O

APPENDIX A. LEMMATA ON INTEGRATION-BY-PARTS

The proofs on oscillatory integrals in §6 use a lemma which keeps track of the
terms that occur in the repeated integration-by-parts arguments. Assume that
z + h(z) € C® (and keep track of the CN-norms of h), and that VO # 0 on
supp (h). Define a differential operator £ by

hVO )

Then, by integration by parts,

/ eMEn(2)dz =iV A~ N/ e LR (2) dz
R4

R4
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and thus

| / eP9Cn(z) dz| < AN / L5(2)| d2
Rd Rd

< A Nmeas(supp x) sup |LVh(z)]. (A1)
z€ER4

A careful analysis of the term £Vh is needed for various integration-by-parts argu-
ments in this paper and elsewhere in the literature, but a detailed analysis is often
left to the reader. For an explicit reference, a straightforward induction proof of the
following lemma is contained e.g. in the appendix of [1] (and probably elsewhere).
We shall introduce the following notation. We say that a term is of type (A, j)
if it is of the form h;/|V,0| where h; is a z-derivative of order j of h. A term of
type (B,0) is equal to 1. A term is of type (B, j) for some j > 1 if it is of the form

0;4+1/|V.0"T where ©,41 is a z-derivative of order j + 1 of ©.

Lemma A.1. Let N =0,1,2,.... Then

K(N,d)
L= " enphn

v=1
where K(N,d) > 0, ¢y, are absolute constants independent of h and ©, and each
function hy,, is of the form 5

M,
P, (1287840 [ [ ew (A.2)
=1

such that each P, is a polynomial of d variables (independent of h and ©), Ba,, is
of type (A,ja,) for some ja, € {0,...,N} and the terms ¢, are of type (B, ke,,)
for some kg, € {1,...,N}, so that forv=1,...,K(N,d)
M,
jaw+ Y ks =N. (A.3)
=1
Example. In §6 we use the Lemma A.1 in the form of Corollary A.2 below,
choosing
O(z) = ¥(z;2) — U(y; 2), (A.4)
for fixed z = (2/,24), y = (v/,y4) € RL Our differential operator £ = L, , depends
then on x,y.

Corollary A.2. Let h € CN(R?) be compactly supported. Let p(z,y) > 0, and
assume that for all z in a neighborhood of supp h

VoW (z;2) = Vo U(y; 2)| 2 p(2,y)- (A-5a)
Let R(x,y) > 1 and assume that for all z-derivatives up to order |a| < N 41,
050 (w5 2) — 07U (y; 2)| Sn Rz, y)p(x, y)- (A.5Db)

Then

i . . hllci R(z, y)N—7
‘/ e”\(q’(z’z)_q’(y’z))h(z) dz| <y )\_Nmeas(supp h) max Il Rz, y)
e BN )N

5The product Hé\i”l is interpreted to be 1 if My, =0, i.e. j4, = N.



THE CIRCULAR MAXIMAL OPERATOR ON HEISENBERG RADIAL FUNCTIONS 49

Proof. We use (A.1) and the assertion follows from

N Al cs R, )™
To see this use Lemma A.1 with the choice (A.4). Observe that by (A.5a) an
expression of type (A, j) is bounded by a constant times ||h|/cs(p(z,y))77. By
(A.5a) and (A.5b) an expression of type (B, k) is bounded by a constant times
R(z,y)(p(z,y))~". We use (A.3) to see that the expression corresponding to (A.2)
is bounded by

(A.6)

”h”CjA‘uR(wvy)MV <N ||hHC.7'A,uR(x»y)N7jA'V
(pla )y re i mee ™ pla.y)™
and hence we get (A.6). O

Cn

Applications of Corollary A.2. Here 0 < o < 1 and m > 0.

e In the proof of Proposition 6.1, Corollary A.2 is applied with the choice
of p(z,y) := |2’ — V| + dolrq — ya|, R(z,y) < 1 and the CV norm of the
amplitude is O(1).

e In the proof of Lemma 6.4 Corollary A.2 is applied with p(x,y) := |2’ —¢/|
and R(z,y) < 1, and the CV norm of the amplitude is O(2™).

e In the proof of Lemma 6.5 the d — 1-dimensional version of Corollary A.2
is applied with p(2’,y) := |2’ — /| and R(2’,y’) < 1, and the CV norm of
the amplitude is O(2™").

e In the proof of Lemma 6.6 Corollary A.2 is applied with the choices of
plx,y) =2’ — Xy (2q,9; 20)| + 6627 " |xg — ya|, and R(z,y) < 2™, and the
C¥ norm of the amplitude is O(2™).

APPENDIX B. COMPUTATIONS RELATED TO THE DEFINING FUNCTION

B.1. Derivative dictionary. For reference, here some derivatives are computed
for the specific defining function ®; in (3.2). Recall,

®(u,r,t;0,p) == (u—v)* — (2)2(47"2;)2 — (P +p* =%
so that the first order derivatives are
0P =2(u—v), 0.0 =—br(t’ —r*+p?)
and
0u®r = —2(u—v),  9py = —p(t* +7° —p?)
together with the time derivative
0r®; = V(1> — 1 — p?).

Of course 9%,®; = 8gu¢>t = 02,0, = 8§U<I>t = 0 whilst the non-vanishing second
order derivatives are

02, ®; = 02,8, =2, 92,0y = —2,
R,y = b (t* = 3r° +p°), 07, =—2b"rp, 05,8 = —b*(t* +1° —3p°)
and the time derivatives

O5.® = —20*r  and  0;,® = —2b°tp.
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Finally, the third order derivative relevant to the argument are

GSMCI)t = —2b%p and 8;?’pr = —2b%r,
With these formulae in hand, it is a simple computation to obtain the expressions
(4.2) and (4.4) for the rotational curvature,

Rot(®;) (u, r; v, p) = 4b*rt?p(t* — r? — p?),
Rot(®%)(u, t; v, p) = 4b*r?tp(r? —t* — p?),
as well as the key identity (4.3),
Rot(®;)(u, 75 v, p) = 4b%rtp(0:®¢) (u, 50, p),
and expressions (4.11) and (4.12) related to the cinematic curvature
Proj(®)(u,r, t;v, p) = —8b*rtp(r? —t?),
Cin(®)(u,r, t;v, p) = 6465133 p® (r? — %)
for (v, p) € Ty rt-

B.2. Rescaling. It is useful to note how the expressions in the previous subsection
behave under rescaling. Given k,7 € Z and €,8 € Z2, let k=70 .= 2k $ o D=7:9
where
D70 (u, 1ty v, p) = (257w, 2527, 27t; 2% 0, 22 ).
Then
DCOPF) BRI (1, t; ) = 2825225 Bo™V(929P 8] ®) 0 DT (1, t; 2)
for all o, 3 € N2, v € Ny. In particular,
Rot(®F579) (2 2) = 23F21FH IR0t (@y-,) 0 D=0 (2 2)
where D%%(x; 2) := (2°2;2%%), and the rescaled key identity becomes
Rot(®F79) (x; 2) = 4b?rpt272 0292k 2lel 101 9, k=m0 (1 ¢ 7).
Furthermore,
K(DFETO)(F; 2) = 202201 () 0 DETO(F; 2),
Proj(®"=79) (&, z) = 2°F2lEF 7+l Proj(8) 0 D= (1; 2),
Cin(®"70) (&; ) = 20R2lEl+7 3101 Cin(®) o D=79(Z; 2).
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