SHARP L BOUNDS FOR THE HELICAL MAXIMAL FUNCTION

DAVID BELTRAN, SHAOMING GUO, JONATHAN HICKMAN, AND ANDREAS SEEGER

ABSTRACT. We establish the LP(R?®) boundedness of the helical maximal function for the sharp
range p > 3. Our results improve the previous known bounds for p > 4. The key ingredient is a
new microlocal smoothing estimate for averages along dilates of the helix, which is established via
a square function analysis.

1. INTRODUCTION

1.1. Main results. For n > 2 let 7v: I — R" be a smooth curve, where I < R is a compact
interval, and y € C*(R) be a bump function supported on the interior of I. Given ¢ > 0, consider
the averaging operator

(@)= [ flo=9()) x(s)ds
and define the associated maximal function

M, f(z) := Sup [Aef(@)].

We are interested in the LP mapping properties of M,. It is well-known that the range of
exponents p for which M, is bounded on LP depends on the curvature of the underlying curve.
Accordingly, we consider smooth curves v: I — R" which are non-degenerate, in the sense that
there is a constant cg > 0 such that

|det(y/(s),--- ,7™(s))| =co forallsel. (1.1)

A celebrated theorem of Bourgain [7, (] states that if v: I — R? is a smooth, non-degenerate
plane curve, then M, is bounded on L? (R2) if and only if p > 2. Here we establish a 3-dimensional
variant of this result.

Theorem 1.1. If v : I — R3 is a smooth, non-degenerate space curve, then M., is bounded on
LP(R3) if and only if p > 3.

In the n = 3 case, the condition (1.1) is equivalent to the non-vanishing of the curvature and
torsion functions. As a concrete example, Theorem 1.1 implies that the helical mazximal operator

2w
Mielix f(x) := sup ’/ flxy —tcosB, o —tsinh, xs — t6) do
0

t>0
is bounded on LP(R3) for all p > 3.

A simple Knapp-type example shows LP boundedness fails for p < 3 (see §12). On the other
hand, Pramanik and the fourth author [19] proved that Wolff’s decoupling inequality [24] for the
light cone implies the boundedness of M., for a suitable range of p. The optimal range for Wolff’s
inequality was obtained by Bourgain and Demeter [8] and the combination of the results in [19]
and [8] yields the LP boundedness of M, for the partial range 4 < p < 00. Thus, Theorem 1.1
closes the gap by establishing boundedness for the remaining exponents 3 < p < 4.
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To prove Theorem 1.1, we follow the basic strategy introduced by Mockenhaupt, Sogge and
the fourth author [1%] in the context of the classical circular maximal function in the plane. In
particular, in [18] the authors gave an alternative proof of Bourgain’s maximal theorem, deriving
it as a consequence of certain local smoothing estimates for the wave propagator. In the case
of maximal functions associated to space curves, Theorem 1.1 follows from a local smoothing
estimate for a class of Fourier integral operators associated to the averages A;. To give a simple
statement of the key underlying inequality, set 2, f(x,t) := p(t) - A f(x) for some p € CF(R) with
supp p < [1,2]. Our main theorem then reads as follows.

Theorem 1.2. Suppose v : I — R3 is a smooth, non-degenerate space curve and let 3 < p < 4
and o < o(p) where o(p) = %(1 + %) Then 2, maps LP(R3) boundedly into L5 (R?).

Note that o(p) > 1/p for p > 3. Thus, by a well-known Sobolev embedding argument, The-
orem 1.2 implies Theorem 1.1. For completeness, the details of this implication are presented
in §2.

1.2. Comparison with previous results. It follows from work of Pramanik and the fourth

author [19] (combined with sharp decoupling estimates from [%]) that, for each fixed ¢, the single
average A; maps LP(R?) boundedly into L5 (R?) for all 2 < p < o0 and a < a(p), where!

1011 :

3l + 2 if2<p<4

a(p) = ?2 2 AR

Theorem 1.2 represents a gain of o(p) — a(p) — & = =(5 + %) — ¢ derivatives when integrating
locally in time in the range 3 < p < 4. In this sense, Theorem 1.2 is an example of local smoothing
(see, for instance, [21, 18, 13, 2] for a discussion of the classical local smoothing phenomenon for

the wave equation).

Theorem 1.2 complements previous local smoothing estimates from [19], which deal with the
supercritical® regime p > 4. In [19, Theorem 1.4] it is shown that 2, maps LP(R3) boundedly into
LE(RY) for all 2 < p < o0 and § < §(p), where

1/1 1 :
% ifp>6

Note that this does not yield any local smoothing estimates in the subcritical regime 2 < p < 4,
where a(p) and §(p) agree. Consequently, the local smoothing estimates in [19] only imply LP(R3)-
boundedness of M., for the restricted range p > 4.

It is remarked that the (somewhat loosely) related problem of LP(R") — LP(R™*!) bounds
for 2, (as opposed to Sobolev bounds) was investigated in [I5]. This question is significantly
easier than establishing local smoothing estimates and, accordingly, in [15] an almost complete
characterisation of the LP(R") — L4(R"*!) mapping properties is obtained in all dimensions.

1.3. Overview of the argument. For v: I — R" a smooth curve let ;1 denote the pushforward
of the measure x(s)ds under 7. Defining the dilates {p, f) = {u, f(¢t-)), it follows that the
underlying averaging operators satisfy A;f = f#u;. Thus, in the frequency domain A; corresponds
to multiplication against the Fourier transform

() = /R IO (5) ds.

10 [19] the o = a(p) endpoint estimate is also shown to hold for p > 4.
Here we are referring to criticality for the single average operator, so that p = 4 correspond to the critical point
where the behaviour of the a(p) exponent changes.
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Since the main estimate in Theorem 1.2 is an LP-Sobolev bound, we are led to studying the decay
properties of the above oscillatory integral for large &.

Suppose v: I — R3 satisfies the non-degeneracy hypothesis (1.1). This implies Z?:l (D (s), 6| =

|€| for all s € I and all £ € R3 and, consequently, a simple van der Corput estimate yields

(O] < (1 +te) 2.
However, this slow decay rate only occurs on a small portion of the frequency domain, correspond-
ing to a (neighbourhood of a) codimension 1 cone I' R3 generated by the binormal vector es(s)
to the curve ~. In light of this, it is natural to dyadically decompose the frequency domain into
conic regions according to the distance to I'.

The pieces of the decomposition which are supported far away from I' satisfy improved decay
estimates. In one extreme case, the non-degeneracy condition improves to Z?Zl (49 (s), 6] = |€]
and the van der Corput estimate therefore becomes

|B:(€)] S (142712,

In this situation, the operator behaves in many ways like the circular average in the plane, and can
be estimated using a lifted version of the argument developed to study the 2 dimensional problem
in [18] and [24]. In particular, to prove the desired local smoothing estimate in this extreme case,
we observe that the Fourier transform of 20, in all 4 variables (x,t) is essentially supported in a
neighbourhood of a codimension 1 cone I < R4, This surface is analogous to the light cone in R3
which is central to the analysis of local smoothing for the circular averages in [18, 24] and, more
recently, [13]. Following an argument of Wolff [24], the operator is further decomposed according
to plate regions on I using a decoupling estimate. The individual pieces of this decomposition
are then finally amenable to direct estimation.

The method described in the previous paragraph only directly applies very far from the binormal
cone (and therefore far from the most singular parts of the operator). However, by using decoupling
inequalities and rescaling, it can also be used to study pieces of the decomposition which lie closer
to I'. The key observation is that the pieces of the decomposition which lie close to I' can be
decoupled into smaller pieces which, when rescaled, resemble the part of the decomposition far
from I'. This, roughly speaking, is the approach used in [19] to obtain Theorem 1.1 in the restricted
range 4 < p < 0.

In order to prove the full range of LP-boundedness of Theorem 1.1 a more direct method is
required to analyse the pieces of the decomposition which lie close to the binormal cone. For
this part of the operator, the microlocal geometry no longer resembles that of the 2-dimensional
problem and, consequently, the decoupling and rescaling argument used in [19] is inefficient.

Close to the binormal cone, we observe that the Fourier transform of 2, in all 4 variables (z,t)
is essentially supported in a neighbourhood of a codimension 2 cone I'; < R This cone is a
lower-dimensional submanifold of the cone I'y we encountered earlier. Similarly to the previous
case, the operator is further decomposed according to plate regions, now along fg. However, in
order to efficiently carry out this decomposition, here we use a square function rather than a
decoupling inequality, in the spirit of [13]. The required square function estimate is deduced using
a 4-linear restriction estimate from [3]. After applying the square function, a series of weighted L?
inequalities can be brought to bear on the problem to obtain, together with various corresponding
Nikodym-type maximal bounds, a favourable estimate for this part of the operator. This final step
of the argument is itself somewhat involved and a discussion of the details is beyond the scope of
this introduction.

The above discussion focuses on two extreme cases of the problem:
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i) Far from the binormal cone I', where 2, is (z, t)-Fourier localised to a codimension 1 cone I
ii) Close to the binormal cone I', where 2L, is (z,t)-Fourier localised to a codimension 2 cone I's.

For pieces of the decomposition which lie in the intermediate range, both cones fl and f‘g
play a role in the analysis. This complicates matters somewhat, since it is necessary to carry out
frequency decompositions simultaneously with respect to both geometries.

Outline of the paper. This paper is structured as follows:

In §2 we show how Theorem 1.2 implies Theorem 1.1.

In §3 we reduce Theorem 1.2 to its version for band-limited functions, which is Theorem 3.1.

In §4 we introduce a class of model curves.

In §5 we state 3 key auxiliary results that feature in the proof of Theorem 3.1: a reverse

square function estimate in R3*1, a forward square function estimate in R? and a Nikodym

maximal operator bound.

In §§6-8 we present the proof of Theorem 3.1.

In §9 we present the proof of the reverse square function estimate in R3*! (Theorem 5.3).

In §10 we present the proof of the forward square function estimate in R (Proposition 5.4).

In §11 we present the proof of the Nikodym maximal operator bound (Proposition 5.5).

In §12 we show the condition p > 3 is necessary for the boundedness of the global maximal

function.

e Appendix A contains an abstract broad/narrow decomposition lemma which features in
the proof of Theorem 5.3.

e There are two further appendices which deal with various auxiliary results and technical

lemmas used in the main argument.

Notational conventions. Given a (possibly empty) list of objects L, for real numbers A,, B, > 0
depending on some Lebesgue exponent p or dimension parameter n the notation A, < B,
A, = Or(By) or B, 21, A, signifies that A, < CB,, for some constant C' = C, , , > 0 depending
on the objects in the list, p and n. In addition, A, ~1 B, is used to signify that both A, <1 B,
and A, 21, By, hold. Given a, b € R we write a A b := min{a, b} and a v b := max{a, b}. The length
of a multiindex o € Ny is given by |a| = 37" | .
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2. LOCAL SMOOTHING VS MAXIMAL BOUNDS

For the readers’ convenience, here we state and prove a general result relating local smoothing
estimates for the operator 2, f(z,t) := p(t) Arf(x) to LP estimates for the corresponding maximal
function M,.

Proposition 2.1. Let v: I — R" be a smooth curve and suppose 20, maps LP(R™) boundedly into
LE(R™Y) for some 2 < p < o0 and o > 1/p. Then M., is bounded on LP(R™).
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Observe that the exponent o(p) := %(1 + %) satisfies o(p) > 1/p for all p > 3. Consequently,
Theorem 1.2 combines with Proposition 2.1 to yield Theorem 1.1 in the restricted range 3 < p < 4.
The remaining estimates follow from interpolation with the trivial L* bound.

Before presenting the proof we introduce a system of Littlewood—Paley functions which will
feature throughout the article. Fix n € CZ°(R) non-negative and such that

nir)y=1 ifre[-1,1] and suppn < [-2,2] (2.1)
and define g%, g% € CP(R) by
BE(r) =27 ) =027 ) and BR(r) =27 ) —n(27F ) (2.2)

for each k € Z. By a slight abuse of notation we also let n, g, 3* € 030(1@") denote the radial
functions obtained by evaluating the corresponding univariate functions at |£|. Finally, if & = 0,
then we drop the superscript and simply write 8 := % and 5 := 8°. Note that the * form a

partition of unity of R" subordinated to a family of dyadic annuli, and they satisfy the reproducing
formula g% = g* . gk.

Proof of Proposition 2.1. Decompose the t parameter into dyadic intervals

My f(w) = sup sup |y, f(z)]

el 1<t<2

Performing a Littlewood—Paley decomposition on each of the averaging operators,

<3 (3 s [Avi o DIFP) " + O g0

k=1 = ez 1St<2

where My, is the Hardy—Littlewood maximal function. Indeed, it is not difficult to verify that
the pointwise estimate

sup sup [Ay-¢(D)f(2)| < CMuvf(2);
teZ 1<t<2

for 1 < t < 2 the function Ayen_¢(D)f(x) roughly corresponds to an average of f over a ball
of radius 2¢ centred at z. Thus, by the Hardy-Littlewood maximal theorem and the triangle
inequality it suffices to show that

1/
> (Z | sup 1 Age Bt DYl ay) " Svp 17 lzoieny (2:3)

k=1
By a simple scaling argument, one obtains the operator norm identity

I sup_ | Aot Br—e (D)l Lo rr) - Lo (r7) = | sup | At B (D) Lr () Lp (R7) -

<t<2 <t<

Combining this with the hypothesised local smoothing estimate, it follows that

1/ B
/ HAQét/Bk é( )fHLp(]Rn ) g $’y7p,o' 270’k“ﬁk‘—€(D)f”Lp(R")a (24)

1/p Y ~
([ 15 A DMy 00) ™ o 2Bk D) (25)

The second estimate follows by noting that the Fourier multiplier associated to 0y Aye,fr—¢(D) is

essentially the same as the multiplier associated to Aye,Sk—¢(D) but with an extra || factor. We

therefore pick up an additional 2¥ owing to the estimate |||D|Bk(D)fHLp(Rn) < ZkHBk(D)fHLp(Rn).
Combining (2.4) and (2.5) with the elementary Sobolev embedding

2
sup |F(t |p</ (s |pds+p</ F'(s) |pds /|F |pds ,
1<t<2 1
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it follows that
I Sup | AgteB—e(D) £l Lo @n) Svpo 27 B—e(D) £ o @y - (2.6)

Taking the ¢P-norm of both sides of (2.6), we may sum the resulting expression in ¢ using the
elementary inequality

/
(Z |5e(D )10 e )1 "< 1Ll e (nys

UeT

valid for p > 2. On the other hand, under the crucial hypothesis ¢ > 1/p, we have a geometric
decay which allows us to sum in k. Thus, we deduce the desired estimate (2.3). 0

3. REDUCTION TO BAND-LIMITED ESTIMATES

We now turn to the proof of Theorem 1.2, which occupies almost the entirety of the article.
Since we are interested in LP(R3) — L5 (R3*!) estimates for o belonging to an open range, the
problem is immediately reduced to studying LP(R3) — LP(R3*!) bounds for band-limited pieces
of the operator. In order to describe this reduction in more detail, it is useful to set up some
notational conventions.

Given m € L* (f@" x R), for each t € R let m(D;t) denote the associated multiplier operator

~

(D) ) e KT (¢
(Di0)f ) = s [ OmiEn e ac,

defined initially for functions f belonging to a suitable a prior: class. With this notation, the
averaging operator A; is given by A; = j1;(D) where p; is the measure introduced in §1.3.

The multipliers of interest are of the following form. Let v: I — R” be a smooth curve and
fix x, p € CL(R) supported in the interior of I and [1/2,4], respectively. Given a symbol a €

C®(R™\{0} x R x R), define

mla](€;1) = /R UG Oa(¢; 1; 5)x ()p(2) ds. (3.1)

Taking a in this definition to be identically 1, we recover the (¢-localised) multiplier p(¢)i:(§). In
general, we perform surgery on fi; by choosing a so that m[a] is localised to a particular region of
the frequency space.

For a € COO(HA%"\{O} x R x R) as above, we form a dyadic decomposition by writing

O -t k
a = Zzl ag where ag(&;t;8) = { Zg:i:zg 5(5()5) EE ]]Z i(lj . (3.2)

Here 7 and % are the functions introduced in (2.1) and (2.2).
With the above definitions, our main result is as follows.

Theorem 3.1. Let v : I — R3 be a smooth curve and suppose a € Cso(ﬂ/ég\{O} x R x R) satisfies
the symbol condition

5 ¢ jS é. 3y f 0

Z\@ $),Ol 216l for all (&) €suppea x 1. (3.3)
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Let 3<p<4,e>0andk > 1. If ay is defined as in (3.2), then

1/p _k k
/ Im[ax](D; t)f”LP R3) ) Sep 2 SUF +€HfHL”(R3

For n = 3, the condition (3.3) is equivalent to the non-degeneracy hypothesis (1.1). Thus, The-
orem 3.1 immediately implies Theorem 1.2 via the Littlewood—Paley characterisation of Sobolev
spaces.

Under a stronger hypothesis on the phase function, a stronger local smoothing estimate holds,
by a combination of the work of Pramanik and the fourth author [19] with the full decoupling
theorem for the light cone by Bourgain and Demeter [3]. 3

Theorem 3.2 (cf. Theorem 4.1 in [19]). Let v : I — R3 be a smooth curve and suppose that
a e C*(R3\{0} x R x R) satisfies the symbol conditions

|8§‘0§6ga(§;t; )| Sajij |£|_|O‘| for all a € Ng and i, 7 € Ny

and that

7' (8), 1 + 1" (5), ©1 2 [€] for all (&;s) € suppea x I. (3.4)
Let 2<p<6,e>0andk >1. If a, is defined as in (3.2), then

1/p _k(lylyag
/ Im[ax](D; t)fHLP(R3 ) Sep 2 2(3¥p)t EHfHLP R3)-

Owing to the strengthened hypothesis (3.4), Theorem 3.2 alone is insufficient for our purposes.
Indeed, Theorem 3.2 only effectively deals with parts of the multiplier which are supported away
from the main singularity. However, we still make use of Theorem 3.2 in the proof of Theorem 3.1
to analyse the multiplier in this less singular region, in which it is effective.

4. SYMMETRIES AND MODEL CURVES

A prototypical example of a smooth curve satisfying the non-degeneracy condition (1.1) is the
moment curve v,: R — R™, given by

52 s™

Yo(8) 1= <8’5""’H>‘
Indeed, in this case the determinant appearing in (1.1) is everywhere equal to 1. Moreover, at
small scales, any non-degenerate curve can be thought of as a perturbation of an affine image of
Yo. To see why this is so, fix a non-degenerate curve v: I — R™ and ¢ € I, A > 0 such that
[0 — A\,0 + A] € I. Denote by [y], the n x n matrix

Mo == [vV(e) -+ (0],

where the vectors 'y(j)(a) are understood to be column vectors. Note that this is precisely the
matrix appearing in the definition of the non-degeneracy condition (1.1) and is therefore invertible
by our hypothesis. It is also convenient to let [y], ) denote the n x n matrix

[V]ox :==[7]o - D, (4.1)

where D), := diag(},...,\"), the diagonal matrix with eigenvalues A, A? ..., A". Consider the
portion of the curve v lying over the subinterval [0 — A, o + A]. This is parametrised by the map
s+ (o + As) for s € [—1,1]. The degree n Taylor polynomial of s — (o + As) around o is given
by

s = 5(0) + [V]on - 70(s), (4.2)

3The estimates in [19] are stated for p > 6. The version of the result presented here for 2 < p < o0 follows via
interpolation with trivial L?-estimates.
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which is indeed an affine image of +,. Furthermore, by Taylor’s theorem, the original curve -y
agrees with the polynomial curve (4.2) to high order at o.

Inverting the affine transformation z — (o) + [v]sa -  from (4.2), we can map the portion of
v over [0 — A,0 + A] to a small perturbation of the moment curve.

Definition 4.1. Let v € C""}(I;R") be a non-degenerate curve and o € I,\ > 0 be such that
[0 — A\, o+ A S I. The (0, ))-rescaling of 7y is the curve v, € C"1([—1,1];R™) given by

Yoa(s) = (V155 (V0 + As) = 7(0)).

It follows from the preceding discussion that
’Ya,)x(s) = /70(8) + [’Y];}\g’y,a,)\(s)

where &, ;) is the remainder term for the Taylor expansion (4.2). In particular, if v satisfies the
non-degeneracy condition (1.1) with constant ¢g, then

—1
o2 = o “Cn+1([—1,1];Rn) Sy A H’YHgnH(])-

Thus, if A > 0 is chosen to be small enough, then the rescaled curve 7, ) is a minor perturbation
of the moment curve. In particular, given any 0 < § < 1, we can choose A so as to ensure that
70,1 belongs to the following class of model curves.

Definition 4.2. Given n > 2 and 0 < § < 1, let ,(0) denote the class of all smooth curves
v: [=1,1] = R™ that satisfy the following conditions:

i) v(0) =0 and Y (0) = & for 1 < j < n;
i) v — Yol entr(=1,17) < 9.

Here €; denotes the jth standard Euclidean basis vector and

IVlen+r(ry = | x| Sup Y9(s)|  for all y e C"THI;R™).

Given any v € ®,(0), condition ii) and the multilinearity of the determinant ensures that
det[v]s = det[vo]s + O(d) = 1 4+ O(0). Thus, there exists a dimensional constant ¢, > 0 such that
if 0 < d < ¢y, then any curve v € &,,(d) is non-degenerate and, moreover, satisfies det[y]s = 1/2.
Henceforth, it is always assumed that any such parameter § > 0 satisfies this condition, which we
express succinctly as 0 < § « 1.

5. KEY ANALYTIC INGREDIENTS IN THE PROOF

There are three key ingredients in the proof of Theorem 3.1: a square function on R*, a square
function on R? and a Nikodym-type maximal operator mapping functions in R* to functions in
R3. These operators are formulated in terms of the geometry of the underlying curve v: I — R3
and, in particular, are defined with respect to the Frenet frame on +.* In this section each of
the three key operators is introduced and the relevant norm bounds for these objects are stated
in Theorem 5.3, Proposition 5.4 and Proposition 5.5 below. In §§7-8, a careful decomposition of
the multiplier m[ax] is carried out which facilitates application of these results in the proof of
Theorem 3.1. We return to proofs of Theorem 5.3, Proposition 5.4 and Proposition 5.5 in §9, §10
and §11, respectively.

4More precisely, the square function on R* is defined with respect to Frenet frame associated to a lift of v to R*.
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5.1. Frenet geometry. It is convenient to recall some elementary concepts from differential
geometry which feature in our proof. Given a smooth non-denegenate curve v : I — R", the
Frenet frame is the orthonormal basis resulting from applying the Gram—Schmidt process to the
vectors

((s) - 7™M ()}
which are linearly independent in view of the condition (1.1). Defining the functions®
Fj(s) := (€i(s),ej41(s)) forj=1,...,n—1,
one has the classical Frenet formulae
e\ (s) = Ri(s)ea(s),
e;(s) = —Ri—1(s)ei—1(s) + Ri(s)eiy1(s), i =2,...,n—1,
e, (s) = —Fn-1(s)en—1(s).
Repeated application of these formulse shows that
egk)(s) Lej(s) whenever 0<k<li—jl|
Consequently, by Taylor’s theorem
[(ei(s1), ej(52))| Sy |51 — 5ol for 1 <i,j <nand sj,sp €.

Furthermore, one may deduce from the definition of {e;(s)}]_; that

K'y(i)(sl),ej(sz»] <y Is1— 32\(j_i)vo for 1 <i4,7 <n and s1,s9 € I. (5.1)

In this paper, much of the microlocal geometry of the averaging operators A; is expressed in
terms of the Frenet frame. We further introduce the following definitions.

Definition 5.1. Given 1 <d <n—1and0 <r <1, for each s € I let m4—1(s; r) denote the set
of all £ € Rr satisfying the following conditions:

[(ej(s),&)] < rdt1=i for1<j<d, (5.2a)
1/2 < [eg+1(s), )] < 2 (5.2b)
Kej(s), Ol <1 ford+2<j<n. (5.2¢)

Such sets mq_1(s; r) are referred to as (d — 1,7)-Frenet boxes.

The relevance of the d — 1 index is that the m4_1(s;7) correspond to plate regions defined with
respect to a codimension d — 1 cone. For n = 4 and d — 1 = 2, this geometric observation is
discussed in detail in §9.1.

Definition 5.2. A collection Py_1(r) of (d—1,r)-Frenet boxes is a Frenet box decomposition along
v if it consists of precisely the (d — 1,r)-Frenet boxes wq_1(s; r) for s varying over an r-separated
subset of I.

SNote that the k; depend on the choice of parametrisation and only agree with the (geometric) curvature functions

(e}(s),ej+1(s))

F(8) = )

if v is unit speed parametrised. Here we do not assume unit speed parametrisation.
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5.2. Reverse square function estimates in R>**!'. The most important ingredient in the proof
of Theorem 3.1 is the following square function bound.

Theorem 5.3. Let 0 < r < 1 and Pa2(r) be a (2,r)-Frenet box decomposition along a non-
degenerate y: I — R*. For all ¢ > 0 the inequality
—&

| 2 ey 5O 182) e

we€P2(r) TePa(r)

holds for any tuple of functions (fx)zep,(r) Satisfying supp frcm.

This bound pertains to curves in R* rather than R? and therefore does not directly apply to the
curve v: I — R3 featured in the definition of our original helical maximal operator. Rather, in
§8.3 we apply Theorem 5.3 to a certain lift of the original curve ~ into the spatio-temporal domain
R3*+1. This is somewhat analogous to the situation in [18] where a square function estimate in
R2*! is used to study the circular maximal function in R2.

Theorem 5.3 is related to the Lee—Vargas [1(] estimate for the Mockenhaupt square function in
R3. In particular, the Mockenhaupt square function corresponds to studying functions frequency
localised with repect to a (1,7)-Frenet box decomposition in R®. Moreover, the strategy used to
prove Theorem 9.3 mirrors that of [16]. We first obtain a 4-linear variant of Theorem 5.3 via the
multilinear Fourier restriction estimates of Bennett—Bez—Flock—Lee [3]. The linear result is then
deduced from the 4-linear inequality using a variant of the Bourgain—Guth method [9]. The details
of the argument are provided in §9.

5.3. Forward square function estimates in R®. We also make use of a (forward) L2-weighted
square function estimate in R3. Here the square function estimate is defined in relation to a
(0,7)-Frenet decomposition. In contrast with Theorem 5.3, we work with an operator-theoretic
formulation involving certain projection operators.

As before, let n € C(R) be non-negative and such that n(r) = 1 if r € [—1,1] and suppn <
[—2,2] and define 3 := (27" -) —n(4-). Give an (0,7)-Frenet box 7 = 7, (s;7) let

Xx(€) :=n(r~" ler(s),£) B(Cea(s), £)) n((es(s), &) (5.3)
so that xr(§) = 1if £ € mp4(s;7) and X, vanishes outside some fixed dilate of this set.

Proposition 5.4. Let 0 < r < 1 and Py(r) be a (0,7)-Frenet box decomposition for a non-
degenerate y: I — R3. For all € > 0 the inequality

2 <1 ¢ 2) PN Ew(z) da
LY (D)) e < [ @R ()

7T€'Po
holds for any mon-negative w € LllOC (R3), where N 7(572 is a mazximal operator satisfying
|| HL2 R3)>L2(R3) Seco T ° for all e > 0. (5.4)

The above proposition is related to a L?-weighted version of the classical sectorial square function
of Cérdoba [11], due to Carbery and the fourth author [10, Proposition 4.6]. The proof is presented
in § 10 below.

The definition of A 7(52 is rather complicated, involving a repeated composition of Nikodym-type
maximal operators at different scales. For this reason, we do not provide an explicit description
of the operator here. Further details of the definition and basic properties of this operator are
provided in § 10.
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5.4. A singular Nikodym-type maximal function. The bounds on the spatio-temporal fre-
quency localised pieces of our operator m[a](D;-) are reduced to bounding a Nikodym maximal
function mapping functions in R* to functions in R3. Given r € (0,1)? and s € [~1,1], consider
the plates

Te(s) == {(y,t) € R3 x [1,2] : Ky — ty(s),ej(s))| < rj for j =1,2,3} < R%,

Using these sets, we define associated averaging and maximal operators

A"8g(x; s) :=]{r()g($—y,t)dydt and  N"8g(z) := sup |ATEg(x;s)].

—1<s<1

Note that N8 takes as its input some g € Ll (R") and outputs a measurable function on R3. In
particular, there is a discrepancy between the number of input and the number of output variables
of the operator.

Proposition 5.5. If r € (0,1)3 satisfies r3 < re <11 < r;/2 and ry < ri/zr;ﬂ, then

HNrSingQHB(RS) < |log T3‘SHQHL2(R4)-

This result can be thought of as a higher dimensional analogue of a Nikodym maximal estimate
from [18], which is used to study the circular maximal function in the plane. Note that the
parameter triple r = (r,r,r) for some 0 < r < 1 satisfies the hypothesis of Proposition 5.5,
corresponding to the case of tubes former around the rays t — ty(s). More relevant to our study,
however, is the highly anisotropic situation where r = (r, 7% r3); note that this case is also covered
by the proposition. It is remarked that the situation here is somewhat different to that appearing
in Proposition 5.4 (which will be defined in §10), owing to the aforementioned disparity between
the number of input and output variables. The proof of Proposition 5.5, which is based on an
oscillatory integral argument, is presented in §11 below.

6. PROOF OF THEOREM 3.1: THE SLOW DECAY CONE

Throughout the remainder of the paper, we work with some fixed 0 < dg « 1, chosen to satisfy
the forthcoming requirements of the proofs. For the sake of concreteness, the choice of 6y := 10719
is more than enough for our purposes. It suffices to prove Theorem 3.1 in the special case where
v € B3(d9) and supp x S Iy := [—dp, dp]. Indeed, using the observations of §4, we may decompose
and rescale the operator m[ai]|(D; -) to reduce to this situation.

Suppose v € B3(dg) and a € C* (1@3\{0} x R x R) satisfies the hypotheses Theorem 3.1. In view
of Theorem 3.2, we may further assume that

{ v (s), ] = 5 [¢]
(YD) (s), )| < 8do|&| for j = 1,2

We note two further consequences of this technical reduction:

for all (&;t;s) € suppa. (6.1)

e Since v € $3(dp), we have ) (0) = € for 1 < j < 3 and so (6.1) immediately implies that
&3] = 1% €] and |&| < 8pl¢| for j =1,2, for all £ € suppy a.
e Since v € ®3(dy), we have |[y®* |, < dp. Thus, provided &y is sufficiently small,

()& = Llel for all (€;5) € suppa x [-1,1]. (6.2)

Observe that this inequality holds on the large interval [—1, 1], rather than just .
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Henceforth, we also assume that &5 > 0 for all £ € supp, a. In particular,

P (s),€) >0 for all (£;s) € suppga x [—1,1] (6.3)

and thus, for each ¢ € suppga, the function s +— {y/(s),{) is strictly convex on [~1,1]. The
analysis for the portion of the symbol supported on the set {¢3 < 0} follows by symmetry.

The first step is to isolate regions of the frequency space where the multiplier m[a] decays
relatively slowly. Owing to stationary phase considerations, this corresponds to a region around
the conic variety

I':= {§ esuppea: (Y (s),€) =0, 1 <j <2, for some s € I}
To analyse this cone, we begin with the following observation.
Lemma 6.1. If € supp; a, then the equation (7"(s),&) = 0 has a unique solution in s € [—1,1],

which corresponds to the unique global minimum of the function s — (y'(s),&). Furthermore, the
solution has absolute value O(dp).

Proof. Given § € suppg a, let

L1 SR, i s (7(5),6). (6.4)

o:
[—1,1] and the equation ¢'(s) = (y(#(s),£) = 0 has at most one

[
By (6.3), ¢"(s) > 0 for all s € [—1
solution on that interval.

On the other hand, by the mean value theorem,

¢(s) = (P(5),6) = &2 +w(&9) s,
where w satisfies [w(&; )| = 5|¢] > 0. As [&] < 85p|¢], it follows that |w(&;s)|[s| > [ if |s| > 1600,

and so the equation (v?)(s), ) = 0 has a unique solution in the interval [—168g, 165]. Moreover, it
immediately follows from (6.3) that this solution is the unique global minimum of ¢ on [—-1,1]. O

Using Lemma 6.1, we construct a smooth mapping 02 : supp; a — [—1,1] such that

("0 6(€),6) =0 for all £ € suppy a.

It is easy to see that 65 is homogeneous of degree 0. This function can be used to construct a
natural Whitney decomposition with respect to the cone I' defined above. In particular, let

w(€) =y 06(¢),& for all £ € supp a. (6.5)

This quantity plays a central role in our analysis. If u(£§) = 0, then £ € I" and so, roughly speaking,
u(&) measures the distance of £ from T'.

Lemma 6.2. Let § € suppg a and consider the equation
((s),6) =0. (6.6)
i) If u(€§) > 0, then the equation (6.6) has no solution on [—1,1].
i) If u(€) = 0, then the equation (6.6) has only the solution s = 02(&) on [—1,1].
iii) If u(§) < 0, then the equation (6.6) has precisely two solutions on [—1,1]. Both solutions have
absolute value 0(6(1)/2).

Proof. Given § € suppg a, define ¢ as in (6.4).
i) In this case, Lemma 6.1 implies that

#(s) = (v (s),&) = u() >0 forall se[-1,1],

and so (6.6) has no solutions.
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ii) This case also follows immediately from Lemma 6.1, since s = 05(¢) is the only global minimum
for ¢ on [—1,1].

iii) Recall, by (6.3), the function ¢ is strictly convex on [—1,1], and therefore ¢(s) = 0 has at
most two solutions on that interval.

On the other hand, by (the proof of) Lemma 6.1 we know that |62(£)| < 16d9. Moreover, the
mean value theorem implies

w(@) < lal+ sup )16 <8(1+2 sup 1P (s))olé] < 4080f¢l,  (6.7)

|s|<1660 |s|<1660
since v € B3(dp). By Taylor expansion of ¢ around 62(&), one obtains
$(5) = u(€) +w(; s) (s — 62(€))?, (6.8)
where w arises from the remainder term and satisfies w(¢; s) > 1 |¢|. Combining (6.7) and (6.8), it

follows that if |s — 62(&)| = 20(51/2 then ¢(s) > 0. Recall that ¢ 0 02(§) = u(£) < 0. Consequently,
the equation ¢(s) = 0 has exactly two solutions on the interval

[— 1660, 1650] + [—2055/,2055%] < [—3664/2, 3655,
as required. O
Using Lemma 6.2, we construct a (unique) pair of smooth mappings
0F: {€e suppg a : u(§) < 0} — [—1,1]

with 67 (€) < 67 (€) which satisfies

(Y 00F(£),€) =0 for all £ € suppg a with u(¢) < 0.
Define the functions

v (&) := (" 0 07 (€),6) for all £ € supp a with u(¢) < 0.
Lemma 6.3. Let £ € suppa with u(§) < 0. Then the following hold:
[ ()] ~ 16F(6) — 02(6) ~ 167 (&) — 07 (&) ~ Ju( ) [

Proof. By Taylor expansion around 65(), we obtain

v (€) = wi (€) (67 (€) — 62(€)),

0 = (7007 (£),€) = ul&) +wa(€) (65 (€) — 6a2(€))*
where |wi™ (€)| ~ |wa(&)| ~ €] by (6.2). Similarly, Taylor expansion around 67 (&) yields
0= (7 0 01 (€), &) = v (€) (6 (&) — 07 ()) + wal€) (6 (&) — 07 (£))?

where again the remainder satisfies |w3(€)| ~ [£]. As 07 (€) # 67 (€), we can combine the identities
above to obtain the desired bounds. O

7. PROOF OF THEOREM 3.1: LOCAL SMOOTHING RELATIVE TO I'

For k > 1, consider the frequency localised symbols a;, := a (¥, as introduced in §3. We
decompose each a; with respect to the size of [u(¢)|. In particular, write®

Lk/3] ap(&t;8) B(27F2u(€)) i 0 < £ < |k/3|
aj = Z aj ¢ where ape(&tys) = {
=0 ap(& 8 s) n(2 FHBlu(Q)) if £ = k3]

(7.1)

6Here B function should be defined slightly differently compared with (2.2) and, in particular, here S(r) :=
n(27%r) — n(r). Such minor changes are ignored in the notation.
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Here |k/3| denotes the greatest integer less than or equal to k/3.

To prove Theorem 3.1, we establish local smoothing estimates for each of the operators m[ay ¢|(D;

The main result is as follows.
Proposition 7.1. Let 0 < ¢ < |k/3|. For all2 <p <4 ande >0,
Imlake](D; -) fll e rs+ry <e Q_k/p_f(l_g/p)fkHfHLP(R3)

Proposition 7.1 provides an effective bound in the large ¢ regime (in particular, for |k/5] <
¢ < |k/3]). This corresponds to those pieces of the multiplier which are supported close to the
binormal cone I', and therefore lie in a neighbourhood of the most significant singularity.

In addition to Proposition 7.1, we also use results from [19] to deal with the less singular pieces
of the multiplier.

Proposition 7.2 ([19]). Let 0 < ¢ < |k/3|. For all2 <p <6 ande >0,

—EE (3 +1)+ek

Im[a,e](D; '>f||LP(R3+1) e 2 HfHLP(RS)-

This proposition follows from Theorem 3.2 via the sharp Wolff inequality for the light cone [5]
and a rescaling argument (c.f. §1.3). The details of the proof can be found in [19, §5].

Proof of Theorem 3.1, assuming Proposition 7.1. Applying the decomposition (7.1) and the tri-
angle inequality,

[%/5] [%/3]
Imlar](D; <) flloes+r) < Z Imlad(D; ) flo@asny + . Hm[ak,e](D; ) fll e @s+1y-
l=|k/5]+

For 2 < p < 4 we may bound the terms of the first sum using PI‘OpOSlthH 7.2 and the terms of the
second using Proposition 7.1. If, in addition, we assume p > 3, then the geometric series resulting
from the constants can be evaluated to give the desired bound. O

8. PROOF OF THEOREM 3.1: THE MAIN ARGUMENT

By the observations of the previous section, the problem is reduced to establishing Proposi-
tion 7.1. In this section we provide the details of the proof, following the scheme sketched in §1.3.

8.1. Localisation along the curve. We begin by further decomposing the symbols with respect
to the distance of the s-variable to the roots 9% and 62(§). Here it is convenient to introduce a
‘fine tuning’ constant p > 0. This is a small (but absolute) constant which plays a minor technical
role in the forthcoming arguments: taking p := 1075 more than suffices for our purposes.

Recall from Lemma 6.2 that the two distinct roots 65 (€) only occur when u(¢) < 0. In view of
this, let 370, 3<0 € C*(R) be the unique functions with supp 5~° < (0, ) and supp ﬂ<0 c (—0,0)
such that 8 = 57 + 8<0. This induces a corresponding decomposition ay, = aH + a,j% for

< € < |k/3], where u(€) is positive (respectively, negative) on the support of a;’, 9 (vespectively,

ar é) Given € > 0, define

©E(&t;s) = ap9(&tss)n(p 20227k s — g (€)]) i 0 < 0 < |k/3],
and

(‘5)7 3
a; (&t 8) if 0 < ¢ < |k/3|
= | 2 e
ak,é(é, tis)n(p2" s —02(6)]) if [k/3]. < €< [k/3
where |k/3], := | (15%) - k] is a number we think of as being slightly smaller than |k/3]. Note that

m+in\s — 05 (€)| < p2~ (k=02 +ke for all (&;t;s) € suppag if 0 </ <|k/3|..
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Remark. The symbols a,gs)’+ and a](fé’f have disjoint supports if 0 < ¢ < |k/3].. Indeed, the

decomposition ensures that |u(€)| ~ 2572 for all £ € suppg agfz and so Lemma 6.3 implies

107 (€) — 05 (&)] 2 27¢ 2 27 (k=0)/2ke,

Here we use the hypothesis £ < |k/3]_. Provided p is chosen to be sufficiently small, the above

separation condition ensures that the disjointness of the supports of a,(:%’Jr and a,(:é’_. Consequently,

miin ls — 07 ()] =2 9~ (k=0)/2+ke for all (&;t;s) € supp (a,f’% — a,(:%)
if 0 << |k/3]..
The main contribution to m[ay ¢] comes from the symbols a,(:}.
Lemma 8.1. Let 2 <p < ande > 0. For all 0 < ¢ < |k/3]|
Imlage — al)(D; ) flps@sey Snew 2 V[ flives)  for all N eN.

Proof. Tt is clear that the multipliers satisfy a trivial L*-estimate with operator norm O(2¢%) for
some absolute constant C' = 1. Thus, by interpolation, it suffices to prove the rapid decay estimate
for p = 2 only. This amounts to showing that, under the hypotheses of the lemma,

Im{ake — a (5] o sy Sne 27 forall NeN (8.2)
uniformly in 1/2 < ¢ < 4.

Case: |k/3|. < ¢ < |k/3]. Here the localisation of the ay, and a,(f} symbols ensures that

()] <282 and s —09(8)| 2 p7 12719 for all (&;t;5) € supp (ape — afj)), (8.3)

where wu is the function introduced in (6.5).
Fix § € suppg (ag,e — ag) and consider the oscillatory integral m[as, — a,(:;](é; t), which has

phase s — t{(y(s),&). Taylor expansion around 63(&) yields
(V(5),€) = u(€) +wi(&5) (s — 6a(€))? (84)
('(s),&) = wa(&5) (5 — 02(€)) (8.5)
where w; arise from the remainder terms and satisfy |w;(&;s)| ~ 2. Provided p is sufficiently

small, (8.3) implies that the w;(&;5) (s — 02(€))? term dominates the right-hand side of (8.4) and
therefore

(), 0] 2 2Ms = a(€)* for all (&) € supp (g — af)): (8.6)
Furthermore, (8.5), (8.6) and the localisation (8.3) immediately imply
[V (5), &)1 £ 27321y (s), O,
(D), )] £ 20 5 27 EHDU (5), P forall j >3
and all (§;t;s) € supp (age — a,(i;), where in the last inequality we have used [s — 02(£)]7~2 < 1 for
all j = 3.
On the other hand, by the definition of the symbols, (8.6) and the localisation in (8.3),
0 (are = ap) (€ 9)] sy 207N 5 27 EPONTEN |G/ () IV for all N e N

and all (&;t;s) € supp (are — al(f)). Thus, by repeated integration-by-parts (via Lemma D.1, with

r = 2k=36+320 > 1 for 0 < £ < k/3), one concludes that

Imlak,e — a,(f}](ﬁ; t)] Sy 27 (k-3ON=3etN for all N e N
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uniformly in 1/2 <t < 4. Since |k/3|_. < { < |k/3] < k/3, the desired bound follows.
Case: 0 < /¢ < |k/3],. If u(&) > 0, then (6.3) and (8.4) imply

1<y (5), O = |u(€)] + 2k|s —62(& )|2 for all (&;s) € supp a,zg.

Furthermore, the localisation of the symbol a7 guarantees that u(¢) ~ 2k=¢ for all £ € supp a9
It is then a straightforward exercise to adapt the argument used in the previous case to show
Hm[a;%]( )]0 Sne 278N, splitting the analysis into the cases |s — 02(£)| = 27 and |s — 09(¢)| <
2. Here we use the fact that 2~ (=30 < 2-¢k

Thus, the problem is reduced to proving

Imlais§ — Ak (-5l o ey Sne

Here the localisation of the a,j ; and al(C% symbols ensures that

2—kN .

lu(€)] ~ 28726 and min |s — 0F(€)| 2 2= *=0/24ke for all (¢;t;5) € supp (ake - a,g b (8.7)

where wu is the function introduced in (6.5).
Fix ¢ € suppg (a9 — a,(:;) and consider the oscillatory integral m[ak v~ ak z] (&;t), which has

phase s — t{((s),&). If we define

(b: [_171] _)R7 ¢: S'_)<’YI(S)7§>7
then, by (6.3), this function is strictly convex. Thus, given ¢ € [—1,1], the auxiliary function

@: [-1,1] >R, ¢:s— M fors#t and q:t— ¢'(t)
P
is increasing. Setting ¢t := 0] (£) and noting that ¢ o 67 (§) = 0, it follows that
¢(s) _ 906 _ u(€) <0  forall —1<s<6¢),

s—07(6) 0206 —07(6)  0a(6) — 07 (¢)
where we have used the fact that u(£) < 0 on the support of azg. If s € [62(£), 1], then we can

carry out the same argument with respect to t = 6; (£) to obtain a similar inequality. From this,
we deduce the bound
Jr
IU( )Is =67 (9)]

(), 01 2 min 2o o0 6

Recall from (8.7) that |u(€)| ~ 2872¢ and therefore |02(&) — 67 (€)| ~ 27¢ by Lemma 6.3. Substi-
tuting these bounds and the second bound in (8.7) into (8.8), we conclude that

/(). 2 25 mins = 07 (&) 2 247925 for all (€:t:5) € supp (a5f — aj).  (89)

forall —1<s<1. (8.8)

Furthermore, by the mean value theorem,
(" (), ] < max o™ (¢)] + 2" min|s — 07 (€)] < 2870 1280y (), 1 £ 2771V (9), ©1,

where we have used (8.9), the condition [v*(£)] ~ 287 for ¢ € suppa;) from Lemma 6.3 and
0 < ¢ < k/3 in the last inequality. For higher order derivatives,

(Y9 (s5), & <5 28 <5 27U DRy (5), )1 forall j >3

and all (€;;5) € supp (a5} — af;)). On the other hand, by the definition of the symbols and (3.9)
we have

10N (ar,e — a5))(€; 5)| Sy 2NED/297Nke < 9=2Nke|(1(5) 5|V for all N € N
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and all (¢;t;s) € supp (ag ) 7~ a,(C z) Thus, by repeated integration-by-parts (via Lemma D.1, with

7 := 25/2 > 1), one obtains the desired bound (8.2). O

8.2. Fourier localisation. We perform a radial decomposition of the symbols a;:% with respect to

the homogeneous functions 6 and ;. Fix ¢ € C*(R) with supp ¢ < [—1, 1] such that 3, ¢(- —
[)=1. For ke Nand 0 </ < |k/3|,, write

au—ZE k€)+

+ veZ

where
Al (&t s) = a ) (€t 9) C(p @ETIROE() —v)) 0 <L < [k/3]..

Each of the two terms in )] + can be treated analogously. In order to simplify the notation, we

drop the symbol + from aZ’gE) and 9% and adopt the convention

af) = lapy. (8.10)

VEL

The key properties of this decomposition are that
|s — 01(&)] < p2~F=0/24keand  |01(€) — s,| < p27FD2 for all (€;¢;5) € supp akg ), (8.11)

where s, := 27 (-=9/2y and 0; € {67 (€), 607 (€)}. The decomposition (8.10) is also extended to the
range |k/3|. < £ < |k/3], with
ap (&t s) = ap (& 155) C(2'0a(6) —v)  if |k/3] < £ < |k/3]. (8.12)

In the case 0 < ¢ < |k/3|_ we also consider symbols formed by grouping the aZ’gs) into pieces

at the larger scale 27¢. Given 0 < ¢ < |k/3|_ we write Z = U ez (1), where the sets 9Ny (p) are
disjoint and satisfy
Ne(p) S {veZ:|v— 203072, < ok=30/2y

For each p € Z, we then define
e Y

veNy (1)

and note that |91i (&) —sul < 2=% on Suppg aM #(€) , where s, := 27 ‘1. Of course, by the definition

of the sets M),
(e) _ ®, 0
ak,e—zak Z Z aké :
UEZL MEZ veN, (1

It is notationally convenient to trivially extend these deﬁnltlons by setting My(u) := {u} for
|k/3]. < ¢ < |k/3] and, in this case, defining aZ’“’( 9 ag‘é 2 accordingly.

Given 0 < r < 1 and s € I, recall the definition of the (1, r)-Frenet boxes m1(s; r) introduced in
Definition 5.1:

mi(s; r) = {f eR3: I<e;j(s),&)| < 3 for j =1, 2, |<e3(s),&)| ~ 1}
It is also convenient to consider 2-parameter variants of the (0,r)-Frenet boxes. Given 0 < rq, 79
and s € I, define the set

mo(s; r1,re)i={€ € R¥ : [{er(s), ) s 11, [ea(s), ) ~ 1, [(es(s), )] < ra}.

The geometric significance of these sets is made apparent in §8.6 (and, in particular, Lemma 8.9)
below.
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(e)

() and o2 satisfy the following support properties.
k,l

The multipliers aZ’ v

Lemma 8.2. For all0 <{ < |k/3|, e >0 and p,veZ,
a) If ve Ny(u), then suppg aZ’E,E) < 28y (sy; 270), where Sy = 2~ ty;
b) If £ < |k/3],, then supp; aZ’%) < 260 (5,527 R=072 28 " yhere s, := 2-k=0/2y,

As an immediate consequence of part a), we see that Suppg aZ’zL (#) c 2k. 1 (Sp; 24).

Proof of Lemma 8.2. a) For § € suppy aZ’ge) observe that the localisation in (7.1) implies

[P0 02(6), 1 270 fori=1,2, (4P 06x(),6)| ~ 2"
If 0 < £ < |k/3]_, then |s, — 61(&)| < 27*9/2 and so

|50 = 02(6)] < Isy — 50| + |5y — 01(€)] + [01(€) — Ba(&)| s 27702 427 g 27

by Lemma 6.3. Note that the inequality |s, — 62(£)| < 27¢ also extends to the case |k/3|. < £ <
|k/3] in view of the definition of the symbol from (8.12). Taylor expansion around 62(§) therefore
yields

[P (5), Ol 27070 fori=1,2, [P (50), )] ~ 2"

Since the Frenet vectors e;(s,) are obtained from the v(?)(s,) via the Gram-Schmidt process,
the matrix corresponding to change of basis from (ei(su»?:l to (’y(i)(s“))f=1 is lower triangu-
lar. Furthermore, the initial localisation implies that this matrix is an O(dg) perturbation of the
identity. Consequently,

[Cei(s,), ] < 28G9 for 1 <i<3.
Provided the parameter dy > 0 is sufficiently small, the argument can easily be adapted to prove
the remaining lower bound [{e3(s,),&)| 2 1.
b) Let 0 < ¢ < |k/3|,. For £ € suppy aZ”E;E) observe that the localisation in (7.1) and Lemma 6.3
imply
(Y 001, =0, [V 0016, Ol ~ 2, (¥ 0b1(€), O ~ 2",

It then follows from Taylor expansion around 6;(&) that

[ (80): O £ 20792 [Uy"(s), )] ~ 2"7° and [(4¥ (1), )] ~ 27,

provided p is chosen sufficiently small. The vU)(s,) in the above estimates can then be replaced
with the Frenet vectors e;(s,) by a similar argument to that used in part a). O

8.3. Spatio-temporal Fourier localisation. The symbols are further localised with respect to
the Fourier transform of the ¢-variable. In particular, let

g(€) == (voby(€),&)  and  x\)(6,7) == (2" E307R (4 g(e)))

and define the multiplier mZ’gE) by

.7:t [mZ’,Ef) (f, . )] (7’) = X/(:%(f, 7-) ‘B[m[aZZ%)](é; . )] (T)
Here F; denotes the Fourier transform acting in the ¢ variable. Define ng () and m,(:% accordingly
by setting
mie@ S O and w3 ),
veNy (1) el

The main contribution to m[aZ’;E)] comes from the multipliers mZ’ﬁE).



SHARP LP BOUNDS FOR THE HELICAL MAXIMAL FUNCTION 19

Lemma 8.3. Let1<p<oo and € > 0. For all 0 < ¢ < |k/3|,
| (m “ke mZZEE))(D? ')f||Lp(R3+1) <SNe Q_kNHfIILp(Rs) for all N € N.
Proof. 1t suffices to show that
|8§‘(m[a2’72€)] mH )(5 O Sne 27+t 10 for e N3, |a| <10, and N eN. (8.13)
Indeed, if (8.13) holds, then Fourier inversion and repeated integration-by-parts imply
[(mlap ] = mi) (D) f(@)] e 27NV (@ + )70+ |70 % f().

Taking the LP(R3*!)-norm of both sides of this inequality immediately yields the desired result.
By the Fourier inversion formula
1

(mlagy”] = miy?) (&0 = o / e (1= xj0(& 1) Filmlay (& )] (r) dr.

Let E = (&,7) € e R3+! denote the spatio-temporal frequency variables. Clearly, there exists a
constant C' > 1 such that |0 Xk e( )| < 2¢F for all @ € N with |a| < 20. Furthermore, if

(&,7) € supp (3%( Xg) then |7 + q(&)| 2 27F+36+4ek Thus, by integration-by-parts in the
T-variable, to prove (8.13) it suffices to show

02 Flmlayy 16 (0] Sne 27K (14275955 4 g()) ", ae N, ol <20, NeN,
(8.14)
for some choice of absolute constant C' > 1 (not necessarily the same as above).
By the Leibniz rule,

2 Almla 16 )]0) = [ I Omp i) ar (8.15)
where b (5 Ty 8) 1= 6"‘1(5)@”( “(&;r; s) for some symbol aV( £ satisfying
|(9f~ Z;) (&ri9)| <5 ok for all j € Ny, a € N3, |a| <20, |r| <1 (8.16)
and with supp ak:( &) C supp akg 2 Note, in particular, that
Ml Er) = [ e BODG D € s (8.17)
’ R
By Taylor expansion around 6#3(§), the phase in (8.17) can be written as
(v(5) =7 002(6),&) = u(€) (5 — 62(6)) + w(&; s) (s — 62(6))° (8.18)
where w arises from the remainder term and satisfies |w(&;s)| ~ 2¥. Recall,
lu(€)] < 28 and |s — 05(8)| < 27tk for all (&;r;s) € supp ak,g ), (8.19)

which follows from the definition of akg ) Here, in the case 0 < ¢ < |k/3|,, we use Lemma 6.3 to

deduce that
[5 = 02(O)] < Is = (&) + 101(8) — 02()] £ 27"
Combining the expansion (8.18) and the localisation (8.19) yields

[y(s) =0 02(€), © < 267353%F  for all (¢:7:5) € suppaj’y”. (8.20)
By (8.20), (8.16) and integration by parts in (8.15), one obtains
|02 Fy[mlay ;s 16 )] ()] Sar 26%|7 + (&)~ M2tk=303sM for all M e N
and all a € N§, |a| < 20. This implies (8.14) and concludes the proof. O
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#,44,(€)

To understand the support properties of the multipliers my, we introduce the primitive

curve
Jo
5: I — R4, ’)/:8'—>|:OS].
Here fo 7 denotes the vector in R? with ith component fo v; for 1 <1 < 3. Note that 7 is a non-
degenerate curve in R* and, in particular, |det(3(") ... 3®)| = |det( ) BN Let ((s ))?:1

denote the Frenet frame associated to 4 and consider the (2, 7)-Frenet boxes for 5
maq(s;r) == {E = (§,7) e RO x Rt [(ej(5), E)] s v for 1 <j <3, [(@a(s), D] ~ 1},
as introduced in Definition 5.1.

Lemma 8.4. For all [4ek| < ¢ < |k/3| and pe Z,
Supp]:lt[m,M (6)] c2k. o (8 u; 245k2_e),
where s, := 2=t and F; denotes the Fourier transform in the t-variable.

Proof. If = = (¢,7) € supp]-"t[mk’g (8)] then ¢ € supp, CLM (&) and 1q(&) + 7| < 2%F2k=3¢. The
former condition implies [u(¢)] < 2572 and |s — 62(€)] < 27+°F (see (8.19)) and so, by Taylor
expansion around 6s(&),

[(v(50): € + 71 < 1a(€) + 7] + u(€)l]s — 02(6)] + 2%|s — bz (€)* < 2252, (8.21)

Define the lifted curve and frame
vl — R?, Yri 8> {7(18)} and ej;: [ — S3, €j1: 85— {ejés)] for 1 <75 <3,

respectively. This definition is motivated by our related work on LP Sobolev estimates for the
moment curve in four dimensions [1]. Note that 7 is a primitive for v; in the sense that 3" = ;.
By the definition of the Frenet frame, it follows that

_ i—1 i
&j(s) € (n(9).74() -y () and 7 (s) € Cerg (s nein(s)
for 1 <i < j < 4. Thus, one readily deduces that

K&;j(s), 2| < Km(s), E)| + Z Cei(s),&)|  for E=(&,7)eR* and 1 <j <4

If == (& 1) € supp F; [mkg (E)] then it follows from (8.21) that

[t (512 DI = [(r(50), € + 7] < 22573

(e)

On the other hand, since § € supp, aZ’Z’ , Lemma 8.2 yields

[ei(su), &) < 28-G=DC for i =1, 2, |<e3(5u)75>|“2k'

Combining these observations, [(&;(s),Z)| < 2%#2F~(4=9)¢ for 1 < j < 3 and therefore it suffices
to prove [(4(s,),E)| ~ 2*. Since our hypothesis ¢ > [4ek] 1mphes that iekok=(3-0f < 2ok for

0 < i < 2, the above argument directly yields the upper bound. On the other hand, since v € &3(do)

and we are localised to |s,| < do, the change of basis mapping (éj(su))§:1 to (vgj_l)(su))?:

O(0p) perturbation of the identity. In view of this, the above argument can also be adapted to
give the required lower bound. O

1 1s an
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8.4. Reverse square function estimates in R3*!. In view of the Fourier localisation described
in the previous subsection, Theorem 5.3 implies the following square function estimate.

Proposition 8.5. Let ke N, 0 < ¢ < |k/3]. For all2 <p <4 and e > 0, one has

mlaf1(D; ) ooy Seow 257302060 (37 pmla1(D; ) 12) "
VEZ

—kN
Lr(R3+1) ”f”Lp(RS).

Proof. First suppose [4¢k| < ¢ so that Lemma 8.4 applies. Thus,
mk g )f = Z my, 7/1 ) f
HEZ

ol (8)( ; - ) f has spatio-temporal Fourier support in 2% 79 = (s,; 24¢k92=6)  The family

where each my'y
of sets 772,7(3#, 242k9=0) for |u| < 2¢ may be partitioned into O(2%*) subfamilies, each forming a
(2,2%*274)_Frenet box decomposition for the non-degenerate curve 5 in R*. Consequently, by

Theorem 5.3 and pigeonholing,

g s (e 1/2
Im{ED; ) lpoqesy < 270 (3 Impg @ (D; ) 12)
HEZ

Lr(RY)

By a pointwise application of the Cauchy—Schwarz inequality, using the fact that #9(u) <
2(k=30)/2 for all p € Z, we conclude that

ngﬁ (D; ) fllpos+ry <e o(k— 34)/420(ak H Z Im u(a (D; ,)f‘2)1/2

VEZ

P (8.22)

The desired estimate, involving the m[ak’g )] multipliers rather than the mZ’}e), now follows by
combining (8.22) and Lemma 8.3.

On the other hand, if 0 < ¢ < [4¢k], then the result follows directly from the Cauchy—-Schwarz
inequality. O

Remark. The above square function estimate is not very effective away from the binormal cone
(¢ = 0 or small values of £), as in that case it essentially amounts to a trivial application of the
Cauchy—Schwarz inequality. However, as noted in §7, Proposition 7.1 is only used close to the
binormal cone (¢ = |k/3] or large values of ¢), for which Proposition 8.5 is most effective. The
small values of ¢ in proving Theorem 3.1 are handled via Proposition 7.2.

For p = 2 a stronger square function estimate is available simply due to Plancherel’s theorem.
In particular, this avoids the loss induced by the Cauchy—Schwarz inequality in the proof above.

Lemma 8.6. Let ke N, 0 < /¢ < |k/3|. For alle >0,
1/2
Z\m akg P o) f] )/

Imla{S))(D; ) fllpzgmssy < o

Proof. This is simply a consequence of Plancherel’s theorem and the fact that the symbols aZ’&E)
are supported on the essentially disjoint sets 27 - 7 (s,; o~ (k=0)/2 2Y) by Lemma 8.2. O

8.5. Kernel estimates. Given a symbol a € C°(R™\{0} x R x R), define the associated convo-

lution kernel .
(2m)n /@n ei<x’£>m[a] (&) dE.
(e)

Each of the localised symbols aZ’ , satisfies the following kernel estimate, which yields a gain
due to the localisation of the symbols in the s-variable introduced in (8.1).

Kla](x,t) :=
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Lemma 8.7. For ke N and 0 < ¢ < |k/3],
|Klagy ) (@, t)] < 2702200 g (@,1) p(t)

)

where
—100

D (50 (@, 1) 1= 2005730 /2( Z 2d (k=0/20k) (5 <sy>,ej<sy>>)

Proof. Let V,; denote the directional derivative with respect to the £ variable in the direction of
the vector v; := e;(s,), so that

( 1
ilx —ty(sy),e;(s,))

Thus, by repeated integration-by-parts, it follows that

Kr—ty(sy),&) __
v,,j—l)e< V()6 .

a1, 1)) < [ — ty(s0). (5000 / [V [ O ma ()] | de
< 2056=30/290(K) | (1 _ 1r(s,), e5(5,)5| N sup |VN[”<”(S”)5> CARIGDIE
¢elR3

()

here the second inequality follows from the £-support properties of the symbols CLZ’ ; from Lemma 8.2

b) if 0 < £ < |k/3]. (in which case there is no 20(%) loss) or Lemma 8.2 a) if |k/3|_ < ¢ < |k/3].
Observe that

it (s0),6) [ ](5 t) = /Re—it@() v(sv) 5> v( (g, s)x(s)p(t) ds.

Passing the differential operator V,; into the s-integral, we therefore have
|VN[ it{y(sv),&) [ ] I3 t ]| < 9- (k— Z)/22O(ek Sup|vN[ —it{y(s)—=v(sv), £> V é‘ t;s ]\p

(8.23)
(&)

Here we have used the s-support properties of a:’ o5 in particular, the definition (8.1).

Consider the oscillatory factor e~ (5)=7(sv):€> on the right-hand side of (8.23). The ¢ derivatives

)

of this function can be controlled on supp akg e by noting that

[<v(s) = v(s0),v5)] < / (7 (o), vl do < |s — s, [ 27702200 for 1 < j <3,

where we have used (5.1) and triangle inequality and (8.11) in the last inequality. Thus, by the
Leibniz rule, the problem is reduced to showing

Vo, ay aH V(& t;8)| <y 27 UHR—0/20RN9eIN g1 311 1 < j < 3 and all N € N. (8.24)

For all N € N, we claim the following:

e For ¢ € supp; aZ’}E) with 0 < £ < |k/3|,
2Z|V1J>7]02(£)|7 2—k+2€|vaju(£)| <N 2—(j(k—€)/2/\k)N2séN; (8.25)
e For £ € supp, aZ’ge) with 0 < ¢ < |k/3]_,

2(kf£)/2’v1];\fjal(€>‘ <N 2*(j(k*£)/2/\k)N. (8.26)
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Assuming that this is so, the derivative bounds (8.24) follow directly from the chain and Leibniz
rule, applying (8.25) and (8.26).

The claimed bound (8.25) follows from repeated application of the chain rule, provided

(4 0 02(6), 6] 2 2%, (8.27a)
(1) 0 62(6), ) i 2+, (8:27b)
|<’Y(K) o 92( )7'Uj>| <k 2 (j(k— €)/2Ak)+k+Z(K—3)2€Z (8270)

hold for all K > 2 and all € suppg a:f)' In particular, assuming (8.27a), (8.27b) and (8.27¢),
the bounds in (8.25) are then a consequence of Lemma C.1 in the appendix: (8.25) corresponds
to (C.13) and (C.15) whilst the hypotheses in the above display correspond to (C.16) and (C.17)
(see Example C.2). Here the parameters featured in the appendix are chosen as follows:

g h A B M1 M2 e

| A | okt | 9k=20 | 9—(i(k—£)/27k) el | ot

Y|y v;

The conditions (8.27a), (8.27b) and (8.27c) are direct consequences of the support properties of
the akg %) Indeed, (8.27a) and the K > 3 case of (8.27b) are trivial consequences of the localisation

of the symbol aj. The remaining K = 2 case of (8.27b) follows immediately since (7" 065(§),&) = 0.
Finally, the right-hand side of (8.27c) is always greater than 1 unless j = 3 and K = 2, and so we
can immediately reduce to this case. If 0 < ¢ < |k/3|_, then (5.1) together with Lemma 6.3 and
the 61 localisation in (8.11) implies

[y 0 05(€), v3)| < [02(€) — 50| < 102() — 01(E)] +101(8) — 5] <27

On the other hand, if |k/3]. < £ < |k/3], then, by a similar argument, [(y(?) 0fs(&), v3)| < 27412,
This concludes the proof of (8.27c).

Similarly, the claimed bound (8.26) follows from repeated application of the chain rule, provided

\<7 001(£),6] 2 27, (8.28)
[y 0 61(8), )| s 2K¢072, (8.28b)
[Y) 0 01(€), v5)] Sgc 27 UR02ARFRE=0)/2 (8.28¢)

hold for all K > 2 and all £ € supp aZ’éE) when 0 < ¢ < |k/3]_. This again follows by Lemma C.1
in the appendix. Here the parameters are chosen as follows:

g A Ml M2 e

A | 26072 | 9=(ilk=0/20) | 9(k=0)/2 | 4

The conditions (8.28a), (8.28b) and (8.28c) are direct consequences of the support properties of
the aZ’gE) for 0 < ¢ < |k/3|.. Indeed, (8.28a) and the K = 2 case of (8.28Db) is just a restatement

of the condition [v*(&)| ~ 2¥=¢, which holds due to Lemma 6.3. The K > 3 case of (8.28b) follows
immediately from the locahsatlon of the symbols ai. Finally, the right-hand side of (8.28c¢) is
always greater than 1 unless j = 3 and K = 2, and so we can immediately reduce to this case.
However, (5.1) together with the #; localisation in (8.11) implies

[(F®) 0 01(€), va)| < [61(€) — 8] < 27 F0/20%k < 9,
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which concludes the proof of (8.28c). O

8.6. Localising the input function. At this juncture it is useful to note some further geometric

vy(e)

properties of the support of the multipliers m[ak Y, | featured in the decomposition.
Recall from Lemma 8.2 a) that
suppg a;, ’( ) ok T1(Sy; 274 for all v € My(u), (8.29)

where s, := 2=y, The rlght—hand set is contained in a certain sector in the frequency space. In
particular, given 0 < ¢ < |k/3] and m € Z define

Ape(m) = {€ e R®: & — &27m| < 0276 and O12F < & < C2F}, (8.30)
where C' > 1 is an absolute constant, chosen sufficiently large so as to satisfy the requirements of
the forthcoming argument.

Lemma 8.8. If u, v € Z satisfy v € MNy(u), then there exists some m(u) € Z such that

28 1545270 € Age(m(p)). (8.31)
Furthermore, for each fixed k and ¢, given m € Z there are only O(1) values of p € Z such that
m =m(p).

Proof. Define G: Iy — R? by G(s) := e33(s) 'es(s). As a consequence of the Frenet equations,
the vectors G'(s), G”(s) span R? x {0}. Given ¢ € R3, it follows that there exist 7, 72 € R such
that

£ —&G(s 22‘@ GY)(s (8.32)

Taking the inner product of both sides of this 1dent1ty with respect to the e;(s) for j = 1, 2 and
applying the Frenet equations

&e(s)| 0 (GO (s),er(s)] [ 2~m
[<§,ez(8)>] a [<G(1)(5),e2(s)> <G(2)(s),e2(5)>] [2_%772] (8.33)

where the anti-diagonal entries of the right-hand 2 x 2 matrix have size ~ 1.7
Let & € 28 - my(5;27%) so that [(€, e1(s,))| < 28726 and (€, e2(s,))| < 287¢. Combining these
bounds with (8.32) and (8.33), it follows that
|62 — &Ga(su)] < € — &G (s.)] 280 ~ 27,

If we take m(u) to be the integer which minimises |27%m — Ga(s,)|, then we obtain (8.31). On
the other hand, the Frenet equations ensure that Ga(s) = e33(s) lesa(s) satisfies |G%(s)| ~ 1 for
all s € Iy. Consequently, the assignment p — m(u) is O(1)-to-1, as claimed. O

For each p € Z define the smooth cutoff function
Xi (€)= n(C712% /& — m(p)]) (n(C~127F&) —n(2027¢)).

If § € suppy aZ’g ®) for v e M(p), then (8.29) and Lemma 8.8 imply x;7%'(¢) = 1. Thus, if we define
the corresponding frequency projection

“u = ng /(D)f,
it follows that
[akg 1(D; ) f = m[ay ( 1(D; )f:lf‘ for all v € My(u).

TA similar computation is carried out in more detail in §9.1.
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Recall from Lemma 8.2 b) that we also have
Supp; aZ’ga) c 2k-t. mo(Su; 2~ (h=0/2, 25), where s, := 2702y, (8.34)

Fix some 0 < ¢ < |k/3| and p € Z with s, := 274 € [—1,1]. To simplify notation, let o := Sus
X:=2"%and let 5 := Yo,x denote the rescaled curve, as defined in Definition 4.1, so that

() == (7o)~ (7@ + As) = (). (8.35)

Let (éj)?:l denote the Frenet frame defined with respect to 4. Given 0 < r < 1 and s € I, recall
the definition of the (0, 7)-Frenet bores (with respect to (éj)?:l) introduced in Definition 5.1:

mos(sir) == {€e R [(&1(9), Ol s 7 [(&a(s), Ol ~ 1, [(&s(5), )] < 1}

Note that all these definitions depend of the choice of 1 and ¢, but we suppress this dependence
in the notation.

Lemma 8.9. With the above setup, and v € N(u),

1T - 2578 oy (5 276012, 98) € 2R3 ey (5,9~ (h-30/2),
where &, := 2'(s, — s,,) for s, := 2702y,
Proof. Let & € 287 . g (5,,; 27 F=0/2 28) 50 that

Ker(sn), I 25792 lea(sy), )] ~ 2¢74, [Cea(su), &) ~ 2*.

: . . . 3 ; 3.
Since the matrix corresponding to the change of basis from (ej(sy))jzl to (’y(j)(s,,))j=1 is lower
triangular and an O(dp) perturbation of the identity, provided ¢y is sufficiently small,

(YW (), 01 207972, 1 P(5,), 01 ~ 2575, [/ (s), ] ~ 2*.
Now define € := ([fy]a,A)T -€. Since A := 274, it follows from the definition of 5 from (8.35) that
GO, € =270 (). forj=1.
Combining the above observations,
[T (E), O 287292, (P (E,), ) ~ 275, [(70(5,),6)] ~ 2%,

Provided ¢y is sufficiently small, the desired result now follows since the matrix corresponding

to the change of basis from (éi(éy))?zl to ('Ny(i)(é,,))?zl is also lower triangular and an O(d)

perturbation of the identity. O

For v € My(u) define the smooth cutoff

XE (€)= xa (071270, - €) (8:36)
where Xz is as defined in (5.3) for 7 := 7y 5(5,; 2~ (k=30/2) a5 above. If £ € Suppy aZ’%), then (8.34)

and Lemma 8.9 imply XZ,Z(‘E ) = 1. Thus if we define the corresponding frequency projection
fi?,e = XZ,Z(D)f;:’;,
it follows that
mlag)(Ds ) f = mlal D; ) firf = mlag?|(Ds ) f, for all v e Nu(p).
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8.7. L?>-weighted bounds in R3*!. We apply a standard duality argument to analyse the square
function appearing in Proposition 8.5. In particular, we use L?-weighted approach and the key
ingredient is the Nikodym-type maximal inequality from §5.4.

By duality, there exists a non-negative g € L?(R3*!) with 9]l z2(ms+1y = 1 such that
v©1p. ) V2 _ v . 2
\(Ezm[aw 10 )]s —V;Z /R  Imlag 1D f (@) g s ) dat.

By the observations of the previous subsection,

mlal N (Ds0)f = mlal P1(D;0) 1L

Let Y75, 4(s.) be the weight introduced in Lemma 8.7. Since the I/JTH(SV)( -:t) are L'-normalised
uniformly in ¢, it follows from Lemma 8.7 and the Cauchy—Schwarz inequality that

mlap 1 (Dst) f ()P £ 27 E020E0 ity x| £ 1P () p(D). (8.37)
Define the Nikodym-type maximal operator

N5 g(2) = max / 9z = Y, D7 45y (5, 1) p(t) dydlt.

VEZ: |sy|<bo JR4

By (8.37) and Fubini’s theorem, it follows that
Z/Rgﬂ v 1(D:t) f(2)Pg(a;t) dadt < 27 (702960 / D k@) PNE () da

VEZ VEZL

Note that N, kSiKng is essentially a smooth version of the maximal operator NS from §5.4 with
parameters 7 = 2~ k=02 5y .= 2=(=0 and r5 := 275 By the restriction 0 < ¢ < |k/3], it
follows that this choice of r satisfies the hypotheses

1/2 1/2 1/2
r3<r2<r1<r2/ and 7“2<7"1/r/

from the statement of Proposition 5.5. Thus, by pointwise dominating ¢ 7, ,(s,) by a weighted
series of indicator functions and applying Proposition 5.5, one readily deduces the norm bound

0] gy Se 2

By combining the above observations with an application of the Cauchy—Schwarz inequality,
v, 1/2 (ke vy 1/2
(X Imla1D: ) 112) < 270 OER | (N £ ) ey (8:39)
vEZL

VEZ
It remains to bound the right-hand square function, which involves only functions of 3 variables.

L4 (R3+1)

8.8. L2-weighted bounds in R3. A similar L?-weighted approach is now applied one dimension
lower to estimate the square function appearing in the right-hand side of (8.38).

Proposition 8.10. Let ke N, 0 < ¢ < |k/3| and e > 0. Then
I )"y Se 22PNl (8.39)

L4(R3) ~NE
Proof. By duality, there exists a non-negative w € L*(R3) with |w] 2 (rs) = 1 such that

IS 1) ey = X [ 3 Py (8.40)

veEZ UEZ veN (1)
Recall that the fY, are defined by

fie = XEo(D)frf for ve My(p)

vEZL
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where the smooth cutoff function xJ , is as defined in (8.36). Fix p and, as in §8.6, let 0 := s,
and X := 27¢ Define f,ﬁ;z = fEeo [ons fk*éﬂ = frt o[v]ex and @ := w o [y],x so, by a change
of variables,

/ Z | fieo(x () dz = | det[y o')\|/ Z |fkg )2 () da. (8.41)
vedy(u) veN,(p

By the definition of x}/ , and Lemma 8.9, each of the f,‘c’ ¢ is Fourier supported in a 2k=3¢ dilate of
a (0,2~ (+=30/2)_Frenet box. In view of this, we may apply Proposition 5.4 to deduce that

[ Y @l < 2 deblol [ 1@ 0@ 542

veN,(p)

where the operator N, k“ , ?) is defined by

./\N/’k‘ibé(e) = Dilyk—se O./\N/%(;) o Dily— (k—30)
for 7 := 27(+=30/2 and Dil,: L3(R?) — L?(R3) the dilation operator Dil, f := f(p -) for p > 0.
Here J\N/’ﬁ(? is the maximal operator featured in the statement of Proposition 5.4 (the precise
definition is given in §10). Note that ( ) depends on the choice of y. By reversing the change

of variables in (8.41), we can show the followmg.
Claim. There exists a mazximal function ./\/'k(;), independent of u, such that
([71s, ) NM ©) o [Y]oa - w(z) <y J\fk{‘z)w(x) for all z € R3,
where [Y]g - f = fo[V]on, and
VD N2 ms) 2y Se 2. (8.43)

The proof of the above claim requires additional information on the form of the maximal op-
erators arising from Proposition 5.4. Since the definitions involved are somewhat unwieldy, the
details are postponed until §10.5.

Assuming the claim, changing variables in (8.42) yields
foo T Wt ute)ds < 2% [\ @PNFule)
Vemg

Recalling (8.40), one can sum the above inequality in g € Z, and use (8.43) and the Cauchy—
Schwarz inequality to obtain

1/2HL4 (R3) Se 22£kH 2 ‘fk 1/2HL4(R3)' (8.44)
VEZ peZ

Recall that each f,j 7" corresponds to a (smooth) frequency projection of f onto the set Ag(m(u)),
as defined in (8.30). Furthermore, by Lemma 8.8 the assignment m — m(u) is O(1)-to-1. Thus,
the right-hand square function in (8.44) falls under the scope of the classical sectorial square

function of Cérdoba [11]. In particular, by [11, Theorem 1] (see also [10]) and a Fubini argument,
we have
1/2
[ 1) sy Se 22PN s es)- (8.45)
HEZ

The inequalities (8.44) and (8.45) imply the desired estimate (8.39). O
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8.9. Putting everything together. We combine our observations to establish favourable L*
and L? estimates for the localised multipliers m[ay ¢].

L* estimates. By Lemma 8.1,

Imlar(D; ) flpagsn) e [mlafd(D; ) flaoeny + 27| flpas)-
(e)

Decompose each m[a; | as a sum of multipliers mlay e )] as defined in §8.2. By Proposition 8.5,
it follows that

[mlaxe)(Ds ) f[a@er) sg,Nz““*“)/‘*zO(Ek)H(Z|m[ N(D; ) f12)"?
VvEZ

—kN
@) | £l aqrs)-

Thus, (8.38) and (8.39) combine with the previous display to yield the L* estimate
Hm[ak,é](D§ ')fHL4(R3+1) e 2(k=80/49=(k=0)/250(ek) ||fHL4(R3
Since € > 0 may be chosen arbitrarily, this corresponds to the p = 4 case of Proposition 7.1.

L? estimates. Arguing as in the proof of the L* estimate, but now using Lemma 8.6 rather than
Proposition 8.5, it follows that

Imlan (D5 ) flpagosn) Sev | ( 2 iml [ 1(D; ) f12)?

_kNHfHLQ(RS)-

L2(R3+1)
Recall from (8.37) that
mlag DO f(@) < 2700220 (1) 5

Thus, by Young’s convolution inequality and the fact that the 7, Z(Su)( -;t) are L'-normalised,

Im[a,e](D; ) fll2ms+1) Sen 2~ (E=0/250(k) H(E |f11§,1z|2)1/2“L2(R3) + 27N £l Lo gy

VEZL

Finally, as the f{, have essentially disjoint Fourier support, by Plancherel’s theorem,

Imlake](D; -) fll L2 ms+1) <e 27(k7€)/220(€k)HfHLQ(]R&)
Since € > 0 may be chosen arbitrarily, this corresponds to the p = 2 case of Proposition 7.1.

Interpolating the above estimates, given 2 < p < 4 and € > 0, it follows that

Im[akel(D; - ) fllzers+1y Se,n o~ (k=0/25(k=30(1/2=1/p) 2EkaHLP(R3)a

which is precisely the desired inequality from Proposition 7.1.

9. PROOF OF THE REVERSE SQUARE FUNCTION INEQUALITY IN R3+!

9.1. Geometric observations. The first step is to relate the Frenet boxes my ,(s;7) to a codi-
mension 2 cone I'y in the (&, 7)-space.

The underlying cone. Let v € G4(dp) for 0 < §p « 1 and e;: [-1,1] — S for 1 < j < 4 be
the associated Frenet frame. Without loss of generality, in proving Theorem 5.3 we may always
localise so that we only consider the portion of the curve lying over the interval Iy = [—dp, dp]. In
this case
ej(s) = €; + O(do) for1<j<4 (9.1)
where, as usual, the €; denote the standard basis vectors.
We consider the conic surface I'y ‘generated’ over the curve s — e4(s). This is similar to the
analysis of [19], where a cone in R?® generated by the binormal e3 features prominently in the
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arguments. Define G: Iy — R* by G(s) := eq(s) tes(s) for all s € Iy (note that eqq(s) is bounded
away from 0 by (9.1)), so that G is of the form

G(s) = {g(s)] for  g(s):= <e41(8) e12(s) 643(8)>T.

e14(s)” eq(s)’ eq(s)

For U := [1/4,4] x Iy, the 2-dimensional cone I'; is parametrised by the function
Iy: U - RY, (p,s) — pG(s).

Non-degeneracy conditions. We claim that the curve g: Iy — R3 is non-degenerate. To see this,
first note that

GO(s) € (ea(s), € (5), ..., e (s))

where the right-hand expression denotes the linear span of the vectors e4(s),e§1)(s), ce ey)(s).
Thus, one concludes from the Frenet formulse that
G (s) € les_i(s),...,eq(s))  for 0<i<3. (9.2)

On the other hand, the Frenet formulae together with the Leibniz rule show that

3
@0 (s).eanils) = (<17 ( T els)) eas(s)™!

{=4—1
and, consequently,
KGD(s),es4i(s))] ~1  forall 1 <i<3. (9.3)
Thus, combining (9.2) and (9.3), it follows that the vectors G()(s), 1 < i < 3, are linearly
independent. From this, we immediately conclude that
| det[g]s| 2 1

for all s € Iy, which is the claimed non-degeneracy condition.

Frenet boxes revisited. By the preceding observations, the vectors G (s) for 1 < i < 3 form a
basis of R? x {0}. Fixing £ € R3 and r > 0, one may write

3
§—&G(s) = D r'mGY(s) (9.4)
i=1

for some vector of coefficients (11, 72,713) € R3. The powers of r appearing in the above expression
play a normalising réle below. For each 1 < k < 3 form the inner product of both sides of the
above identity with the Frenet vector ei(s). Combining the resulting expressions with the linear
independence relations inherent in (9.2), the coefficients 7 can be related to the numbers (£, ex(s))
via a lower anti-triangular transformation, viz.

(& en(s)) 0 0 (G (s),ex(s) | [ rm
(& ex(s)) | = 0 (GD(s),e2(5)) (G (s),ea(s) | [P2m | (95)

(&, es3(s)) GV (s),e3(5)) (GP(5),e3(s)) (GP(s),es(s))| LT
Recall that
mas(s; ) = {€eRY : [(ej(s), &) < v for 1 < j <3, [Cea(s), &) ~ 1}.

Thus, if £ € m4(s;7), then it follows from combining the above definition and (9.3) with (9.5)
that |n;| <, 1 for 1 < < 3. Similarly, the localisation (9.1) implies that

To(s;7) € R = [-2,2]% x [1/4,4].
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The identity (9.4) can be succinctly expressed using matrices. In particular, for s € Iy and

r > 0, define the 4 x 4 matrix
s,r S
[g]c,s,r = ([92)7 g(l )) . (96)

Here the block [g]s, is the 3 x 3 matrix as defined in (4.1). With this notation, the identity (9.4)
may be written as

§=lglcsr-n  wheren = (n1,72,13,8)-
Moreover, if £ € 7o 4 (s;7), then the preceding observations show that 7 in the above equation may
be taken to lie in a bounded region and so

T (57) S [glescr([-2,2]%) N R, (9.7)

where C > 1 is a suitably large dimensional constant.

9.2. A square function estimate for cones generated by non-degenerate curves. Here
the geometric setup described in §9.1 is abstracted.

Definition 9.1. For g: [-1,1] — R? a smooth curve, let I'y denote the codimension 2 cone in R4
parametrised by

(p,s) = p <9(13)> for (p,s) e U :=[1/4,4] x [~1,1].

In this case, I'y is referred to as the cone generated by g.

In view of (9.7), one wishes to establish a reverse square function estimate with respect to the
r-plates
O(s;r) = [g]c7s,r([—2,2]4) NnR.
In some cases it will be useful to highlight the choice of function g by writing 6(g; s;r) for (s;r).
Note that each of these plates lies in a neighbourhood of the cone I';. We think of the union of all
plates 6(s;r) as s varies over the domain [—1,1] as forming an anisotropic neighbourhood of T',.

Definition 9.2. A collection O(r) of r-plates is a plate family for Ty if it consists of 6(g; s;r) for
s varying over an r-separated subset of [—1,1].

In view of the preceding observations, Theorem 5.3 is a consequence of the following result.

Theorem 9.3. Suppose g: [—1,1] — R? is a smooth, non-degenerate curve and ©(r) is an r-plate
family for T'y for some dyadic 0 <r < 1. For all € > 0 the inequality

H > e (> 1fol?) "2
0eO(r)

0eO(r)
holds whenever (fg)geo(r) is a sequence of functions satisfying suppfg < 6 for all 6 € O(r).

7,,—5

<
AR ~F LA(RY)

9.3. Multilinear estimates. The proof of Theorem 9.3 follows an argument of Lee—Vargas [10]
which relies on first establishing a multilinear variant of the desired square function inequality.

Let J denote the collection of all dyadic subintervals of [—1,1] and for any dyadic number
0 <7 <1 let J(r) denote the subset of J consisting of all intervals of length r. Given any pair of
dyadic scales 0 < A1 < Ay < 1 and J € J(\2), let J(J; A1) denote the collection of all T € T(A;)
which satisfy I < J.

Fix 0 < r <1 and for each 0 < A < 1 decompose O(r) as a disjoint union of subsets O(I; r) for
I € 3(\) such that:
i) If O(s;r) € ©(I; r), then s € I;
i) If r < Ay < A2 and J € J3(A2), then ©(J; r) = Ujegiying) O 7).
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Thus, if for all » < A < 1 we define

D fo forall Te3(N), (9.8)
0cO(I;7)
then for all » < A1 < Ay it follows that

fr=">, fi forall JeI(Xy).
I€3(J; A1)

For each dyadic number 0 < A < 1 let jéep

I'=(I,...,I) € 3(\)* which satisfy the separation condition

(M) denote the collection of 4-tuples of intervals

diSt(Il,...,I4) = min diSt(Igl,Ig2) > A

1<l <lo<4

Proposition 9.4. Let 0 <7 < A < 1 be dyadic. If (I1,..., 1) € 32, ()\) and ¢ > 0, then

HH| > ol S %HH S 1)

=1 0eO(Iyr) l=1" 0eO(Iyr)

LARY)
holds whenever (fg)geo(r) is a sequence of functions satisfying supp fg < 6 for all € O(r), where
SUP)eprg,1] M (A) < 00 for all Ao > 0.

Using a standard argument, Proposition 9.4 will follow from a 4-linear Fourier restriction es-
timate. To state the latter inequality, given an interval J < [—1,1] let T'; denote the image of
Ly: (p,s) = p(g(s),1)" restricted to the set Uy := [1/4,4] x J and, for r > 0, let N,I'; denote
the r-neighbourhood of I';.

Proposition 9.5. If (I1,...,11) € 3% (\) , then for all0 <7 < X\ and all € > 0 the inequality

sep
! 1/4
||1_[|Fé|1/4”L4(R4) ~e 1 aHHFEHLZ (R4)
/=1
holds for all Fy € L*(R*) with supp ﬁ’g S N, I'y, for1 <t <4.

Given an interval J < [—1, 1], define the extension operator
Ejf(z):= / T2 (1) du for all fe L*(Uy),
Uy

where Uy := [1/4,4] x J as above. By standard uncertainty principle techniques and Plancherel’s
theorem (see, for instance, [5] or [23, Appendix]), Proposition 9.5 is a consequence of the following
multilinear extension estimate.

Proposition 9.6. If (I1,..., 1) € J2

sep(A), then for all R > 1 and all € > 0 the inequality

|‘H|Elgfe|1/4HL4 BR ~£ REHHfZH}J/;lUI
{=1

holds for all f, € L*(U) for 1 < ¢ < 4, where Br denotes a ball of radius R.

We refer to the above references for the argument use to pass from Proposition 9.6 to Proposi-
tion 9.5 and turn to the proof of the extension estimate.
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Proof of Proposition 9.6. This inequality is a special case (via a compactness argument) of the
recent generalisation of the Bennett—Carbery—Tao restriction theorem [5] due to Bennett—Bez—
Flock-Lee [3, Theorem 1.3]; an improved version with R® replaced by (log R)°9) has also been
obtained by Zhang [25, (1.8)], although the R® loss suffices for our purposes. In order to see
this, we must verify a certain linear-algebraic condition on the tangent planes to I'. The setup is
recalled presently.

Fix uy = (pe, s¢) € Uy, for 1 < £ < 4. We construct a Brascamp-Lieb datum (L, p) by taking
L:=(m,...,m4) and p:=(p1,...,pq) = (1/2,...,1/2)

where each 7;: R* — V} is the orthogonal projection map from R?* to the 2-dimensional tangent
space Vy to I' at I'(ug). With this definition, the problem is to show that BL(L,p) < oo, where
the Brascamp—Lieb constant BL(L, p) is as defined in, for instance, [3]. By the characterisation
of finiteness of the Brascamp-Lieb constant from [1] and our choice of datum, it suffices to verify
the following two conditions:

Z dim Im 7p) py = 4.

ii) dimV Z dlrn WV) holds for all linear subspaces V < R*.
Z 1
The scaling condition i) is immediate from the choice of datum and it remains to prove the
dimension condition ii).

Clearly one may replace m, with the linear map associated to the 2 x4 Jacobian matrix dI'|,, s,
By subtracting the first column from the third column and applying the fundamental theorem of
calculus,

det [9(8141) g’(gel) g(slzz) g/(SZZ)}:_/S:jQ det [¢'(se;) d'(5) ¢'(se,)] ds.

Furthermore, by repeated application of column reduction and the fundamental theorem of calcu-
lus, it follows from the non-degeneracy hypothesis and the initial localisation that

|det [ 351) g/(s) g/(352>] \ > |5€2 - 851”5 - 551”552 - 5|;
see, for instance, [12, Proposition 4.1]. Consequently, the determinant has constant sign and
4 4
’det [dr|(Pél,Sel) dF|(P£2,822)] ‘ < ’pﬁprz”sz - Sf1| R A (99)

where the final bound is due to the separation between the I;. Note that (9.9) is equivalent to the
geometric condition that V;, + V;, = R* and therefore

Vi A Vi = (Vi + Vi)™ = {0 (9.10)

With this observation, it is now a simple matter to verify the dimension condition ii) above.

o IfdimV =4 or dimV = 0, then ii) is trivial.
e If dim V = 1, then it suffices to show that dim 7,V = 1 for at least two values of £. Suppose
dim 7y, V = dimm,V = 0 for some 1 < ¢; < {3 < 4, so that

1 1
V & kermy, nkermy, = Vi 0V,

However, in this case it follows from (9.10) that V' = {0}, which contradicts our dimension
hypothesis. Thus, dim 7,V = 0 for at most a single value of ¢, which more than suffices
for our purpose.
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o If dim V' = 2, then we may assume that dim 7y, V' = 0 for some 1 < ¢y < 4, since otherwise
ii) is immediate. By dimensional considerations, it follows that V' = Vzﬁ. Nowlet1 <£<4
with ¢ # £y9. By (9.10), it follows that V' n Vgi = {0}. Thus, by the rank-nullity theorem
applied to the mapping 7|y : V — V;, we deduce that dim 7,V = 2. Since this is true for
three distinct values of ¢, property ii) holds.

e If dimV = 3, then it is clear that dimm,V > 1 for all 1 < ¢ < 4. Suppose there exist
1 < 41 < ly < 4 such that dim(my, V') = dim(7, V) = 1. In this case, by the rank-nullity
theorem applied to 7y, |y : V' — Vj, and dimensional considerations,

ng + Vé = ker my, +kermp, < V.

However, in this case it follows from (9.10) that V' = R* which contradicts our dimension
hypothesis. Thus, dimm,V = 1 for at most a single value of ¢, and for the remaining values
of ¢ the dimension is at least 2. This again more than suffices for our purpose.

This establishes the finiteness of the Brascamp—Lieb constant and concludes the proof. O

Having established the multilinear restriction estimate, it is a simple matter to deduce the
desired multilinear square function bound.

Proof of Proposition 9.4. Let B be a ball of radius 7—! in R* with centre x. Fix € S(R*) with
supp7 < B(0,1) and |n(z)| 2 1 on B(0,1) and define np(z) := n(r(z — zo)). By the rapid decay
of n, it suffices to show that

DS ., < TS 10 k]!

=1 0eO©(Iy;r) =1 0eO(Iyr)

~

LARY)

Indeed, once established, this inequality can be summed over a collection of finitely-overlapping
balls B which cover R* to obtained the desired global estimate.
For 1 </ < 4 define
Fpi= >, fous
0O (Ig;r)
so that each Fy is Fourier supported in an O(r)-neighbourhood of I';,. Applying Proposition 9.5
to these functions, it follows that

T3 ) < [T w00 =TT 5 s

(=1 0e0(I;;r) =1 0e0(Iyr)

1/4

L2(R4)

Note that the functions fynp appearing in the right-hand sum have essentially disjoint Fourier
support. Consequently, by Plancherel’s theorem and Holder’s inequality,

1/2
DY T e (O YT IO RE
0O (Iy;r) L2(RT) 0O (Iy:r) L2(RY)
_ 1/2
<r 1H( > 1fal?) 7 Insl? LR
96@([@;1")
Combining the previous two displays completes the proof. O

9.4. Rescaling. By combining Proposition 9.6 with an affine rescaling argument, one may deduce
a useful refined version of the multilinear inequality. This improves the dependence on separation
parameter A under an additional localisation hypothesis on the intervals Jy, ..., Js.

Given dyadic scales 0 < A\; < Ao < 1 and J € J(\2), let 3% _(J; A1) denote the collection of all

sep

4-tuples of intervals I = (I, ..., 13) € 34 (A1) such that I, = J for all 1 < £ < 4.

sep
With this definition, the refined version of Proposition 9.4 reads as follows.
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Corollary 9.7. Fiz dyadic scales 0 < r < A\; < Xp < 1. If J € I(\2), (In,...,I1) € T4, (J; A1)
and € > 0, then

HH\ > flM

=1 6eO(Iyr)

< MO | > 1w,

j=1 66@ ][r

LA(RY) LA(RY)

holds whenever (fp)geo(r) is a sequence of functions satisfying supp fg < 6 for all 6 € O(r).

Proof. The result is a consequence of Proposition 9.4 and a rescaling argument. Let J = [0 —
A2,0 + A2] € [—1, 1] and recall the definition of the rescaled curve

902 (8) 1= ([9lona) " (g0 + A23) — g(0)).

Differentiating this expression, it follows that 95{2\2 (8) = Ag([g]g’ >\2)7lg( V(o + A\o3) for j = 1 and
0

(90,22 ]5,7 = ([Q]U,Ag)_l o [g]sr where s = 0 + A5 and r = Aof'.
From this and the definition (9.6), it is not difficult to deduce that
[gondesi = ([gleons) " o [gle.sn
Suppose 0 € ©(J; r) and supp Fyco. 1f0 = 0(s,r), then
supp Fp o [gle.on, S 0(5,7)
where 5(5, 7) is the 7-plate centred at 5 defined with respect to § := g, ,. Finally, note that the

above rescaling maps the intervals (Iy,...,14) € jglep(J; A1) to intervals (Ih,...14) € jéep()\l/)\g).
Il

9.5. Broad/narrow analysis. Here arguments from [I1] are adapted to pass from the multi-
linear estimates of Proposition 9.4 (or, more precisely, Corollary 9.7) to the linear estimates in
Theorem 9.3.

The key ingredient is the following decomposition lemma, which follows by iteratively applying
the decomposition scheme discussed in [11].

Lemma 9.8. Let € > 0 and r > 0. There exist dyadic numbers C. = 1, ry and ry satisfying

r<Tn Sel1 s r<rp<1 (9.11)
such that
1/4 4 1/4
Z fa”L“(R“) <e T_E( Z ||f]”i4(R4)) + 'r'_‘5< Z H H |f[e|1/4H‘z4(R4)> (9.12)
0O (r) I€3(rn) JeI(Cerp) =1

Ie3t, (J5m)
holds whenever (fp)geo(r) is a sequence of functions satisfying suppfg < 0 for all 6 € O(r).

We provide a proof of (an abstract version of) the above lemma in Appendix A (more precisely,
Lemma 9.8 follows from applying Lemma A.2 to the decomposition f := 2966 fo for a fixed
dyadic scale 0 <7 <1 and € > 0).

We are now in position to prove the desired reverse square function estimate.

Proof of Theorem 9.3. Fix 0 < r < 1 a choice of dyadic scale and ¢ > 0, and apply Lemma 9.8.
The analysis splits into two cases depending on which of the right-hand terms in (9.12) dominates.
We refer to the first term as the narrow term and to the second term as the broad term.
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The narrow case. Suppose the narrow term dominates the right-hand side of (9.12) in the sense

that »
Z f9HL4(R4) Ser E< 2 Z f@HLzl(R4> .

0€O(r) I€I(rn) 0€O(I;T)
This case is dealt with using a trivial argument. If I € J(ry,), then
1/2
Y fls (X 16B)Y (9.13)
0cO(I;r) 0eO(I;r)

by Cauchy—Schwarz, since the condition r, ~ r from (9.11) implies that there are only O.(1)
intervals belonging to J(I; ). Thus,
_ 1/2
=% ( Z |fol?) /

Z f'9HL4 R4) Ser E‘ Z Z ‘f| 1/2 LA(RY)

066) (r) I€3(rn) 0€O(I; 1) 0eO(r)

LA(RY)
where the first step follows from (9.13) and the embedding ¢? < ¢4 and the last step from the
definition of J(r,) and O(I;r).

The broad case. Suppose the broad term dominates the right-hand side of (9.12) in the sense that

4 1/4
| folpan <= (2 T X sl fems) -
0eO(r) JeI(Cerp)  £=1 0eO(Iyr)

fejgep(‘];rb)

This case is treated using the rescaled multilinear inequality from Corollary 9.7. Since #3*(.J; 71,) <.
1 for each J € 3(Cerp), by Holder’s inequality
1/45 1/4
LA(RY) ) ) '

P O VR I N s (RS

0€O(r) JeI(Ceryp) IEjgep(J;Tb =1 0eO(Iyr)

Applying Corollary 9.7 with A\; := r, and Ag := C.rp, one deduces that

IS bz (2 (% TIC S 1w

0€O(r) JeI(Cery)  Tedd, (J;rp) €=1  0€6( Ig, )

sep

; R4))1/4)1/4‘

Relaxing the inner range of summation to all I € J(J; rp,)* (that is, dropping the separation

condition),
N 172114 1/4
Y Il e (X [C X WP )
0O (r) I€d(r,)  6€O(I;r)
Arguing as in the last steps of the narrow case, using the embedding ¢2 < ¢*, now concludes the
argument. O

10. PROOF OF THE FORWARD SQUARE FUNCTION INEQUALITY IN R3

In this section we establish the L? weighted forward square function estimate from Proposi-
tion 5.4. Before we commence, it is useful to recall the basic setup. Let v € &3(dp) for 0 < dp « 1
and e; : [—1,1] — 3 for 1 < j < 3 be the associated Frenet frame. Recall that this satisfies

e;(s) = €+ O(do) for 1 <j<3andsely=[—d,0d], (10.1)

where the €; denote the standard basis vectors. For 0 < r < 1, recall that a (0,r)-Frenet boz is a
set of the form

o (5 1) = {€ e B < [(ea(s), ) <7, 1/2 < [lea(s), O < 1, [les(s), &) < 1}
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for some s € [—1, 1]. Proposition 5.4 concerns smooth frequency projections x(D) where y is a
bump function adapted to a (0, 7)-Frenet box .

10.1. Geometric observations. We begin by reparametrising the sets mg ,(s;7) using an argu-

ment similar to that of §9.1. Define the functions g; : In — R3 by g;(s) := —ey;(s)ei1(s)~! for
Jj =2, 3 (note that eq1(s) is bounded away from 0 by (10.1)) so that
(e1(s), &) = en1(s) (&1 — aga(s) — E393(s))- (10.2)
Thus, we have the containment property
o (83 1) < 6(s; Cr) (10.3)

where 0(s; r) is the region
3
O(s; r) = {{ cR3: ‘51 - Z §jgj(s)‘ <rand 1/4 < |&] <4, |&] < 4}.
j=2

We refer to the sets 0(s; r) as ‘plates’.

It is useful to note that the curves g;: Ip — R3 satisfy a certain regularity condition. In partic-
ular, for each a = (ag,a3) € R? define the function ga(s) := a2g2(s) + aszgs(s). By differentiating
(10.2) with respect to s and evaluating the result at £ = (0, ag, az), provided the parameter dy > 0
featured in (10.1) is chosen sufficiently small, it follows that

lgn(s)] ~ 1 for all a e [1/4,4] x [-1,1]. (10.4)
Indeed, this is a simple consequence of the Frenet equations.

We also observe a dual version of the containment condition (10.3). In particular, if we define
the dual Frenet box and dual plate

o (s;7) = {x € R?: [(e1(s),z)| < r~ ! and [{e;(s),z)| < 1 for j =2, 3},
0*(s;r) == {z e R®: |z1| <r7' and |z + g;(s)21] < 4 for j =2, 3},
then it follows that 7( . (s;7) S 6% (s; C~1r). To this, we first observe the identity

{<$7e2(8)>] _ [922(8) 623(8)] {562 +92(3)m1], (10.5)

(x,e3(s)) esa(s) ess(s)||zs+ g3(s)z1

which follows from the orthogonality between the Frenet vectors (ej(s))j:y Since the right-hand
2 x 2 matrix is a small perturbation of the identity, the claimed containment property follows.

10.2. The iteration scheme. Our proof of Proposition 5.4 uses an iteration argument. This is
based on the approach of Carbery and the fourth author in [10, Proposition 4.6], where a related
inequality for the Cérdoba sectorial square function was obtained. Driving the iteration scheme is
an elementary pointwise square function bound due to Rubio de Francia [20]. Here it is convenient
to state a slight generalisation of this result.

Lemma 10.1. Let i € #(R"), A € GL(R,n) and G: Z™ — R". For all N € N the pointwise
inequality

2 [0(AD = GW) f@) sy sup  H e G0l / = ATyPO+ ) dy

m
vezZm v2€l V1EZM

holds for all f € Z(R™).
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Proof. The case where G: Z™ — Z" is the identity map is proven in [20]. The argument can be
generalised to prove the above lemma, by replacing an application of Plancherel’s theorem with a
T*T argument involving the Schur test. For convenience, the details of the argument are presented
in Appendix B. O

To describe the iteration step, we first define smooth cutoff functions adapted to the plates 6
defined above. As usual, let n € CP(R) satisfy n(u) = 1 for |u| < 1/2 and suppn < [—1,1] and
define the multipliers

3
my (§) := ( Z £i9i(sv) ) for v € Z and s, := rv. (10.6)

Let b(€) = B(47 &) n(4€3) where here 3 is as defined in (5.3) so that (m%-b)(€) = 1if € € O(s,; 7).
For the iteration scheme, we in fact work with truncated versions of the plates. Given K > 1,
~1<s5<1,0<7r<1anda= (as,a3) € R?, consider the truncated plate

3
05 (55 1) 1= {5 eR3: & — Z &gj(s)| <rand | —a;| < K7 for j =2, 3}.
j=2

Correspondingly, we let ¢ € C°(R) satisfy supp ¢ < [—1,1] and >, ((- — k) = 1 and decompose

1]
b= >, ba  where f[ )) b(E). (10.7)

acK—172

For r := (ry,79,73) € (0,1]% and s € [-1,1] let Te +(s) denote the parallelepiped consisting of all
vectors z € R3 satisfying |(z, e;(s))| < Tj_l for 1 < j < 3. These sets should be thought of a scaled
versions of the dual Frenet box 7r6"’7(3; r) introduced in §10.1. Consider the weighted averaging
and Nikodym-type maximal operators associated to these sets, given by

Ao rg(a;s) = /R 9@ =1, dy  and Nerg(z) := ?upl]\ﬂe,rg(x;é‘)l (10.8)
se|—1,

where
3
300
1mmwhﬁﬂml+ZM@ L) (10.9)
j=1 j=1

Here the subscript e refers to the Frenet frame e := (e, ez, e3).
With the above definitions, the key iteration step is as follows.

Proposition 10.2. Let 0 <r <1, K > 1,7 = Kr, r:= (rnK ', K™') and a = (az,a3) €
[1/4,4] x [—1,1]. With the above definitions,

/ Z ‘(m? . ba)(D)f(x)‘Qw(x) dz < / Z ’(m? . ba)(D)f(gl:)‘2./\/.3,r o Neyrw(z)dz
R® yez R® pez
for any non-negative w € L (R3).

Proof. The proof is based on the following simple geometric observation, which motivates the use
of the truncation. If |s — 3| < Kr, then the plates 625 (s; r), 625 (5; 'r) are essentially parallel
translates of one another. More precisely, if & € 625 (s; r), then

3 3 3 3
6= Y ai(0(9) — ) = 2 &0, < [& = Y Gigs(9)] + 215 = &)~ 05| Ss 7
j=2 Jj=2 Jj=2 Jj=2
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and, consequently, there exists some constant Cyg such that

3

02K (s; 1) — Z a;(g;(s) — g;(3))é1 < 025 (5; Cgr). (10.10)

In light of this observation, define the multipliers
e n((2Cen) ™ (61— X3s05(95(50) — 93(50)) — X2 i95(50)) ) Ba(©)
My (&) 2= o+
’ 21'1:71 mf+ ()
for o, v € Z and 55 := 7D, s, := rv and 7 = Kr, where by(€) := H?:z n(K(& — aj)) so that
ba = ba - ba. Thus, in view of (10.10), we have

(10.11)

T . T

1
my by =mz" - mY - ba Z mZT(€) whenever |s, — §p| < Kr =: 7. (10.12)
i=—1
Furthermore, since for fixed 7 the multipliers m?? correspond to essentially parallel frequency

regions for |s, — 53| < 57, Lemma 10.1 implies they satisfy a weighted L? inequality. Indeed, recall
from (10.4) that the functions ga(s) := a2g2(s) + asgs(s) satisfy the uniform regularity condition
lga(s)| ~ 1; recall that a = (ag,a3) € [1/4,4] x [—1,1]. From this we deduce that

—1 ~
sup 3 e Hloa(rv)—ga(F)l/2 < 1
Vo€l V1€Z

where the above inequality holds with a constant uniform in both r and a. Thus, recalling the
definition of the multipliers m”” from (10.11), Lemma 10.1 implies that for fixed ¥ € Z,

% 2 2 N7 .
/R Y D)) Pu@)de < /R 1 () PN o) (10.13)

VEZ
|sy,—385|<57

indeed the inequality holds with J\Nfemw(x) replaced by the single average ./4~le7rw(x; 55), but there
is no loss in taking supremum over s € [—1,1] in view of other appearances of Ne, (see (10.14)
below). From (10.12) we get

SNm? b)D) @)<Y (2 ba)(D) omZY (D) o (mk - ba)(D) f(2)[.

VEZ v,VEZ
|sy—585|<57

By the Schwartz decay property of 7, the convolution kernel associated to the multiplier operator
(mY - ba)(D) satisfies
3
= o _ _ —~100
|(mY - ba)” ()| Sy K2 (1 +rley + K71 Z |z; + xlgj(s)\) S V1,05 (@)
j=2
where the function ¥ 7, (5 () is the L!'-normalised smooth cutoff defined in (10.9). To justify the
second inequality in the above display we use (10.5), which allows us to deduce that 25’12 |z; +

z195(s)| = Z?=2 |(e;(s),x)|. Combining the preceding observations with a simple Cauchy—Schwarz
and Fubini argument,

/R S lomt b (D)5 @) wie) o < Y / S mZD) o (m? - ba)(D)F (@) N () da

veZ, ez 'R ez,
|5y — 35| <57
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On the other hand, (10.13) implies
[ X I 0emi )0 R oo < [ [

VEZ R3
|s,—85|<5F

S
S
®
S~—
S
Kﬁ
—~
2
T
=)
®
=
o
=
-
=4
s
o
&

The two previous displays combine to give the desired estimate. O

10.3. Proof of the L?-weighted estimate. Lemma 10.2 is now repeatedly applied to prove
Proposition 5.4.

Proof of Proposition 5.4. First observe that by the definition of 7 in (5.3), the containment prop-
erty (10.3) and the definition of mY in (10.6), for each m € Py(r) there is an associated v € Z such
that mY(§) = 1 for £ € supp x». Thus, a simple Cauchy—Schwarz and Fubini argument yields

/ > (D r)de < / S - 0)(D) f(2) PNy (a) da,

wePo(r) veZ

where 1, := (r,1,1). Take K := r~%/% and decompose b = Y., 142 ba as in (10.7). By a
pigeonholing, it follows that there exists a choice of a € [1/4,4] x [—1, 1] satisfying

2 T ,,,,—8/2 I/_a - z.
/. % (D) sto)fute)ds < L, S lm - ba)(D) @) PR (o)

we€Po(r VEZ
Define the sequence
ry = (rM,K_l,K_l) where ry = KMr for M >0

and recursively define a sequence of maximal operators by

~

/\N[e?r = -/\76,1‘0 O-/\N/e,ro O/\Nfe,r* and j\N[oé]\,{' 1= Nery O-/\N/’Q,I‘M O/\N/—é\,/t{_l for M > 1
We now repeatedly apply Proposition 10.2 to deduce that

[, 3 0 8a) (D@ R wla) do < O [ 3 () (D) @) PR () da (10,15
VEZ

provided 7y, < 1. In particular, if M := |8/e] — 1, then r*/8 < rj; < 1 and, consequently, there

are only O(r~¢/®) values of v which contribute to the right-hand sum in (10.15). Thus, one readily

deduces that

/ 3 e, b (D) @) PR o) do <75 [ (7 PRLE w(a) do
veEZ R3
where J\N/A,(,r = Nery, Né\{ 1. Combining the preceding observations concludes the proof of the

L? weighted inequality, with the above choice of maximal operator.

It remains to show that the iterated maximal operator /\77(;) satisfies the L? bound from (5.4).
However, this is an immediate consequence of Proposition 10.3 of the following subsection. ]

10.4. Boundedness of the maximal functions. From the proof of Proposition 5.4, we see that

the maximal function /\N/:y(,i) is obtained by repeatedly composing operators of the form /ivfe7r, as
defined in (10.8), where:

e The family of curves e corresponds to the Frenet frame (eq, e, e3) associated to 7;
e The scales r = (r1,72,73) depend on r and ¢ and vary over the different factors of the
composition. Each featured tuple r = (r1,r2,73) satisfies

ecc(r) < r 1

where the eccentricity ecc(r) is the ratio of max;r; and min; r;.
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In particular, to prove the L? bound (5.4) it suffices to show that, for all e, > 0,
H-/\N/’G,I‘”LQ(R?’)HL?(R% e, ecc(r)®. (10.16)

To prove (10.16), we will in fact work with a more general setup, replacing e with a general
family of smooth curves in R™ satisfying a non-degeneracy hypothesis. Let e := (eq, ..., e,) where
ej: [-1,1] — S™~1is a smooth curve in the unit sphere in R” for 1 < j < n. Suppose these curves
satisfy

’/\ej(s)‘ 21 for all s e [—1,1].

n
Jj=1

Note that the e; notation was previously reserved for the Frenet frame. In applications, we always
take the e; to be the Frenet vectors, and therefore there should be no conflict in the above choice
of notation.

Given a tuple r := (ry,...,r,) € (0,00)" and s € [—1, 1] define the parallelepiped

n
Ter(s) = {x eR":x = Z Aje;(s) where \; € [—rj_l,rj_l] for 1 <j< n}
j=1
Associated to these sets are the averaging operators and the maximal operator
Acxf(is)i=f  f@-y)dy and Nowf(e)i= sup |Aorf(is) (10.17)
Te,r(s) se[—1,1]
defined for f € L{ (R™). The N, satisfy favourable L? estimates.
Proposition 10.3. With the above definitions, for all € > 0 we have the norm bound
”Ne,erLQ(Rn)—»L2(Rn) Se,e ecc(r),
where the eccentricity ecc(r) = 1 is defined to be the ratio of max;r; and min; ;.

This proposition is based on a classical maximal bound due to Cérdoba [ 1]. The details of the
proof are provided below.

We generalise the weighted operators introduced in (10.8) by setting

¢4~le7rf(x;s) = Rnf(:nfy)iﬁ;pe’r(s)(y)dy and ./\N/'e,rf(m) = sup \./Te,rf(:z:;s)| (10.18)

se[—1,1]
where ¢ 7, (5) 1 @ smooth weight function adapted to the parallelepiped T, er(s), given by

n

Uty @) o= ([ Tr) 0+ X mil(B(s) 1y, )~ ™" (10.19)
Jj=1 J

=1

where E(s) denotes the n x n matrix whose jth column is e;j(s) for 1 < j < n. If (e;(s))]_;

forms an orthonormal frame, then (E(s)~1y); = (E(s)Ty); = (e;(s),y) and so (10.19) generalises
the definition (10.9). Note that the operators in (10.18) correspond to weighted version of the
averaging operator and Nikodym maximal function in (10.17). Moreover, by dominating VT r(s)
by a weighted sum of characteristic functions, it is clear that Proposition 10.3 implies analogous
L? bounds for the /\Nfe,r operators.

In view of the preceding discussion, the estimate (5.4) for the maximal function ./\N/:y(;) appearing
in Proposition 5.4 follows as a consequence of Proposition 10.3.
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Proof of Proposition 10.3. Write R := ecc(r) and let € > 0 be given. We begin with some basic
reductions. By pigeonholing, it suffices to show

|WVerllr2@n)—r2@n) Se B2

where now the maximal operator Ne, is redefined so that the supremum is taken over some
subinterval I, < [—1, 1] of length R=/? rather than the whole of [~1, 1]. Furthermore, if |s; — 2| <
R then Ter(s1) and Ter(s2) define essentially the same parallelepiped, and therefore we may
further restrict the supremum to some dyadic R~ '-net &, in I..

Let a € [—1,1] denote the centre of the interval I and N := [1/e]. For 1 < j < n let p; denote
the degree N — 1 Taylor polynomial of e; centred at a and define p := (p1,...,pn). By Taylor’s
theorem,

Ipj(s) —e;(s) <, Ve < R for all s e I,
and therefore there exists a constant C' > 1, independent of r, such that
Ty o-10(8) € Ter(s) S Tpcr(s) for all s € I..

In light of this observation, henceforth we may assume without loss of generality that the e; are
all polynomial mappings. Under this hypothesis, the e; no longer map into the sphere; however,
we may assume that over the domain I. they map into, say, a 1/10-neighbourhood of S"~1.

Since the operators are all positive, it suffices to show

I'sup [Aerf(-58)22@mny Se B fllr2@mn)

seG.

for all f € L?(R™) continuous and non-negative. Fixing such an f, define the averages
A rfx) = / fz —tw)x,(t)dt for w € R™ with ||w| — 1| < 1/10 and r > 0,
R

where x,(t) := r~1x1(r~1t) for some x; € C*(R) non-negative which satisfies x1(s) = 1 for |s| < 1.
Thus, by the Fubini-Tonelli theorem,
Ae,rf(x; 8) < Aen(s),rn ©---0 Ael(s),rlf(x)‘ (10'20)

Writing Ae; f (25 8) 1= Ae,(s),1f (), we may combine (10.20) with a simple scaling argument the
reduce to problem to showing

H Sup [Ae, f(-58)|lL2@n) < (log R) [ fllr2@ny — for1<j<n. (10.21)
s€B.
The previous display is essentially a consequence of a maximal estimate proved in [I1, p.223].

There similar maximal operators are considered for smooth curves v: [-1,1] — S™"~! under the
key hypothesis that v cross any affine hyperplane a bounded number of times. Since we are
considering polynomial curves e;, the fundamental theorem of algebra ensures either:

a) The curve e; crosses any affine hyperplane a bounded number of times, where the bound
depends on the degrees of the component polynomials, or
b) There exists an affine hyperplane which contains the image of e;.

In the former case, we may deduce (10.21) directly through appeal to the result from [11, p.223].%
In the latter case, we may apply the maximal bound from [I1] over a lower dimensional affine
subspace and combine this with a Fubini argument to again deduce the desired result. O

8t is remarked that the argument in [11] carries through for a curve which maps into a 1/10-neighbourhood of
the sphere (rather than the sphere itself), provided the curve satisfies the finite crossing property.
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10.5. Scaling properties. We conclude this section with a discussion of the scaling properties

of the maximal function ./\N/W(fn) and, in particular, fill in the gap in proof of Proposition 8.10 by
proving the Claim therein.

We begin by introducing a general setup for rescaling the operators J\N/'e,r when defined with
respect to a Frenet frame; as in the previous subsection, here we work in general dimensions. Fix
~v: [—1,1] - R™ a non-degenerate curve with v € &(d) and o € [—1,1], 0 < A < 1 be such that
[c — A, 0 + A] < [—1,1]. Consider the rescaled curve

Yo (8) = ([Men) " (7(0 + A3) = 7(0))

as defined in Definition 4.1. Let e = (ey,...,e,) denote the Frenet frame defined with respect to
v and € = (€1,...,€,) denote the Frenet frame defined with respect to ¥ := 7, . We suppose
r=(ry,...,r,) € (0,1]" satisfies

7y < ATt forl<ig<n-—1 (10.22)

and define T := D) - r where D) := diag(A,...,\") is as in (4.1).

Lemma 10.4. If f € L] (R") is non-negative, then, with the above definitions,

(Mon) o Nes 0 Vo f(2) Sy Nexf(x)  for all z € R (10.23)

Here we think of a matrix M € GL(R, n) as acting on L2(R") by M- f := foM for all f € L*(R").
Thus, the left-hand side corresponds to the operator Ng; conjugated by the invertible operator
[V]oa: L*(R™) — L*(R").

Before presenting the proof of Lemma 10.4, we use the result to verify the rescaling step in the
proof of Proposition 8.10. In view of the discussion in §10.3 and by a simple rescaling argument,
we know that the maximal function’

N = Dilgr-ae 0 N 0 Dily s

corresponds to a repeated composition of operators of the form /\7}3,; where the T = (71,79, 73)
satisfy

7 < T9 < T3 and ecc(r) < o(k=36)/2

Consequently, by Lemma 10.4, the conjugate
(o) ™" o N 0 [l
is dominated by a maximal function N, ,562 given by a repeated composition of operators of the form
/\NfeJ where each r = (r1, 72, 73) satisfies
r < Arg < Mg and ece(r) < 20072,

Furthermore, there are only O, (1) factors in this composition. The just given definition for N, ,552 is

independent of y and, by Proposition 10.3, for all &, > 0 the operator N, k(eé) is bounded on L?(R?)

with operator norm O.(2°¥). Thus, we have verified all the outstanding claims in the proof of
Proposition 8.10.

9Recall, in the setup in Proposition 8.10 we have ¥ := v, 1, where o := 2%y and X :=27¢ and 7 := 2~ (k=30/2,
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Proof of Lemma 10.4. Consider the conjugated operator on the left-hand side of (10.23). By
applying a change of variables to the integral defining the underlying averages, the problem is
quickly reduced to the pointwise estimate

_ -1
[det[y]onl ™ - 15y © ([Von) ™ (0) S ¥ p)(®)
for the weight functions as defined in (10.19), where s = o + A3. Suppose y € R" satisfies

2 [<e;j(s), )l <

for some R > 1. From the definition of the weight function from (10.19), and the orthonormality
of the Frenet frame, the problem is further reduced to showing

n

2 7lE@.pIz R where §:= ([1]oa) " (4). (10.24)

Let a = ([7]8,,\)_1(3;) so that, by the definition of the matrix [v]s x, we have

n
y= > NajpyW(s).
j=1
Taking the inner product of both sides of this identity with respect to the vectors e;(s), it follows
that the vectors ((e;(s), y>)?:1 and (M ozj);.l:l are related by an upper-triangular matrix transfor-
mation, which is also an O(9) perturbation of the identity For this observation, we use the fact
that (e1(s),...,e;(s)) = (YN (s),...,79)(s)) for 1 < j < n, owing to the definition of the Frenet
frame.
In view of the hypothesis (10.22) which, in particular, implies r; < 741 for 1 < i <n —1, the
above observation yields that

riMlaj] SR for1<j<n. (10.25)
Furthermore, by pigeonholing, there exists some 1 < J < n such that
rilles(s),y)| = R/n and r;|{(e;(s),y)| < R/n for J+1<j<n.
Thus, by the same argument used to show (10.25), provided ¢ is chosen sufficiently small,
ryA o] ~ R. (10.26)

Since 3U)(3) = )\j(['y]g7>\)_lfy(j)(s) for j > 1, it follows that [¥]; = ([’y]J,A)_l o [v]sx and,
consequently,

7= (lon) " @) = (Won) ™" 0 Mlas(@) = [Fls(a).

Thus, we have a = ([7] g)_l(y) and, arguing as before, this implies the vectors ((&;(3), y>)J , and
« are also related by an upper-triangle matrix transformation, which is again an O(J) perturbation

of the identity. From this observation, provided § is chosen sufficiently small, we see that

n
51 (3), D 2 M ag =6 D) (raA TN eyl 2 R,
j=J+1
where the final inequality uses the hypothesis (10.22) together with (10.25) and (10.26). This

implies the desired bound (10.24).
U
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11. PROOF OF THE R3*! — R3 NIKODYM MAXIMAL ESTIMATE

In this section we establish Proposition 5.5. We begin by recalling the basic setup. Let
v: [-1,1] — R? be a smooth, non-degenerate curve with Frenet frame (e;)?_;. Given r € (0,1)3
and s € [—1, 1], consider the plates

s) = {(y,t) e R® x 1: <y — tv(s),e(s))| <rj for j =1,2,3}

and the associated averaging and maximal operators

A8 g(x; 5) :=]{r ()g(w—y,t)dydt and  N"8g(z) := sup |AF"g(x;s)].

—1<s<1

j=1

We assume the exponents satisfy the conditions

1/2 1/2 1/2
r3 <19 <1 <'r2/ and 72 <r1/ r3/

and the goal is to establish the L? bound

INZ™Eg] p2rsy < [log sl gl e ws)- (11.1)
To prove this norm inequality we will rely on the Fourier transform and reduce the problem to
certain oscillatory integral estimates. The argument is a (significant) elaboration of that used to

establish a lower dimensional variant of (11.1) in [18]. We shall make heavy use of the frequency
decomposition used to analyse the helical averaging operator in §8.

Proof of Proposition 5.5. The argument is somewhat involved and is therefore broken into steps.

Initial reductions. Let 0 < dg « 1 be a small parameter, as introduced at the beginning of §6.
By familiar localisation and rescaling arguments, we may assume ~ satisfies y(-) — v(0) € &3(do).

Further, we may replace Af™8g(z; s) with the localised version A58 g(z; s)x(s), where y € C®(R)
is supported in Iy := [—dp, dp]. Note that this model situation is already enough for our application
in §8.7.

Fourier representation. The first step is to derive an alternative representation of the averages
A8 g in terms of an oscillatory integral operator. Given a € C*(R? x R x R), define

Ala]g(z; s) EEe / /Rd /Rs Key=(9):0q (&5 5;1) A€ gy, t)dy dt

@& [ =ity (s).€)
(271') /Rg / a(&;s;t)g(€,t) dedg,

where g denotes the Fourier transform of g with respect to the y-variable only. The associated
maximal operator is then defined by

Nlalg(x) := sup |Ala]g(z;s)].

—l<s<1

Without loss of generality, to prove Proposition 5.5 it suffices to consider the estimate for g
Schwartz and taking values in [0,00). Fix ¢ € CP(R) with suppy < [—1,1] such that v takes
values in the positive real line and ¢ (y) 2 1 for |y| < 1. Define

H (ri¢€ e;(s))) x(s)

w

so that, by integral formula for the inverse Fourler transform and a change of variable,

1y 9 < []r90 — tr(s) e ())x(s) = = / IO g, (& 5:1)
7o) < Ll =n e = o |, e
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Thus, the pointwise inequality
[AT"2g (2 5)] < [Alar]g(as9)|
holds and therefore it suffices to bound the operator N[a,].

Sobolev embedding Given a € CE’O(I@3 x R x R), by elementary Sobolev embedding,
[Nalg|72@s) < IAlalgl72@sey +2 [] 10 Alalglee@s); (11.2)

1e{0,1}

indeed, this bound is a simple and standard consequence of the fundamental theorem of calculus
and the Cauchy—Schwarz inequality (see for instance [22, Chapter XI, §3.2]). Observe that d, .A[a]
is an operator of the same form as A[a] and, in particular,

0s Ala] = Alosa]  where  dsa(&;s;t) := —it(y'(s),&) a(&; s;t) + dsa(&; s3t). (11.3)
These observations reduce the problem to proving estimates of the form
JA[RL algll 2 @s+tyr2@s+ry < BEYP for ve {0,1} (11.4)

for suitable symbols a and constants B > 1. In particular, it suffices to decompose the original
symbol a, into O(|logrs|?) many pieces and show that (11.4) holds for some choice of B > 1 on
each piece.

Reduction to oscillatory integral estimates. Continuting to work with a general a € Cf(@3 xR xR),
it follows from Plancherel’s theorem in the z-variable and the Cauchy—Schwarz inequality that

AlalolReqeay < [ [ 1Zelalat ) 0ateio] dae
< [ ITeala(€s e 966 i a6 (1L5)

where, for each £ € ]IAQS, the operator T¢[a] acts on univariate functions by integrating (in the
t’-variable) against the kernel

Klal(t.#3) 1= [ 0O Tals, 3 Ly (6.1 . (11.6)
R
It suffices to show that

| Te[04a)3 (& ) 2@y < B*H13(& ) I r2(wy for . € {0, 1} (11.7)

holds uniformly in & € R3. Indeed, in this case the norm bound (11.4) would follow via (11.5) and
a further application of Plancherel’s theorem in the &-variable. By the Schur test, the inequality
(11.7) is reduced to verifying the oscillatory integral estimates

o / K[okal(t, 5 )| dt, sup/ K[tal(t,t5o)|dt < B2, 1e{0.1}  (118)

te|1,2

hold uniformly over all £ € RR3.

Initial decomposition. In order to obtain favourable estimates, it is necessary to first decompose
the original symbol a, into a number of localised pieces. This decomposition is similar to that
used in §8 and is described in detail presently. Later in the proof, the kernel estimates (11.8)
are verified for each piece of the decomposition and the resulting norm bounds are combined to
estimate the entire operator.
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Define §; := 58, dy := dp and d3 := 9/10 and for 1 < J < 3 let ; denote the set of £ € R3
satisfying

inf |(7)(s),£)] = 6,1¢],

SEIO

inIf (Y9 (s), 8] < §;€] forl<j<J-—1.
selp

Provided ¢y > 0 is chosen sufﬁciently small, the condition () —~(0) € (’53((50) ensures that these

sets partition R3. By pigeonholing,'? it suffices to work with the symbols a} (&; s) := ar(€; 5)1q, (€)
for1<J <3.

Decompose the symbol into dyadic frequency bands by writing
© J k
_ o). ) ae(&s) - BR(E) for k=1

ayr = ;;Jank where  ay(&;8) = { 0 (1) - n(€) fork—0
Here, for notational convenience, we suppress the choice of J in the notation. Since r3 < rqi,79,
only the first O(|logrs|) terms of the above sum are non-zero, so it suffices to show

|V [ar k]| r2(rey— 123y S K° for all k € No. (11.9)
In particular, note that 2% < Ty L
J =1 case. Suppose suppg ar ; < {11. Here a simple integration-by-parts argument yields
sup / IK[0bar ] (8, t';€)|dE,  sup / (K[0kar 1] (t, ' €)| At < 2¥Z—D for . € {0, 1}.
te[1,2]

In view of our earlier observations, the bound (11.9) therefore holds in this case with a uniform
bound in k.

J = 2 case. Suppose suppg arr S Q2. If £ € Qp, then the equation (7/(s),{) = 0 has a unique
solution in % - Ip which we denote by 0(¢). Indeed, this follows from a simple calculus exercise,
similar to the proof of Lemma 6.1.

Further decomposition Here the symbol ay ; is further decomposed by writing

[%/2] . : 213 0 0 <0 L/
Qy f = Z Oy k0 where ap o g(€:8) = { ar k(& 8)B ( k’z (§)|) if 0 </ < |k/2]
ark(g; ) ( /2] |8— ‘) lfﬁ— k/2

Since [(7"(s),&)| ~ 2F for all (&;5) € supp ar k¢, one has the relation 2% < ry*.

Kernel estimates. The kernels are analysed using stationary phase techniques.
Lemma 11.1. If ke N, 0 </ < |k/2| and ¢ € {0,1}, then

sup / \K[0ar k] (t,';€)|dE,  sup / [K[0kar g o] (L, 15 €)| dt’ < 202D, (11.10)
te[1,2]

Proof. If ¢ = |k/2|, then the localisation of the symbol ensures that |s — 6(&)] < 27¢ for all
(&;s) € suppay k¢. The bound for ¢ = 0 then follows immediately from the size of the s-support
of ar . For ¢ = 1, note that by the mean value theorem, we may write

(V(5), &) =w(&s) (s — 0(E)) (11.11)
where |w(&; 5)| ~ 2F on supp ay,o. Consequently,
(51O 22 for all (€5) € supp aee. (11.12)

10A5 we are interested in L? estimates here, we are free to decompose the symbol using the rough partition of
unity 1 = 1g, + 1o, + 1o,.
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3

Furthermore, by the definition of a, and of the Frenet frame {e; (r)}jzl,

the relation r3 < ro <
r < r;/Q < 27%/2 implies

|Oste o0 (€5 5)| < 2M/2. (11.13)
In view of the definition of 95 in (11.3), the bounds (11.12) and (11.13) immediately imply that
[0sarko(&;5)] < 2F/2 and the bound for + = 1 now follows immediately from the size of the

s-support of a, ¢ and the definition of IC in (11.6).
If 0 < ¢ < |k/2], then the localisation of the symbols ensures that

s —0(€)] ~27° for all (&;s) € supp ar j ¢- (11.14)
Consequently, by directly applying (11.14) in (11.11), we have the bounds
1Y (), )] ~ 2876 |(yW)(s),8)| s 28 for N =2, (& 5) € suppar s (11.15)

Moreover, by the definition of ay, the first relation above immediately implies 2F~¢ < Ty L recall

that 79,73 < 27%. Thus, by the definition of the Frenet frame {ej(s)}?zl, the symbol satisfies
10N ap g o(€;8)] < 2 = 2= (B=2ONo(k=ON {61 a1l N e Ny. (11.16)
Thus, we may bound the kernel via repeated integration-by-parts. In particular, applying Lemma D.1
with ¢(s) := (t — t'){y(s),&) and R := 2F=%|t —#'|, we deduce that
C[04 ap o] (€5 8, 8] Siv 220020 (1 4 222 —¢/|) ™™ for 1€ {0,1}.

The additional 22(¢:=9 factor arises in the bound for the derived operator owing to the formula
(11.3) for the corresponding symbol (and in particular, due to the first bound in (11.15), the
bounds in (11.16) and the relation 0 < ¢ < |k/2|) and the form of the kernel as described in
(11.6). Integrating both sides of the above display in either ¢ or ¢, the desired estimate (11.10)
follows. O

Putting everything together. In view of the kernel estimates from Lemma 11.1 and the discussion
at the beginning of the proof, it follows that

J AR e )9l 12 (1) 12 @s+y < 20790Y2 for all 0 < £ < [k/2] and ¢ € {0,1}.
Combining these bounds with (11.2), it follows that
IN{arkelgllLe @) —r2@s) <1 for all 0 < £ < |k/2]

The frequency localised maximal bound (11.9) immediately follows (with linear dependence on k)
from the triangle inequality.

J = 3 case. Suppose suppg arx < 3. As in Lemma 6.1, if £ € Q3, then the equation (7"(s),&) = 0
has a unique solution in [—1, 1], which we denote by #2(£). As in Lemma 6.2, if u(£) < 0, where

u(€) == (7' 0 62(6), ),
then the equation (7/(s), &) = 0 has a precisely two solutions in [—1, 1], which we denote by 0% (&).
We will further assume without loss of generality that (y(3)(s),&) > 0 for all € € SUpPg Q. k-

Further decomposition Here the symbol ay is decomposed in a manner similar (but not quite
identical) to that used in §8. First perform a dyadic decomposition of u(§) by writing

Lk/3] Lk/3]-1
Urj = D Grjr+ Y, i,
=0 /=0

where
ark(&9)87 (27 u(€) 0 <l <|k/3

ar k,e(§58) 1= { e (&5 5)n (2726l (€)) if ¢ = k3]
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and the aI WEC defined similarly but with 87 in place of f~. Here 8 = 8~ + 8" is the decom-

position of the bump function described in §8.1. The symbols a;r 10 are relatively easy to analyse,
and are dealt with using an argument similar to that of the J = 2 case. Henceforth, we focus
exclusively on the a j ¢.

We further decompose each ay ¢ with respect to the distance of the s-variable to the root 65(&).
Once again it is convenient to introduce a fine tuning constant p > 0. Similar to (8.1), define

ar k00(&58) = ar i e(&; 8)77(,02£|8 — 92(5)\) for 0 < /¢ < |k/3]. (11.17)

Note, in contrast with (8.1), we have not decomposed with respect to |s — 07 (¢)| for £ < |k/3].
Such a decomposition does appear later: here it is necessary to localise simultaneously with respect
to both roots 02(§) and HI—F (£). Also in contrast with the analysis of §8, here it is not possible to
reduce the problem to studying the s-localised pieces in (11.17). Consequently, we also consider
the s-localisation of the symbol to the remaining dyadic shells, viz.

e etm (€3 8) 1= ar . 0(€)B(p27™]s — 02())) for 0 < ¢ < |k/3].

The most difficult terms to estimate correspond to 0 < ¢ < |k/3] and m = 0. These symbols
require a further decomposition. In particular, for 0 < ¢ < |k/3] let

ark0(€5)n(p~ 20792 min |s — 07 (€)]) if m =0
be kom(€;8) i= 3 rke0(E S)ﬁ(P_IQ(k_WQ_771 min s — 07 (€)]) if 1<m < |55
ark0(€8) (1= n(p~ 2002 min|s — 07 (€)]))  if m = [55%]
Observe that Lemma 6.3 already implies that |s — (9%” ()] < p~t27¢ for (&;5) € supp ar k0. Thus,

p27t < |s — 9%(£)| < p 127t for (&'s) € supp by ¢, for m = [%J
Combining the above definitions and observations, the symbol may be written as

|k/3] ¢
2 Z Ay klom = Z Ay k.0m + Z br,k,f,m
(=0 m=0 (6,m)eAq (k) (£,;m)eA, (k)
where
Ao (k) := {(¢,m) eN2:0</(< [%J and 1 <m </} v {(|%] % 0)},
Ap(k) == {(¢,m) € N2:0< (< [%J and 0 < m < [%J}
Note that the range of m in the definition of A, (k) is restricted since ay k¢, is identically zero

whenever m > /£.
Kernel estimates. The kernels are analysed using stationary phase techniques.

Lemma 11.2. Let k€ N and ¢ € {0, 1}.
a) If (¢,m) € Ag(k), then

sup / |KC[0% arkgm](tt €)| dt, sup/ IIC[0%ar kom] (2, t56) ] dt < o(k=26+2m)(2e—1)
te|1,2

(11.18)
b) If (¢,m) € Ap(k), then

o / KC[0Lbe o] (6, 25€) [ dE, sup / KC[0Lbe e gm] (1 £ €)] dt! 5 20— 0/24m)(2=1),
t€12

(11.19)
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Proof. The argument is similar to that used to prove Lemma 8.1.

a) Let (¢,m) € Aq(k). If (¢,m) = (|k/3],0), then the localisation of the ay ¢, symbols ensures
that

lu(é)| < 2k/3  and |s —02(8)] < p_12_k/3 for all (&;s) € supp ar . ¢,m- (11.20)

The bound (11.18) for ¢ = 0 follows immediately from the size of the s-support of ay ¢ m. For
t =1, apply the familiar Taylor expansion to write

('(5),€) = u(€) +wi(&5) (s — 62(6))*,
(Y'(8),:6) = wa(&;8) (s — 0a2(€))
where |w;(&;8)| ~ 2 on supp ay g ¢m for j = 1, 2. Consequently, by directly applying (11.20), we
have the upper bounds
[V (), 1 s p72253, 1(4"(s), 1 s p~ 1223, for all (& s) € supp ar k,om- (11.22)
Note that the relations r9 < rq < r;/Q and r3 < r9 < ri/Qré/Z imply, in particular, | < ré/g < 27K/3

and ro < rg/g < 272F/3_ Tt then follows from the definitions of a, and of the Frenet frame {ej(r)}g’zl
that

(11.21)

|asar,k,€,m(£; S)| < 2k/3~ (1123)

In view of the definition of 95 in (11.3), the first bound in (11.22) and (11.23) immediately imply
that [0say k,em (&5 9)| < 2k/3 and the bound for ¢ = 1 now follows immediately from the size of the
s-support of ay ¢, and the definition of K in (11.7).

Now suppose 0 < £ < |k/3] and 1 < m < £. Then the localisation of the ay j ¢, symbols ensures
that

(@] 2% and s —62(6)| ~ p7 127 forall (&5) € supparpem.  (11.24)

Provided p is chosen sufficiently small, by directly applying (11.24) in (11.21), we have the bounds

[ (), )] ~ p22E22m 1y (s), &) ~ p 12 (G (s), ) s 2F for N > 3.
(11.25)
By the definition of ay, the first and second bounds above immediately imply 2F—26+2m < Ty Land
ok=t+m < o1 whilst 28 < r3'. Thus, by the definition of the Frenet frame ~{ej(s)}§-’:1 and the
bounds (11.25), the symbol satisfies

10N g pom (€5 5)] S 27N = 9= (k=363m)No(k=20+2m)N — fio1 a1l N € Ny, (11.26)

Thus, we may bound the kernel via repeated integration-by-parts. In particular, applying Lemma D.1
with ¢(s) := (t — t'){y(s),&) and R := 233t — /| we deduce that

C[0L a0 (€58, 8)| Sy 220200 2m)g=am (1 g oh=363my 1)) =N

The additional 22(k=26+2m)t griges in the bound for the derived operator 9, owing to the formula
(11.3) for the corresponding symbol (and in particular, due to the bounds in (11.25) and in (11.26)
and the relation 0 < /—m < ¢ < |k/3]) and the form of the kernel K as described in (11.6). Finally,
by integrating both sides of the above display in either ¢ or ¢’, the desired estimate (11.18) follows.

b) Let (¢,m) € Ay(k). If m = 0, then the localisation of the by j ¢, symbols ensures that

lu(€)| ~ 2¥72*  and mjn\s — 05 (6] < p27 92 for all (£;5) € SUPD by g .m- (11.27)
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The bound (11.19) for ¢ = 0 follows immediately from the size of the s-support of by j ¢ . For
v = 1, apply the familiar Taylor expansion to write

(7'(5),6) = v*(€) (s = 07 (&) + wi (& 5) (s — 07 ()%,
("(5),6) = v (€) +wy (&5) (s — 07 (€))

where |w;-£(§; s)| ~ 2F on supp briem for j = 1, 2. Consequently, in view of Lemma 6.3 and

(11.28)

(11.27), and provided p > 0 is chosen sufficiently small, we have the bounds,

[V (), < p2 5702 [Ky"(5), ] ~ 287F for all (& 5) € supp by ko (11.29)
using the relation 0 < ¢ < |k/3].
By the definition of a,, the second bound above implies o < 2~ and therefore r; < r;/ 2 <
2= (=072 whilst r3 < 27%. Thus, by the definition of the Frenet frame {ej(s)};’:1 and the bounds
(11.29), the symbol satisfies

(k—=0)

’&sbr,k,ﬂ,m<€;3)‘ gN 2(kf€)/2’ (11'30)
using the relation 0 < ¢ < |k/3]. In view of the definition of 9 in (11.3), the first bound in (11.29)
and (11.30) immediately implies that [0sbekem (&) < 2579/2) and the bound for ¢ = 1 now
follows immediately from the size of the s-support of by ¢, and the definition of IC in (11.6).
i

Now suppose 0 <m < | . Then the localisation of the by 1 ¢,, symbols ensures that

lu(€)] ~ 28726 and InJin s — 0 (€)] ~ p2~ (BF=0/24m g1 all (€;5) € supp beem- (11.31)
Using the convexity argument from the proof of Lemma 8.1, we may bound

u@©)lls — 07 ()|
[(7'(5), £)| = min

£ 102(8) = 07 (9)]
Consequently, using Lemma 6.3 and (11.31) in (11.28) and (11.32), and provided p > 0 is chosen
sufficiently small,

(), 0] ~ p2k=0/2Hm () 65 ~ 20 and [(7M)(5),&)] <y 2¢ for all N >3,
(11.33)
For the upper bound in the first derivative in the above display, we use the restriction m < [gj
It is for this reason that we simultaneously localise with respect to both 69(¢) and 67 (¢). In
particular,

(YN (), &)] < 28 ~ b= (k=0/20mIN (31 (5) |V < 27 2mIN=D)1(y/(5) )N for all N = 3,

where in the last inequality one uses the restriction m < [%J and the fact N > 3.
By the definition of a,, the first and second bounds in (11.33) imply r; < 2-*=0/2=" and
ry < 270 whilst 73 < 27%. Thus, by the definition of the Frenet frame {ej(s)}g?:l and the

bounds (11.33), the symbol satisfies

10N by oo (€5 8)| S 2(B=0/2mmIN _ 9=2mNo((k=0/24m)N " for all N € N, (11.34)

using the restriction m < [@J Thus, we may bound the kernel via repeated integration-by-

parts. In particular, applying Lemma D.1 with ¢(s) := (t — #){y(s),£) and R := 2*™|t — #/|, we
deduce that

for all (&;s) € supp br . ¢,m- (11.32)

0L g (€51, )| Sy 204 2mIeg=(h=)/28m (1 4 g2my t/|)_N-

The additional 2=¢+2™)t arises in the bound for the derived operator 9, owing to the formula
(11.3) for the corresponding symbol (and in particular, due to the bounds in (11.33) and in (11.34))
and the form of the kernel K as described in (11.6). Finally, by integrating both sides of the above
display in either ¢ or ¢’, the desired estimate (11.18) follows.
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Finally, consider the case m = |£5%|

lu(&)| ~, 2k=2t and min |s — HI—L(§)| ~p 2=t for all (&'s) € SUpp by o ¢.m- (11.35)

. Then the localisation of the by 1, s, symbols ensures that

Using Lemma 6.3 and (11.35) in (11.28) and (11.32), we have the bounds

[V (), ~ 2572 1(7(9), Ol <2870, and [(y\V(s),&)] sy 2F forall N >3
By the definition of a,, the first bound above implies 7 <, 2~ (k=20) and, as r3 < 2%, one has

ry < 7"1/27”1/2 <, 2% Thus, by the definition of the Frenet frame {e;(s )}j 1 and the bounds

(11.33), the symbol satisfies
10N by o (€5 8)] S 28N = 27 (k=3ON9(k=2ON {6, 411 N e Ny.
Thus, we may bound the kernel via repeated integration-by-parts. In particular, applying Lemma D.1
with ¢(s) := (t — t/){y(s),&) and R := 2F=3|t —#'|, we deduce that
IC[0Lbe k0] (€5, )] v 2207200278 (1 4 2b=34) /)~
The additional 22=20* arises in the bound for the derived operator d4 owing to the formula (11.3)
for the corresponding symbol (and in particular, due to the bounds in (11.33) and in (11.34) and

the restriction ¢ < |k/3]) and the form of the kernel K as described in (11.6). Finally, by integrating
both sides of the above display in either ¢ or ¢/, the desired estimate (11.18) follows O

Putting everything together. In view of the kernel estimates from Lemma 11.2 and the discussion
at the beginning of the proof, it follows that

JAR e 0.9l 2 (1) 12 g1y < 2F7HF2ME2) for all (€,m) € Aq(k),
AR ke ]9l L2 ) p2(Rs+1y < 20T O2FMEI2) for all (£,m) € Ay(K),
for + € {0,1}. Combining these bounds with (11.2), it follows that
INTarkemlgllLemey-remsy S 1 for all (¢,m) € Aq(k),
INTbr k. em gl L2 (mt) > r2@sy S 1 for all (£,m) € Ay(k).

Since the cardinalities of A, (k) and Ay (k) are O(k?), the frequency localised maximal bound (11.9)
immediately follows from the triangle inequality. Summing over k then concludes the proof of the
proposition. [l

12. NECESSARY CONDITIONS

In this final section we show the condition p > 3 in Theorem 1.1 is necessary. Moreover, we
prove the following result, which is valid in arbitrary dimensions n > 2.

Proposition 12.1. Ifn > 2 and v: I — R" is a smooth non-degenerate curve, then
My || e gry—rprey =0 for1<p<mn

Proof. By localisation of the operator and applying the rescaling from §4, it suffices to consider
the case where
W) =9(0) € Bu(do)  and  ((0),E) # 0

for §p := 107", say. By reparametrising the curve, we may also assume that the first component
of v: [-1,1] = R™ is of the form 71 (s) = s + a; for some a; € R.

By a simple projection argument, it suffices to study the boundedness of a maximal operator
defined over the Euclidean plane. In particular, fix a = (a1, az) € R? with as # 0 and a smooth
function h: [—1,1] — R satisfying

h(j)()—O for0<j<n-—1 and h(n)() 0. (12.1)
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Define the maximal operator

My f(x) = sup ’ / [z —t(s + a1),za — t(h(s) + ag))x(s)ds‘

t>0

where x € CP(R) is non-negative, satisfies x(s) = 1 for |s| < 1/2 and has support contained in
the interior of [—1,1]. To prove the proposition, it suffices to show

IMp|re)yrr@ey =0 for 1< p<n. (12.2)

Furthermore, since the maximal operator is trivially bounded on L% it suffices to consider the
case p = n only.
By Taylor expansion and (12.1), we have

1
[h(s)| < Dy -[s|"  for|s| <1 where Dj:=— sup[h ™) (s)].
[s|<1
For 0 <r <1let f; := I, denote the indicator function of the set
K(r)=={y = (y1,32) € R*: [y —a1| < r and |y — az < Dy, - "}

and observe that

| frll o2y ~n P, (12.3)
Now let 0™ < A < 1 be a dyadic number and suppose x € E A( ) where
N SO 2. |, _ 4 r 2
E\(r) := {m (x1,29) € R*: ‘xl o 562‘ 5 and A < o 1< 2)\}

If we define t, := ay 'zo — 1 € [\, 2)], then for any s € R satisfying |s| < 5 - A""D/"r we have
o1 talt s+ 1) — | < [ - —xz\ +s| <

2o — tu(h(ty1s) + az) — as| = |tu||h(t;1s)] < Dp - A~ ”*1>|s|” < Dy -1
From these observations, we conclude that
1
if x € Ex(r) and |s| < 3 A=D/my then (21— ta(t;'s + a1),za — to(h(t; 's) + as)) € K(r).
Performing a change of variable in the underlying averaging operator, we deduce that

My fr(z) 2 XY for all z € E\(r),

where here we pick up an extra factor of \™! owing to the Jacobian. Consequently,

IMFliney 2 (2 A_lr”|E,\(r)|> ~a [log r[V/rp(nsD/n, (12.4)
A : dyadic
rt<A<l
Comparing (12.3) and (12.4), we see that the ratio of | My, fr||~(w2) and | fr|| 7~ (R2) is unbounded
(R2) (R2)
in 7 and therefore (12.2) holds for p = n, as desired. O

APPENDIX A. AN ABSTRACT BROAD/NARROW DECOMPOSITION

Here we provide an abstract version of the broad/narrow decomposition in Lemma 9.8. For the
sake of self-containedness of this appendix, we recall some of the definitions introduced in §9.3.

Let J denote the collection of all dyadic subintervals of [—1,1] and for any dyadic number
0 < r < 1let J(r) denote the subset of J consisting of all intervals of length r. Let J>, denote
the union of the J(\) over all dyadic A satisfying » < A < 1. Given any pair of dyadic scales
0 <X <X <1and JeT(\),let I(J; A1) denote the collection of all I € J(A\1) which satisfy
IcJ.
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For d € N and each dyadic number 0 < A < 1 let 3¢ _(\) denote the collection of d-tuples of

sep
intervals I = (I1,...,I;) € 3(A\)? which satisfy the separation condition
dist(I,...,1I3) := i dist(1y,, Ip,) = A

15 ( 1 9 d) 1<Zr1n<1?2<d 1S ( I28) 52)

Given dyadic scales 0 < A\ < Ay < 1 and J € J(\2), let 3L _(J; A1) denote the collection of all

sep

d-tuples of intervals I = (I1,...,1) € J‘Siep()\l) which satisfy I, < J for all 1 </ < d.

The dyadic decomposition from (9.8) is one instance of an ‘abstract’ notion of dyadic decom-
position, introduced in the following definition.

Definition A.1. Let (X, i) be a measure space and F': X — C a measurable function and 0 < r <
1. A sequence (Fr)ey., of measurable functions Fr: X — C is said to be a dyadic decomposition
of F up to scale 7 if it satisfies

Foy=F and  Fy= >, F  forallJe3(X)
I€3(J;M1)

whenever 0 < r < A1 < Ay < 1 are dyadic. Here the identities are understood to hold p almost
everywhere.

The broad/narrow decomposition result from which Lemma 9.8 follows is the following.

Lemma A.2. Let (X, pn) be a measure space, k € N with k = 2 and € > 0. For all r > 0 there
exist dyadic numbers ry and ry satisfying

r<tnSek T r<rp < (A.1)

1
such that the following holds. If F € LP(X) for some 1 < p < w0 and (Fy)rey is a dyadic
decomposition of F' up to scale r, then

1/p k 1/p
1Flisee) Ser ™= (0 2 1) " +r=( 2 ITTIE ) s (A2)
I€3(rn) Jei(Cry)  j=1

fe:ii?ep(J;rb)
where C' = C, , = 1 is a dyadic number depending only on € and k.

The intervals I € J(ry) are referred to as narrow intervals whilst the k-tuples of intervals
I'e 3k (I; r,) are referred to as broad interval tuples.
The key ingredient in the proof of Lemma A.2 is a 1-parameter variant of the Bourgain—Guth

decomposition from [9] due to Ham-Lee [14].

Lemma A.3 (Ham-Lee [11]). Let 1 < p < o0 and k € N with k = 2. Suppose 0 < £y,..., 01 <1
are dyadic numbers such that

1=by=2l1 = - =01 >0.

If (X, ) is a measure space and (Fr)res is a dyadic decomposition of F € LP(X), then for any
{>0,

y el y
(X 1E00) " <4 X 20 1B
=1

Jea(e) Ie3(¢;0)
—o(f— K 1/p
Tl G Y U (DA N
JeI() Jj=1

Teak, (T3, —10)
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Rather than working in the relatively abstract setting of dyadic decompositions of measurable
functions, Ham-Lee [I4, Lemma 2.8] apply the decomposition only in the concrete setting of
Fourier extension operators associated to space curves. However, the proof is elementary, relying
little on the exact form of the extension operator, and can easily be adapted to yield Lemma A.3.
For completeness, the details are presented at the end of the section.

Lemma A.2 is deduced by applying Lemma A.3 iteratively, for appropriately chosen dyadic
scales £1,...,0k_1.

Proof of Lemma A.2. Fix € > 0 and k € N with N > 2. Define the dyadic scales 1 = ¢; > --- >
L1 > 0 recursively so as to satisfy

og(V(’fl ))gf’ Og]%l_lgf for2<j<k-1
log (] 6 log £; 6

Now fix r > 0, F € LP(X) and (F7)ey a dyadic decomposition of F. If r 2. 1, then the desired
result immediately follows from the triangle inequality and so r may be assumed to be smaller
than some small constant c. j, depending only on € and k£ and chosen for the purposes of the
forthcoming argument; in particular we can assume £_1 > r.

Let W denote the set of all finite words formed from the alphabet {1, ..., k—1}. Given any w € W
and 1 < j < k—1 write [w]; for the number of occurrences of j in w and |w| := [w]1 +- - - + [w]k—1
for the length of the word.

Let 0 := [T¥21 Y for any w e W and define
A(r) :={aeW r <t <r/ly_1}, B(r):={BeW:0F >r/l_1}.
Finally, for cach N € Ny define
A<n(r) :={ae A(r):la| <N}, Ben(r) :={B e B(r): |B] < N},
An(r ) = {a € A(r) : !a\ =N}, Bn(r):={BeB(r): |8 =N}

An iterative application of Lemma A.3 yields the following key claim.

Claim. For all N € Ny,

1/p
IFlow < Y 2D 1F ) (A.3)
aceA<n (r)uBn(T) I3 (L)
o(l_ k 1/p
620y M (Y T )
BeB<n-1(r) Jed(eP) J=1
_’ jsep(‘] Ek 1@6)

where M), — 4lal Hf 1153_21] lel;,

Proof (of Claim). The proof is by induction on N. The case N = 0 is vacuous and thus one may
assume, by way of induction hypothesis, that (A.3) holds for some N > 0. It remains to establish

the inductive step.
Consider the terms on the right-hand side of (A.3) of the form

1/p
> IF ) for B € By (r).
Ie3(4P)
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Applying Lemma A.3 to each of these terms,

/
Flow < Y Ma%( X 1810)

acAcn(r) IEJ(ZO‘)
_ /
- % k42€2 DY IE) "
BeBN (r Ted(e;¢P)
+€;f(1k_1) oMLY HHIFI ”’“HLP(X)>
BeB<n(r) Je3(e?)

Tedk,, (Jitk-107)
From the definitions,
A<ni1(r) v By4i(r) = A< (r) v An1(r) U Bria(r),

where the union is disjoint. Furthermore, the set An1(r) U By41(r) precisely corresponds to the
set of words obtained by adding a single letter to one of the words in By(r). Combining these
observations, the induction readily closes. ([l

Using the claim, the proof of Lemma A.2 quickly follows from the choice of scales ¢;. Indeed,
first observe that for IV := max,e 4, | it follows that By(r) = & and thus

A<n(r) v By(r) = A(r) and B<n—_1(r) = B(r).
Note that each w € A(r) u B(r) satisfies (£*)~1 < =1 and therefore

jw|log 7! < Z[w]j logéj_1 <logr L. (A.4)

By the choice of ¢, it follows that
glvl < 410gr—1/1oge;1 _ T—log4/log€1_1 < ,r—s/6, (A.5)
whilst, similarly,
#A(r)u B(r) < #{we W : |w| < log ril/log Zfl} < p—log(k—1)/log 1! < re/S,

On the other hand, as a further consequence of (A.4) and the choice of scales ¢}, if w € A(r)uB(r),
then

2(j—1)[ - log 5'_29_1)
log 1_[ EJ a Z:l logg 1W < log /8, (A.6)
J J

The estimates (A.5) and (A.6) imply that
k-1
M®, = gled H gj—fiﬂ—l)[w]j < 7“75/3,

where M ok are the constants appearing in the above claim. Combining these observations with
(A.3) for the choice of N as above,

Flo < Y (3 1810) "

acA(r) IeJj(ex)

(ke i 1/p
#2000 Y ITTEM )
BeB(r) Jed(£P) j=1
Ik, (Jilx_16%)
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Finally, since E,;_ll <ek 1 and #A(r), #B(r), < r~¢/% by pigeonholing there exists some oy, € A(r)
and B, € B(r) such that, if 7, := ¢*» and 7, := £;_1£% and C.p = E,;ll, then the desired
inequality (A.2) holds. It is easy to see that these parameters also satisfy (A.1) directly from and
the relevant definitions. O

To close this section, the proof of Lemma A.3 is presented, following the argument in [14].
Proof of Lemma A.3. For notational convenience, given m € N and J € J(¢) define
TF) (%) = max | F o () |V
J Ik 1e§bep(J 7. 15 H I

When m = 1 this reduces to 7'/'(F)(x) = |Fy(x)|. The main step in the proof of Lemma A.3 is
the following pointwise estimate.

Claim. For allm e N and J € 3({), the pointwise estimate

2 m+1
THE)@) <4, max (P (@) + 275 (F) @)

holds for p-almost all x € X.

Proof. Fix z € X and I'1 = (I, ... I™1) € 3™({,,_{) with I Ve Jfor1<j<m. For
each j there exists an interval Ijm’* € J(¢0) satisfying

I;ﬁ"*c[]m*l and |Fmx(x)| = max |Frm ()]
J mes( e

There are two cases to consider:

Narrow case: Either one of the following two conditions hold:
i) For all 1 < j <m, if IJ" € 3(€l) satisfies I7" < "' and dist(I]", [[") = £inl, then

Fip ()] < (52 [Fypee (@)

m—1

ii) The selected interval I]m’* € J(¢,,¢) above satisfies

N

< b )m max |Flm*(x)|

L 1<j<m
m—1 J

Broad case: The conditions of the narrow case fail.

i | Fps(2)]

The narrow case. If condition i) of the narrow case holds, then

[Fyms (2)] < 3[Fpms ()] + > i ()] < 4|Fpns (@),
Ime3(bmt), eI
dist(17", 17" %) =l

since there are at most £,,_1 /¢y, intervals I e J(lnl) contained in Ijmfl. Thus, in this case,

Fpna(z)|V™ < 4 Fpm(z)]. A.
H| Tl | Fpn(2) (A7)

Now suppose that condltlon ii) of the narrow case holds. Thus,

HyFIm ()M < ( m= 1)H\F,m* IV < max [Fyms (o)

1<is<m
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where the first inequality follows since there are at most £;;,—1/¢r, intervals I7" € J(£y,£) contained

n IJ’."_I. Once again, (A.7) holds (in fact, it holds with a constant 1 rather 4). Hence, a favourable
estimate holds in the narrow case.

The broad case. Suppose the broad case holds. By definition, condition i) from the narrow fails.
Consequently, there exists some 1 < jp < m and an interval I;g’** € J(¢,0) satisfying

m,** m—1
I _IJO ’

lm
dist(I"**, I™*) > 6yl and \FI;S,*(Q:)\<< ; 1>]FI£,**(m)|.

On the other hand, condition ii) from the narrow case also fails and, consequently,

/! _1\™ / _1\m+1
max [Fyms(r)] < ( m ) [Fyms(a)] < ( m ) [y (@)

1<j<m fm Em

Thus, for each 1 < j < m, it follows that

m b1\ 1/m m m(m
IFz;a*(x)ll/ <( . )1 ) VD] By () D),

Finally, taking the product of the above estimate over all 7, one deduces that

H’FIM1 l/m\<m1>H|F1m* l/m
( ) <H|Fm* 1/m+1)‘Fm**( )‘1/(m+1)

<t 2%3”“(F)(:v),

where in the last inequality we use the separation condition. Hence, in the broad case a favourable
estimate also holds. ]

By repeated application of the claim and the relation 1 = -+ > £;_,
—2(m—1 —2(k—1
[Fy(a)| < 4 Z LAY max @)l + 625 (F) @)

for p-almost every x € X. Bounding all the maxima in the above display by the corresponding ¢
expressions and integrating over z € X, one deduces that

k=1 . p
IFilog <4 2 625070 Y 1FmIRy)
m=1

Imed(Jme)

= G s 7 A

ek, (Jilp—10) I=1

Finally, taking a /P sum over J of both sides of the above inequality and applying the triangle
inequality concludes the proof. O
APPENDIX B. A POINTWISE SQUARE FUNCTION INEQUALITY

Here we provide the simple proof of Lemma 10.1, which is a slight extension of an argument
due to Rubio de Francia [20]. Given G: Z™ — R"™ define

1G]l = sup ) e IGUI=GE2I2,

I/QEZ ” e7m
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By rescaling and a simple limiting argument, Lemma 10.1 is a consequence of the following point-
wise bound.

Lemma B.1. Let ¢ € Y(]@") and G: Z™ — R™. For all M, N € N the pointwise inequality

S (D - Gw) @) ~¢Ncw/ (x— )P+ y) N dy

VEZ™ ~[—M,M]|™
holds for all f € /(R™), with an implied constant independent of M.

Proof. Let a = (a,),ezm be a sequence supported in Z"™ n[—M, M|™ satisfying |a|,2 = 1. Consider
the function

S ab(D - GW)) fla) = K » f(a)
veZm

where the kernel /C is given by

/C(a:):z(271r)n/ Z<x§>2a¢£ G(v dﬁ—[Zan@G ]()

vezm™ vez™

By duality, it suffices to show
K = £ Gm/ (x — )P+ 1y~ dy.

Applying the Cauchy—Schwarz inequality,

s £ /

and so, in view of the rapid decay of 11), the problem is further reduced to showing
/ Z ay, ez(y G(v))
vezm™

Since 1 € .Z(R") we have [{(y)| < é(y) where ¢(z) := (1 + 22)"""1. Consider ¢(z) for
|Im (z)| < 1/2 and observe that, by contour integration, |¢(£)| < e €/ for € € R™. Hence

LeiuGW)

Wy | 1 =PI ay

VEZ™

()| dy < |G-

/ W CED T dy £ Y] T, d(GOn) - Glr))
verr v1,U9€Z™

S Z ‘al/lHGVQ‘C_|G(V1)_G(V2)|/2_
v1,V2€Z™

The right-hand side of the above inequality is then bounded by ||G|| via the Cauchy-Schwarz
inequality and the Schur test, as [af;2 = 1. O

APPENDIX C. DERIVATIVE BOUNDS FOR IMPLICITLY DEFINED FUNCTIONS

Let ©Q, I < R be open intervals and G: Q@ x I — C a C® mapping. Suppose 0,G(x,y) is
non-vanishing on Q x I and y: Q — I is a C* mapping such that

G(z,y(x)) =0 for all x € Q.

Lemma C.1. Let G: Q x I — C and y: Q@ — I be as above and suppose A, My, My > 0 are
constants such that

{ (0,G)(w,y(x))| > AMs,
I

C.1
ﬁg‘lﬁfoG)(a:,y(m))‘ Sa AMDTMS? for all o € N3\{0}. (G-1)
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Then the function y satisfies
9 (z)] <5 MM ! for all j € N. (C.2)

Consequently, for all C* functions H: Q2 x I — C for which there exists some constant B > 0
such that

|(03" 0y H)(w,y(x))| Sn BM{* M3 for all a e N3\{0}, (C.3)
one has N
M—NH(ﬂs,y(:z:)) <y BMY for all N € N. (C4)

Before giving the proof of Lemma C.1, we make some preliminary observations. A simple
induction argument shows that there exists a sequence of coefficients (Cy,a) s> depending only
0

on j and «, such that for all C* functions H: Q2 x I — C the identity

di i
T H(z,y(z) = Y @ROEH)(wy@) Y Cad] [v7@%  (CH)
A ditotid=j-ar il

a1,a2<j di+-4dj=az

holds. The precise values of the C, 4 are given by the multivariate Faa di Bruno formula: see
[17, Theorem 4.2]. Similarly, for 1 < k < [a| there exists a sequence of coefficients (Cke)eeg(a k)
depending only on «, such that

|o|

291052 [(0,G)(w, )M = D (0@ () F Y Cre [ [ (021021 G) () (C.6)
k=1 ee€(a,k) B=<a
where
E(a, k) = {e = (e8)p=<a : e € Ng for all f < a and Z Be-eg=ayfor l =1,2, Z eg = k}
[B<a B«

and the notation 3 < « refers to those 3 € N3\{0} which satisfy 3y < ay for £ = 1,2. Once again,
the precise values of the C}, . are given by the multivariate Faa di Bruno formula.
Both identities (C.5) and (C.6) play a role in the proof of Lemma C.1.

Proof. By scaling, it suffices to show the case A = 1. The proof of (C.2) proceeds by (strong)
induction on j. By implicit differentiation,

Y (z) = Qz,y(x)) where Q(z,y) = —(0:G)(w,y)  (9,G)(x,y)™" for (z,y) e A x 1. (C.T)
Thus, the j = 1 case is an immediate consequence of this identity together with the hypothesised
bounds (C.1). Now let j > 1 and suppose |y (2)| <; MiM, * holds for all 1 <i < j.

To bound the higher order derivative y/+1) we make use of the differential identity (C.5), taking
H := @. In particular, (C.5) together with (C.7) directly imply that

YUt (@) = Y (@002 Q) (@) Y, Caa [4P (@)% (C8)

aeN2\{0} di+-+jdj=j—a1 i=1
a17a2<j d1+“‘+dj=042

The bound (C.2) is now reduced to showing
(052052 Q) (z, y(x))| Sa MiMy ' M M2, (C.9)

Indeed, once (C.9) is established, one may use this inequality to bound the derivatives of @
appearing on the right-hand side of (C.8) and the induction hypothesis to bound the 3 (z)
terms. Consequently, one deduces that

U (2)| <5 M MG
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This closes the induction and completes the proof of (C.2).
Turning to the proof of (C.9), note that (C.6) and the hypothesised bounds (C.1) imply

1091052[(0,G) (2, 9) ™ ly—y(@)| Sa My "M M52 for all a € N5\{0}. (C.10)
On the other hand, (C.1) immediately implies that
001052 (0 G) (2, Y)|y—y(z)| Sa MM M5?  for all a € Nj\{0}. (C.11)

Combining (C.10) and (C.11) with the Leibniz rule one obtains (C.9).
The bound (C.4) is a simple consequence of (C.2) and (C.3) via the formula (C.5). O

Lemma C.1 immediately implies the following multivariate extension. Let 2 € R" be an open
set, I < R an open interval and G: Q@ x I — C a C° mapping, for some N € N. Suppose 9,G(x,y)
is non-vanishing on Q x I and y: Q — I is a C® mapping such that

G(z,y(x)) =0 for all x € Q.

For e € S" ! let V, denote the directional derivative operator with respect to = in the direction
of e. Suppose A, My, My > 0 are constants such that

{ (Vo006 yle))| x AME M for all « € N2\{0} and all z € Q.  (C.12)
e Yy ) ~ 1 2
Then the function y satisfies
(VYy(x)] sy MMy for all z € Q and all N € Ny,. (C.13)

Similarly, (C.4) has a multivariate extension. In particular, suppose, in addition to the above,
that H: Q x I — C a C*® mapping and B > 0 is a constant such that

(V&1 052 H) (z,y())| <y BM{"Mg?  for all o € Nj\{0}. (C.14)
Then it follows from (C.4) that
\VYH(z,y(z))| <y BM{'  forallz € Q and all N e N. (C.15)

For the purposes of this paper, we are interested in the special case where G, H: R" x [ —» R
are both linear in the & variable. Thus, G and H are of the form

G(z,y) =), z), H(z,y) = {h(y), =),
for some C'* functions g, h: I — R™. Furthermore, the conditions in (C.12) can be written as

g oy(®),z)] =AMy,
g oy(x),z)| <y AMY for all N € N and all € O (C.16)
(g™ o y(), )l

(
and the condition in (C.14) can be written as

{ (M) o y(x),2)| <y BMY

Kh(N) oy(@),e)| <y BMMY for all N € N and all x € Q). (C.17)
’ S 2

Example C.2 (Application to Lemma 8.7). Let v € ®3(dg), and 05 : @3\{0} — Iy satisfying
<7” © 02(5)7 £> = 0.
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We apply the previous result with g = ~" and h = ~'. If B < A the conditions (C.16) and (C.17)
read succinctly as

[(Y® 065(8), ] = AM,,
AN 0 0y(€), 5| <n BMY for all N € N and all € € Q < R3\{0},

(YN 0 6(€), )
which imply
IVY0:(6) sy MY My and  |VE(Y 062(€),6)| sy BMY.

for all N € N and all £ € Q < R3\{0}.
The application with respect to 0;5 : R3\{0} — Iy satisfying
(' 00 (€),6) =0

is similar, with g =~ (we do not require to take an auziliary h in this case).

APPENDIX D. INTEGRATION-BY-PARTS

For a € C(R) supported in an interval I R and ¢ € C®(I), define the oscillatory integral

Z|p,al := / ¢?)a(s) ds.
R
The following lemma is a standard application of integration-by-parts.

Lemma D.1 (Non-stationary phase). Let R > 1 and ¢,a be as above. Suppose that for each
J € Ng there exist constants C; = 1 such that the following conditions hold on the support of a:

i) |¢'(s)| >0, A '
ii) [69)(s)| < C;R™UD|¢/(s)17 for all j =2,
iii) |a9)(s)| < C;R7I|¢/(s)] for all j = 0.
Then for all N € Ny there exists some constant C(N) such that
Z[¢,a]| < C(N) - |suppal - R

Moreover, C(N) depends on C1,...,Cn but is otherwise independent of ¢ and a and, in particular,
does not depend on r.

Proof. Taking D := ¢'(s)~10, repeated integration-by-parts implies that
Z(6,0] = (=) [ (D) Vas)ds
R
where D* is the ‘adjoint’ differential operator D*: a — —83[(q§’ )~1 -a]. Thus, the proof boils down
to establishing a pointwise estimate
[(D*)Ya(s)| < C(N) - RN

under the hypotheses of the lemma.
It is in fact convenient to prove a more general inequality

102(D*)Na(s)] < C(j,N) - R"N77 - |¢/(s),  for all j, N € Ny, (D.1)
where the C'(j, N) again only the constants C for 1 < k < N+j. The inequality (D.1) is amenable
to induction on the parameter N. Indeed, if N = 0, then (D.1) reduces to hypothesis iii), which

establishes the base case.
Assume the inequality (D.1) holds for some N > 0 and all j. By the Leibniz rule,

7 M\ N+1 :jﬂ TN rai =177y | [Aj+l—if e\ N
o3 (D*)" " a(s) 2 ) [0u(e) ] (s) - [0 (D*)Na](s). (D.2)

1=0 L
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Using the induction hypothesis, one may immediately bound
[[¢" T (D*)Na](s)| < C(j +1—4,N) - RTN71I4 g/ (s) 417, (D.3)

On the other hand, an induction argument shows that there exists a polynomial p € R[ Xy, ..., X;],
with coefficients depending only on ¢, with the following properties:

a) p is a linear combination of monomials X --- X" for multi-indices (avp, ..., a;) satisfying
O+l +-+t-s=a9g+ay1+-+a; =1.
b) The identity

K170 _ £@(5),-, 00 (s))
[as ((b) ](S) - ¢I(8)i+1

If (o, ..., ;) is a monomial satisfying a), then hypothesis ii) of the lemma implies that

holds for all s e I.

[T16"D(s) < R 19/ (),
k=0

where the implied constant is here allowed to depend on the Cj for 1 < k < i+ 1. Consequently,
from the formula in b) above one deduces that

[0:() " ](s) S BT -1/ (). (D.4)

Substituting the bounds (D.3) and (D.4) into (D.2), the induction now closes provided C(j, N) is

appropriately defined. O
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