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Abstract. We consider Fourier transforms bµ of densities supported on
curves in R

d. We obtain sharp lower and close to sharp upper bounds
for the decay rates of ‖bµ(R·)‖Lq(Sd−1), as R → ∞.

1. Introduction and Statement of Results

In this paper we investigate the relation between the geometry of a curve
Γ in Rd, d > 2, and the spherical Lq average decay of the Fourier transform
of a smooth density µ compactly supported on Γ.

Let Γ be a smooth (C∞) immersed curve in Rd with parametrization
t → γ(t) defined on a compact interval I and let χ ∈ C∞ be supported in
the interior of I. Let µ ≡ µγ,χ be defined by

(1.1) 〈µ, f〉 =

∫
f(γ(t))χ(t)dt

and define by µ̂(ξ) =
∫

exp(−i〈ξ, γ(t)〉)χ(t)dt its Fourier transform. For a
large parameter R we are interested in the behavior of µ̂(Rω) as a function
on the unit sphere, in particular in the Lq norms

(1.2) Gq(R) ≡ Gq(R; γ, χ) :=
( ∫

|µ̂(Rω)|qdω
)1/q

where dω is the rotation invariant measure on Sd−1 induced by Lebesgue
measure in Rd. The rate of decay depends on the number of linearly inde-
pendent derivatives of the parametrization of Γ. Indeed if one assumes that
for every t the derivatives γ′(t), γ′′(t), ..., γ(d)(t) are linearly independent
then from the standard van der Corput’s lemma (see [20, page 334]) one gets

G∞(R) = maxω |µ̂(Rω)| = O(R−1/d). If one merely assumes that at most
d− 1 derivatives are linearly independent then one cannot in general expect
a decay of G∞(R); one simply considers curves which lie in a hyperplane.
However Marshall [15] showed that one gets an optimal estimate for the L2

average decay, namely

(1.3) G2(R) = O(R−1/2)
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2 FOURIER TRANSFORMS OF MEASURES ON CURVES

as R → ∞, for every compactly supported C1 curve γ.
We are interested in estimates for the Lq average decay, for 2 < q < ∞.

If γ is a straight line such extensions fail, and additional conditions are
necessary. Our first result addresses the case of nonvanishing curvature.

Theorem 1.1. Suppose that for all t ∈ I the vectors γ′(t) and γ′′(t) are
linearly independent. Then for R ≥ 2

(i)

(1.4) Gq(R) .

{
R−1/2 (log R)1/2−1/q if 2 ≤ q ≤ 4

R−2/q (log R)1/q if 4 ≤ q ≤ ∞.

(ii) Suppose that there is N ∈ N so that for every ω ∈ Sd−1 the function
s 7→ 〈ω, γ′′(s)〉 changes sign at most N times on I. Then

(1.5) Gq(R) . R−1/2 if 2 ≤ q < 4

and

(1.6) Gq(R) . R−2/q if 4 < q ≤ ∞.

Here and elsewhere the notation a . b means a ≤ Cb for a suitable
nonnegative constant C.

The L4 estimate G4(R) = O(R−1/2[log R]1/4) is sharp even for nondegen-
erate curves, cf. Theorem 1.3 below. The estimate (1.5) is sharp and it is
open whether for q 6= 4 there exists an example for which the logarithmic
term in (1.4) is necessary.

The estimate (1.6) is sharp in the case where the curve lies in a two dimen-
sional subspace. Under stronger nondegeneracy assumptions this estimate
can be improved. In particular one is interested in the case of nondegener-
ate curves in Rd, meaning that for all t the vectors γ(j)(t), j = 1, . . . , d, are
linearly independent. In the case d = 2 we have of course the optimal bound
Gq(R) = O(R−1/2) for all q ≤ ∞, by the well known stationary phase bound
(for results for general curves in R2 and hypersurfaces in higher dimensions
see [6] and references contained therein). The situation is more complicated
for nondegenerate curves in higher dimensions, and Marshall [15] proved
(essentially) optimal results for nondegenerate curves in Rd if d = 3 and
d = 4.

We show that one gets close to optimal results for nondegenerate curves
in all dimensions. Our method is different from the explicit computations in
Marshall’s paper and relies on a variable coefficient analogue of the Fourier
restriction theorem due to Fefferman and Stein in two dimensions, see [11],
and due to Drury [9] for curves in higher dimensions. The variable coefficient
analogues are due to Carleson and Sjölin [7] (see also Hörmander [13]) in
two dimensions and to Bak and Lee [3] in higher dimensions.
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To formulate our result let, for 1 ≤ q ≤ ∞,
(1.7)

σK(q) ≡ σd
K(q) =

{
min{k=2, ...,d}

1
k + k2−k−2

2kq , for K = d,

min{k=2, ...,K}

{
1
k + k2−k−2

2kq , K
q

}
, for 2 ≤ K < d.

Theorem 1.2. Suppose that for all t ∈ I the vectors γ′(t), ..., γ(K)(t) are
linearly independent. Then for R ≥ 2

(1.8) Gq(R) ≤ CσR−σ, σ < σK(q).

For integers k ≥ 1 set

(1.9) qk :=
k2 + k + 2

2

so that q1 = 2, q2 = 4, q3 = 7, q4 = 11. Observe that the set of points
(q−1, σd

d(q)), q ≥ 2, is the broken line joining the points

(
1

q1
,

1

q1
), (

1

q2
,

2

q2
), . . . , (

1

qk
,

k

qk
), . . . , (

1

qd−1
,
d − 1

qd−1
), (0,

1

d
),

while for K < d, the set of points (q−1, σd
K(q)) is the concave broken line

joining the points

(
1

q1
,

1

q1
), (

1

q2
,

2

q2
), . . . , (

1

qk
,

k

qk
), . . . , (

1

qK
,

K

qK
), (0, 0).

Furthermore observe that σd
K(q) > 2/q if 3 ≤ K ≤ d, and q > 4. The picture

shows the graph {1/q, σK
K (q)} as a function of 1/q, for K = 10.
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We emphasize that the graph of σd
K is slightly different for d > K, as then

the left line segment connects (q−1
K ,Kq−1

K ) to (0, 0).
Theorem 1.2 is sharp up only to endpoints, at least for nondegenerate

curves (for which γ′(t),..., γ(d)(t) are linearly independent), and also for

some other cases where K < d, γ′(t),..., γ(K)(t) are independent and γ lies
in a K dimensional affine subspace. We note that for the case K = d = 4

Marshall [15] obtained the sharp bound Gq(R) . R−σ4
4(q) when 4 < q < 7

and q > 7; moreover Gq(R) . R−σ4
4(q) log1/q(R) when q = 4 or q = 7 (the

logarithmic term for the L4 bound seems to have been overlooked in [15]).

We now state lower bounds for the average decay. The cutoff function χ
is as in (1.1) (and Gq(R) depends on χ).

Theorem 1.3. Suppose that 2 ≤ K ≤ d and, for some t0 ∈ I, the vectors
γ′(t0), ..., γ(K)(t0) are linearly independent. Then for suitable χ ∈ C∞

0 there
are c > 0, R0 ≥ 1 so that the following lower bounds hold for R > R0.

(i) If 2 ≤ K ≤ d − 1 then

(1.10) Gq(R) ≥ cR−σK(q), 2 < q < qK ;

moreover

(1.11) Gq(R) ≥ cR−σK(q) log1/q(R), q ∈ {qk : k = 2, . . . ,K − 1}.
(ii) If K = d then

Gq(R) ≥ cR−σd(q), 2 < q ≤ ∞,(1.12)

Gq(R) ≥ cR−σd(q) log1/q(R), q ∈ {qk : k = 2, . . . , d − 1}.(1.13)

(iii) If 2 ≤ K ≤ d − 1 and, in addition, γ(K+1) ≡ 0 then

Gq(R) ≥ cR−σK(q), 2 < q ≤ ∞,(1.14)

Gq(R) ≥ cR−σK(q) log1/q(R), q ∈ {qk : k = 2, . . . ,K}.(1.15)

Remark: A careful examination of the proof yields some uniformity in the
lower bound. Assume that γ(j)(t0) = ej , (the jth unit vector), j = 1, . . . ,K,
and ‖γ‖CK+3(I) ≤ C1. Then there is h = h(C1) > 0 so that for every smooth

χ supported in (−h, h) with Re χ(t) > c1 > 0 in (−h/2, h/2) there exists
an R0 depending only on c1, C1, ‖χ′‖∞ and ‖χ′′‖∞ so that the above lower
bounds hold for R ≥ R0. We shall not pursue this point in detail.

Addendum: After the first version of this paper had been submitted we
learned about the work of Arkhipov, Chubarikov and Karatsuba [1], [2] who
proved sharp estimates for the Lq(Rd) norms of the Fourier transform of
smooth densities on certain polynomial curves. We are grateful to Jong-
Guk Bak who pointed out these references to us. The work of these authors

shows that for, say γ(t) =
∑d

k=1 tkek, t ∈ [0, 1] the Fourier transform d̂σ

belongs to Lq(Rd) if and only if q > qd = (d2 + d + 2)/2. This result seems

to have been overlooked until recently; it rules out an Lq′d endpoint bound



FOURIER TRANSFORMS OF MEASURES ON CURVES 5

for the Fourier restriction problem associated to curves, cf. a discussion in
[16] and a remark in [3]). More can be said in two dimensions where the
endpoint restricted weak type (4/3) inequality for the Fourier restriction
operator is known to fail by a Kakeya set argument, see [4]. We note that
the lower bound in chapter 2 of [2] is closely related to (1.12) and the method
in [2] actually can be used to yield (1.12) for the curve (t, ..., td) in the range
q ≥ qd−1; vice versa one notices σd(qd) = d/qd and integrates the lower

bound for Rd−1Gq
q(R) in R to obtain lower bounds for ‖d̂σ‖Lq(Rd).

A variant of an argument in [2] can be shown to close the ε gap between
upper and lower bounds in some cases. We formulate one such result.

Theorem 1.4. Suppose that γ is smooth and is either of finite type, or
polynomial.

Assume that γ′(t), . . . , γ(K)(t) are linearly independent, for every t ∈ I.
Then the following holds:

(i) If K = d then

(1.16) Gq(R) ≤ CqR
−σd(q), q ≥ 2, q /∈ {qk : k = 2, . . . , d − 1},

and

(1.17) Gq(R) . R−σd(q) log1/q(R), q ∈ {qk : k = 2, . . . , d − 1}.
(ii) If 2 ≤ K ≤ d − 1 then

(1.18) Gq(R) ≤ CqR
−σK(q), q ≥ 2, q /∈ {qk : k = 2, . . . ,K}.

and

(1.19) Gq(R) . R−σK(q) log1/q(R), q ∈ {qk : k = 2, . . . ,K}.

It is understood that the implicit constants in (1.16) and (1.18) depend
on q as q → qk. Note that in the finite type case (1.18) and (1.19) can
be improved for q > qK since we have some nontrivial decay for G∞(R).
However, for the sharpness in the most degenerate case compare Theorem
1.3, part (iii).

Remark: The result of Theorem 1.4, for polynomial curves, could be used to
obtain the upper bounds of Theorem 1.2, which involves a loss of Rε, by a
polynomial approximation argument. Note however, that such an argument
requires upper bounds for derivatives of γ up to order C + ε−1, as ε → 0.
An examination of the proof of Theorem 1.2 shows that one can get away
with upper bounds for the derivatives up to order N where N depends on
the dimension but not on ε.

Structure of the paper. In §2 we prove the estimates (1.5) and (1.6) which
involve the assumption of 〈ω, γ′′(s)〉 not changing sign. Here we also discuss
an application to some mixed norm inequalities for rotated measures. In §3
we prove Theorem 1.2 and (1.4). In §4 we give the proof of Theorem 1.4. In
§5 we revisit some known asymptotic expansion with precise quantifications
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which are convenient for the proof of the lower bounds. The proof of the
lower bounds of Theorem 1.3 is given in §6.

2. Upper bounds, I.

We shall now prove part (ii) of Theorem 1.1 (i.e. (1.5), (1.6)) under the
less restrictive smoothness condition γ ∈ C2(I); we recall the assumptions
that γ′(t) and γ′′(t) are linearly independent and that we also require that
the functions s 7→ 〈ω, γ′′(s)〉 have at most a bounded number of sign changes
on I. Note that this hypothesis is certainly satisfied if γ is a polynomial, or
a trigonometric polynomial, or smooth and of finite type.

We need a result on oscillatory integrals which is a consequence of the
standard van der Corput Lemma; it is also related to a more sophisticated
statement on oscillatory integrals with polynomial phases in [18].

Let η be a C∞ function with support in (−1, 1) so that η(s) = 1 in
(−1/2, 1/2); we also assume that η′ has only finitely many sign changes.
Let η1(s) = η(s) − η(2s) (so that 1/4 ≤ |s| ≤ 1 on suppη1) and let

ηl(s) = η1(2
l−1s)

so that 2−l−1 ≤ |s| ≤ 2−l+1 on the support of ηl.

Lemma 2.1. Let I be a compact interval and let χ ∈ C1(I). Let φ ∈ C2(I)
and suppose that φ′′ changes signs at most N times in I.

Then, for 1 ≤ 2l ≤ λ,
∣∣∣∣
∫

I
ηl(φ

′(s))eiλφ(s)χ(s)ds

∣∣∣∣ ≤ CN2lλ−1.

Proof. We may decompose I into subintervals Ji, 1 ≤ i ≤ K, K ≤ 2N + 2,
so that both φ′ and φ′′ do not change sign in each Ji. Each interval Ji can be
further decomposed into a bounded number of intervals Ji,k so that η′ (φ′)
is of constant sign in Ji,k. It suffices to estimate the integral Ii,k over Ji,k.

By the standard van der Corput Lemma, the bound Ii,k = O(2l/λ) follows
if we can show that ∫

Ji,k

∣∣∂s

(
ηl(φ

′(s))χ(s)
)∣∣ ds ≤ C

which immediately follows from

(2.1)

∫

Ji,k

∣∣∣2lφ′′(s)η′1(2
lφ′(s))

∣∣∣ds ≤ C.

But by our assumption on the signs of φ′, φ′′, and η′ the left hand side is
equal to

∣∣∣
∫

Ji,k

2lφ′′(s)η′1(2
lφ′(s))ds

∣∣∣ =
∣∣∣
∫

Ji,k

∂s

(
ηl(φ

′(s))
)
ds

∣∣∣ ≤ C.

�
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Proof of (1.5) and (1.6). We may assume that Γ is parametrized by arc-
length and that the support of χ is small (of diameter � 1). Determine the
integer M(R) by 2M ≤ R < 2M+1. With ηl as above define for l < M

gR,l(ω) =

∫
eiR〈ω,γ(s)〉χ(s)ηl(〈ω, γ′(s)〉)ds

and for l = M define gR,M similarly by replacing the cutoff ηl(〈ω, γ′(s)〉)
with η(2M 〈ω, γ′(s)〉). We can decompose

∫
eiR〈ω,γ(t)〉χ(t)dt =

∑

l≤M

gR,l(ω)

and observe that gR,l = 0 if l ≤ −C.
It follows from Lemma 2.1 that

(2.2) sup
ω∈Sd−1

|gR,l(ω)| . 2l/R

We also claim that

(2.3)
(∫

|gR,l(ω)|2dω
)1/2

.

{
2lR−1 if 2l ≤ R1/2,

2−l(1 + log(22lR−1))1/2 if 2l ≥ R1/2.

Given (2.2) and (2.3) we deduce that

‖gR,l‖Lq(Sd−1) ≤ ‖gR,l‖2/q

L2(Sd−1)
‖gR,l‖1−2/q

L∞(Sd−1)

.

{
2lR−1 if 2l ≤ R1/2,

2l(1−4/q)(1 + log(22lR−1))1/qR−1+2/q if 2l ≥ R1/2.
(2.4)

If q 6= 4 the asserted bound O(R−2/q) bound follows by summing in l.
We now turn to the proof of (2.3). Note that (2.3) follows immediately

from (2.2) if 2l ≤ R1/2. Now let 2l ≥ R1/2. For the L2 estimate in this range
we shall just use the nonvanishing curvature assumption on Γ. We need to
estimate the L2 norm of gR,l over a small coordinate patch V on the sphere

where we use a regular parametrization y → ω(y), y ∈ [−1, 1]d−1; i.e.

(2.5)

∣∣∣∣
∫

u(y)gR,l(ω(y))gR,l(ω(y))dy

∣∣∣∣ . 2−2l(1 + log(22lR−1)),

where u ∈ C∞
0 , so that ω(y) ∈ V if y ∈ supp(u). The left hand side of (2.5)

can be written as

Il :=

∫∫

s1,s2

∫

y
u(y)eiR〈ω(y),γ(s1)−γ(s2)〉χ(s1)χ(s2)

× η(2l〈ω(y), γ′(s1)〉)η(2l〈ω(y), γ′(s2)〉)dyds1ds2

and we note that on the support of the amplitude we get that γ′(si) is almost
perpendicular to ω, i.e. we may assume by the assumption of small supports
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that there is a direction w = (w1, . . . , wd−1) so that

∣∣∣
d−1∑

ν=1

wν∂yν 〈ω(y), γ′(s)〉
∣∣∣ ≥ 1/2

if s ∈ supp(χ) and y ∈ supp(u). By a rotation in parameter space we may
assume that

(2.6)
∣∣∂y1〈ω(y), γ′(s)〉

∣∣ ≥ 1/2 if s ∈ supp(χ), y ∈ supp(u).

Now let for fixed unit vectors v1, v2 and δ > 0

Uδ(v1, v2) = {ω ∈ Sd−1 : |〈ω, v1〉| ≤ δ, |〈ω, v2〉| ≤ δ}
and observe that the spherical measure of this region is at most O(δ); more-
over this bound can be improved if |v1 − v2| is ≥ δ. Namely if α(v1, v2) is
the acute angle between v1 and v2 then

(2.7) meas(Uδ(v1, v2)) . min

{
δ,

δ2

sin α(v1, v2)

}

The condition (2.6) implies that

|〈∂y1ω(y), γ(s1) − γ(s2)〉| ≥ c|s1 − s2|
and given the regularity of the amplitude we can gain by a multiple integra-
tion by parts in y1 provided that |s1 − s2| ≥ 2l/R; indeed we gain a factor
of O(R−1|s1 − s2|−12l) with each integration by parts. We obtain, for any
N ,

Il .

∫

s1∈supp(χ)

[∫

|s2−s1|≤c
meas

(
U2−l(γ′(s1), γ

′(s2))
)

(2.8)

×min{1, (R|s1 − s2|2−l)−N} ds2

]
ds1.

By the assumption that |γ′′(s)| is bounded below and γ′ and γ′′ are or-
thogonal we get as a consequence of (2.7)

meas
(
U2−l(γ′(s1), γ

′(s2))
)
≤ min{2−l, 2−2l|s1 − s2|−1}.

Now we use this bound and integrate out the s2 integral in (2.8) and see that
the main contribution comes from the region where 2−l ≤ |s1 − s2| ≤ 2l/R
which yields the factor log(R2−2l) in (2.5). �

An application. We consider a C2 curve γ : [−a, a] → Rd with nonvanish-
ing curvature and assume that, as in (1.5), the function s 7→ 〈ω, γ′′(s)〉 has
a bounded number of sign changes.

Let µ be the measure induced by the Lebesgue measure on Γ, multiplied by
a smooth cutoff function. For every σ ∈ SO (d) define µσ by µσ (E) = µ (σE)
and for every test function f in Rd

Tf (x, σ) = f ∗ µσ (x) .
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We are interested in the Lp(Rd) → Ls(SO(d), Lq(Rd)) mapping properties,
in particular for q = p′ = p/(p − 1). This question had been investigated in
[19] for curves in the plane, with essentially sharp results in this case, see
also [5]. The standard example, namely testing T on characteristic functions
of balls of small radius yields the necessary condition 1 + (d − 1)/q ≥ d/p.

Setting q = p′ we see that the Lp(Rd) → Ls(SO(d), Lp′(Rd)) fails for p <
(2d − 1)/d (independent of s).

The approach in [19] together with the inequality (1.5) yields

(2.9) ‖Tf‖Ls(SO(d),Lp′ (Rd)) ≤ Cp‖f‖p, p = 2d−1
d , s < 4d−2

d .

Proof of (2.9). We imbed T in an analytic family of operators. After rota-
tion and reparametrization (modfying the cutoff function) we may assume

that γ(t) =
∑d−1

j=1 ϕj(t)ej+ted, with ϕj(0) = 0. Let z ∈ C such that Re z > 0

and define a distribution iz by 〈iz, χ〉 = (Γ(z))−1
∫ +∞
0 χ (t) tz−1dt. Then de-

fine µz
σ by µ̂z

σ(ξ) = µ̂σ(ξ)
∏d

j=1 îz(〈σξ, ej〉) and T z by T zf(x, σ) = µz
σ ∗ f .

Following [19] one observes that µ1+iλ
σ is a bounded function, namely we

have

|〈µ1+iλ, g〉| .

∫

R

∫

Rd−1

|g(xded +

d−1∑

j=1

(yj + φj(xd)ej)|dy1 · · · dyd−1dxd . ‖g‖1

so that

(2.10) T 1+iλ : L1(Rd) → L∞(SO(d) × R
d).

We also have

(2.11) T
−

1
2d−2+iλ

: L2(Rd) → Lq(SO(d), L2(Rd)), 2 ≤ q < 4.

The implicit constants in both inequalities are at most exponential in λ.
Thus we obtain the assertion (2.9) by analytic interpolation of operators.

To see (2.11) we observe that îz(τ) = O(|τ |−Re(z)) and apply Plancherel’s
theorem and then Minkowski’s integral inequality to bound for α > 0

∥∥T−α+iλf‖2
Lq(L2)

=
(∫

SO(d)

( ∫

Rd

|f̂(ξ)µ̂σ|2
d−1∏

j=1

|î−α+iλ(〈σξ, ej〉)|2dξ
)q/2

dσ
)2/q

.

∫

Rd

∣∣∣f̂(ξ)
∣∣∣
2(∫

SO(d)

∣∣∣µ̂σ(ξ)
∣∣∣
q

d−1∏

j=1

|〈σξ, ej〉|αqdσ
)2/q

dξ,

and by (1.5) and the assumption q < 4 the last expression is dominated by
a constant times∫

Rd

∣∣∣f̂(ξ)
∣∣∣
2
|ξ|2α(d−1)

(∫

SO(d)

∣∣µ̂σ(ξ)
∣∣qdσ

)2/q
dξ .

∫

Rd

∣∣f̂(ξ)
∣∣2|ξ|2α(d−1)−1dξ.

For α = (2d − 2)−1, this yields the bound (2.11). �
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Remark. We do not know whether the index s = 4d−2
d−1 in (2.9) is sharp.

The following example only shows that we need s 6 10 for d = 3. Let
γ (t) =

(
t, t2, 0

)
and let χBδ

be a box centered at the origin with sides
parallel to the axes and having sidelengths 1, 1 and δ. A computation shows
that |TχBδ

(x, σ)| > c for σ in a set of measure ε2 and x in a set of measure
ε, for some small ε > 0. It follows that p−1 ≤ 2s−1 + q−1. For p = 5/3 and
thus p′ = 5/2 this yields s ≤ 10.

3. Upper bounds, II

We are now concerned with the proof of Theorem 1.2 and the proof of part
(i) of Theorem 1.1. For the latter we use a version of the Carleson-Sjölin
theorem ([7], [13]), and for Theorem 1.2 we use a recent generalization due
to Bak and Lee [3]. These we now recall.

Consider, for large positive R,

TRf (x) =

∫

R

eiRφ(x, t)a (x, t) f (t) dt

with real valued phase function φ ∈ C∞(Rn ×R), and compactly supported
amplitude a ∈ C∞

0 (Rn × R). Assume the non-vanishing torsion condition

(3.1) det
(
∂t (∇xφ) , ∂2

t (∇xφ) , . . . , ∂n
t (∇xφ)

)
6= 0

on the support of a. Then if p−1 +n(n+1)(2q)−1 = 1 and q > (n2 +n+2)/2
there is a constant Cq independent of f and of R ≥ 2 such that

(3.2) ‖TRf‖Lq(Rn) ≤ CqR
−n/q‖f‖Lp(R).

When n = 2 it is well known that a slight modification of Hörmander’s proof
([13]) of the Carleson-Sjölin theorem gives the endpoint result

(3.3) ||TRf ||L4(Rn) . R−1/2 log1/4 R ||f ||L4(R) ;

see also [17], where a somewhat harder vector-valued analogue is proved.
In order to establish estimates (1.4) we need to show that under the

assumption of linear independence of γ′(t) and γ′′(t) (for each t ∈ I) that

(3.4) G4(R) . R−1/2[log R]1/4.

To establish (1.8) under the assumption that the first K derivatives are
linearly independent for every t ∈ I we need to show that for any 2 ≤ k ≤ K

(3.5) Gq(R) . R−k/q, q > qk,

where qk is as in (1.9). All other estimates in (1.4), (1.8) follow by the
usual convexity property of the Lp norm (i.e. ‖F‖p ≤ ‖F‖1−ϑ

p0
‖F‖ϑ

p1
for

p−1 = (1 − ϑ)p−1
0 + ϑp−1

1 ).

Proof of (3.5) and (3.4). Let

(3.6) FR(ω) =

∫

R

ei〈ω,γ(t)〉a(ω)χ(t)dt.
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By compactness, we can suppose that χ is supported in (−ε, ε), with ε as
small as we need. Divide the sphere Sd−1 into two subsets A and B; here in
A, the unit normal to the sphere is essentially orthogonal to the span of the
vectors γ′(0), . . . , γ(k)(0), and in B, the unit normal to the sphere is close to

the span of γ′(0), . . . , γ(k)(0).
Now consider a coordinate patch V of diameter ε on A and parametrize

it by y 7→ ω(y) with y ∈ Rd−1, y near Y0. From the defining property of A, it
follows that the vectors ∇y〈ω(·), γ(j)(t)〉, j = 1, . . . , k are linearly indepen-
dent when evaluated at y near Y0, provided that |t| < ε. Therefore we can
choose the parameterization y = (x′, y′′) = (x1, . . . , xk, yk+1, . . . , yd−1) in

such a way that also the vectors ∇x′〈ω(·), γ(j)(t)〉, j = 1, . . . , k are linearly
independent. If we consider y′′ as a parameter and we define

φy′′

(x′, t) = 〈ω(x′, y′′), γ(t)〉,

then the phase functions φy′′
satisfy condition (3.1) uniformly in y′′. We also

have upper bounds for the higher derivatives in ω and γ which are uniform
in y′′ as well (here y′′ is taken from a relevant compact set). Thus one can
apply the Bak-Lee result (3.2) in k dimensions to obtain, for fixed y′′,

(3.7)
( ∫ ∣∣∣

∫

R

eiRφy′′ (y′, t)a(ω(y′, y′′))χ(t)dt
∣∣∣
q
dy′

)1/q
. R−k/q, q > qk.

An integration in y′′ yields ‖FR‖Lq(V ) . R−k/q for q > (k2 + k + 2)/2.
Similarly if k = 2 and q = 4 we can apply (3.3) in two variables to ob-

tain ‖FR‖L4(V ) . R−1/2 log1/4 R. This settles the main estimate for the
Lq(A) norm. As for contribution of the Lq(B) norm we recall that the

unit normal to the sphere is close to the span of γ′(0), . . . , γ(k)(0), and thus∑k
j=1 |〈ω, γ(j)(t)〉| > 0. Therefore we can apply van der Corput’s lemma

and obtain the L∞ estimate

(3.8) ‖FR‖L∞(B) . R−1/k

For k = 2, this completes the proof of the theorem. For 2 < k ≤ K, we
argue by induction. We assume that the asserted estimate holds for k − 1,
(k ≥ 3); that is

(3.9) ‖FR‖q . R−(k−1)/q for q > qk−1 = k2−k+2
2

where the implicit constants depend on q. If ϑk = 1 − qk−1/qk then we use
the relation qk − qk−1 = k to verify that (1−ϑk)(k−1)/qk−1 +ϑk/k = k/qk.
Thus by a convexity argument we see that a combination of (3.8) and (3.9)
yields that

‖FR‖Lq(B) . R−k/q, for q > k2+k+2
2 = qk.

Together with the corresponding bound for ‖FR‖Lq(A) proved above, this
concludes the proof. �
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4. Upper bounds, III

We give the proof of Theorem 1.4 under the finite type assumption. By
compactness, there is an integer L ≥ d and a constant c > 0 so that for
every s ∈ I and every θ ∈ Sd−1 we have

∑L
n=1 |〈γ(n)(s), θ〉| ≥ c.

We shall argue by induction on k. By Theorem 1.2 the conclusion holds
for k = 2. Assume k > 2, and that the desired inequalities are already proved
for 2 ≤ q ≤ qk−1.

Let FR be as in (3.6) and assume that the cutoff function χ is supported
in (−ε, ε). As in the proof of Theorem 1.2 we split the sphere into subsets
A and B where in A, the unit normal to the sphere is almost perpendicular
to the span of the vectors γ′(t), . . . , γ(k)(t), for all |t| < ε and in B, the
projections of the unit normals to the sphere to the span of γ′(t), . . . , γ(k)(t)
have length ≥ c > 0.

We shall estimate the Lq(A ∩ Ω) norm of FR on a small patch Ω on
the sphere, and by further localization we may assume by the finite type
assumption that there is an n ≤ L so that

(4.1) |〈γ(n)(s), θ〉| ≥ c > 0, |s| ≤ ε, θ ∈ Ω.

We distinguish between the case n ≥ k and n < k. First we assume n ≥ k
(the main case). Then there is the pointwise bound

(4.2) FR(θ) . min
{
1,HR(θ))−1}

where

HR(θ) = min
s∈I

max
1≤j≤n

R1/j |〈γ(j)(s), θ〉|1/j .

This is immediate from van der Corput’s lemma; indeed the finite type
assumption allows the decomposition of the interval [−ε, ε] into a bounded
number of subintervals so that on each subinterval all derivatives of s 7→
〈γ(j)(s), θ〉, 1 ≤ j ≤ n − 1 are monotone and one-signed. We now have to
estimate the Lq(A ∩ Ω) norm of the right hand side of (4.2).

For an l > 0 consider the set

(4.3) Ωl(R) = {θ ∈ Ω : HR(θ) ∈ [2l, 2l+1)}.
By (4.1) we have |HR(θ)| & R1/n. Thus only the values with

(4.4) 2l & R1/n

are relevant (and likewise the set of θ ∈ Ω for which HR(θ) . 1 is empty if
R is large).

By the definition of HR we can find a point s∗ = s∗(θ) and an integer j∗,

1 ≤ j∗ ≤ n, so that HR(θ) = |R〈γ(j∗)(s∗), θ〉|1/j∗ and |R〈γ(j)(s∗), θ〉|1/j ≤
HR(θ) for all θ ∈ Ω and all j ≤ n. This implies

(4.5) |〈γ(j)(s∗), θ〉| . 2(l+1)jR−1, if θ ∈ Ωl(R), j ≤ n.

We shall now apply a nice idea of [1]: We divide our interval (−ε, ε)
into O(2l) intervals Iν,l of length ≈ 2−l, with right endpoints tν , so that



FOURIER TRANSFORMS OF MEASURES ON CURVES 13

tν − tν−1 ≈ 2−l. The point s∗ lies in one of these intervals, say in Iν∗ . We
estimate |〈γ(j)(tν∗), θ〉|1/j in terms of HR(θ). By a Taylor expansion we get
(4.6)

〈γ(j)(tν∗), θ〉 =

n−j−1∑

r=0

〈γ(j+r)(tν∗), θ〉
(tν∗ − s∗)

r

r!
+ 〈γ(n)(t̃), θ〉(tν∗ − s∗)

n−j

(n − j)!

where t̃ is between s∗ and tν∗ . By (4.5) the terms in the sum are all

O(2ljR−1). The remainder term is O(2−l(n−j)) which is also O(2ljR−1),
by the condition (4.4). Now define

Ων,l = {θ ∈ Ω : |〈γ(j)(tν), θ〉| ≤ C2ljR−1, j = 1, . . . , n}
and if C is sufficiently large then the set Ωl(R) is contained in the union of
the sets Ων,l; the constant C can be chosen independently of l and R.

In view of the linear independence of the vectors γ(j)(tν), j = 1, . . . , k

and the condition θ ∈ A, the measure of the set Ων,l is O(
∏k

s=1(2
slR−1)) =

O(2lk(k+1)/2R−k), for every 1 ≤ ν . 2l, and thus the measure of the set

Ωl(R) is O(2l(k2+k+2)/2R−k). On Ωl(R) we have |FR(θ)| ≤ HR(θ)−1 . 2−l.
Therefore

(4.7)

∫

Ω∩A
|FR(θ)|qdθ .

∑

cR1/n≤2l≤cR

2−lq2l(k2+k+2)/2R−k,

which yields the endpoint bound
( ∫

Ω∩A
|FR(θ)|qkdθ

)1/qk

. R−k/qk(log R)1/qk .

Of course we also get (by using the same argument with just k−1 derivatives)

(4.8)

∫

Ω
|FR(θ)|qdθ .

∑

cR1/n≤2l≤cR

2−lq2l(k2−k+2)/2R1−k

which yields the sharp Lqk−1(A ∩ Ω) bound. Now we consider q satisfying
qk−1 < q < qk, k < d or qd−1 < q < ∞ and K = d. We distinguish the cases
(i) 2l < R1/k and (ii) 2l ≥ R1/k. In the first case we use (4.7) while in the
second case we use (4.8). Then in the case k < d

(∫

Ω
|FR(θ)|qdθ

)1/q

. R−k
( ∑

2l<R1/k

2l(−2q+k2+k+2)/2 +
∑

2l≥R1/k

2l(−2q+k2−k+2)/2R
)1/q

which is bounded by CR−1/k−(k2−k−2)/2kq if qk−1 < q < qk. If K = k = d
then only values with 2l ≥ R1/d are relevant and only the second sum
in the last displayed line occurs. Thus if K = d we obtain the estimate

CR−1/d−(d2−d−2)/2dq for q > qd−1.
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Now if n < k one gets even better bounds; we use the induction hypoth-
esis. First note that for n = 1, 2 integration by parts, or van der Corput’s
lemma, yields a better bound; therefore assume n ≥ 3. We have the bounds
‖FR‖L∞(Ω) . R−1/n and ‖FR‖Lqn (Ω) . R−n/qn(log R)1/qn ; the first one by
van der Corput’s lemma and the second one by the induction hypothesis. By
convexity this yields ‖FR‖Lqk . R−α(k,n) log R1/qk where α(k, n) = n/qk +
(1−qn/qk)/n and one checks that α(k, n) = k/qk +(k−n)(k+1−n)/(2nqk)
if n < k, so that one gets a better estimate. The case qk−1 < q < qk, n < k
is handled in the same way. This yields the desired bounds for the Lq(A)
norm of FR.

For the Lq(B) bound we may use van der Corput’s estimate with ≤ k

derivatives to get an L∞ bound O(R−1/k); we interpolate this with the
appropriate Lp bound for qk−2 < p ≤ qk−1 which holds by the induction
hypothesis; the argument is similar to that in the proof of Theorem 1.2.
This finishes the argument under the finite type assumption.

Modification for polynomial curves: If the coordinate functions γj are poly-
nomials of degree ≤ L we need to take n = L in the definition of HR(θ).
We use, for the case l > 0, the analogue of the Taylor expansion (4.6) up to
order L with zero remainder term (again n = L). As above we obtain for
l > 0 the bound∫

Ωl(R)
|FR(θ)|qdθ . 2−lqR−k min{2l(k2+k+2)/2, 2l(k2−k+2)/2R}.

Summing in l > 0 works as before. However we also have a contribution
from the set Ω0(R) = {θ ∈ Ω : HR(θ) ≤ 1}. By the polynomial assumption
a Taylor expansion (now about the point s∗, without remainder) is used to
show that Ω0(R) is contained in the subset of A where |〈γ(j)(s∗), θ〉| ≤ CR−1,
j = 1, . . . , k. This set has measure O(R−k). Thus the desired bound for l = 0
follows as well. �

5. Asymptotics for oscillatory integrals revisited

We examine the behavior of some known asymptotics for oscillatory inte-
grals under small perturbations. This will be used in the subsequent section
to prove the lower bounds of Theorem 1.3.

For k = 2, 3, . . . , there is the following formula for λ > 0:

(5.1)

∫ ∞

−∞
eiλsk

ds = αkλ
−1/k,

where

(5.2) αk =

{
2
kΓ( 1

k ) sin( (k−1)π
2k ), k odd,

2
kΓ( 1

k ) exp(i π
2k ), k even.

(5.1) is proved by standard contour integration arguments and implies

asymptotic expansions for integrals
∫

eiλsk
χ(s)ds with χ ∈ C∞

0 (see e.g.
§VIII.1.3 in [20], or §7.7 in [14]).
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We need small perturbations of such results. In what follows we set
‖g‖Cm(I) := max0≤j≤m supx∈I |g(j)(x)|.

Lemma 5.1. Let 0 < h ≤ 1, I = [−h, h], I∗ = [−2h, 2h] and let g ∈ C2(I∗).
Suppose that

(5.3) h ≤ 1

10(1 + ‖g‖C2(I∗))

and let η ∈ C1 be supported in I and satisfy the bounds

(5.4) ‖η‖∞ + ‖η′‖1 ≤ A0, and ‖η′‖∞ ≤ A1.

Let k ≥ 2 and define

(5.5) Iλ(η, x) =

∫
η(s) exp

(
iλ(

k−2∑

j=1

xjs
j + sk + g(s)sk+1)

)
ds

Let αk be as in (5.2). Suppose |xj | ≤ δλ(j−k)/k, j = 1, . . . , k−2. Then there
is an absolute constant C so that, for λ > 2,

|Iλ(η, x) − η(0)αkλ−1/k| ≤ C[A0δλ
−1/k + A1λ

−2/k(1 + βk log λ)];

here β2 = 1, and βk = 0 for k > 2.

Proof. We set u(s) := s(1 + sg(s))1/k; then

u′(s) = (1 + sg(s))−1+1/k(1 + sg(s) + k−1s)

and by our assumption on g we quickly verify that (9/10)1/k ≤ u′(s) ≤
(11/10)1/k for −h ≤ s ≤ h. Thus u defines a valid change of variable, with
u(0) = 0 and u′(0) = 1. Denoting the inverse by s(u) we get

Iλ(η, x) =

∫
η1(u) exp

(
iλ(

k−2∑

j=1

xjs(u)j + uk)
)
du

with η1(u) = η(s(u))s′(u). Clearly η1 is supported in (−2h, 2h). We observe
that

(5.6) ‖η1‖∞ + ‖η′1‖1 . A0, and ‖η′1‖∞ . (A0h
−1 + A1).

Indeed implicit differentiation and use of the assumption (5.3) reveals that
|s′′(u)| . (1 + ‖g‖∞) . h−1. Taking into account the support properties of
η1 we obtain (5.6).

In order to estimate certain error terms we shall introduce dyadic decom-
positions. Let χ0 ∈ C∞

0 (R) so that

(5.7) χ0(s) =

{
1, if |s| ≤ 1/4,

0, if |s| ≥ 1/2,

and m ≥ 1, define

(5.8) χm(s) = χ0(2
−ms) − χ0(2

−m+1s), m ≥ 1.
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We now split

Iλ(η, x) = η1(0)Jλ +
∑

m≥0

Eλ,m +
∑

m≥0

Fλ,m(x)

where Jλ is defined in (5.1) and

Eλ,m =

∫
(η1(u) − η1(0))χm(λ1/ku)eiλuk

du,

Fλ,m(x) =

∫
η1(u)

(
exp(iλ(

k−2∑

j=1

xjs(u)j)) − 1
)
χm(λ1/ku)eiλuk

du.

In view of (5.1) the main term in our asymptotics is contributed by
η1(0)Jλ since η1(0) = η(0).

Now we estimate the terms Eλ,m. It is immediate that from an estimate
using the support of the amplitude that

|Eλ,0| ≤ C‖η′1‖∞λ−2/k.

For m ≥ 1 we integrate by parts once to get

Eλ,m =
i

kλ

∫
d

du

[
(η1(u) − η1(0))u

1−kχm(λ1/ku)
]
eiλuk

du

and straightforward estimation gives

|Eλ,m| ≤ C

{
‖η′1‖∞2m(2−k)λ−2/k, if 2m ≤ λ1/k

‖η1‖∞2m(1−k)λ−1/k, if 2m > λ1/k.

Thus ∑

m

|Eλ,m| ≤ C(‖η1‖∞λ−2/k(1 + βk log λ).

We now show that

(5.9)
∑

m≥0

|Fλ,m(x)| ≤ C[‖η1‖∞ + ‖η′‖1]δλ
−1/k

and notice that only terms with 2mλ−1/k ≤ C occur in the sum.

Set ζλ,x(u) =
(
exp(iλ(

∑k−2
j=1 xjs(u)j)) − 1

)
. For the term Eλ,0(x) we

simply use the straightforward bound on the support of χ0(λ
1/k·) which is

(in view of |s(u)| ≈ |u|)

|ζλ,x(u)| ≤ Cλ

k−2∑

j=1

|xj||λ−j/k|

and since |xj | ≤ δλ−(k−j)/k we get after integrating in u

|Fλ,0| . ‖η1‖∞δλ−1/k.

For m > 0 we integrate by parts once and write

(5.10) Fλ,m = ik−1λ−1

∫
d

du

[
u1−kχm(λ1/ku)η1(u)ζλ,x(u))

]
eiλuk

du.
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On the support of χm(λ1/k·),

|ζλ,x(u)| . λ

k−2∑

j=1

δλ−(k−j)/k(2mλ−1/k)j . δ2m(k−2)

∣∣ d
du

[
u1−kχm(λ1/ku)

]∣∣ . λ2−mk

and also

|ζ ′λ,x(u)| . λ

k−2∑

j=1

δλ−(k−j)/k(2mλ−1/k)j−1 . δ2m(k−3)λ1/k

|u1−kχm(λ1/ku)| . 2−m(k−1)λ(k−1)/k,

and thus we obtain the bound∫ ∣∣∣
d

du

[
u1−kχm(λ1/ku)ζλ,x(u)η1(u))

]∣∣∣du . [‖η1‖∞ + ‖η′1‖1]δ2
−mλ(k−1)/k.

Hence, ∑

m≥0

|Fλ,m| . δλ−1/k

which completes the proof of (5.9). �

For the logarithmic lower bounds of G4(R) we shall need some asymptotics
for modifications of Airy functions. Recall that for t ∈ R the Airy function
is defined by the oscillatory integral

Ai(τ) =
1

2π

∫ ∞

−∞
exp(i(x3

3 + τx))dx

and that for t → ∞ we have

(5.11) Ai(−t) = π−1/2t−1/4 cos(2
3 t3/2 − π

4 )(1 + O(t−3/4)).

This statement can be derived using the method of stationary phase (com-

bining expansions about the two critical points ±t1/2) or complex analysis
arguments, cf. [10] or [21], p. 330, see also an argument in [12].

Let g ∈ C2([−1, 1]), and let ε > 0 be small, ε � (1 + ‖g‖C2)−1. Let
η ∈ C∞

0 with support in (−ε, ε), so that η(s) = 1 for |s| ≤ ε/2.

Lemma 5.2. Define

(5.12) J(λ, ϑ) =

∫
eiλ(

s3

3 −ϑs)eiλg(s)s4
η(s)ds

Then, for 0 < ϑ < ε2/2 and λ > ε−1

J(λ, ϑ) = λ−1/3Ai(−λ2/3ϑ) + E1(λ, ϑ)

= π−1/2λ−1/2ϑ−1/4 cos
(

2
3λϑ3/2 − π

4

)
+ E2(λ, ϑ)(5.13)

where, for i = 1, 2

(5.14) |Ei(λ, ϑ)| . Cε

[
λ−1ϑ−1 + min{λϑ5/2, ϑ1/2}

]
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Proof. We split

J(λ, ϑ) =

4∑

i=1

Ji(λ, ϑ) :=

4∑

i=1

∫
eiλ(

s3

3 −ϑs)ζi(s) ds

where
ζ1(s) = 1, ζ2(s) = (η(s) − 1),

ζ3(s) = η(s)(eiλg(s)s4 − 1)η(C−1ϑ−1/2s),

ζ4(s) = η(s)(eiλg(s)s4 − 1)(1 − η(C−1ϑ−1/2s)).

where C ≥ ε−1. By a scaling we see that

J1(λ, ϑ) = λ−1/3Ai(−λ2/3ϑ)

and we prove upper bounds for the error terms Ji, i = 2, 3, 4. Let

Φ(s) = −ϑs + s3/3

then Φ′(s) = −ϑ+s2 and in the support of ζ2 we have |Φ′(s)| ≥ cε. Thus by
an integration by parts J2(λ, ϑ) = O(λ−1). Note that ζ3 is bounded and that
also |ζ3(s)| . λ|ϑ|2. We integrate over the support of ζ3 which is of length

O(
√

b) and obtain J3(λ, ϑ) = O(min{ϑ1/2, λϑ5/2}). To estimate J4(λ, ϑ) we
argue by van der Corput’s Lemma, for the phases Φ and its perturbation
Ψ(s) := Φ(s) + s4g(s). Thus we split

J4(λ, ϑ) =
∑

m

∑

±

J4,m,±(λ, ϑ)

where we have set

J4,m,±(λ, ϑ) =

∫
eiλΨ(s)ρm,±(s) ds −

∫
eiλΦ(s)ρm,±(s) ds;

here ρm,+(s) = χ(0,∞)η(s)(1 − η(C−1ϑ−1/2s))χm(C−1ϑ−1/2s), χm is as in

(5.8) and 2mϑ1/2 . ε (in view of the condition on η). Let ρm,− is analogously
defined, with support on (−∞, 0).

We argue as in the proof of Lemma 5.1. Note that now |Φ′(s)| ≈ 22mϑ,

∂s(g(s)s4) = O(23mϑ3/2) and since 2mϑ1/2 . ε we also have |Ψ′(s)| ≈ 22mϑ.
Moreover observe Φ′′(s) = 2s+O(s2) so that van der Corput’s lemma can be
applied can be applied to the two integrals defining J4,m,±(λ, ϑ). We obtain
J4,m,±(λ, ϑ) = O(λ−1ϑ−12−2m).

Finally, by (5.11) and (5.13), the difference of E1 and E2 is O(λ−1ϑ−1).
This concludes the proof. �

6. Lower bounds

For w ∈ Rd (usually restricted to the unit sphere), define

(6.1) FR(w) =

∫
χ(t)eiR〈γ(t),w〉dt.

The following result establishes inequality (1.10) of Theorem 1.3.
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Proposition 6.1. Suppose that for some t0 ∈ I the vectors γ′(t0), ...,

γ(k)(t0) are linearly independent. Then χ ∈ C∞
0 in (1.1) can be chosen

so that, for sufficiently large R,

(6.2) ‖FR‖Lq(Sd−1) ≥ CR
−

1
k−

k2−k−2
2kq .

Proof. We may assume t0 = 0. By a scaling and rotation we may assume
that γ(k)(0) = ek. We shall then show the lower bound |FR(ω)| ≥ c0R

−1/k

for a neighborhood of ek which is of measure ≈ R−(k2−k−2)/2k. Now let
Ak be an invertible linear transformation which maps ek to itself, and for
j = 1, . . . , k − 1 maps γ(j)(0) to ej , j = 1, . . . , k. Then the map ω →
(A∗

k)
−1ω/|(A∗

k)−1ω| defines a diffeomorphism from a spherical neighborhood
of ek to a spherical neighborhood of ek. Thus we may assume for what
follows that γ : [−1, 1] → Rd satisfies

(6.3) γ(j)(0) = ej, j = 1, . . . , k.

We may also assume that the cutoff function χ is supported in a small open
interval (−ε, ε) so that χ(0) = 1.

As we have 〈ek, γ(k−1)(0)〉 = 0 and 〈ek, γ
k(0)〉 = 1 we can use the implicit

function theorem to find a neighborhood Wk of ek and an interval Ik =
(−εk, εk) containing 0 so that for all w ∈ Wk the equation 〈w, γ(k−1)(t)〉 = 0

has a unique solution t̃k(w) ∈ Ik. This solution is also homogeneous of
degree 0, i.e. t̃k(sw) = t̃k(w) for s near 1), and we have t̃k(ek) = 0.

Lemma 6.2. There is ε0 > 0, R0 > 1, and c > 0 so that for all positive
ε < ε0 and all R > R0 the following holds. Let

Uk,ε(R) =
{
ω ∈ Sd−1 : |ω − ek| ≤ ε

and |〈ω, γ(j)(t̃k(ω))〉| ≤ εR(j−k)/k, for j = 1, . . . , k − 2.
}

Then the spherical measure of Uk,δ(R) is at least cεd−1R− k2−k−2
2k .

Proof. In a neighborhood of ek we parametrize the sphere by

ω(y) = (y1, . . . , yk−1,
√

1 − |y|2, yk, . . . , yd−1).

We introduce new coordinates z1, . . . , zd−1 setting

(6.4) zj = zj(y) =

{
〈ω(y), γ(j)(t̃k(ω(y)))〉, j = 1, . . . , k − 2,

yj, j = k − 1, . . . , d − 1.

Then it is easy to see that z defines a diffeomorphism between small neigh-
borhoods of the origin in Rd−1; indeed the derivative at the origin is the
identity map.

The spherical measure of Uk,ε(R) is comparable to the measure of the set

of z ∈ Rd−1 satisfying |zj | ≤ εR(j−k)/k, for j = 1, . . . , k − 2, and |zj | ≤ ε for

k − 1 ≤ j ≤ d − 1, and this set has measure ≈ εd−1R− k2−k−2
2k . �
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We now verify that for sufficiently small ε and sufficiently large R

(6.5) |FR(ω)| ≥ c0R
−1/k, ω ∈ Uk,ε(R),

with some positive constant c0; by Lemma 6.2, this of course implies the
bound (6.2). To see (6.5) we set

(6.6) aj(ω) = 〈ω, γ(j)(t̃k(ω))〉,

s = t − t̃k(ω) and expand

(6.7) 〈ω, γ(t)〉 − 〈ω, γ(t̃k(ω))〉 =

k−2∑

j=1

aj(ω)
sj

j!
+ ak(ω)

sk

k!
+ Ek(ω, s)sk+1,

with Ek(ω, s) =
∫ 1
σ=0

(1−σ)k

k! 〈ω, γ(k+1)(t̃k(ω) + σs)〉 dσ. If ε is sufficiently
small then we can apply Lemma 5.1 with ω ∈ Uk,ε(R), and the choice

λ = R〈ω, γ(k)(t̃k(ω))〉/k!, and the lower bound (6.5) follows. �

We now formulate bounds for q ≥ (k2+k+2)/2 for the case that γ(k+1) ≡ 0
for some k < d; this of course implies that the curve lies in a k-dimensional
affine subspace.

Proposition 6.3. Suppose that γ is a polynomial curve with γ(k+1) ≡ 0
and suppose that for some t0 ∈ I the vectors γ′(t0), ..., γ(k)(t0) are linearly
independent. Then χ in (1.1) can be chosen so that for sufficiently large R

(6.8) ‖FR‖Lq(Sd−1) ≥ C

{
R−k/q[log R]1/q, q = k2+k+2

2 ,

R−k/q, q > k2+k+2
2 .

Proof. We first note that the assumption γ(k+1) ≡ 0 implies that the curve
is polynomial and for any fixed t0 it stays in the affine subspace through
γ(t0) which is generated by γ(j)(t0), j = 1, . . . , k. We shall prove a lower
bound for µ̂ in a neighborhood of a vector e ∈ Sd−1 where e is orthogonal
to the vectors γ(j)(t0). After a rotation we may assume that

γ(t) = (γ1(t), . . . , γk(t), 0, . . . , 0).

For ω ∈ Sd−1, we split accordingly ω = (ω′, ω′′) with small ω′ ∈ Rk, namely

|ω′| ≈ 2−l

where 1 � R2−l � R. As before, we solve the first degree the equation
〈γ(k−1)(t), ω〉 = 0 (observe that this is actually independent of ω′′) with

t = t̃k(ω
′); now t̃k is homogeneous of degree 0 as a function on Rk. Then

e−i〈ω,γ(etk(ω))〉FR(ω)

=

∫
χ(t̃k(ω

′) + s) exp
( k−2∑

j=1

〈ω, γ(j)(t̃k(ω
′))〉sj

j! + 〈ω, γ(k)(t̃k(ω
′))〉sk

k!

)
ds
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If k ≥ 3, let Vk,l(R) be the subset of the unit sphere in Rk which consists of

those θ ∈ Sk−1 which satisfy the conditions

|〈γ(ν)(t̃k(θ)), θ〉| ≤ ε(R2−l)
k−ν

k , ν = 1, . . . , k − 2.

Observe that the spherical measure of Vk,l(R) (as a subset of Sk−1) is

(R2−l)−(k2−k−2)/(2k), by Lemma 6.2. Now, if k = 2, define

U2,l(R) := {ω = (ω′, ω′′) ∈ Sd−1 : |ω − e3| ≤ δ, 2−l ≤ |ω′| < 2−l+1}.
If 3 ≤ k < d let

Uk,l(R) := {ω ∈ Sd−1 : |ω − ek+1| ≤ δ, 2−l ≤ |ω′| < 2−l+1, ω′

|ω′| ∈ Vk,l(R)}.

We need a lower bound for the spherical measure (on Sd−1) of Uk,l(R) and

using polar coordinates in Rk we see that it is at least

cεd−12−lk(R2−l)−
k2−k−2

2k .

If ε is small we obtain a lower bound c(R2−l)−1/k on this set; this follows
from Lemma 5.1 with λ ≈ R2−l. Thus∫

Uk,l(R)

∣∣FR(ω)|qdσ(ω) ≥ cε(R2−l)−q/k2−lk(R2−l)−(k2−k−2)/(2k)

= cεR
−q/k−(k2−k−2)/(2k)2l(q/k−(k2+k+2)/(2k)).

As the sets Uk,l(R) are disjoint in l we may now sum in l for CR−1 ≤ 2−l ≤ c
for a large C and a small c. Then we obtain that

∑
l

∫
Uk,l(R)

∣∣FR(ω)|qdσ(ω)

is bounded below by cR−q/k−(k2−k−2)/(2kq), if q < (k2 + k + 2)/2; this yields
the bound that was already proved in Proposition 6.1. If q > (k2 + k + 2)/2
then we get the lower bound cR−k and for the exponent q = (k2 + k + 2)/2
we obtain the lower bound cR−k log R. This yields (6.8). �

Proposition 6.4. Suppose that 3 ≤ k ≤ d and that for some t0 ∈ I the
vectors γ′(t0), ..., γ(k)(t0) are linearly independent. Then χ ∈ C∞

0 in (1.1)
can be chosen so that for sufficiently large R

(6.9) ‖FR‖Lq(Sd−1) ≥ CR−(k−1)/q[log R]1/q, if q = qk−1 = k2−k+2
2 .

Proof. We start with the same reductions as in the proof of Proposition 6.1,
namely we may assume t0 = 0 and γ(j)(0) = ej for j = 1, . . . , k; we shall

then derive lower bounds for FR(ω) for ω near ek. As before denote by t̃k(ω)

the solution t of 〈γ(k−1)(t), ω〉 = 0, for ω near ek. We may use the expansion
(6.7). Define the polynomial approximation

Pk(s, ω) = Pk (s) =
k−2∑

j=1

aj(ω)
sj

j!
+ ak(ω)

sk

k!
.

Note that ak(ω) is near 1 if ω is near ek. In what follows we shall only
consider those ω with

ak−2(ω) < 0.
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In our analysis we need to distinguish between the cases k = 3 and k > 3.

The case k = 3.
We let for small δ

UR,j = {ω ∈ Sd−1 : |ω − e3| ≤ δ, −2j+1R−2/3 ≤ a1(ω) ≤ −2jR−2/3}.
We wish to use the asymptotics of Lemma 5.2, with the parameters

ϑ = ϑ(ω) =
−2a1(ω)

a3(ω)

and λ = Ra3(ω)/2 (≈ R) to derive a lower bound on a portion of UR,j

whenever λ−2/3 � ϑ(ω) � λ−6/11; i.e.

(6.10) δ−1 ≤ 2j ≤ δλ4/33

where δ is small (but independent of large λ).
The range (6.10) is chosen so that the error terms in (5.14) (with λ ≈ R)

are � R−1/2ϑ−1/4 if δ is small; indeed the term λ−1ϑ−1 is controlled by
Cδ3/4λ−1/2ϑ−1/4 in view of the first inequality in (6.10) and the term λϑ5/2

is bounded by Cδ11/4λ−1/2ϑ−1/4 because of the second restriction. Since the
main term in (5.13) can be written as

(2/π)1/2R−1/2a3(ω)−1/2ϑ(ω)−1/4 cos(1
3Ra3(ω)ϑ(ω)3/2 − π

4 )

it dominates the error terms in the range (6.10), provided that we stay
away from the zeroes of the cosine term. To achieve the necessary further
localization we let, for positive integers n,

UR,j,n = {ω ∈ UR,j :
∣∣1
3Ra3(ω)ϑ(ω)3/2 − π

4 − πn
∣∣ < π

4 }.

Let j be in the range (6.10). We use |b3/2 − a3/2| ≈ (
√

a +
√

b)|b − a| for
0 < b, a � 1. Since ϑ(ω) can be used as one of the coordinates on the unit
sphere we see that the spherical measure of UR,j,n is & δ2R−2/32−j/2 for the

about 23j/2 values of n for which n ≈ 23j/2, and on those disjoint sets UR,j,n

the value of FR(ω) is ≥ cR−1/32−j/4.
This implies that, for j as in (6.10),

meas
(
{ω ∈ UR,j : |FR(ω)| ≥ cδR

−1/32−j/4}
)
≥ c′δ2

jR−2/3,

and thus ∫

UR,j

|FR(ω)|4dσ(ω) & R−2.

Since the sets UR,j are disjoint we may sum in j over the range (6.10) and

obtain the lower bound ‖FR‖4 & R−1/2(log R)1/4 (with an implicit constant
depending on δ).

The case k > 3. We try to follow in spirit the proof of the case for k = 3.
Notice that

P
(k−2)
k (s) = ak−2(ω) + ak(ω)s2/2
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has then two real roots, one of them being

s1(ω) =
(−2ak−2(ω)

ak(ω)

)1/2
,

the other one s2 = −s1. The idea is now to use, for suitable ω, an asymptotic
expansion for the part where s is close to s1, and, unlike in the case k = 3,
we shall now be able to neglect the contribution of the terms where s is near
s2. To achieve this we define, for j = 1, . . . , k − 3,

(6.11) ãj(ω) = P
(j)
k (s1(ω)) = aj(ω) +

∑

1≤ν≤k−2−j
or ν=k−j

aj+ν(ω)

ν!

(−2ak−2(ω)

ak(ω)

)ν/2
.

We further restrict consideration to ω chosen in sets

(6.12)

Vk,j(δ) =
{
ω ∈ Sd−1 : −2j+1R−2/k < ak−2(ω) < −2jR−2/k, |ek − ω| ≤ δ,

|ãν(ω)| ≤ δ|ak−2(ω)|
ν

2k−2 R− k−ν−1
k−1 , 1 ≤ ν ≤ k − 3

}
.

We shall see that if we choose ω from one of the sets Vk,j(δ) with small
δ, and j not too large then the main contribution of the oscillatory integral
comes from the part where |s − s1(ω)| ≤ s1(ω)/2. We shall reduce to an
application of Lemma 5.1 to derive a lower bound for that part. For the
remaining parts we shall derive smaller upper bounds using van der Corput’s
lemma.

For notational convenience we abbreviate

b := −ak−2(ω), ãν := ãν(ω), s1 := s1(ω), t̃k := t̃k(ω).

We now split

(6.13) e−i〈ω,γ(etk(ω))〉FR(ω) = IR(ω) + ER(ω),

where

IR(ω) =

∫
χ(t̃k + s)χ0(20

s − s1

s1
) exp(iR[Pk(s) + sk+1Ek+1(s, ω)])ds.

Here χ0 is as in (5.7) and thus the integrand is supported where |s − s1| ≤
s1/40.

Notice that P
(k−1)
k (s1) = s1ak(ω) and P

(k)
k (s) ≡ ak(ω). Let

Qk−1(s) =

k−3∑

ν=1

ãν
(s − s1)

ν

ν!
+ aks1

(s − s1)
(k−1)

(k − 1)!
;

then Pk(s) − Pk(s1) = Qk−1(s) + ak(s − s1)
k/k!.

Thus we can write

IR(ω) =

∫
η(s)eiR(Qk−1(s)+ak(s−s1)k/k!)ds

with
η(s) = χ(t̃k + s)χ0(10s

−1
1 (s − s1)) exp(iRsk+1Ek+1(s, ω)).
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Note that by (5.7) the function η is supported where 20s−1
1 |s − s1| ≤ 1/2,

i.e. in [s1 − h, s1 + h] with h = s1/40. Clearly ‖η‖∞ = O(1), and since

s1 ≈
√

b it is straightforward to check that

(6.14) ‖η′‖∞ + b−1/2‖η′‖1 . (1 + b−1/2 + Rbk/2),

thus also

(6.15) ‖η‖∞ + ‖η′‖1 . 1 if b ≤ R−2/(k+1).

Moreover, if g(s) = k−1/s1 then we can write

RQk−1(s) + ak
(s − s1)

k

k!

=
Raks1

(k − 1)!

( k−3∑

ν=1

xν(s − s1)
ν + (s − s1)

k−1 + (s − s1)
kg(s − s1)

)

where |xν | . b−1/2|ãν |. The conditions |ãν | ≤ δb
ν

2k−2 R− k−ν−1
k−1 imply that

|xν | . δ(Rb1/2)−
k−ν−1

k−1 .

We of course have ‖g‖C2([−h,h]) ≤ s−1
1 on I∗ = [−s1/10, s1/10]; thus h =

s1/40 ≤ 10−1(1 + ‖g‖C2)−1.
Changing variables s̃ = s− s1 puts us in the position to apply Lemma 5.1

for perturbations of the phase s̃ 7→ λs̃k−1, with λ := R|ak|s1 = R
√

2akb ≈
Rb1/2, and we have the bounds A0 ≤ C (if b ≤ R−2/(k+1) and A1 ≤ (1 +

Rbk/2) for the parameters in Lemma 5.1. We thus obtain (cf. (5.2))

(6.16)
∣∣IR(ω) − αk−1χ(s1(ω))(R

√
2akb)

−1/(k−1)
∣∣

. δ(Rb1/2)−1/(k−1) + b−1/2(Rb1/2)−2/(k−1) log(Rb1/2),

provided that b ≤ R−2/(k+1) � 1. We wish to use this lower bound on the
sets Vk,j(δ). In order to efficiently apply (6.16) we shall choose j so that

(6.17) R−τ1+2/k ≤ 2j ≤ R−τ2+2/k

with τ1, τ2 satisfying
2

k
> τ1 > τ2 >

2

k + 1
.

so that the main term in (6.16) dominates the error terms.
We now need to bound from below the measure of the set Vk,j(δ). We

use the coordinates (6.4) on the sphere in a neighborhood of ek. In view of

the linear independence of γ′′, . . . , γ(k−1) we can use the functions aj(z(y)),
j ∈ {1, . . . , k − 2}, cf. (6.6), as a set of partial coordinates.

We may also change coordinates

(a1, . . . , ak−3, ak−2) 7→ (ã1, . . . , ãk−3, ak−2),
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with ak−2 ≡ −b; here we use the shear structure of the (nonsmooth) change
of variable (6.11). Thus, as in Lemma 6.2, we obtain a lower bound for the
spherical measure of Vk,j(δ), namely

∣∣Vk,j(δ)
∣∣ ≥ cδd−22jR− 2

k

k−3∏

ν=1

((
2jR− 2

k

) ν
2(k−1) R− k−ν−1

k−1

)

= cδd−22jR− 2
k (2jR− 2

k )
(k−3)(k−2)

4(k−1) R
(k−3)(k−2)

2(k−1)
−(k−3)

= cδd−22
j k2−k+2

4(k−1) R− k2−k−2
2k

after a little arithmetic. Thus

(6.18)
∣∣Vk,j(δ)

∣∣ ≥ cδd−22jqk−1/(2k−2)R1/k−(k−1)/2.

Now if δ is chosen small and then fixed, and R is chosen large then (6.16)
implies the lower bound
(6.19)

|IR(ω)| ≥ cδ

(
R

√
2jR−2/k)−1/(k−1) = cδ2

−j/(2k−2)R−1/k, ω ∈ Vk,j(δ),

provided that R−τ1+2/k ≤ 2j ≤ R−τ2+2/k. We shall verify that for j ≥ 0

(6.20) |ER(ω)| . R−1/k
(
2−j/(k−2) + 2−3j/(2k−6)

)
, ω ∈ Vk,j(δ),

and from (6.19) and (6.20) it follows that

|FR(ω)| ≥ cδ2
−j/(2k−2)R−1/k, ω ∈ Vk,j(δ)

if R−τ1+2/k ≤ 2j ≤ R−τ2+2/k. By (6.18) this implies for the same range a
lower bound which is independent of j,

∫

Vk,j(δ)
|FR(ω)|qk−1dω ≥ cδR

−
qk−1

k
− k2−k−2

2k = cδR
−(k−1).

We sum in j, R−τ1+2/k ≤ 2j ≤ R−τ2+2/k; this yields, for large R,
( ∫

∪jVk,j(δ)
|FR(ω)|qk−1dω

)1/qk−1 ≥ c′δR
−(k−1)/qk−1

(
log R

)1/qk−1

which is the desired bound.
It remains to prove the upper bounds (6.20) for the error term ER. It is

given by

ER(ω) = eiRPk(0)

∫
χ(t̃k + s)(1 − χ0(20

s − s1

s1
))eiRφ(s)ds

where

φ(s) = Pk(s) − Pk(0) + sk+1Ek+1(s).

We use a simple application of van der Corput’s lemma. Write φ as

φ(s) = Qk−1(s) + ak(s − s1)
k/k! + sk+1Ek+1(s).
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and observe

φ(k−2)(s) = ak(s − s1)(s + s1)/2 + O(s3),

φ(k−3)(s) = ãk−3 + ak
(s − s1)

2

2

(2s1

3
+

s

3

)
+ O(s4).

The integrand of the integral defining ER is supported where |s−s1| ≥ s1/80,
and |s − s1| ≤ c for small c. We see that

|φ(k−2)(s)| ≥ c0b

if in addition |s + s1| ≥ s1/10.
If |s + s1| ≤ s1/10, this lower bound breaks down; however, we have then

|φ(k−3)(s)| ≥ cb3/2 − |ãk−3(ω)|.
Now on Vk,j(δ) we have the restriction

|ãk−3(ω)| ≤ δb
k−3

2(k−1) R− 2
k−1 ≤ δb3/2

where the last inequality is equivalent to the imposed condition b ≥ R−2/k

(which holds when j ≥ 2). Thus if δ is small we have |φ(k−3)(s)| ≈ b3/2 if
|s + s1| ≤ s1/10.

We now split the integral into three parts (using appropriate adapted cut-
off functions), namely where (i) |s+s1| ≤ s1/10, or (ii) s+s1 ≥ s1/10, or (iii)
s+ s1 ≤ −s1/10. For parts (ii) and (iii) we can use van der Corput’s lemma
with k− 2 derivatives and see that the corresponding integrals are bounded
by C(Rb)−1/(k−2). Similarly for part (i), if k > 4 we can use van der Corput’s
lemma with (k − 3) derivatives to see that the the corresponding integral is

bounded by C(Rb3/2)−1/(k−3). The case k = 4 requires a slightly different
argument (as we do not necessarily have adequate monotonicity properties
on φ′), however in the region (i) we now have φ′′(s) = O(b), |φ′(s)| & b3/2

and integrating by parts once gives the required bound O((Rb3/2)−1) also

in this case. Since b ≈ R−2/k2j , the upper bound (6.20) follows. �
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