HOMOGENEOUS FOURIER MULTIPLIERS OF MARCINKIEWICZ TYPE

ANTHONY CARBERY AND ANDREAS SEEGER

1. Introduction

Let m € L>(R?) be homogeneous of degree zero. Then m is almost everywhere determined by h.(&1) =
m(&r,£1). For k€ Zlet I, = 27 %1 27F]u[-27% —27%71] and let hy and h_ satisfy the condition

1/r
(1.1) sup (/1 |shly(s) T%) / < 00,
k

kEZ

Rubio de Francia posed the question whether a condition like (1.1) is sufficient to prove that m is a Fourier
multiplier of LP(R?), 1 < p < 0o. An application of the Marcinkiewicz multiplier theorem with L?-Sobolev
hypotheses (cf. (1.3) and (1.5) below) and interpolation arguments already show that the answer is yes,
provided r > 2. Recently, Duoandikoetxea and Moyua [15] have shown that the same conclusion can be
reached if » = 2. On the other hand, since characteristic functions of halfspaces are Fourier multipliers of
LP, 1 < p < oo, a simple averaging argument shows that the condition A’ € L' implies LP-boundedness for
1 < p < oo. Our first theorem shows that the weaker assumption (1.1) with » = 1 implies boundedness in
LP(R?), for 1 < p < cc.

Theorem 1.1. Suppose that hy and h_ satisfy the hypotheses of the Marcinkiewicz multiplier theorem on
the real line, that is

(1.2) sup/ |[dhy(s)] < A

keZ Iy

for I, = [27%"1 27k U [-27% —27%=1]. Let m € L°>°(R?) be homogeneous of degree zero, such that for
& eR, m(&1,1) = hy (&) and m(&,—1) = h_(&). Then m is a Fourier multiplier of LP(R?), 1 < p < o0,
with norm < C A.

One can obtain a stronger result for fixed p > 1 using the space V¢ of functions of bounded g¢-variation.
Given an interval I on the real line a function h belongs to V([) if for each partition {zg < 21 < -+ < zn}
of I the sum Zivzl |h(z,) — h(x,—1)|? is bounded and the upper bound of such sums is finite. We denote

by ||h]|{,, the least upper bound. Then the following result is an immediate consequence of Theorem 1.1
and the interpolation argument in [8].
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Corollary 1.2. Let m, hy and I be as above and suppose that
[htlloe + Sgpllhil\wuk) < o0

Then m is a Fourier multiplier of LP(R?), if |[1/p —1/2| < 1/2q.

A slightly weaker result can be formulated in terms of Sobolev spaces. Let § be an even C'*° function
on the real line, supported in (5/8,8/5) U (—=8/5, —5/8) and positive in (1/v/2,v2) U (=v/2, —1/v/2); we
shall usually assume that Y, ., 8%(2Fs) =1 for s # 0. Let LZ(R?) denote the standard Sobolev space with
norm ||k za = [|[F~ (1 + €12)2/21]|,. Then L%(R) C V, if a > 1/q and therefore we obtain

Corollary 1.3. Let m € L>®(R?) be homogeneous of degree zero and h+(£1) = m(&r,£1). Suppose that
q > 1 and that

1
(1.3) sup [[Bh+ ()] Le@m) < oo, a>—.
teER q

Then m is a Fourier multiplier of LP(R?) if |1/p — 1/2| < 1/2q.

We now compare these results with more standard multiparameter versions of the Hormander-
Marcinkiewicz multiplier theorem. In order to formulate them let

Djg = F 1+ ¢ Fy]
and, for 1 < ¢ < oo, let HL(R™) be the multiparameter Sobolev space of all functions g, such that

97 @ny = DT .. DrgllLa@ny < oo.

Let 3 be as above and denote by [(;) a copy of 3 as a function of the &;-variable. Then if ¢ > 2 the
condition
1

(1.4) sup [|By @ -+ @ By m(tas - tar) [wa ey < 00,  a> -
te(Ry)d q

implies that m is a Fourier multiplier of L? for |1/p — 1/2| < 1/q. For g = 2 the proof of this result is a
variant of Stein’s proof of the Hérmander multiplier theorem (see [25, ch.IV]) and the general case follows
by an interpolation argument as in [9]. If we apply this result to homogeneous multipliers and set

(L5) m(e +1) = (), € eRI
we obtain by a straightforward computation

Corollary 1.4. Suppose that r > 2,

(1.6) sup }’Df'ypg...pz_l[ﬁ(l) ®'"®ﬁ(d_1)gi(t1-,...,td_1~)]| Lr(Ra-1) < 00, v> -,
te(Ry)d-1 r
and that the condition analogous to (1.6) holds for all permutations of the (s1,...,Sq4—1)-variables. Let m

be homogeneous of degree zero and related to g+ by (1.5). Then m is a Fourier multiplier of LP(R?) if

[1/p—1/2| < 1/r.
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In two dimensions Corollary 1.4 says that if « > 1/¢, ¢ > 1, and g+ (t-) € H24(R), uniformly in ¢ > 0,
then m is a Fourier multiplier of LP if |1/p — 1/2| < 1/2q. Corollary 1.3 is stronger since a compactly
supported function in H24(R) belongs to H(R).

We are now going to discuss variants of Theorem 1.1 in higher dimensions. First if g+ € HZ(R9~1),
a > 1/q and if g4 are compactly supported in [1/2,2]¢"! then the homogeneous extension m is a Fourier
multiplier of LP(R?) if |1/p — 1/2| < 1/2q. In fact by a simple averaging argument one sees that the
condition g+ € H} 1. implies that m is an L' multiplier and the general case follows by interpolation. We
remark that if o < |2/p — 1] the condition g+ € H% (any ¢) does not imply that m is a Fourier multiplier
of LP. Relevant counterexamples have been pointed out by Lépez-Melero [22] and Christ [7].

Perhaps surprisingly, the situation in higher dimensions changes if one imposes dilation invariant con-
ditions as in Theorem 1.1. One might want to just replace hypothesis (1.2) by the hypotheses of the
Marcinkiewicz multiplier theorem in R4~1 ([25, p.108]). However this assumption is not sufficient to de-
duce that m is a Fourier multiplier of L? for any p # 2 (see §3 for the counterexample involving the Kakeya
set). However we do have

Theorem 1.5. Let m € L= (R%), d > 2, be homogeneous of degree zero and let g+ be as in (1.5). Suppose
that ¢ > 2, and

(1.7) sup 1By ® -+ @ Ba—1) g« (tre -+ ta—1-) g @a—ry < oo, a>-—.
te(Ry)d—1 q

Then m is a Fourier multiplier of LP(R?) if [1/p — 1/2] < 1/2q.
Interpolating Theorem 1.5 with Corollary 1.4 (with p close to 1) yields

Corollary 1.6. Let m € L>®(R%), d > 2, be homogeneous of degree zero and let g+ be as in (1.5). Suppose
that 1 <p < 4/3 and

1 2
sup H’D?Dg...D;’fl[ﬂ(l)®---®,3(d,1)gi(t1-,...7td,1~)}HL2(Rd,l) < 00, v > 3 a>-—1
te(Ry )41 p
and that the analogous conditions obtained by permuting the (s1,...,Sq—1)-variables hold. Then m is a
Fourier multiplier of LP(R).
In particular if sup;e (g, yi-1 181)® -+ @ Ba—1y g+(t1 -, ta—1")|lr2 ra—1) < oo and 1 < p < 4/3 then

m is a Fourier multiplier of L? in a > % — 1. This result is essentially sharp: in §3 we show that in order for
Supye(r,ya-1 18y @ @ Ba—1) g+ (t1-s - .-, ta—1°)|la @a—1) < 00 to imply that m is a Fourier multiplier of
LP we must necessarily have a > 2/p—3/2+1/qif 1 <p<4/3and a>1/qif4/3 <p < 2.

In order to prove more refined results on LP(R?), d > 3, p close to 1, we shall use multiparameter
Calderén-Zygmund theory. It turns out that it is useful (and easier) to first prove a result for the multi-
parameter Hardy-space HP(R%), 0 < p < 1. The Hardy space HP? is defined in terms of square-functions
invariant under the multiparameter family of dilations §;z = (t121,. .. ,t42q), t € (R+)d. Again we formu-
late the multiplier result using localized multiparameter Sobolev spaces invariant under multiparameter
dilations. In order to include a sharp result also for p < 1 we want to admit values of ¢ < 1 in (1.2). To
make this possible the definition of HY has to be modified. We may always assume that 3 above is such that

D orez B2(27"s) =1 for s #0. Let v, = f2(27"-)if r > 1 and ¢p = 1 — > orso ¥re Forn=(ny,...,n4-1),
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n; >0,i=1,....,d—1set ¥p(&1,...,8a-1) = Hf;ll ¥n, (&;). The decomposition

g= > Un*g

n€(Ng)d-1

is referred to as the inhomogeneous Littlewood-Paley decomposition of R%~!. Then

~ 1/2
(1.9) ||g||Hg(Rd—1) ~ H( Z 22(n1+...+nd—1)a|wn *9‘2) ’
ne(Ng)d—1

La(Rd—1)

for 1 < ¢ < oo, and for ¢ < 1 we define H%(R9~1) as the space of tempered distributions for which the
quasinorm on the right hand side of (1.9) is finite. In this paper we shall always have o > 1/g; in this case
‘HZ is embedded in L*°. This and other properties of the spaces HZ may be proved by obvious modifications
of the one-parameter case; for the latter we refer to [27].

Theorem 1.7. Let m € L=(R?) be homogeneous of degree zero and related to g+ as in (1.5). Suppose
that 0 <r <1 and

2
(1.10) sup ||ﬁ(1) ®"'®6(d_1)gi(t1',...,td_l')HHg(Rd—l) < 00, a>—-—1.
te(Ry)d—1 r

Moreover if d > 3 suppose that

1 1
(1.11) sup  ||DY'D] ... D) ,[B1) @ @ Ba—ng(tis .- ta17)] HL2(Rd_1) < o0, T> o3
te(Ry)d—1 r
and that the analogous conditions obtained by permuting the (s1,...,Sq4—1)-variables hold. Then m is a

Fourier multiplier of the multiparameter Hardy space HP(R?), r < p < oo.

Note that in two dimensions Theorem 1.7 is a natural extension of Corollary 1.4 to HP-spaces in product
domains. The examples in §3 show that in higher dimensions additional assumptions such as (1.11) are
necessary. When d > 3, Theorem 1.7 with » = 1 serves as a substitute for Theorem 1.1. Notice that if
r = 1 condition (1.10) involves mixed derivatives in L' of order d — 1 + ¢, and condition (1.11) involves
derivatives in L? up to order (d—1+¢€)/2. In comparison the hypotheses in Corollaries 1.3 and 1.6 involve
L? derivatives up to order (d + €)/2 if p is close to 1. As a consequence we obtain the following analogue
of Corollary 1.4, formulated in terms of the standard oneparameter Sobolev space L.

Corollary 1.8. Let m € L>(R%) be homogeneous of degree zero and related to g+ by (1.5). Suppose that
q > 1 and that

sup  [|B1) @ -+ ® Bra—1) g+ (t1s - s ta—1-)|lLg ma-1y < o0, a>—.
te(Ry)d—1 q

Then m is a Fourier multiplier of LP(R?) if |1/p —1/2| < 1/2q.

The counterexamples in [22], [7] show that the statement of the Corollary is false in the range |1/p —
1/2| > 1/2q. However in view of Theorems 1.5 and 1.7 one expects the following sharper result. Namely
suppose that for some ¢ € (1, 2]

1

(1.12) sup ||ﬁ(1) ®"'®ﬁ(d71) gi(tl'a-~-atd—l')||Hg(Rd*1) < 00, o> —,
te(Ry )i q
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and in dimension d > 3 suppose that

. 1 1
(1.13)  sup HD1D;~~'Dg_2[ﬂ(1)®"'®ﬂ(d—1)g:|:(t1',-~>td71')]HL2(Rd71) < 00, > a> -
te(Ry)d—1 2 q

as well as the analogous conditions obtained by permuting the (si,...,s4_1)-variables. Then m should
be a Fourier multiplier of LP(RY) if |1/p — 1/2| < 1/2q. In order to prove this one is tempted to use
analytic interpolation and interpolate between the LPo-estimate of Theorem 1.7, for pg close to 1, and the
L*/3_estimate of Theorem 1.5. One would have to find the intermediate spaces for intersections of L? and
L9 Sobolev spaces. However the intersection of the intermediate spaces does not need to be contained in
the intermediate space of the intersections (for related counterexamples see [26]). It is actually possible
to prove the result for |1/p — 1/2] < 1/2¢ (assuming (1.12), (1.13)) by another approach. One has to use
a general theorem for analytic families of operators acting on various kinds of atoms the proof of which
relies heavily on multiparameter Calderén-Zygmund theory. We do not include the technical proof here
but refer the reader to [5].

The paper is organized as follows: In §2 we prove Theorem 1.1 using weighted norm inequalities
and variants of the maximal operator with respect to lacunary directions. Examples demonstrating the
sharpness of our results in higher dimensions are discussed in §3. The proof of Theorem 1.5 is in §4; it relies
on weighted norm inequalities which involve variants of the Kakeya maximal function. In §5 we prove the
Hardy space estimates of Theorem 1.7.

As a convention we shall refer to the quasi-norms in H? and H? as “norms” although for p < 1 these
spaces are not normed spaces. By M, 1 < p < oo, we denote the standard space of Fourier multipliers of
LP. Tt will always be assumed that the even function 3 € C§° defined above satisfies Y-, ., [3(27s)]* = 1
for s £20. Ifae {1,...,d} and k, k in R® then we shall use the notation k < k if k; < k; for all i € a.
Similarly define k < k etc. C will always be an abstract constant which may assume different values in
different lines.

2. LP-estimates in the plane

In the proof of Theorem 1.1 there is no loss of generality in assuming that m is supported in the
quadrant where & > 0 and & > 0. By a limiting argument as in Stein’s book [25, p.109], it suffices to
prove the theorem under the formally stronger assumption

[hlleo +sup [ |W(s)]ds < A.
kez J1,

Let 8 be the smooth bump function defined in the introduction (supported in +[5/8,8/5]). Let v €
C°>°(R?\ {0}) be homogeneous of degree 1 such that v(¢) = 1 if |1 /&| € [25/64,64/25] (in particular on
the support of  ® () and such that v(&) = 0 if |£1/&| ¢ (1/4,4). Set

hi(§) = Y(ER(27"E1/E2).

Then we may split
m = 3 [8@ Am@h 2

keZ?
)



where
mi(§) = B(§1)B(E2) ey —k, (§1/82)
&1/&2
(2.1) = 6(51)5(52)/ ;ﬁ—kz(s)d&
0

and h,; is supported in (1/4,4), for all x € Z. Also set

Tef(€) = [B® Bma)(2M&1,2%26)]F(€).

Then by standard multiparameter Littlewood-Paley theory and duality, to establish Theorem 1.1 for p €
[2,p0), po < 00, it suffices to obtain an inequality

(2.2) /|ka|2w < CA2/\f|25mw

for a certain operator w — Mw which is bounded on L4(R?) for (pg/2)’ < ¢ < co. By our assumption on
h,

(2.3) sup/|h;(s)|ds < CA.

KEZ

We denote by L the standard Littlewood-Paley operator, such that

o~

Lif(€) = B2H€)8(276) F(£)

and define the operator Sy, by

— i K > >
Snsf(g)_{f(§)7 1f2§1/-§2>s7€1_07£2_0.
0, otherwise
Then from (2.1) we see that
8
Tif(x) = ) LSk —ky s f (XN, g, (5)ds
1/8

Then, if w > 0 is a weight we apply the Cauchy-Schwarz inequality to obtain

(2.4 [P s < 0a [ [ 100801t @PIH, 4, (0)dswla)da.

Let M), M be the Hardy-Littlewood maximal functions with respect to the coordinate directions
and let M, ; be the Hardy-Littlewood maximal function with respect to the direction perpendicular to
{&; 25¢1 /& = s}, i.e. in the direction (1, —27"s). Then using weighted norm inequalities for singular
integral operators due to Cérdoba and Fefferman ([13], see also [18]) we see that the expression on the
right hand side of (2.4) is dominated by

8
Cu 15 Mi Mo [ [ (Mo )y, 3l )

where a > 1. Now the proof of (2.2) is completed by the following
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Proposition 2.1. Let, fora > 1,

Moso(o) = sup [ (M) @)l 0u(3)

where I =[1/8,8] and

sup/\)\,ﬁ(s)|ds < B < 0.
KELJT

Then M., is bounded on LP(R?), a < p < oo, with norm < Cp o B.

Proof. Since
Mo (w) < B[00 (w)]=

it suffices to prove that M; is bounded on LP, 1 < p < oo with norm CpB. If a > 1 then M, will be

bounded on LP, p > «, with norm < C’;//zB.

We follow arguments by Nagel, Stein and Wainger [23] as modified by Christ (see [2]). Let ¢ : R = R
be smooth, even, nonnegative, with ¢(0) > 0 such that @ has compact support in [—1/20,1/20]. Let

Y(&1,€2) = (&1 + &2)

and define for k € Z -
PLw(§) = ¢(2'€1, 52" "6)B(9).

It suffices to show that for 1 < p < 0o, N being an arbitrary positive integer

(2.5) H s [ sup Ll We()ds| < B,
I

—N<rk<N Jr 1€z

p

where C), is independent of N. Then an application of the monotone convergence theorem allows to pass
to the limit. We note that for fixed x, and 1 < p < o0

IN

| [swlrbt o] < ¢ [l Pl nc ol
I lEZ I ez

CPBHWHP

p

IN

(2.6)

by the L? estimate for the one-dimensional Hardy-Littlewood maximal function M} ;. This means that
we know a priori that the left hand side of (2.5) is bounded by B Cy,(N)| f|l, (with Cp(N) < C)N) and it
remains to be shown that C,(NN) can be chosen independently of N. In what follows we define C},(N) to
be the best constant in (2.5).

We first consider the case 2 < p < oco. Since the L™-estimate is trivial it suffices to prove the L?
inequality. We smoothly split 7 into two parts, 1) = 1% + ¢! with ' supported in the unit ball and °
supported in the cone {¢; [&1 +&|/|¢] < 1/2}. We correspondingly define the operators PLY and PLl. Note
that there is the pointwise inequality

(2.7) |Priw(@)] < CMuyMw(z)
which implies

(2.8) < CpB|wllp, 1 <p<oo.

P
7

sup / sup [PLLw| [Ay(s)]ds
I leZ

K



Concerning PL? we have
|PRw(z)| < C[MayMew(z) + M, sw(z)]
and therefore

< Cpo Bllwllp
P

(29) |

[ sup |PLl x5 as
1 1€’

for 1 < p < co. Note that
¢0(2l_7 82l_”-) o = X(', 2—&.),(/}0(2l_7 82l_”~) o

where x is smooth, homogeneous of degree zero, identically 1 on {; |1 +&2|/]€] < 4} and zero on {&; |&1 +
&|/|€| > 8}. Define the standard angular Littlewood-Paley operator R, by

— o~

R f(§) = x(£1,27"€2) F(€)-

Then
(2.10) POy = PR, w

and, as a consequence of multiparameter Littlewood-Paley theory and the Marcinkiewicz multiplier theo-
rem,

(2.11) | imer) | < il 1<p<oe
Now by (2.10)

2\ 1/2
(2.12) sup’/sup|P,i’SOw||AK(s)|ds‘ < (Z [/ sup|P,i’SOR,QwH)\K(s)|ds} )
I ez - 11€Z

KEZL €

and using (2.9) we see that the square of the L?-norm of the right hand side equals

2
S| [ suwlpirirelas|
p 11ez 2

2
< 3 [ l1sup 1P Rl ()]s
P I ez

<CB*Y R} < C'B*|lwl3.

We have proved

(2.13)

sup[ [sup | PRAM@)las] | < OBlul, 2<pse
I lEZ p

KEZ

By (2.8) and (2.13) we see that



We now assume 1 < p < 2 and begin with the observation that for any sequence {wy} of weights we
have

e1y (S| [owlrtalneias) | < Bl )

1 <p<oo.

This is immediate from (2.9). Next positivity of P!, implies that

Hsup/sup|P,isw,;| |Aw(s)|ds
K JI 1 p

< sup [ sup L fsup )] (o) s
k JI 1 1 p

(2.15) SBCP(N)Hsup\wN|||p
by the definition of C,(N). From (2.15) and (2.8) it follows that for 1 < p < 0o

(2.16)

sup [ sup [P0, |Ac(9)ds]| < € B N [suplln
KEZ JI IEZ p K

Now if we interpolate (2.14) with (2.16) we obtain for p < ¢ < 0o

(Saer)

1,0 q\ V4 yi-v/
(2.17) H(;Z\/ﬁgpw wellAe(s)|ds] ) Hp < B Cy(N)P/a

Using (2.12), (2.17) and (2.11) we obtain for 1 < p < 2

sup‘/sup|Pl Owl| A ( )|d8’”
KEZ' JI 1 p

< (Z [sup [P Rl ()] ds] 2)1/2Hp

<ranyo (i)

(2.18) <Cp3BCyp(N )1 pﬂ”“’”p
Finally it follows from (2.8) and (2.18) that
Cp(N) < [C)+ Cpz Cy(N)7P/?]
which implies that C,(N) is bounded by a constant depending only on p but not on N. This finishes the
proof of the proposition. [

3. Examples in higher dimensions

We show in this section that Theorem 1.1 and Corollary 1.4 have no immediate analogue in terms
of localized multiparameter Sobolev spaces in higher dimensions. Our examples imply the sharpness of

Theorems 1.5 and 1.7.
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Let L?(L?) be the space of functions f on R? = R% @ R% such that

sy = ([[ [ 176 anpa] )" < o

For a bounded function m on R? we denote by ||m|| M, the operator norm of the convolution operator T'
defined by Tf = mf and by |m/||az,, the norm of T as a bounded operator on LP(L?). By a theorem of
Herz and Riviére [19]

(3.1) Iml[ar,, < Cllmlln,
for 1 < p < co. We shall use the following

Lemma 3.1. Let {m,} be a sequence of bounded functions in R%. Let x € C>®(R9) be supported in
{€7;1/2 < |€"]| <2} and equal to 1 if 1 —e < || < 1+ € for some e > 0. Let

5 f// ZX 2 ann (5/)

~

and define T,; by f:f(f) m (&) f(€). Then for 1 < p < co we have the inequality

(i)™ (1)

< C HmHMp2 R4)

Lp(RI1) Lr(R1)

Proof. Let 3y € C* be supported in {&” : 1 —e < |¢”]| < 1+ €} such that

1Boll L2 (raz) = 1.

Let
gu(@',z") = 2% fo (&) Fray [Bo(27%%)] (2")

then by an application of Plancherel’s theorem in the second variable it follows that

62 (S 0?) ] = om0

Next let L, denote convolution in R% with TRd2 [Bo(27%-)]. By Littlewood-Paley theory we have for
1<p<oo

(3.3) I3 Luge

Now

LP(R4) Lp(Ré1)

& (Zlaet) ]

L (R”’) Lp(RY)

> 1.5P) "]

Lr(R%1) H(Z/mo(276%//)273@”&'2%”)1/2} Lr(Ré1)

= 27T dl/QH (Z| m,ﬁfRd L Lngﬁ]”Q)l/j s

- (S el )

10

Lr(L?)



where the last identity holds in view of the support properties of Gy. By Littlewood-Paley theory

H (Z}Lnﬂ{f [mFga [Z L;gj]] |2)1/2‘

Cp

L (L?)

IN

Fed ImFeal Y Ly
Z Ljgj

(;}gjf)lﬂ’ Lr(L?)

Gy 2 (S 15)
J

Lr(L?)

IN

Cy mlla, .

IN

Cp lImlla

Lr(Ré1)

We now show that the restriction ¢ > 2 (corresponding to 4/3 < p < 4) in Theorem 1.5 is necessary.
In what follows we denote by LP(L?) the space of functions in R?® with

1fllzr 2y = (//[/‘f(l‘l,xz,363)|2dx2r/2d1‘1d1‘3>1/p < 0

and correspondingly define Mps.
Fix N > 0 and let

N
(3.4) gn(s1,82) = Y n(N(s1— ax))X(27%s0);
K=2
where
2N
(35) A = 1 + T,

and 7 € C'* is nonnegative, equal to 1 in [—1/4,1/4] and supported in [-1/2,1/2]. Similarly X is as in
Lemma 3.1, supported in 4(1/2,2) and equal to 1 in 4(1/v/2,/2). Then

(3.6) Sup>0|\ﬁ(1) ® B2y gn (517, 52°) || a g2y < CNOH4,
S1,82

Lemma 3.2. Let m(y) be the homogeneous extension of gy defined in (3.4), (3.5). There is a positive

constant ¢ such that
37) | ” N { eN1/2=2/p, 4<p<oo
. m
W) Mp.2 = c(log N)'/4, p=4.

A comparison of (3.6) and (3.7) shows that in the case p > 4 the condition

sup [|B1) ® B2)g+(s17, 52°)lnga m2y < 00
51,82>0
does not imply m € M), for the homogeneous extension m if & < 1/2+ 1/q — 2/p (it does not even imply

m € M,). Similar statements follow by duality for 1 < p < 4/3. This yields the sharpness of Theorem 1.5.
11



By interpolation an improvement of the H? estimates would lead to an improvement of the LP estimates
and this implies the sharpness of Theorem 1.7.

Proof of Lemma 3.2. Let 8; € C§° be supported in (3/4,5/4) and equal to 1 in (7/8,9/8). Let x be as
in Lemma 3.1 supported in {|€2| € (4/5,6/5)} and equal to 1 in {|{2| € (9/10,11/10)}. Let

m(§1,83) = B(E3)N(4AN(§1/83 — )

and
N

p () = > x(27 5 6)me (&1, ).

K=2

In view of the properties of 7, x, ¥ and the Marcinkiewicz multiplier theorem
lany I, < Cpllmanyllar,., 1 <p<oo.
Now assume 4 < p < oco. Let
R = {(z1,23); |21 — 3] <1073N, |aee; — o3| < 107}

For £ € supp my, ¢ € R, we have |21£; + 23€3] < 7/4 and therefore

‘/mn(ﬁl,53)€i(1151+$353)d51d§3‘ > ‘/mﬁ(flv&%)cos(xlfl + w3€3)d&ydés| > eN
for some fixed positive constant c. Let

R = {(z1,23); 107*N/2 < |21 — a3 < 107%N, 107%/2 < |ovezy — 23| < 1074}
R = {(x1,23); |11 — akas] < 1074N, |agzy — z3| < 10_4}

and let x, be the characteristic function of }NEN. Then
F A meFxe >, xr € R,

By Lemma 3.1

ey S Colliwy lla,e

N o 1/2
H (Z |-7:]1£21 [mf'i]:]RZXNH ) ‘
K=2

Now one verifies that

(3 )
K=2

Lv(R2)

(Do), =
p

In view of the overlap of the rectangles R} we have for some small constant ¢; > 0, and for |z| < ¢y N and
for |z| < ¢N we have

(Z |.7~"*1[711,{.7~"XH]($)|2)1/2 ~ N1/2(1 + |:c|)*1/2

and consequently

. 2 1/2H B {NW ifp>4
H(;}f [P x| ) P N'/2(log N)/4 ifp=4
12



This implies the assertion. [l

Next we consider the class of homogeneous functions m in R? with the property that the restrictions
h+ to the hyperplanes {¢; {3 = £1} satisfy the hypotheses of the Marcinkiewicz multiplier theorem in the
plane; that is

[Alle < A
sup sup/ ‘a—h(sl,sﬁ‘dsl < A
J1EN s2 JT 851
h
(3.8) sup sup/ ’8—(51,52)‘d52 < A
j2€N s1 J;, 1082

0%h
sup —(s1, 32)‘ dsydsy < A
JEN2 I, x1Ij, 881852

where I;, etc. is as in (1.1). We show that (3.8) is not sufficient to guarantee m € M, for any p # 2. The
argument here follows Fefferman’s solution [16] of the multiplier problem for the ball (see also [14], [21]).

Let a = {«,} an arbitrary sequence of numbers in [1,2) and let m, be defined in the first quadrant
such that

17 1 S 61/53 S Qe

(3.9) my(§1,83) = { 0 a, <&1/6 <2

Let
ma = Z ﬂ(2552/€3)mﬁ(€17 63)

Suppose the assumptions (3.8) imply m € M, for some p # 2. Then a limiting argument as in [25, p.109]
would imply that m, is an LP multiplier with norm independent of the choice of {ay}rez and by (3.1) a
corresponding statement on LP(L?) would follow. However we have

Lemma 3.3. The inequality
IF maF flllLezy < Clflloeee)

does not hold independently of a if p # 2.

For example if we take for a an enumeration of the rationals in [1,2) then m, € M, if and only if
p=2.

Proof. Arguing as above the assumption m, € M, implies a vector-valued estimate for directional Hilbert

[(S0) ), < ()

where H, is the Hilbert transform in the direction (1, —c,). But as in [16] the existence of the Kakeya

transforms, namely

Lr(R?)

set prohibits such inequalities for p # 2 (unless further restrictions on the family of directions (1, —c;) are
made). O

13



4. Weighted norm inequalities in higher dimensions

We deduce Theorem 1.3 from a weighted norm inequality; the procedure is analogous to Stein’s proof of
the Hérmander multiplier theorem (see [25, ch.IV]). Here however the positive operator which controls the
problem is not the Hardy-Littlewood maximal operator but a multiple iteration of variants of Kakeya-type
maximal operators. The main step of the argument is contained in Lemma 4.7; one proves a weighted
inequality for a variant of Cérdoba’s sectorial square-function.

Fori=1,...,d—1let Rgf;d) be the family of all rectangles with dimensions 1x2", centered at the origin
in the x; — x4 plane and let R£Z;d> be the family of all parallelograms of the form {(z;, z4); (28 x;, 2%1z4) €
Ry} where Ry € Rﬁgd) and k;, kg are integers. Let

: 1
MEDo(zy,. .. 2q) = sup / (@1 T 1, T = Yiy Tig 1y -+ -5 Td—1, Ta — Ya)| dyidya-
reria Bl Jr

i

k

My(fi’d) is a variant of the Kakeya maximal function, invariant under the dilations (z;,z4) — (2%, 2Fi2,).

The proof of the L2-estimate in [10] can be easily modified to yield

IMEDwlz < Ongllwlla;

for a more singular variant see also [11].

Next, for n = (nq,...,n4—1) define
M, = Mr(z(j:lLd) o Mr(l(j:id) 0---0 Mr(i,d)

and, for N € N, let MY = M,, 0--- 0 M,, be the N-fold application of the operator M,,. Finally, if M)
denotes the Hardy-Littlewood maximal operator with respect to the variable x; let

j\—/lvN = M(l)o"'OM(d)OM»,]YOM(l)O"'OM(d)-

n
Theorem 4.1. Let v > 1/2 and suppose that

(4.1) sup  [[B1) ® -+ @ Bra—1) g (tres - s ta—17) Iz a-1) < By < 00
te(Ry )41

~

Let m be the homogeneous extension of g+ and define T by ff(ﬁ) =m(§)f(§). Let 0 < e <vy—1/2, let
N(e€) be the smallest positive integer > 3 + 2/¢ and define M. by

Mo = Y grelmttna ) SN,

nENg_l

Then for s > 1

(4.2) / T f(2)Pw(z)de < CesBy / £ (@) 2 [w*]) /* da.

Proof of Theorem 1.5. Since the operator w — (M.(|w|*))'/* is bounded on L9, ¢ > 2s/(1 — ¢), the
weighted norm inequality (4.2) and duality imply under the assumption (4.1) that 7" is bounded on L?, for

2 < p < 4. The general result of Theorem 1.5 follows then by interpolation, using the technique in [9]. O
14



Before we prove Theorem 4.1 we recall a few facts about vector-valued weighted norm inequalities.
First if Hy, Hy are Hilbert spaces and K is a convolution kernel in R, with values in the space B(H1, Ha)
of bounded operators, then K is called a regular singular integral operator if

(&) |50, 112) < C
K(@)|5(m, 1) < Cla| ™
Kz —y) — K(@)|5, 1) < Clyl’ |22, |z| > 2]y| > 0;

here 0 < § <1 is fixed. By a vector-valued version of a theorem of Cérdoba and Fefferman ([13], see also
[18, ch.IV.3]) there is an inequality

(4.3) /\K*f(as) b w(@)de < Cmp/|f(a:)|§’{1(M(|w|"))1/"(a:) dx

where 1 < p < o0, 0 > 1.

Littlewood-Paley functions can be associated with regular singular integral operators. Let 3 €
©°(1/2,2) then it is straightforward to check that the operator { f, }rez — > FL[B(25)F f] is a B(¢?, R)-
valued regular singular integral operator. Likewise the adjoint operator f — {F~1[B(25)F f]}uez is a
B(R, ¢?)-valued regular singular integral operator. Here £2 may refer to a space of sequences with values
in a Hilbert space.
Next let & € Z¢ and denote by L; be the standard Littlewood-Paley operator with multiplier
ngl B(2%¢;). Then a repeated application of (4.3) yields

Lemma 4.2. For 1 <p < 0o, s > 1 we have the inequalities

/‘ Z [fkfk:‘ w d:L‘ < Csp/ Z |fk: p/2 M(l) 0"'OM(d)[ws])1/s(l‘)d$

kezd kezd
J (3 12er?) otwie < c / @ (My o -+ Mg ™))V (z)
kezd

We need also the following pointwise estimate concerning a square-function involving translates of a
fixed Schwartz-function 7. It implies LP-boundedness for p > 2, a result which is due to Carleson. A proof
of the pointwise estimate can be found in [24], see also [12], [18].

Lemma 4.3. Let 1) be a Schwartz function in R? and let A € GL(d,R). Then

flz — Aly)

(4.4) > 177 nA- b FA@II" < O / L+ TyD™

kezZd

Proof of Theorem 4.1.
There is no loss of generality in assuming that m is supported in {£; & > 0,47 =1,...,d}. Setting

d

(4.5) B(¢) = Hﬁ(&-)
15



we decompose

m&) = > mp(2M&, ..., 2M¢)

kezd

where

mi(§) = d(§)gu(§1/&a,- -, 8a—1/8a)

and gj, has compact support in (1/2,2)4-1. Note that gy = g/ if kj —ka =k, — k), i=1,...,d — 1. We
introduce a further decomposition using the dyadic smooth cutoff functions ¢, = ¥, ® -+ @ ¥, , (cf.
the second definition of the space HY in the introduction). We decompose

my(§) = Z O(E) g * Vn(E1/Eas - - Ear/E0)
ne(Npg)d—1
(4.6) = > dOmME©).
ne(Np)d—1
We may write
(4.7) G * U = gi % n
where -

and Jn = ’(an Q- ®1an_l is similarly defined as 1, (say, with @Zn supported in +[27 =2 2"i+2] equal to
1 in supp %,,). Let us note in passing that in view of the support properties of the Fourier transform of
g5 we have the following version of Sobolev’s imbedding theorem

(4.8) sup  [lgE (o sait s Sa-1) |l poary < C20ant Tt DR gu|| gy,
Sdq+15--38d—1

see the argument in [27, p.18].
Let 17" be defined by

(4.9) TpfE) = [omp)(2hey,. .., 250 F(©).

Let 0 < € < ¢, say € = €/2. An application of Lemma 4.2 shows that it suffices to prove the inequality

(110) Y / T L f(2)Pe() d

kezd

/ 1
< CNQ('VL1+"'+7L(1—1)(%+E )||g2||2 E /‘ﬁkf($)|2Man($) dz, N>2+ -
€
kezd

In order to avoid complicated notation we shall assume d = 3 in what follows. This case is entirely typical
of the general situation in higher dimensions.

In order to use the homogeneity of the multipliers we have to introduce finer decompositions of g¥. For

vy =2m73 9m=3 1 9mH3 and py = 27273 2723 . 2723 et
(4.11) Uy, = (uilang) = (27™1y,27 "2 y)



and
I, = I;l X I32 = [ull,l — 2_"1_1,u11,1 +27m 1« [ul2,2 — 2_"2_1,ul2,2 42727,

Furthermore let

2n1+3

1
crl — R\Uy1:2"1*3-[;1 = ]R\ [g _ 2—n1—1’ 8-}-2_”1_1}

2n2+3

1
cr2 _ }R\UVFTL,L,,Q,IE2 =R\ [§ _9me-l gy gma-l,

Setting
o (s) = / g7 ()P (s — ) du
gl (s) = / G ()P (s — ) du
I xcI?
(4.12) !
n2(5) = / R (W) Pn(s — u) du
eI'xIZ,
os) = / g7 ()P (5 — ) du
cJlxe]2
we split
2ﬂ,1+3 2ﬂ,2+3 2n,1+3 2712+3
(4.13) = > ST+ > T+ > T+t
v1=2"1"3 py=2m2-3 v1=2m71-3 vo=2m2—3
where
Tr F(€) = g, (M7 ks, Jgg, 202 Ragy Je3) p(2R1, 20265, 2R3 5) F(£)
T F(€) = gt (@M hegy Je5, 2k Ragy feg)p(271 €1, 20265, 200 €5) F(€)
(4.14) — , "
T2 f(€) = g (2M7Fsgy /€5, 25277, /€5)p(251£1, 2765, 2%3¢83) £(€)
TrOf(€) = pR(2Fhee, Jeg, 202 ke g, Je5) (20164, 2265, 253 65) [ (€).
We set
= sup |gh(u)]
uel,
bt = sup  |gk(u)]
(4 15) uEIl}l xc]2
bt = sup  gk(u)
uECIlXIE2
bp = sup  |gF(u)l.

uecltxe]?

Since the Fourier transform of g} is supported in [—2m173, 2m1+3] x [—2n213 2n2%3] 'gyitable variants of the
Plancherel-Polya theorem (see [27, p.19]) and the Sobolev embedding theorem imply

on1+3 on2+3

1/r
(116) (Y 2 ) <2 g, 0<r<oo

v =271"3 py=2m2-3

17



with the appropriate interpretation for r = oo; moreover we have

gn1+3

(> )

U1:27L173

IN

C2"/" sup ||gp (-, 82) | L (m)
s2

IN

(4.17) C20mFm /T g 1 )

and a similar statement with the s; and s; variables interchanged. Also by (4.8) b} is bounded by
o20mtn2)/r) g .

We need pointwise estimates for the convolution kernels K7, , K,’;ﬁ, K,?y’z, K,?’O of the operators 17},
Tt T2 T"’0 respectively.

k?Vl k}llz

Lemma 4.4. Let e, = (u), ,u’,,1), e, = (u,,,0,1) and e , = (0,u2,,1). Let

vy Yvg? v

M (1 e, 2) )TN+ 27 o )TN (L4 272 )Y

o (x
(

) =27
W"I z) = 27" (14 ey, ) )TN A+ 27" o )TV o))
Won(@) = 272 (14 (el 2) )N (L o )7V (142772 )N
Wy(@) = (L4 |z )™M (1 + Jaa) 7N (L + fas]) Y

Let
U,?V)N(ac) = 9 ki—ka—ks W,?,,(kalxl, 2 k2, 27’“3903)

S n,l n,2 n,0
and similarly define Uy, Uy, ns Up'y. Then

GIKD ()] < Conb 2Bk hnyp ()
(4.18) 0K ()] < Cynb, 272N omhimkeremhsrsgnl ()
4.18 1

|5WKIWQ($)| < C,bek;/ 9—mNg—kim—kay2— ksvaU"yjN(@

|87Kn0(37)| < CWNbZQ niNg—naNg—kivi—kay2— ksvsU]Z]%(x)

Proof. First consider K. Using the homogeneity of the multiplier and the decay properties of 122 we
see that

&1 &

& e

S C(N17N27N3)M) kv

ug)du} ‘

2N1n1 2N2'IL2
(1+2m[81 /65 — ug, M (14 272|&2/& — ug, )M

(@19) |02 03 (e, e [o16) [ gy

Using integration by parts we obtain
ohithaths | K1 (2%, 2F2 0y, 2F5 0g))|
<O [ (2l )Y (L 2 e )2 Wy o)
<Oy Wy(x).

In view of the compact support of ¢ we get the same estimates for the derivatives of the left hand side and

the desired estimates for K}, and its derivatives follow.
18



The estimate for K,?’O has nothing to do with homogeneity: By the decay properties of @ we have
10002298 (5)] < Con2™ DN (L [s1[) 7N (L + [s2]) ™

and hence

1072 0320 [6(€)pf (613, €2/ 3)]| < Cy2—(mrtnaN

The desired estimate for K,?’O follows by integration by parts. In the proof of the estimate for K,?’l
replace (4.19) by

9N1n19(N2+Ns—M)n

08005 (el Vel [0(€)g3 (61/ 60, &2/ < CWNay Noy Nos M) Vi g eyt

and argue as above. [J
In what follows we shall denote by B a function which is similar to § but equals 1 on the support of

B. Next let x € C§°(R) be supported in (3/4,3/4) such that >, ., x*(- — ) = 1. Again let X € C§° be
defined similarly to x but equal to 1 on the support of x. We define the operator A}, by

o~

AL F(E) = x (22761 —ul, 2F63))x (2 (2725 — 2,2V 64)) 52(2763) F (€).

Lemma 4.5. There is a weighted norm inequality

(4.20) / ST Laf () Pw() de < O e gp 2 / Z|A VL f () Moo () dy.
k
Proof. Set Sp,, =T, Ay, Sion = Ti AR, Spt = T2 Ay, and Sy = Ti"° Ay, Then
(4.21) el =YD Sp,+> Sl + ZSZVL SeO AL, L.
v H 241

n n,l n,2 n,0 . n n,l n,2 n,0
Let Hy,,, H/wm’ H,WM and H; )~ be the convolution kernels of the operators Skw, S,wm7 Skmz and S,

respectively. Fix N (say equal to 100) and let U}, = U}, 1, etc. The proof of Lemma 4.4 shows that

by
HE,(z)] < C q Ve
| Hiyu(2)] (L4 = 1)L+ [z = 12f?) .
n,1
Hnl < C 2—H2N$Un X
[ Hipy, (@) < On (1+[p1 —11]?) )
n,2
Hn’2 2 < C 277121\/'$Un xT
| kl/,uz( )‘ = YN (1"“,&2_”2‘2) kU( )
B ()] < Cn2 N2 2N UT, ().

19



We observe that [|U} |1 < C is bounded uniformly in v, n, k. Therefore

| LY St Lufe)

<Y iy o / Ut (o= 2)az) ([ 148 £ PV - v)i)
<C(Z\Z 1+|m_,,1|b)(1+|u2_y2| (X oo e -va)
<o(X (X e |U;;<x—y>dy)”2

1/2
<o gt ([ 142 0PV - i)

where for the last inequality we have used (4.16). Using also (4.17) we derive the same inequality for the
other three remaining terms in (4.21) and obtain

wm  (Smpeser)” < oommg( > L WU~y dy)

k

Finally there is the pointwise estimate
(4.23) sup Uy, * |w|(z) < CMpyw(x)
kv

and (4.22) and (4.23) imply (4.20). O

Proposition 4.6. There is the weighted norm inequality

(4.24) Z/|A () dz < Ci,2(m+n2)2e Z/m PMYou(@)dz, N> 241/,

Proof. It is convenient to introduce a decomposition in the &3-variable which will give the factor of
22¢/(mtn2)  We define for (A, \p) € Z? operators Vi by

~

V1) = X225 — 219 M) 22585 — 272 M) Fl(€)

Observe that A7, is a sum of no more then O(2¢' (m+n2)y operators V;“/Aﬁy where 271¢')\; € (1/20,20)
and 272¢' X, € (1/20,20). Therefore it suffices to show that for those A the inequality

am) 3 J 1V A p@Poteydo < O, 3 [IA@PMYw(@)ds, No> 24 1/¢.
k

holds. In order to show (4.25) we first prove an inequality for an analogous problem in two dimensions.
20



Lemma 4.7. Let § < 1 and let m, u,p be integers such that m > 0, 2™y € (1/20,20) and 2~™0p €
(1/20,20). Let B, C;’“S be the operators acting on functions in R? defined by

Brf(€) = x(2m(€1 — 27" uéa)) F(€)
Cmof(&) = X*(2™ (& — 27™p) (€)

Let | < max{l,md}. Then

Z/|B::‘C’;"‘5f(a:)|2w(x) dx < C’Z/\BIT*ZCST‘;f(a:)FMT(,}’Q)w(:v) dz.
Iz w

Proof. Let

Rup = (& 16 = 27" o] < 2775 j6 — 270 <2711}
Ry, = {& 16— 27 pbo| < 272 |6 — 270 p| < 271

Let ¢’ € R, and suppose that [u — p/| < 27172, Let a,—,r = (27™(p — 1/),0). Then & —a,_,/ € Rup-
Thus
Ryp Capp + Ryp

Define

~

FZﬁ LE) = x(@M0& =27 (u— ') — 27" p€2) X270 (&2 — 27 p)) F(£).

and define 6;"75 similarly as C1" (with y replaced by X). Then

Z\Bmcméf PP <c ZZwméByrgﬁ LCrO B f ().

An integration by parts argument shows that the convolution kernel of 6;”‘5312” is bounded by C'y times

om 2m6
(L4272, eu) DV (1 + 270z, er) )Y

6
w;TN (z) =

ife, =(1,-27"p), ei =(27™u,1) and if 27"y = 1. Now the argument which lead to (4.22) and Lemma

4.3 show that for fixed u/

> / (BT, OO B! f (@) Pw(x) da

lp—p|<
<Cyv Y. Tt o Bl f () Py’ « |w] () da
[p—p'|<1
SC’N/\C’;”‘SBZ?_lf(:E)F sup w;”p‘;*wﬂp * |lw|(x) da.
lp—p|<1

The asserted inequality is an immediate consequence. [
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We now conclude the proof of Proposition 4.6. First, since the maximal operator M,(,}’Q) is invariant
under two-parameter dilations there is a scaled variant of Lemma 4.7. Also we can apply Lemma 4.7 twice,
in the 1 — x3 and in the x5 — z3 plane, the same applies to the scaled variant. We obtain the inequality

> [ M At oPte) o < €3 [V A Aol M)
kv’
if I = (I1,13) and 1 < ny€, Iy < noe’. We iterate and apply this inequality N times; here N <14 1/€.
The result is an estimate of the left hand side of (4.25) by an expression involving a scaled version of the
square-function in Lemma 4.3 (with A = diag(2*1,22)). Namely if FZ’V‘;)\ is defined by

— 2 N

Fzyé)\ (g) — H[X2(2m5(2k3§3 _2—m6)\i))X2(2m6(2ki€ 2—m6 ))} (f)

i=1

we obtain the inequality

> [ A hw e e < O 3 [ AEPM @ N2 1,

k,v,\
from which (4.25) follows by an application of Lemma 4.3. 0O

The asserted weighted norm inequality (4.10) now follows by an application of Lemma 4.5 and Propo-
sition 4.6. This concludes the proof of Theorem 4.1.

Remark. The weighted inequality in Proposition 3.6 implies
1/2
| 1 ces2) | < coatmrmrygis
4
kv

with C. = O(AY) as e — 0, some A > 1. The geometrical arguments by Cérdoba [12] show that in
fact C. = O(e™%) for some a > 0. It would be interesting to find positive operators N, being uniformly
bounded on L? such that

> [ Mg cus@)Pute)de < Ceatminze [ 7@)PA o)) do

k,v

An analogous problem is to find weighted norm inequalities for radial multipliers and associated maximal
functions in R2?, with a positive operator A/. In this context weighted inequalities with a nonpositive A/
have been proved in [1].

5. HP-estimates

The purpose of this section is to prove Theorem 1.7. The proof relies on a result on multiparameter
Calder6n-Zygmund theory obtained by the authors in [4] (extending earlier results by Journé [20] and
Fefferman [17]). There it is shown for a large class of singular integral operators T' that the boundedness

of T on certain scalar and vector-valued rectangle atoms implies the boundedness on HP.
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To be precise let R be an interval in R? (i.e. a rectangle parallel to the coordinate axes), and let @ be
a nonnegative integer. In what follows, @ will always be > [1/p — 1] (the largest integer < 1/p — 1). Then
a is called a (p, @, R) rectangle atom if a is supported in R, if

/wmwaWPW
R

and if form=1,...,d

/ a(T1, .oy Ty Ting 1y - - -5 L) TY ooyt dey .. dXy, = 0, 1oy Tm =0,...,Q
for almost all (41, ..., 2q); furthermore assume that the analogous cancellation properties hold for all
permutations of the variables z1,...,zq4.

Now let R? = R% @R? and let I be an interval in R?. Then we need the notion of an L?(R%)-valued
(p, Q, I)-rectangle atom. This is simply a function a supported on I x R% such that

//|a(x/,x”)|2dx”dx/ < ‘1‘172/1;

and such that for m =1,...,d;

/ A(T1, ooy Ty T 1y« - - s Tyl -« X)Xy - Ty dxy ... dxy, =0, Ty Tm =0,...,Q
for almost all (41, ..,2q); furthermore assume that the analogous cancellation properties hold for all
permutations of the variables 1, ..., zq4,.

Now let T : C5°(R?) — (C§°(R%))" be an operator with Schwartz kernel K, with the property that
K(x,y) is locally integrable in {(x,y);z; # y;,i = 1,...,d}. Let ® be a smooth bump function on R
supported in [1,4] such that Y ;2 ®(27's) =1 for s # 0. For £ = ({1,...,04,), 1 < di < d, define the
operator T* by

—0Q0

dy
7f(0) = [ K [[ 0@ i~ wl) £0)
i=1
Theorem 5.1 [4]. Let 0 <p<1,s>d(d+1)/2 and Q > [1/p—1], M > 2. Suppose that
(1) T is bounded on L?(R?) with operator norm < A.
(2) Foralldy € {1,...,d—1}, for all L € Z%, for all intervals I in R with sidelengths 251, ..., 2541
for all L?(R4=%) walued (p, Q, I) rectangle atoms a and for all € = (01,...,0q,), €; > 1,i=1,...,d;

dy
(5.1) 1T all o (rer 12 (maz)) < A(Zfi)_s/p-
i=1
(3) The condition analogous to (5.1) is valid for every permutation of the variables x1, ..., z4.

(4) For all L € Z¢, for all intervals R in RY with sidelengths 251, ... 254 for all (p,Q, R) rectangle
atoms a and for all € = ({1,...,€64), £; >1,i=1,...,d—1

d

(5.2) 1T al| Logay < A €)'
i=1
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Then T extends to a bounded operator from the multiparameter Hardy space HP(R?) to LP(R?) and the
operator norm is bounded by C A. Here C depends only on p, d and s. If T is translation invariant then
T is bounded on HP(R?).

We now consider convolution operators T' given by Fourier multipliers m via ﬂ(f) = m(f)f(f). For
k € Z% let Ty be the operator with Fourier multiplier m(¢) Hg;l (2%¢;). Variants of the standard
Marcinkiewicz multiplier theorem on HP spaces follow from Theorem 5.1 and

Proposition 5.2. Suppose that 0 < p <1, a > 1/p—1/2 and let Q, € be such that Q > [1/p — 1] and
0<2e<min{a—1/p+1/2,Q—1/p+2,1}.
(1) Suppose that 1 < dy <d—1 and

(53) sup sup Hﬂ(l) ®"'®ﬂ(d1)m(t1'v"'7td1'a£d1‘,+1a"'agd)H'Ha(Rdl) < 0.
teE(Ry ) (Eaq41yee-,€a) ERITN

Then for all L € Z%%, for all intervals I in RY with sidelengths 25+, ... 254 for all L?(R4~%)
valued (p,Q, I) rectangle atoms a, for all ¢ = (¢1,...,0q,), £; >1,i=1,....dy and for all k € Z%

dy
(5.4) I(Tx) o rar p2@a-aryy < C A2 kD,
i=1
(2) The inequality analogous to (5.4) holds for every permutation of the variables x1, ..., xq.

(3) Suppose that

(55) sup Hﬁ(l) Q- & 5((1) m(t1~, e 7td')||H?x(Rd) < 0.
te(Ry )4
Then for all L € 7%, for all intervals R in R? with sidelengths 251, ... 24 for all (p, Q, R) rectangle
atoms a, for all £ = (£1,...,09), {; > 1,i=1,...,d, for all k € 72

d
(5.6) I(Te) " al pogay < C A2 CetkD,
=1

If (5.5) is valid then m is bounded and (5.3) and the analogous conditions obtained by permuting variables
are also satisfied. In particular (5.5) implies that T is bounded on the multiparameter Hardy space HP(R?)
and the operator norm is bounded by C' A.

Proposition 5.2 is proved by standard arguments, see for example the proof of [4, Proposition 5.1].
The last conclusion of Proposition 5.2 follows of course by Theorem 5.1. The reader should note that the
multipliers in Theorem 1.7 generally do not satisfy the assumption (5.5), even in the two-dimensional case.

Proof of Theorem 1.7. We may clearly assume that p < 1. Again since characteristic functions of half
spaces with boundaries parallel to the coordinate axes are Fourier multipliers of multiparameter Hardy
spaces there is no loss of generality in assuming that m is supported in {&; & > 0,i=1,...,d}. We use
the notations introduced in the proof of Theorem 4.1. Let T} is as in (4.9) and set T" = >, _,. T}'. We
shall show that 7™ is bounded on HP(R?) with operator norm bounded by

(5.7) Cy sup (g8 Lo e-1) 20+ DGD A oy o) D/,
kezd
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Since

S sup [lgilpeqra-ny2™ DGO oy g ) O
ne(No)d—1 kezd

< Ce sup ||grllnz ifa>2/p—1
kezd

the conclusion of Theorem 1.7 follows.
We have to verify the hypotheses (5.1) and (5.2) of Theorem 5.1 for the operator T™. The mixed norm
inequalities are a straightforward consequence of Proposition 5.2. In order to see this let

Fn(&) = h(&1/8a,- -, Ea—1/8a)
where h is compactly supported in [1/2,2]?~!. Then for o > 0 one has the inequalities

(5.8) Sup 181y ® + -+ ® Biay Fu (-, €a) Iz a1y < Cllhllpz @a-1y-
and
(5.9) sup 181y @ =+ @ Bray Fn(&1, ) llnz e
17ll7e2 () if d=2
{ 1Rl ma—r) +supy, 45 [ DS .. DR DEDgy - DY s, )| 22 ma-2) if d > 3.

It is straightforward to verify (5.8) and (5.9) if « is a nonnegative even integer and the general case follows by
analytic interpolation. Note also that by a version of Sobolev’s imbedding theorem Hg(Rd_l) C H2(RIY)
ifp<2and 8> a+ (1/p—1/2). Using this and (5.8), (5.9) we see that (5.3) is verified for the case
dy = d — 1. The other cases follow similarly. An application of Proposition 5.2 implies (5.2).

The main work in the proof consists in the verification of (5.1). Assume that a is a (p, @, R) rectangle
atom and R is an interval of dimensions 2%t x --. x 2%¢. Then we shall prove that

d

(5.10) (T all, < C2tmttra- N TTomelt b Lal gry o N > 2(1/p - 1/2)
=1

for some € > 0 and also

(5.11) (T P all, < C2tmttna) /=D gn)|

We shall use (5.11) only if max;{k; — L;}, max;{{;} < C,(1+ >, n;) where C}, is a large fixed constant
while (5.10) is a remainder estimate. In fact applying the Sobolev inequality (4.8) with d; = 0 we see that
(5.10) and (5.11) imply

H Z (T2 E+a

kezd P
d

< C( Z 2(n1+-~.+nd,1)(Np+1) Hz—ep(€i+|ki—Li\) ||91?H£

max{|k; —L;|,i=1,...,d} > i=1

e ' (2N+2/p)(n1++nq_1)
d 1/p
+ Z min{Q(nl"'""""d*l)@_p);2("1+"'+"d*1)(Np+1) HZ_EP(&HI%_M)}HgITcLHg)
max{|k; —L;|,i=1,...,d}< i=1

e ' (2N+2/p)(n1++nq_1)
J2/p—1) (L+ 11+ ngq)et/P

02(ﬂ1+~--+nd—1
(€1+...+£d)s/p

IN

g5l
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and it follows that 7" is bounded on H? with norm not exceeding (5.7).

The verification of (5.10) is easy. Simply observe that
[OZ [B(O)mrn (] < Co2mmEinanmuy (@00 4o g )

and an application of Proposition 5.2 yields (5.10).

We now verify (5.11) and assume for convenience d = 3. We show that (using the notation introduced
n (4.15))

(5.12) (T3 all, < Cvf, 200D g,
(5.13) (T E* all, < Onbyy, 2 @P=Damm2N g,
(5.14) (T " all, < O b"2 g7mNgn/e= g,
(5.15) (T all, < OnbE 2= 2N gr ),

Using (4.16) and (4.17) with » = p we see that (5.11) follows from (5.12-15). We shall only verify (5.12);

the remaining cases are similar or simpler.

We divide the rectangle R (which has dimensions 21 x 252 x 2L3) into H _, max{1,2L=*i} congruent

intervals RY of dimensions
min{251,2¥1} x min{2%2 2%2} x min{2ls 2%s}
and centers y}. Let be a}, = ax re and let
RETE = {a; 28072 <oy — (yh)a] < 20020 =1,2, 3}
Then it is easy to check that if y € supp a}, z € Rﬁ“ then for UJ, \ as in Lemma 4.4
U/?V,N(x —y) ~ UI?V,N(J" - yilj)
and therefore by Lemma 4.4

. 1
(KT, o) *ally < C (SR, Brae) * afl2)”

12

< o (X [ [ vhonte = wl@nsste )l ay] a) "

Cxn 2(n1+n2)(%*1) e, (Z/ Z2—(n1-|-n2-i-/€1—i—kz-i-kg)(p—l) [U]?VN(:E _ yg)]de
RLET
“w

1 p\ 1/p
<[ [ttty )

IN

(5.16)

Using Holder’s inequality we see that

1/
(517) 2(L1+L2+L3)( —-1) (ZH mln{l 2(k —L;)(1—p) }]”au” ) P

poi=1
< C2@HLaA L) G g1 < O R[5 ||alls < C.
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We perform the linear volume preserving change of variables
k1—ks, 1 ko—ks, 2
(v1,v2,v3) = (T1,22,2" " Bu, 21 + 277 By, 19 + 13)

and see that for N > 1/p

/ . 2—(n1+n2+k1+k2+k3)(p—1) [UI::LV7N(-T _ y;];)]p dx
RET

C 2—]{31—711 2—k2—n2 2—I€3 C/
< dv < C".
- / (L +[2 R0 VP (14 2Rz n20, )N (1 2 Foug )2 © =

Therefore if k; — L; <0, i = 1,2, 3, the desired estimate (5.12) follows from (5.16) and (5.17).

In all other cases we use similar arguments together with the cancellation properties of the atom. For
example assume ki < Ly, ko < Lo, k3 < L3. Since

// ay (y1,y2,y3)y1' ys> dyrdys = 0

for almost all y3 for 0 < r1,1r2 < @ we see using Taylor’s formula that
(K}, ®r40) * a‘k‘(xl,xg, x3) =
1
1—3s)@ 0 \@+l
[ [Gr) ™ i er-m om0 =i (o)a—10) o) dy s

and using Leibniz’ rule and Lemma 4.4 we see that

(K, ®p40) * alf (1, 3, 25)| < C25( @D max{27Fs(@FD) o= (Latba)Q T (2 — yt) b7, [lalf |1

Similar considerations in the other cases (where we use that a) has cancellation in the y; variable

whenever k; > L;) lead to
3

I(KE, @rr0) xall, < Cn [][min{L, (274 +257%)}]

i=1

Q+1

1/p
% bZV(Z/L 2 o(n1+na+ky+ka+ks) (p—1) [U;?,,7N($—y‘,;)]pdx||a‘,il|f> .
IR
As above it is easy to check that for N > 1/p

/ ) 9—(nitna+ki+ka+ks)(p—1) [UI?MN(x _ yg)]p dz
RET

< O min{1, 27007 min {1, 9 i (1, 0k

Therefore
3
(KR, @) *all, <C20 G0 T [min{1, 25 +6—k0/P} min{1, (274 4 25—k )Q+1Y]
=1
oD (57 )
N
. 3 . 1/
< C2(n1+n2)(;—1)bzu2(L1+L2+L3)(%—1) (Z ||a;:||11’ H[min{L Q(Li_ki)(g_l)}}p) P
2 =1

1 1),, 1

<2ty [Rl» Y ally
nitmna)(L—

< Com+n)(G=Dge |

This proves (5.12) and concludes the proof of Theorem 1.7. O
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