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1. Introduction

Letm ∈ L∞(R2) be homogeneous of degree zero. Thenm is almost everywhere determined by h±(ξ1) =

m(ξ1,±1). For k ∈ Z let Ik = [2−k−1, 2−k] ∪ [−2−k,−2−k−1] and let h+ and h− satisfy the condition

(1.1) sup
k∈Z

(∫

Ik

∣∣sh′±(s)
∣∣r ds
s

)1/r

< ∞.

Rubio de Francia posed the question whether a condition like (1.1) is sufficient to prove that m is a Fourier

multiplier of Lp(R2), 1 < p <∞. An application of the Marcinkiewicz multiplier theorem with L2-Sobolev

hypotheses (cf. (1.3) and (1.5) below) and interpolation arguments already show that the answer is yes,

provided r > 2. Recently, Duoandikoetxea and Moyua [15] have shown that the same conclusion can be

reached if r = 2. On the other hand, since characteristic functions of halfspaces are Fourier multipliers of

Lp, 1 < p <∞, a simple averaging argument shows that the condition h′ ∈ L1 implies Lp-boundedness for

1 < p <∞. Our first theorem shows that the weaker assumption (1.1) with r = 1 implies boundedness in

Lp(R2), for 1 < p <∞.

Theorem 1.1. Suppose that h+ and h− satisfy the hypotheses of the Marcinkiewicz multiplier theorem on

the real line, that is

(1.2) sup
k∈Z

∫

Ik

|dh±(s)| ≤ A

for Ik = [2−k−1, 2−k] ∪ [−2−k,−2−k−1]. Let m ∈ L∞(R2) be homogeneous of degree zero, such that for

ξ1 ∈ R, m(ξ1, 1) = h+(ξ1) and m(ξ1,−1) = h−(ξ1). Then m is a Fourier multiplier of Lp(R2), 1 < p <∞,

with norm ≤ C A.

One can obtain a stronger result for fixed p > 1 using the space V q of functions of bounded q-variation.

Given an interval I on the real line a function h belongs to V q(I) if for each partition {x0 < x1 < · · · < xN}
of I the sum

∑N
ν=1 |h(xν) − h(xν−1)|q is bounded and the upper bound of such sums is finite. We denote

by ‖h‖q
V q the least upper bound. Then the following result is an immediate consequence of Theorem 1.1

and the interpolation argument in [8].
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Corollary 1.2. Let m, h± and Ik be as above and suppose that

‖h±‖∞ + sup
k

‖h±‖V q(Ik) < ∞.

Then m is a Fourier multiplier of Lp(R2), if |1/p− 1/2| < 1/2q.

A slightly weaker result can be formulated in terms of Sobolev spaces. Let β be an even C∞ function

on the real line, supported in (5/8, 8/5) ∪ (−8/5,−5/8) and positive in (1/
√

2,
√

2) ∪ (−
√

2,−1/
√

2); we

shall usually assume that
∑

k∈Z
β2(2ks) = 1 for s 6= 0. Let Lq

α(Rd) denote the standard Sobolev space with

norm ‖h‖Lq
α

= ‖F−1[(1 + |ξ|2)α/2ĥ]‖q. Then Lq
α(R) ⊂ Vq if α > 1/q and therefore we obtain

Corollary 1.3. Let m ∈ L∞(R2) be homogeneous of degree zero and h±(ξ1) = m(ξ1,±1). Suppose that

q > 1 and that

(1.3) sup
t∈R+

‖β h±(t·)‖Lq
α(R) < ∞, α >

1

q
.

Then m is a Fourier multiplier of Lp(R2) if |1/p− 1/2| < 1/2q.

We now compare these results with more standard multiparameter versions of the Hörmander-

Marcinkiewicz multiplier theorem. In order to formulate them let

Dα
j g = F−1[(1 + |ξj |2)α/2Fg]

and, for 1 < q <∞, let Hq
α(Rn) be the multiparameter Sobolev space of all functions g, such that

‖g‖Hq
α(Rn) := ‖Dα

1 . . .Dα
ng‖Lq(Rn) < ∞.

Let β be as above and denote by β(i) a copy of β as a function of the ξi-variable. Then if q ≥ 2 the

condition

(1.4) sup
t∈(R+)d

‖β(1) ⊗ · · · ⊗ β(d)m(t1·, . . . , td·)‖Hq
α(Rd) < ∞, α >

1

q

implies that m is a Fourier multiplier of Lp for |1/p − 1/2| < 1/q. For q = 2 the proof of this result is a

variant of Stein’s proof of the Hörmander multiplier theorem (see [25, ch.IV]) and the general case follows

by an interpolation argument as in [9]. If we apply this result to homogeneous multipliers and set

(1.5) m(ξ′,±1) = g±(ξ′), ξ′ ∈ Rd−1

we obtain by a straightforward computation

Corollary 1.4. Suppose that r ≥ 2,

(1.6) sup
t∈(R+)d−1

∥∥D2γ
1 Dγ

2 . . .Dγ
d−1

[
β(1) ⊗ · · · ⊗ β(d−1)g±(t1·, . . . , td−1·)

]∥∥
Lr(Rd−1)

< ∞, γ >
1

r
,

and that the condition analogous to (1.6) holds for all permutations of the (s1, . . . , sd−1)-variables. Let m

be homogeneous of degree zero and related to g± by (1.5). Then m is a Fourier multiplier of Lp(Rd) if

|1/p− 1/2| < 1/r.
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In two dimensions Corollary 1.4 says that if α > 1/q, q ≥ 1, and βg±(t·) ∈ H2q
α (R), uniformly in t > 0,

then m is a Fourier multiplier of Lp if |1/p − 1/2| < 1/2q. Corollary 1.3 is stronger since a compactly

supported function in H2q
α (R) belongs to Hq

α(R).

We are now going to discuss variants of Theorem 1.1 in higher dimensions. First if g± ∈ Hq
α(Rd−1),

α > 1/q and if g± are compactly supported in [1/2, 2]d−1 then the homogeneous extension m is a Fourier

multiplier of Lp(Rd) if |1/p − 1/2| < 1/2q. In fact by a simple averaging argument one sees that the

condition g± ∈ H1
1+ǫ implies that m is an L1 multiplier and the general case follows by interpolation. We

remark that if α < |2/p− 1| the condition g± ∈ Hq
α (any q) does not imply that m is a Fourier multiplier

of Lp. Relevant counterexamples have been pointed out by López-Melero [22] and Christ [7].

Perhaps surprisingly, the situation in higher dimensions changes if one imposes dilation invariant con-

ditions as in Theorem 1.1. One might want to just replace hypothesis (1.2) by the hypotheses of the

Marcinkiewicz multiplier theorem in Rd−1 ([25, p.108]). However this assumption is not sufficient to de-

duce that m is a Fourier multiplier of Lp for any p 6= 2 (see §3 for the counterexample involving the Kakeya

set). However we do have

Theorem 1.5. Let m ∈ L∞(Rd), d ≥ 2, be homogeneous of degree zero and let g± be as in (1.5). Suppose

that q ≥ 2, and

(1.7) sup
t∈(R+)d−1

‖β(1) ⊗ · · · ⊗ β(d−1) g±(t1·, . . . , td−1·)‖Hq
α(Rd−1) < ∞, α >

1

q
.

Then m is a Fourier multiplier of Lp(Rd) if |1/p− 1/2| < 1/2q.

Interpolating Theorem 1.5 with Corollary 1.4 (with p close to 1) yields

Corollary 1.6. Let m ∈ L∞(Rd), d ≥ 2, be homogeneous of degree zero and let g± be as in (1.5). Suppose

that 1 < p < 4/3 and

sup
t∈(R+)d−1

∥∥Dα
1 Dγ

2 . . .Dγ
d−1

[
β(1) ⊗ · · · ⊗ β(d−1)g±(t1·, . . . , td−1·)

]∥∥
L2(Rd−1)

< ∞, γ >
1

2
, α >

2

p
− 1

and that the analogous conditions obtained by permuting the (s1, . . . , sd−1)-variables hold. Then m is a

Fourier multiplier of Lp(Rd).

In particular if supt∈(R+)d−1 ‖β(1) ⊗ · · · ⊗ β(d−1) g±(t1·, . . . , td−1·)‖H2
α(Rd−1) < ∞ and 1 < p < 4/3 then

m is a Fourier multiplier of Lp in α > 2
p −1. This result is essentially sharp: in §3 we show that in order for

supt∈(R+)d−1 ‖β(1) ⊗· · ·⊗β(d−1) g±(t1·, . . . , td−1·)‖Hq
α(Rd−1) < ∞ to imply that m is a Fourier multiplier of

Lp we must necessarily have α ≥ 2/p− 3/2 + 1/q if 1 < p < 4/3 and α > 1/q if 4/3 ≤ p ≤ 2.

In order to prove more refined results on Lp(Rd), d ≥ 3, p close to 1, we shall use multiparameter

Calderón-Zygmund theory. It turns out that it is useful (and easier) to first prove a result for the multi-

parameter Hardy-space Hp(Rd), 0 < p ≤ 1. The Hardy space Hp is defined in terms of square-functions

invariant under the multiparameter family of dilations δtx = (t1x1, . . . , tdxd), t ∈ (R+)d. Again we formu-

late the multiplier result using localized multiparameter Sobolev spaces invariant under multiparameter

dilations. In order to include a sharp result also for p < 1 we want to admit values of q ≤ 1 in (1.2). To

make this possible the definition of Hq
α has to be modified. We may always assume that β above is such that∑

r∈Z
β2(2−rs) = 1 for s 6= 0. Let ψr = β2(2−r·) if r ≥ 1 and ψ0 = 1 − ∑

r>0 ψr. For n = (n1, . . . , nd−1),
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ni ≥ 0, i = 1, . . . , d− 1 set ψn(ξ1, . . . , ξd−1) =
∏d−1

i=1 ψni
(ξi). The decomposition

g =
∑

n∈(N0)d−1

ψ̂n ∗ g

is referred to as the inhomogeneous Littlewood-Paley decomposition of Rd−1. Then

(1.9) ‖g‖Hq
α(Rd−1) ≈

∥∥∥
( ∑

n∈(N0)d−1

22(n1+···+nd−1)α|ψ̂n ∗ g|2
)1/2∥∥∥

Lq(Rd−1)

for 1 < q < ∞, and for q ≤ 1 we define Hq
α(Rd−1) as the space of tempered distributions for which the

quasinorm on the right hand side of (1.9) is finite. In this paper we shall always have α > 1/q; in this case

Hq
α is embedded in L∞. This and other properties of the spaces Hq

α may be proved by obvious modifications

of the one-parameter case; for the latter we refer to [27].

Theorem 1.7. Let m ∈ L∞(Rd) be homogeneous of degree zero and related to g± as in (1.5). Suppose

that 0 < r ≤ 1 and

(1.10) sup
t∈(R+)d−1

‖β(1) ⊗ · · · ⊗ β(d−1)g±(t1·, . . . , td−1·)‖Hr
α(Rd−1) < ∞, α >

2

r
− 1.

Moreover if d ≥ 3 suppose that

(1.11) sup
t∈(R+)d−1

∥∥D2γ
1 Dγ

2 . . .Dγ
d−2

[
β(1) ⊗ · · · ⊗ β(d−1)g±(t1·, . . . , td−1·)

]∥∥
L2(Rd−1)

< ∞, γ >
1

r
− 1

2

and that the analogous conditions obtained by permuting the (s1, . . . , sd−1)-variables hold. Then m is a

Fourier multiplier of the multiparameter Hardy space Hp(Rd), r ≤ p <∞.

Note that in two dimensions Theorem 1.7 is a natural extension of Corollary 1.4 toHp-spaces in product

domains. The examples in §3 show that in higher dimensions additional assumptions such as (1.11) are

necessary. When d ≥ 3, Theorem 1.7 with r = 1 serves as a substitute for Theorem 1.1. Notice that if

r = 1 condition (1.10) involves mixed derivatives in L1 of order d − 1 + ǫ, and condition (1.11) involves

derivatives in L2 up to order (d− 1+ ǫ)/2. In comparison the hypotheses in Corollaries 1.3 and 1.6 involve

L2 derivatives up to order (d+ ǫ)/2 if p is close to 1. As a consequence we obtain the following analogue

of Corollary 1.4, formulated in terms of the standard oneparameter Sobolev space Lq
α.

Corollary 1.8. Let m ∈ L∞(Rd) be homogeneous of degree zero and related to g± by (1.5). Suppose that

q > 1 and that

sup
t∈(R+)d−1

‖β(1) ⊗ · · · ⊗ β(d−1) g±(t1·, . . . , td−1·)‖Lq
α(Rd−1) < ∞, α >

d− 1

q
.

Then m is a Fourier multiplier of Lp(R2) if |1/p− 1/2| < 1/2q.

The counterexamples in [22], [7] show that the statement of the Corollary is false in the range |1/p−
1/2| > 1/2q. However in view of Theorems 1.5 and 1.7 one expects the following sharper result. Namely

suppose that for some q ∈ (1, 2]

(1.12) sup
t∈(R+)d−1

‖β(1) ⊗ · · · ⊗ β(d−1) g±(t1·, . . . , td−1·)‖Hq
α(Rd−1) < ∞, α >

1

q
,
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and in dimension d ≥ 3 suppose that

(1.13) sup
t∈(R+)d−1

∥∥Dα
1 Dγ

2 . . .Dγ
d−2

[
β(1) ⊗ · · · ⊗ β(d−1)g±(t1·, . . . , td−1·)

]∥∥
L2(Rd−1)

< ∞, γ >
1

2
, α >

1

q

as well as the analogous conditions obtained by permuting the (s1, . . . , sd−1)-variables. Then m should

be a Fourier multiplier of Lp(Rd) if |1/p − 1/2| < 1/2q. In order to prove this one is tempted to use

analytic interpolation and interpolate between the Lp0-estimate of Theorem 1.7, for p0 close to 1, and the

L4/3-estimate of Theorem 1.5. One would have to find the intermediate spaces for intersections of L2 and

Lq Sobolev spaces. However the intersection of the intermediate spaces does not need to be contained in

the intermediate space of the intersections (for related counterexamples see [26]). It is actually possible

to prove the result for |1/p − 1/2| < 1/2q (assuming (1.12), (1.13)) by another approach. One has to use

a general theorem for analytic families of operators acting on various kinds of atoms the proof of which

relies heavily on multiparameter Calderón-Zygmund theory. We do not include the technical proof here

but refer the reader to [5].

The paper is organized as follows: In §2 we prove Theorem 1.1 using weighted norm inequalities

and variants of the maximal operator with respect to lacunary directions. Examples demonstrating the

sharpness of our results in higher dimensions are discussed in §3. The proof of Theorem 1.5 is in §4; it relies

on weighted norm inequalities which involve variants of the Kakeya maximal function. In §5 we prove the

Hardy space estimates of Theorem 1.7.

As a convention we shall refer to the quasi-norms in Hp and Hp
α as “norms” although for p < 1 these

spaces are not normed spaces. By Mp, 1 ≤ p ≤ ∞, we denote the standard space of Fourier multipliers of

Lp. It will always be assumed that the even function β ∈ C∞
0 defined above satisfies

∑
κ∈Z

[β(2κs)]2 = 1

for s 6= 0. If a ∈ {1, . . . , d} and k, k̃ in Ra then we shall use the notation k ≤ k̃ if ki ≤ k̃i for all i ∈ a.

Similarly define k ≤ k̃ etc. C will always be an abstract constant which may assume different values in

different lines.

2. L
p-estimates in the plane

In the proof of Theorem 1.1 there is no loss of generality in assuming that m is supported in the

quadrant where ξ1 > 0 and ξ2 > 0. By a limiting argument as in Stein’s book [25, p.109], it suffices to

prove the theorem under the formally stronger assumption

‖h‖∞ + sup
k∈Z

∫

Ik

|h′(s)| ds ≤ A.

Let β be the smooth bump function defined in the introduction (supported in ±[5/8, 8/5]). Let γ ∈
C∞(R2 \ {0}) be homogeneous of degree 1 such that γ(ξ) = 1 if |ξ1/ξ2| ∈ [25/64, 64/25] (in particular on

the support of β ⊗ β) and such that γ(ξ) = 0 if |ξ1/ξ2| /∈ (1/4, 4). Set

hκ(ξ) = γ(ξ)h(2−κξ1/ξ2).

Then we may split

m =
∑

k∈Z2

[β ⊗ βmk](2k1 ·, 2k2 ·)

5



where

mk(ξ) = β(ξ1)β(ξ2)hk1−k2
(ξ1/ξ2)

= β(ξ1)β(ξ2)

∫ ξ1/ξ2

0

h′k1−k2
(s) ds.(2.1)

and hκ is supported in (1/4, 4), for all κ ∈ Z. Also set

T̂kf(ξ) = [β ⊗ β mk](2k1ξ1, 2
k2ξ2)]f̂(ξ).

Then by standard multiparameter Littlewood-Paley theory and duality, to establish Theorem 1.1 for p ∈
[2, p0), p0 <∞, it suffices to obtain an inequality

(2.2)

∫
|Tkf |2ω ≤ C A2

∫
|f |2Mω

for a certain operator ω 7→ Mω which is bounded on Lq(R2) for (p0/2)′ < q ≤ ∞. By our assumption on

h,

(2.3) sup
κ∈Z

∫
|h′κ(s)|ds ≤ CA.

We denote by Lk the standard Littlewood-Paley operator, such that

L̂kf(ξ) = β(2k1ξ1)β(2k2ξ2)f̂(ξ)

and define the operator Sks by

Ŝκsf(ξ) =

{
f̂(ξ), if 2κξ1/ξ2 > s, ξ1 ≥ 0, ξ2 ≥ 0

0, otherwise
.

Then from (2.1) we see that

Tkf(x) =

∫ 8

1/8

LkSk1−k2,sf(x)h′k1−k2
(s)ds

Then, if ω ≥ 0 is a weight we apply the Cauchy-Schwarz inequality to obtain

(2.4)

∫
|Tkf(x)|2ω(x) dx ≤ C A

∫∫
|LkSk1−k2,sf(x)|2|h′k1−k2

(s)|ds ω(x)dx.

Let M(1), M(2) be the Hardy-Littlewood maximal functions with respect to the coordinate directions

and let Mκ,s be the Hardy-Littlewood maximal function with respect to the direction perpendicular to

{ξ; 2κξ1/ξ2 = s}, i.e. in the direction (1,−2−κs). Then using weighted norm inequalities for singular

integral operators due to Córdoba and Fefferman ([13], see also [18]) we see that the expression on the

right hand side of (2.4) is dominated by

CαA

∫
|f(x)|2M(1)M(2)

[∫ 8

1/8

(Mk1−k2,sω
α)1/α|h′k1−k2

(s)|ds
]
(x) dx

where α > 1. Now the proof of (2.2) is completed by the following
6



Proposition 2.1. Let, for α ≥ 1,

Mαω(x) = sup
κ∈Z

∫

I

(Mκ,sω
α)1/α(x)|λκ(s)|ds

where I = [1/8, 8] and

sup
κ∈Z

∫

I

|λκ(s)|ds ≤ B <∞.

Then Mα is bounded on Lp(R2), α < p <∞, with norm ≤ Cp,αB.

Proof. Since

Mα(ω) ≤ B1− 1
α [M1(ω

α)]
1
α

it suffices to prove that M1 is bounded on Lp, 1 < p < ∞ with norm CpB. If α > 1 then Mα will be

bounded on Lp, p > α, with norm ≤ C
1/α
p/αB.

We follow arguments by Nagel, Stein and Wainger [23] as modified by Christ (see [2]). Let ϕ : R → R

be smooth, even, nonnegative, with ϕ(0) > 0 such that ϕ̂ has compact support in [−1/20, 1/20]. Let

ψ(ξ1, ξ2) = ϕ̂(ξ1 + ξ2)

and define for κ ∈ Z

P̂ l
κsω(ξ) = ψ(2lξ1, s2

l−κξ2)ω̂(ξ).

It suffices to show that for 1 < p <∞, N being an arbitrary positive integer

(2.5)

∥∥∥∥ sup
−N≤κ≤N

∫

I

sup
l∈Z

|P l
κsω| |λκ(s)|ds

∥∥∥∥
p

≤ CpB‖ω‖p

where Cp is independent of N . Then an application of the monotone convergence theorem allows to pass

to the limit. We note that for fixed κ, and 1 < p ≤ ∞
∥∥∥∥
∫

I

sup
l∈Z

|P l
κsω| |λκ(s)|ds

∥∥∥∥
p

≤ C

∫

I

∥∥sup
l∈Z

|P l
κsω|

∥∥
p
|λκ(s)|ds

≤ CpB‖ω‖p(2.6)

by the Lp estimate for the one-dimensional Hardy-Littlewood maximal function Mk,s. This means that

we know a priori that the left hand side of (2.5) is bounded by BCp(N)‖f‖p (with Cp(N) ≤ C ′
pN) and it

remains to be shown that Cp(N) can be chosen independently of N . In what follows we define Cp(N) to

be the best constant in (2.5).

We first consider the case 2 ≤ p < ∞. Since the L∞-estimate is trivial it suffices to prove the L2

inequality. We smoothly split ψ into two parts, ψ = ψ0 + ψ1 with ψ1 supported in the unit ball and ψ0

supported in the cone {ξ; |ξ1 +ξ2|/|ξ| ≤ 1/2}. We correspondingly define the operators P l,0
κs and P l,1

κs . Note

that there is the pointwise inequality

(2.7) |P l,1
κs ω(x)| ≤ CM(1)M(2)ω(x)

which implies

(2.8)

∥∥∥∥sup
κ

∫

I

sup
l∈Z

|P l,1
κs ω| |λκ(s)|ds

∥∥∥∥
p

≤ CpB‖ω‖p, 1 < p ≤ ∞.
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Concerning P l,0
κs we have

|P l,0
κs ω(x)| ≤ C

[
M(1)M(2)ω(x) +Mκ,sω(x)

]

and therefore

(2.9)

∥∥∥∥
∫

I

sup
l∈Z

|P l,0
κs ω| |λκ(s)|ds

∥∥∥∥
p

≤ Cp,0B‖ω‖p

for 1 < p ≤ ∞. Note that

ψ0(2l·, s2l−κ·) ω̂ = χ(·, 2−κ·)ψ0(2l·, s2l−κ·) ω̂

where χ is smooth, homogeneous of degree zero, identically 1 on {ξ; |ξ1 + ξ2|/|ξ| ≤ 4} and zero on {ξ; |ξ1 +

ξ2|/|ξ| ≥ 8}. Define the standard angular Littlewood-Paley operator Rκ by

R̂κf(ξ) = χ(ξ1, 2
−κξ2)f̂(ξ).

Then

(2.10) P l,0
κs ω = P l,0

κs Rκω

and, as a consequence of multiparameter Littlewood-Paley theory and the Marcinkiewicz multiplier theo-

rem,

(2.11)
∥∥∥
(∑

κ

|Rκf |2
)1/2

∥∥∥
p
≤ C‖f‖p, 1 < p <∞.

Now by (2.10)

(2.12) sup
κ∈Z

∣∣∣
∫

I

sup
l∈Z

|P l,0
κs ω||λκ(s)|ds

∣∣∣≤
(∑

κ

[∫

I

sup
l∈Z

|P l,0
κs Rκω||λκ(s)|ds

]2)1/2

and using (2.9) we see that the square of the L2-norm of the right hand side equals

∑

κ

∥∥∥
∫

I

sup
l∈Z

|P l,0
κs Rκω||λκ(s)|ds

∥∥∥
2

2

≤
∑

κ

[∫

I

‖ sup
l∈Z

|P l,0
κs Rκω‖2|λκ(s)|ds

]2

≤CB2
∑

κ

‖Rkω‖2
2 ≤ C ′B2 ‖ω‖2

2.

We have proved

(2.13)
∥∥∥sup

κ∈Z

[∫

I

sup
l∈Z

|P l,0
κs ω||λκ(s)|ds

]∥∥∥
p
≤ CB‖ω‖p, 2 ≤ p ≤ ∞.

By (2.8) and (2.13) we see that

Cp(N) ≤ C, 2 ≤ p ≤ ∞.
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We now assume 1 < p < 2 and begin with the observation that for any sequence {ωk} of weights we

have

(2.14)
∥∥∥
(∑

κ

∣∣∣
∫

I

sup
l∈Z

|P l,0
κs ωκ| |λκ(s)|ds

∣∣∣
p)1/p∥∥∥

p
≤ Cp,0B

∥∥(∑

κ

|ωκ|p
)1/p∥∥

p
, 1 < p <∞.

This is immediate from (2.9). Next positivity of P l
κs implies that

∥∥∥sup
κ

∫

I

sup
l

|P l
κsωκ| |λκ(s)|ds

∥∥∥
p

≤
∥∥∥sup

κ

∫

I

sup
l

∣∣P l
κs[sup

µ
|ωµ|]

∣∣ |λκ(s)|ds
∥∥∥

p

≤BCp(N)
∥∥sup

κ
|ωκ|

∥∥
p

(2.15)

by the definition of Cp(N). From (2.15) and (2.8) it follows that for 1 < p ≤ ∞

(2.16)
∥∥∥sup

κ∈Z

∫

I

sup
l∈Z

|P l,0
κs ωκ||λκ(s)|ds

∥∥∥
p
≤ Cp,1BCp(N)‖ sup

κ
[|ωκ|]‖p.

Now if we interpolate (2.14) with (2.16) we obtain for p ≤ q ≤ ∞

(2.17)
∥∥∥
(∑

κ∈Z

∣∣
∫

I

sup
l∈Z

|P l,0
κs ωκ||λκ(s)|ds

∣∣q
)1/q∥∥∥

p
≤ Cp,2BCp(N)1−p/q

∥∥∥
(∑

κ

|ωκ|q
)1/q∥∥∥

p
.

Using (2.12), (2.17) and (2.11) we obtain for 1 < p ≤ 2

∥∥∥sup
κ∈Z

∣∣∣
∫

I

sup
l∈Z

|P l,0
κs ω||λκ(s)|ds

∣∣∣
∥∥∥

p

≤
∥∥∥
(∑

κ

[
sup
l∈Z

|P l,0
κs Rκω||λκ(s)|ds

]2
)1/2∥∥∥

p

≤Cp,2BCp(N)1−p/2
∥∥∥
(∑

κ

|Rκω|2
)1/2∥∥∥

p

≤Cp,3BCp(N)1−p/2‖ω‖p(2.18)

Finally it follows from (2.8) and (2.18) that

Cp(N) ≤
[
C ′

p + Cp,3 Cp(N)1−p/2
]

which implies that Cp(N) is bounded by a constant depending only on p but not on N . This finishes the

proof of the proposition. �

3. Examples in higher dimensions

We show in this section that Theorem 1.1 and Corollary 1.4 have no immediate analogue in terms

of localized multiparameter Sobolev spaces in higher dimensions. Our examples imply the sharpness of

Theorems 1.5 and 1.7.
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Let Lp(L2) be the space of functions f on Rd = Rd1 ⊕ Rd2 such that

‖f‖Lp(L2) =
(∫ [∫

|f(x′, x′′)|2dx′′
]p/2

dx′
)1/p

< ∞.

For a bounded function m on Rd we denote by ‖m‖Mp
the operator norm of the convolution operator T

defined by T̂ f = mf̂ and by ‖m‖Mp2
the norm of T as a bounded operator on Lp(L2). By a theorem of

Herz and Rivière [19]

(3.1) ‖m‖Mp,2
≤ C‖m‖Mp

for 1 ≤ p ≤ ∞. We shall use the following

Lemma 3.1. Let {mκ} be a sequence of bounded functions in Rd1 . Let χ ∈ C∞(Rd2) be supported in

{ξ′′; 1/2 ≤ |ξ′′| ≤ 2} and equal to 1 if 1 − ǫ ≤ |ξ′′| ≤ 1 + ǫ for some ǫ > 0. Let

m(ξ′, ξ′′) =
∑

κ

χ(2−6κξ′′)mκ(ξ′)

and define Tκ by T̂κf(ξ) = mκ(ξ)f̂(ξ). Then for 1 < p <∞ we have the inequality

∥∥∥
(∑

κ

|Tκfκ|2
)1/2∥∥∥

Lp(Rd1 )
≤ Cp‖m‖Mp2(Rd)

∥∥∥
(∑

κ

|fκ|2
)1/2∥∥∥

Lp(Rd1 )

Proof. Let β0 ∈ C∞ be supported in {ξ′′ : 1 − ǫ ≤ |ξ′′| ≤ 1 + ǫ} such that

‖β0‖L2(Rd2 ) = 1.

Let

gκ(x′, x′′) = 23κfκ(x′)F−1
Rd2

[β0(2
−6κ·)](x′′)

then by an application of Plancherel’s theorem in the second variable it follows that

(3.2)
∥∥∥
(∑

κ

|gκ|2
)1/2∥∥∥

Lp(Rd)
= (2π)−d1/2

∥∥∥
(∑

κ

|fκ|2
)1/2∥∥∥

Lp(Rd1 )
.

Next let Lκ denote convolution in Rd2 with F−1
Rd2

[β0(2
−κ·)]. By Littlewood-Paley theory we have for

1 < p <∞

(3.3)
∥∥∥
∑

κ

Lκgκ

∥∥∥
Lp(Rd)

≤ Cp

∥∥∥
(∑

κ

|gκ|2
)1/2∥∥∥

Lp(Rd)
.

Now

∥∥∥
(∑

κ

|Tκfκ|2
)1/2∥∥∥

Lp(Rd1 )
=

∥∥∥
(∑

κ

∫
|β0(2

−6κξ′′)2−3κTκfκ|2dξ′′
)1/2∥∥∥

Lp(Rd1 )

= (2π)d1/2
∥∥∥
(∑

κ

∣∣F−1
Rd [mκFRd [LκLκgκ]]

∣∣2
)1/2∥∥∥

Lp(L2)

= (2π)d1/2
∥∥∥
(∑

κ

∣∣LκF−1
Rd

[
mFRd [

∑

j

Ljgj ]
]∣∣2

)1/2∥∥∥
Lp(L2)

10



where the last identity holds in view of the support properties of β0. By Littlewood-Paley theory

∥∥∥
(∑

κ

∣∣LκF−1
Rd

[
mFRd [

∑

j

Ljgj ]
]∣∣2

)1/2∥∥∥
Lp(L2)

≤ Cp

∥∥∥F−1
Rd

[
mFRd [

∑

j

Ljgj ]
]∥∥∥

Lp(L2)

≤ Cp ‖m‖Mp2

∥∥∥
∑

j

Ljgj

∥∥∥
Lp(L2)

≤ C ′
p ‖m‖Mp2

∥∥∥
(∑

j

∣∣gj

∣∣2
)1/2∥∥∥

Lp(L2)

= C ′
p ‖m‖Mp2

(2π)−d1/2
∥∥∥
(∑

j

|fj |2
)1/2∥∥∥

Lp(Rd1 )
. �

We now show that the restriction q ≥ 2 (corresponding to 4/3 ≤ p ≤ 4) in Theorem 1.5 is necessary.

In what follows we denote by Lp(L2) the space of functions in R3 with

‖f‖Lp(L2) =
(∫∫ [∫

|f(x1, x2, x3)|2dx2

]p/2

dx1dx3

)1/p

< ∞

and correspondingly define Mp2.

Fix N ≫ 0 and let

(3.4) gN (s1, s2) =
N∑

κ=2

η(N(s1 − ακ))χ̃(2−6κs2);

where

(3.5) ακ = 1 +
2N

κ
,

and η ∈ C∞ is nonnegative, equal to 1 in [−1/4, 1/4] and supported in [−1/2, 1/2]. Similarly χ̃ is as in

Lemma 3.1, supported in ±(1/2, 2) and equal to 1 in ±(1/
√

2,
√

2). Then

(3.6) sup
s1,s2>0

‖β(1) ⊗ β(2)gN (s1·, s2·)‖Hq
α(R2) ≤ CNα−1/q.

Lemma 3.2. Let m(N) be the homogeneous extension of gN defined in (3.4), (3.5). There is a positive

constant c such that

(3.7) ‖m(N)‖Mp,2
≥

{
cN1/2−2/p, 4 < p <∞
c(logN)1/4, p = 4.

A comparison of (3.6) and (3.7) shows that in the case p > 4 the condition

sup
s1,s2>0

‖β(1) ⊗ β(2)g±(s1·, s2·)‖Hq
α(R2) < ∞

does not imply m ∈ Mp for the homogeneous extension m if α < 1/2 + 1/q − 2/p (it does not even imply

m ∈Mp2). Similar statements follow by duality for 1 < p < 4/3. This yields the sharpness of Theorem 1.5.
11



By interpolation an improvement of the Hp estimates would lead to an improvement of the Lp estimates

and this implies the sharpness of Theorem 1.7.

Proof of Lemma 3.2. Let β1 ∈ C∞
0 be supported in (3/4, 5/4) and equal to 1 in (7/8, 9/8). Let χ be as

in Lemma 3.1 supported in {|ξ2| ∈ (4/5, 6/5)} and equal to 1 in {|ξ2| ∈ (9/10, 11/10)}. Let

mκ(ξ1, ξ3) = β(ξ3)η(4N(ξ1/ξ3 − ακ))

and

µ(N)(ξ) =

N∑

κ=2

χ(2−6κξ2)mκ(ξ1, ξ3).

In view of the properties of η, χ, χ̃ and the Marcinkiewicz multiplier theorem

‖µ(N)‖Mp2
≤ Cp‖m(N)‖Mp2

, 1 < p <∞.

Now assume 4 ≤ p <∞. Let

Rκ = {(x1, x3); |x1 − ακx3| ≤ 10−3N, |ακx1 − x3| ≤ 10−3}.

For ξ ∈ supp mκ, x ∈ Rκ we have |x1ξ1 + x3ξ3| ≤ π/4 and therefore

∣∣∣
∫
mκ(ξ1, ξ3)e

i(x1ξ1+x3ξ3)dξ1dξ3

∣∣∣ ≥
∣∣∣
∫
mκ(ξ1, ξ3) cos(x1ξ1 + x3ξ3)dξ1dξ3

∣∣∣ ≥ cN−1

for some fixed positive constant c. Let

R̃κ = {(x1, x3); 10−4N/2 ≤ |x1 − ακx3| ≤ 10−4N, 10−4/2 ≤ |ακx1 − x3| ≤ 10−4}
R∗

κ = {(x1, x3); |x1 − ακx3| ≤ 10−4N, |ακx1 − x3| ≤ 10−4}

and let χκ be the characteristic function of R̃κ. Then

F−1[mκFχκ] ≥ c′, x ∈ R∗
κ.

By Lemma 3.1

∥∥∥
( N∑

κ=2

∣∣F−1
R2 [mκFR2χκ]

∣∣2
)1/2∥∥∥

Lp(R2)
≤ Cp‖µ(N)‖Mp2

∥∥∥
( N∑

κ=2

|χκ|2
)1/2∥∥∥

Lp(R2)

Now one verifies that ∥∥∥
(∑

κ

|χκ|2
)1/2∥∥∥

p
≈ N2/p

In view of the overlap of the rectangles R∗
κ we have for some small constant c1 > 0, and for |x| ≤ c1N and

for |x| ≤ cN we have (∑

κ

∣∣F−1[mκFχκ](x)
∣∣2

)1/2

≈ N1/2(1 + |x|)−1/2

and consequently

∥∥∥
(∑

κ

∣∣F−1[mκFχκ]
∣∣2

)1/2∥∥∥
p
≈

{
N1/2 if p > 4

N1/2(logN)1/4 if p = 4

12



This implies the assertion. �

Next we consider the class of homogeneous functions m in R3 with the property that the restrictions

h± to the hyperplanes {ξ; ξ3 = ±1} satisfy the hypotheses of the Marcinkiewicz multiplier theorem in the

plane; that is

(3.8)

‖h‖∞ ≤ A

sup
j1∈N

sup
s2

∫

Ij1

∣∣∣ ∂h
∂s1

(s1, s2)
∣∣∣ ds1 ≤ A

sup
j2∈N

sup
s1

∫

Ij2

∣∣∣ ∂h
∂s2

(s1, s2)
∣∣∣ ds2 ≤ A

sup
j∈N2

∫∫

Ij1
×Ij2

∣∣∣ ∂2h

∂s1∂s2
(s1, s2)

∣∣∣ ds1 ds2 ≤ A

where Ij1 etc. is as in (1.1). We show that (3.8) is not sufficient to guarantee m ∈Mp, for any p 6= 2. The

argument here follows Fefferman’s solution [16] of the multiplier problem for the ball (see also [14], [21]).

Let a = {ακ} an arbitrary sequence of numbers in [1, 2) and let mκ be defined in the first quadrant

such that

(3.9) mκ(ξ1, ξ3) =

{
1, 1 ≤ ξ1/ξ3 ≤ ακ,

0 ακ < ξ1/ξ3 ≤ 2.

Let

ma =
∑

κ

β(2κξ2/ξ3)mκ(ξ1, ξ3).

Suppose the assumptions (3.8) imply m ∈ Mp for some p 6= 2. Then a limiting argument as in [25, p.109]

would imply that ma is an Lp multiplier with norm independent of the choice of {ακ}k∈Z and by (3.1) a

corresponding statement on Lp(L2) would follow. However we have

Lemma 3.3. The inequality

‖F−1[maFf ]‖Lp(L2) ≤ C‖f‖Lp(L2)

does not hold independently of a if p 6= 2.

For example if we take for a an enumeration of the rationals in [1, 2) then ma ∈ Mp2 if and only if

p = 2.

Proof. Arguing as above the assumption ma ∈Mp implies a vector-valued estimate for directional Hilbert

transforms, namely ∥∥∥
(∑

κ

|Hκfκ|2
)1/2∥∥∥

Lp(R2)
≤ C

∥∥∥
(∑

κ

|fκ|2
)1/2∥∥∥

Lp(R2)
.

where Hκ is the Hilbert transform in the direction (1,−ακ). But as in [16] the existence of the Kakeya

set prohibits such inequalities for p 6= 2 (unless further restrictions on the family of directions (1,−ακ) are

made). �
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4. Weighted norm inequalities in higher dimensions

We deduce Theorem 1.3 from a weighted norm inequality; the procedure is analogous to Stein’s proof of

the Hörmander multiplier theorem (see [25, ch.IV]). Here however the positive operator which controls the

problem is not the Hardy-Littlewood maximal operator but a multiple iteration of variants of Kakeya-type

maximal operators. The main step of the argument is contained in Lemma 4.7; one proves a weighted

inequality for a variant of Córdoba’s sectorial square-function.

For i = 1, . . . , d−1 let R(i,d)
ni be the family of all rectangles with dimensions 1×2ni , centered at the origin

in the xi − xd plane and let R̃(i,d)
ni be the family of all parallelograms of the form {(xi, xd); (2

kixi, 2
kdxd) ∈

R0} where R0 ∈ R(i,d)
ni and ki, kd are integers. Let

M (i,d)
ni

ω(x1, . . . , xd) = sup
R∈R̃

(i,d)
ni

1

|R|

∫

R

|ω(x1, . . . , xi−1, xi − yi, xi+1, . . . , xd−1, xd − yd)| dyidyd.

M
(i,d)
ni is a variant of the Kakeya maximal function, invariant under the dilations (xi, xd) 7→ (2kixi, 2

kdxd).

The proof of the L2-estimate in [10] can be easily modified to yield

‖M (i,d)
ni

ω‖2 ≤ Cni‖ω‖2;

for a more singular variant see also [11].

Next, for n = (n1, . . . , nd−1) define

Mn = M (d−1,d)
nd−1

◦M (d−2,d)
nd−2

◦ · · · ◦M (1,d)
n1

and, for N ∈ N, let MN
n = Mn ◦ · · · ◦Mn be the N -fold application of the operator Mn. Finally, if M(i)

denotes the Hardy-Littlewood maximal operator with respect to the variable xi let

M̃N
n = M(1) ◦ · · · ◦M(d) ◦MN

n ◦M(1) ◦ · · · ◦M(d).

Theorem 4.1. Let γ > 1/2 and suppose that

(4.1) sup
t∈(R+)d−1

‖β(1) ⊗ · · · ⊗ β(d−1) g±(t1·, . . . , td−1·)‖H2
γ(Rd−1) ≤ Bγ < ∞

Let m be the homogeneous extension of g± and define T by T̂ f(ξ) = m(ξ)f̂(ξ). Let 0 < ǫ < γ − 1/2, let

N(ǫ) be the smallest positive integer > 3 + 2/ǫ and define Mǫ by

Mǫω =
∑

n∈N
d−1
0

2−ǫ(n1+···+nd−1)M̃N(ǫ)
n ω.

Then for s > 1

(4.2)

∫
|Tf(x)|2ω(x) dx ≤ Cǫ,sBγ

∫
|f(x)|2(Mǫ[ω

s])1/sdx.

Proof of Theorem 1.5. Since the operator ω 7→ (Mǫ(|ω|s))1/s is bounded on Lq, q > 2s/(1 − ǫ), the

weighted norm inequality (4.2) and duality imply under the assumption (4.1) that T is bounded on Lp, for

2 ≤ p ≤ 4. The general result of Theorem 1.5 follows then by interpolation, using the technique in [9]. �
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Before we prove Theorem 4.1 we recall a few facts about vector-valued weighted norm inequalities.

First if H1, H2 are Hilbert spaces and K is a convolution kernel in R, with values in the space B(H1, H2)

of bounded operators, then K is called a regular singular integral operator if

|K̂(ξ)|B(H1,H2) ≤ C

|K(x)|B(H1,H2) ≤ C|x|−1

|K(x− y) −K(x)|B(H1,H2) ≤ C|y|δ|x|−1−δ, |x| > 2|y| > 0;

here 0 < δ ≤ 1 is fixed. By a vector-valued version of a theorem of Córdoba and Fefferman ([13], see also

[18, ch.IV.3]) there is an inequality

(4.3)

∫
|K ∗ f(x)|pH2

ω(x)dx ≤ Cσ,p

∫
|f(x)|pH1

(M(|ω|σ))1/σ(x) dx

where 1 < p <∞, σ > 1.

Littlewood-Paley functions can be associated with regular singular integral operators. Let β ∈
C∞

0 (1/2, 2) then it is straightforward to check that the operator {fκ}κ∈Z 7→ ∑F−1[β(2κ·)Ff ] is a B(ℓ2,R)-

valued regular singular integral operator. Likewise the adjoint operator f 7→ {F−1[β(2κ·)Ff ]}κ∈Z is a

B(R, ℓ2)-valued regular singular integral operator. Here ℓ2 may refer to a space of sequences with values

in a Hilbert space.

Next let k ∈ Zd and denote by Lk be the standard Littlewood-Paley operator with multiplier∏d
i=1 β(2kiξi). Then a repeated application of (4.3) yields

Lemma 4.2. For 1 < p <∞, s > 1 we have the inequalities

∫ ∣∣∣
∑

k∈Zd

Lkfk

∣∣∣
p

ω(x)dx ≤ Cs,p

∫ ( ∑

k∈Zd

|fk(x)|2
)p/2

(M(1) ◦ · · · ◦M(d)[ω
s])1/s(x) dx

∫ ( ∑

k∈Zd

|Lkf |2
)p/2

ω(x)dx ≤ Cs,p

∫
|f(x)|p(M(1) ◦ · · · ◦M(d)[ω

s])1/s(x) dx.

We need also the following pointwise estimate concerning a square-function involving translates of a

fixed Schwartz-function η. It implies Lp-boundedness for p > 2, a result which is due to Carleson. A proof

of the pointwise estimate can be found in [24], see also [12], [18].

Lemma 4.3. Let η be a Schwartz function in Rd and let A ∈ GL(d,R). Then

(4.4)
∑

k∈Zd

∣∣F−1[η(A · −k)Ff ](x)]
∣∣2 ≤ CN

∫ |f(x−Aty)|2
(1 + |y|)N

dy.

Proof of Theorem 4.1.

There is no loss of generality in assuming that m is supported in {ξ; ξi ≥ 0, i = 1, . . . , d}. Setting

(4.5) φ(ξ) =

d∏

i=1

β(ξi)
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we decompose

m(ξ) =
∑

k∈Zd

mk(2k1ξ1, . . . , 2
kdξd)

where

mk(ξ) = φ(ξ)gk(ξ1/ξd, . . . , ξd−1/ξd)

and gk has compact support in (1/2, 2)d−1. Note that gk = gk′ if ki − kd = k′i − k′d, i = 1, . . . , d− 1. We

introduce a further decomposition using the dyadic smooth cutoff functions ψn = ψn1
⊗ · · · ⊗ ψnd−1

(cf.

the second definition of the space Hq
α in the introduction). We decompose

mk(ξ) =
∑

n∈(N0)d−1

φ(ξ) gk ∗ ψ̂n(ξ1/ξd, . . . , ξd−1/ξd)

=
∑

n∈(N0)d−1

φ(ξ)mn
k(ξ).(4.6)

We may write

(4.7) gk ∗ ψ̂n = gn
k ∗ ψ̂n

where

gn
k = gk ∗ ̂̃

ψn

and ψ̃n = ψ̃n1
⊗ · · · ⊗ ψ̃nd−1

is similarly defined as ψn (say, with ψ̃ni
supported in ±[2ni−2, 2ni+2], equal to

1 in supp ψni
). Let us note in passing that in view of the support properties of the Fourier transform of

gn
k we have the following version of Sobolev’s imbedding theorem

(4.8) sup
sd1+1,...,sd−1

‖gn
k (·, sd1+1, . . . , sd−1)‖Lp(Rd1 ) ≤ C2(nd1+1+···+nd−1)/p‖gn

k ‖Lp(Rd−1),

see the argument in [27, p.18].

Let Tn
k be defined by

(4.9) T̂n
k f(ξ) = [φmn

k ](2k1ξ1, . . . , 2
kdξd)f̂(ξ).

Let 0 < ǫ′ < ǫ, say ǫ′ = ǫ/2. An application of Lemma 4.2 shows that it suffices to prove the inequality

(4.10)
∑

k∈Zd

∫
|Tn

k Lkf(x)|2ω(x) dx

≤ CN2(n1+···+nd−1)( 1
2+ǫ′)‖gn

k ‖2

∑

k∈Zd

∫
|Lkf(x)|2MN

n ω(x) dx, N > 2 +
1

ǫ′
.

In order to avoid complicated notation we shall assume d = 3 in what follows. This case is entirely typical

of the general situation in higher dimensions.

In order to use the homogeneity of the multipliers we have to introduce finer decompositions of gk
n. For

ν1 = 2n1−3, 2n1−3 + 1, . . . , 2n1+3 and ν2 = 2n2−3, 2n2−3 + 1, . . . , 2n2+3 let

(4.11) uν = (u1
ν1
, u2

ν2
) = (2−n1ν1, 2

−n2ν2)
16



and

Iν = I1
ν1

× I2
ν2

= [u1
ν1

− 2−n1−1, u1
ν1

+ 2−n1−1] × [u2
ν2

− 2−n2−1, u2
ν2

+ 2−n2−1].

Furthermore let

cI1 = R \ ∪2n1+3

ν1=2n1−3I1
ν1

= R \ [
1

8
− 2−n1−1, 8 + 2−n1−1]

cI2 = R \ ∪2n2+3

ν2=2n2−3I2
ν2

= R \ [
1

8
− 2−n2−1, 8 + 2−n2−1].

Setting

(4.12)

gn
kν(s) =

∫

Iν

gn
k (u)ψ̂n(s− u) du

gn,1
kν1

(s) =

∫

I1
ν1

×cI2

gn
k (u)ψ̂n(s− u) du

gn,2
kν2

(s) =

∫

cI1×I2
ν2

gn
k (u)ψ̂n(s− u) du

ρn
k (s) =

∫

cI1×cI2

gn
k (u)

̂̃
ψn(s− u) du.

we split

(4.13) Tn
k =

2n1+3∑

ν1=2n1−3

2n2+3∑

ν2=2n2−3

Tn
kν +

2n1+3∑

ν1=2n1−3

Tn,1
kν1

+

2n2+3∑

ν2=2n2−3

Tn,2
kν2

+ Tn,0
k

where

(4.14)

T̂n
kνf(ξ) = gn

kν(2k1−k3ξ1/ξ3, 2
k2−k3ξ2/ξ3)φ(2k1ξ1, 2

k2ξ2, 2
k3ξ3) f̂(ξ)

̂Tn,1
kν1

f(ξ) = gn,1
kν1

(2k1−k3ξ1/ξ3, 2
k2−k3ξ2/ξ3)φ(2k1ξ1, 2

k2ξ2, 2
k3ξ3) f̂(ξ)

̂Tn,2
kν2

f(ξ) = gn,2
kν2

(2k1−k3ξ1/ξ3, 2
k2−k3ξ2/ξ3)φ(2k1ξ1, 2

k2ξ2, 2
k3ξ3)f̂(ξ)

̂Tn,0
k f(ξ) = ρn

k (2k1−k3ξ1/ξ3, 2
k2−k3ξ2/ξ3)φ(2k1ξ1, 2

k2ξ2, 2
k3ξ3) f̂(ξ).

We set

(4.15)

bnkν = sup
u∈Iν

|gk
n(u)|

bn,1
kν1

= sup
u∈I1

ν1
×cI2

|gk
n(u)|

bn,2
kν2

= sup
u∈cI1×I2

ν2

|gk
n(u)|

bnk = sup
u∈cI1×cI2

|gk
n(u)|.

Since the Fourier transform of gn
k is supported in [−2n1+3, 2n1+3]× [−2n2+3, 2n2+3], suitable variants of the

Plancherel-Polya theorem (see [27, p.19]) and the Sobolev embedding theorem imply

(4.16)
( 2n1+3∑

ν1=2n1−3

2n2+3∑

ν2=2n2−3

[bnkν ]r
)1/r

≤ Cr 2(n1+n2)/r‖gn
k ‖r, 0 < r ≤ ∞
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with the appropriate interpretation for r = ∞; moreover we have

( 2n1+3∑

ν1=2n1−3

[bn,1
kν1

]r
)1/r

≤ C 2n1/r sup
s2

‖gn
k (·, s2)‖Lr(R)

≤ C 2(n1+n2)/r‖gn
k ‖Lr(R2)(4.17)

and a similar statement with the s1 and s2 variables interchanged. Also by (4.8) bnk is bounded by

C2(n1+n2)/r‖gn
k ‖r.

We need pointwise estimates for the convolution kernels Kn
kν , Kn,1

kν1
, Kn,2

kν2
, Kn,0

k of the operators Tn
kν ,

Tn,1
kν1

, Tn,2
kν2

, Tn,0
k , respectively.

Lemma 4.4. Let eν = (u1
ν1
, u2

ν2
, 1), e1ν,1 = (u1

ν1
, 0, 1) and e2ν,2 = (0, u2

ν2
, 1). Let

Wn
νN (x) = 2−n1−n2(1 + |〈eν , x〉|)−N (1 + 2−n1 |x1|)−N (1 + 2−n2 |x2|)−N

Wn,1
ν1N (x) = 2−n1(1 + |〈e1ν1

, x〉|)−N (1 + 2−n1 |x1|)−N (1 + |x2|)−N

Wn,2
ν2N (x) = 2−n2(1 + |〈e2ν2

, x〉|)−N (1 + |x1|)−N (1 + 2−n2 |x2|)−N

Wn,0
N (x) = (1 + |x1|)−N (1 + |x2|)−N (1 + |x3|)−N .

Let

Un
kν,N (x) = 2−k1−k2−k3Wn

kν(2−k1x1, 2
−k2x2, 2

−k3x3)

and similarly define Un,1
kν1,N , Un,2

kν2,N , Un,0
k,N . Then

(4.18)

|∂γ
xK

n
kν(x)| ≤ CγNb

n
kν2−k1γ1−k2γ2−k3γ3Un

kν,N (x)

|∂γ
xK

n,1
kν1

(x)| ≤ CγNb
n,1
kν1

2−n2N2−k1γ1−k2γ2−k3γ3Un,1
kν1,N (x)

|∂γ
xK

n,2
kν2

(x)| ≤ CγNb
n,2
kν2

2−n1N2−k1γ1−k2γ2−k3γ3Un,2
kν2,N (x)

|∂γ
xK

n,0
k (x)| ≤ CγNb

n
k2−n1N2−n2N2−k1γ1−k2γ2−k3γ3Un,0

k,N (x).

Proof. First consider Kn
kν . Using the homogeneity of the multiplier and the decay properties of ψ̂n we

see that

(4.19)
∣∣∣∂N1

ξ1
∂N2

ξ2
〈eν ,∇ξ〉N3

[
φ(ξ)

∫

Iν

gn
k (u)ψ̂n(

ξ1
ξ3

− u1,
ξ2
ξ3

− u2)du
]∣∣∣

≤ C(N1, N2, N3,M) bnkν

2N1n1

(1 + 2n1 |ξ1/ξ3 − u1
ν1
|)M

2N2n2

(1 + 2n2 |ξ2/ξ3 − u2
ν2
|)M

.

Using integration by parts we obtain

2k1+k2+k3 |Kn
kν(2k1x1, 2

k2x2, 2
k3x3)|

≤CNM

∫

[1/2,2]3
(1 + 2n1 |ξ1/ξ3 − u1

ν1
|)−M (1 + 2n2 |ξ2/ξ3 − u2

ν2
|)−Mdξ 2n1+n2Wn

νN (x)

≤CN Wn
νN (x).

In view of the compact support of φ we get the same estimates for the derivatives of the left hand side and

the desired estimates for Kn
kν and its derivatives follow.
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The estimate for Kn,0
k has nothing to do with homogeneity: By the decay properties of ψ̂n we have

∣∣∂γ1
s1
∂γ2

s2
ρn

k (s)
∣∣ ≤ CγN2−(n1+n2)N (1 + |s1|)−N (1 + |s2|)−N

and hence
∣∣∂γ1

ξ1
∂γ2

ξ2
∂γ3

ξ3
[φ(ξ)ρn

k(ξ1/ξ3, ξ2/ξ3)]
∣∣ ≤ CγN2−(n1+n2)N .

The desired estimate for Kn,0
k follows by integration by parts. In the proof of the estimate for Kn,1

k we

replace (4.19) by

∣∣∂N1

ξ1
∂N2

ξ2
〈e1ν ,∇ξ〉N3

[φ(ξ)gn,1
kν1

(ξ1/ξ3, ξ2/ξ3)]
∣∣ ≤ C(N1, N2, N3,M) bnkν

2N1n12(N2+N3−M)n2

(1 + 2n1 |ξ1/ξ3 − u1
ν1
|)M

and argue as above. �

In what follows we shall denote by β̃ a function which is similar to β but equals 1 on the support of

β. Next let χ ∈ C∞
0 (R) be supported in (3/4, 3/4) such that

∑
κ∈Z

χ2(· − κ) ≡ 1. Again let χ̃ ∈ C∞
0 be

defined similarly to χ but equal to 1 on the support of χ. We define the operator An
kν by

Ân
kνf(ξ) = χ(2n1(2k1ξ1 − u1

ν1
2k3ξ3))χ(2n2(2k2ξ2 − u2

ν2
2k3ξ3))β̃

2(2k3ξ3)f̂(ξ).

Lemma 4.5. There is a weighted norm inequality

(4.20)

∫ ∑

k

|Tn
k Lkf(x)|2ω(x) dx ≤ C2n1+n2‖gn

k ‖2
2

∫ ∑

k,ν

|An
kνLkf(y)|2Mnω(y) dy.

Proof. Set Sn
kνµ = Tn

kµA
n
kν , Sn,1

kνµ1
= Tn,1

kµ1
An

kν , Sn,2
kνµ2

= Tn,2
kµ2

An
kν and Sn,0

kν = Tn,0
k An

kν . Then

(4.21) Tn
k Lkf =

∑

ν

[∑

µ

Sn
kνµ +

∑

µ1

Sn,1
kνµ1

+
∑

µ2

Sn,2
kνµ2

+ Sn,0
kν

]
An

kνLkf.

Let Hn
kνµ, Hn,1

kνµ1
, Hn,2

kνµ2
and Hn,0

kν be the convolution kernels of the operators Sn
kνµ, Sn,1

kνµ1
, Sn,2

kνµ2
and Sn,0

kν ,

respectively. Fix N (say equal to 100) and let Un
kν ≡ Un

kν,100 etc. The proof of Lemma 4.4 shows that

|Hn
kνµ(x)| ≤ C

bnkµ

(1 + |µ1 − ν1|2)(1 + |µ2 − ν2|2)
Un

kν(x)

|Hn,1
kνµ1

(x)| ≤ CN2−n2N
bn,1
kµ1

(1 + |µ1 − ν1|2)
Un

kν(x)

|Hn,2
kνµ2

(x)| ≤ CN2−n2N
bn,2
kµ2

(1 + |µ2 − ν2|2)
Un

kν(x)

|Hn,0
kν (x)| ≤ CN2−n1N2−n2NbnkU

n
kν(x).
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We observe that ‖Un
kν‖1 ≤ C is bounded uniformly in ν, n, k. Therefore

∣∣∣
∑

ν

∑

µ

Sn
kνµA

n
kνLkf(x)

∣∣∣

≤C
∑

ν

∑

µ

|bnkµ|
(1 + |µ1 − ν1|2)(1 + |µ2 − ν2|)2

(∫
Un

kν(x− z)dz
)1/2(∫

|An
kνLkf(y)|2Un

kν(x− y)dy
)1/2

≤C
(∑

ν

∣∣∣
∑

µ

|bnkµ|
(1 + |µ1 − ν1|2)(1 + |µ2 − ν2|)2

∣∣∣
2)1/2(∑

ν

∫
|An

kνLkf(y)|2Un
kν(x− y)dy

)1/2

≤C
(∑

µ

|bnkµ|2
)1/2(∑

ν

∫
|An

kνLkf(y)|2Un
kν(x− y)dy

)1/2

≤C2n1+n2‖gn
k ‖2

(∑

ν

∫
|An

kνLkf(y)|2Un
kν(x− y)dy

)1/2

where for the last inequality we have used (4.16). Using also (4.17) we derive the same inequality for the

other three remaining terms in (4.21) and obtain

(4.22)
(∑

k

|Tn
k Lkf(x)|2

)1/2

≤ C2(n1+n2)/2‖gn
k ‖2

(∫ ∑

k,ν

|An
kνLkf(y)|2Un

kν(x− y) dy
)1/2

.

Finally there is the pointwise estimate

(4.23) sup
kν

Un
kν ∗ |ω|(x) ≤ CMnω(x)

and (4.22) and (4.23) imply (4.20). �

Proposition 4.6. There is the weighted norm inequality

(4.24)
∑

k,ν

∫
|An

kνfk(x)|2ω(x) dx ≤ CN0
2(n1+n2)2ǫ′

∑

k

∫
|fk(x)|2MN0

n ω(x) dx, N0 > 2 + 1/ǫ′.

Proof. It is convenient to introduce a decomposition in the ξ3-variable which will give the factor of

22ǫ′(n1+n2). We define for (λ1, λ2) ∈ Z2 operators V nǫ′

kλ by

V̂ nǫ′
kλ f(ξ) = χ2(2k3ξ3 − 2n1ǫ′λ1)χ

2(2k3ξ3 − 2n2ǫ′λ2)f̂(ξ)

Observe that An
kν is a sum of no more then O(2ǫ′(n1+n2)) operators V nǫ′

λ An
kν where 2n1ǫ′λ1 ∈ (1/20, 20)

and 2n2ǫ′λ2 ∈ (1/20, 20). Therefore it suffices to show that for those λ the inequality

(4.25)
∑

k,ν

∫
|V nǫ′

kλ An
kνfk(x)|2ω(x) dx ≤ CN0

∑

k

∫
|fk(x)|2MN0

n ω(x) dx, N0 > 2 + 1/ǫ′,

holds. In order to show (4.25) we first prove an inequality for an analogous problem in two dimensions.
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Lemma 4.7. Let δ ≪ 1 and let m,µ, ρ be integers such that m > 0, 2−mµ ∈ (1/20, 20) and 2−mδρ ∈
(1/20, 20). Let Bm

µ , Cmδ
ρ be the operators acting on functions in R2 defined by

B̂m
µ f(ξ) = χ(2m(ξ1 − 2−mµξ2))f̂(ξ)

Ĉmδ
ρ f(ξ) = χ2(2mδ(ξ2 − 2−mδρ))f̂(ξ)

Let l ≤ max{1,mδ}. Then

∑

µ

∫
|Bm

µ C
mδ
ρ f(x)|2ω(x) dx ≤ C

∑

µ′

∫
|Bm−l

µ′ Cmδ
ρ f(x)|2M (1,2)

m ω(x) dx.

Proof. Let

Rµρ = {ξ; |ξ1 − 2−mµξ2| ≤ 2−m+1; |ξ2 − 2−lρ| ≤ 2−l+1}
R̃µρ = {ξ; |ξ1 − 2−mµξ2| ≤ 2−m+2; |ξ2 − 2−lρ| ≤ 2−l+4}.

Let ξ′ ∈ Rµ′ρ and suppose that |µ − µ′| ≤ 2−l+2. Let aµ−µ′ = (2−m(µ − µ′), 0). Then ξ′ − aµ−µ′ ∈ R̃µρ.

Thus

Rµ′ρ ⊂ aµ−µ′ + R̃µρ

Define

Γ̂ml
µµ′ρf(ξ) = χ(2m−10(ξ1 − 2−m(µ− µ′) − 2−mµξ2))χ̃(2mδ(ξ2 − 2−mδρ))f̂(ξ).

and define C̃mδ
ρ similarly as Cmδ

ρ (with χ replaced by χ̃). Then

∑

µ

|Bm
µ C

mδ
ρ f(x)|2 ≤ C

∑

µ′

∑

µ

|C̃mδ
ρ Bm

µ Γml
µµ′ρC

mδ
ρ Bm−l

µ′ f(x)|2.

An integration by parts argument shows that the convolution kernel of C̃mδ
ρ Bm

µ is bounded by CN times

wm,δ
µN (x) =

2m

(1 + 2m|〈x, eµ〉|)N

2mδ

(1 + 2mδ|〈x, e⊥µ 〉|)N

if eµ = (1,−2−mµ), e⊥µ = (2−mµ, 1) and if 2−mµ ≈ 1. Now the argument which lead to (4.22) and Lemma

4.3 show that for fixed µ′

∑

|µ−µ′|≤l

∫
|C̃mδ

ρ Bm
µ Γml

µµ′ρC
mδ
ρ Bm−l

µ′ f(x)|2ω(x) dx

≤CN

∑

|µ−µ′|≤l

∫
|Γml

µµ′ρC
mδ
ρ Bm−l

µ′ f(x)|2wm,δ
µρ ∗ |ω|(x) dx

≤CN

∫
|Cmδ

ρ Bm−l
µ′ f(x)|2 sup

|µ−µ′|≤l

wm,δ
µρ ∗ wm,δ

µρ ∗ |ω|(x) dx.

The asserted inequality is an immediate consequence. �
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We now conclude the proof of Proposition 4.6. First, since the maximal operator M
(1,2)
m is invariant

under two-parameter dilations there is a scaled variant of Lemma 4.7. Also we can apply Lemma 4.7 twice,

in the x1 − x3 and in the x2 − x3 plane, the same applies to the scaled variant. We obtain the inequality

∑

k,ν

∫
|V nǫ′

kλ An
kνfk(x)|2ω(x) dx ≤ C

∑

k,ν′

∫
|V nǫ′

kλ An−l
kν′ fk(x)|2Mnω(x) dx

if l = (l1, l2) and l1 ≤ n1ǫ
′, l2 ≤ n2ǫ

′. We iterate and apply this inequality N times; here N ≤ 1 + 1/ǫ′.

The result is an estimate of the left hand side of (4.25) by an expression involving a scaled version of the

square-function in Lemma 4.3 (with A = diag(2k1 , 2k2)). Namely if Γn,δ
kνλ is defined by

̂Γn,δ
kνλf(ξ) =

2∏

i=1

[
χ2(2mδ(2k3ξ3 − 2−mδλi))χ

2(2mδ(2kiξi − 2−mδνi))
]
f̂(ξ)

we obtain the inequality

∑

k,ν

∫
|V nǫ′

kλ An
kνfk(x)|2ω(x) dx ≤ CN

∑

k,ν,λ′

∫
|Γn,ǫ′

kνλ′fk(x)|2MN
n ω(x) dx, N ≥ 1 +

1

ǫ′
,

from which (4.25) follows by an application of Lemma 4.3. �

The asserted weighted norm inequality (4.10) now follows by an application of Lemma 4.5 and Propo-

sition 4.6. This concludes the proof of Theorem 4.1.

Remark. The weighted inequality in Proposition 3.6 implies

∥∥∥
(∑

kν

|An
kνLkf |2

)1/2∥∥∥
4
≤ Cǫ2

(n1+n2)ǫ‖f‖4

with Cǫ = O(A1/ǫ) as ǫ → 0, some A > 1. The geometrical arguments by Córdoba [12] show that in

fact Cǫ = O(ǫ−a) for some a > 0. It would be interesting to find positive operators Nǫ, being uniformly

bounded on L2 such that

∑

k,ν

∫
|An

kνLkf(x)|2ω(x) dx ≤ Cǫ−2a2(n1+n2)2ǫ

∫
|f(x)|2Nǫ[ω](x) dx.

An analogous problem is to find weighted norm inequalities for radial multipliers and associated maximal

functions in R2, with a positive operator N . In this context weighted inequalities with a nonpositive N
have been proved in [1].

5. H
p-estimates

The purpose of this section is to prove Theorem 1.7. The proof relies on a result on multiparameter

Calderón-Zygmund theory obtained by the authors in [4] (extending earlier results by Journé [20] and

Fefferman [17]). There it is shown for a large class of singular integral operators T that the boundedness

of T on certain scalar and vector-valued rectangle atoms implies the boundedness on Hp.
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To be precise let R be an interval in Rd (i.e. a rectangle parallel to the coordinate axes), and let Q be

a nonnegative integer. In what follows, Q will always be ≥ [1/p− 1] (the largest integer ≤ 1/p− 1). Then

a is called a (p,Q,R) rectangle atom if a is supported in R, if

∫

R

|a(x)|2dx ≤ |R|1−2/p

and if for m = 1, . . . , d

∫

Rm

a(x1, . . . , xm, xm+1, . . . , xd)x
r1
1 . . . xrm

m dx1 . . . dxm = 0, r1, . . . , rm = 0, . . . , Q

for almost all (xm+1, . . . , xd); furthermore assume that the analogous cancellation properties hold for all

permutations of the variables x1, . . . , xd.

Now let Rd = Rd1 ⊕Rd2 , and let I be an interval in Rd1 . Then we need the notion of an L2(Rd2)-valued

(p,Q, I)-rectangle atom. This is simply a function a supported on I × Rd2 such that

∫∫
|a(x′, x′′)|2dx′′dx′ ≤ |I|1−2/p

and such that for m = 1, . . . , d1

∫

Rm

a(x1, . . . , xm, xm+1, . . . , xd1+1, . . . , xd)x
r1
1 . . . xrm

m dx1 . . . dxm = 0, r1, . . . , rm = 0, . . . , Q

for almost all (xm+1, . . . , xd); furthermore assume that the analogous cancellation properties hold for all

permutations of the variables x1, . . . , xd1
.

Now let T : C∞
0 (Rd) → (C∞

0 (Rd))′ be an operator with Schwartz kernel K, with the property that

K(x, y) is locally integrable in {(x, y);xi 6= yi, i = 1, . . . , d}. Let Φ be a smooth bump function on R

supported in [1, 4] such that
∑∞

l=−∞ Φ(2−ls) = 1 for s 6= 0. For ℓ = (ℓ1, . . . , ℓd1
), 1 ≤ d1 ≤ d, define the

operator T ℓ by

T ℓf(x) =

∫
K(x, y)

d1∏

i=1

Φ(2−ℓi |xi − yi|) f(y) dy.

Theorem 5.1 [4]. Let 0 < p ≤ 1, s > d(d+ 1)/2 and Q ≥ [1/p− 1], M > 2. Suppose that

(1) T is bounded on L2(Rd) with operator norm ≤ A.

(2) For all d1 ∈ {1, . . . , d−1}, for all L ∈ Zd1 , for all intervals I in Rd1 with sidelengths 2L1 , . . . , 2Ld1 ,

for all L2(Rd−d1) valued (p,Q, I) rectangle atoms a and for all ℓ = (ℓ1, . . . , ℓd1
), ℓi > 1, i = 1, . . . , d1

(5.1) ‖TL+ℓa‖Lp(Rd1 ,L2(Rd2 )) ≤ A(

d1∑

i=1

ℓi)
−s/p.

(3) The condition analogous to (5.1) is valid for every permutation of the variables x1, . . . , xd.

(4) For all L ∈ Zd, for all intervals R in Rd with sidelengths 2L1 , . . . , 2Ld , for all (p,Q,R) rectangle

atoms a and for all ℓ = (ℓ1, . . . , ℓd), ℓi > 1, i = 1, . . . , d− 1

(5.2) ‖TL+ℓa‖Lp(Rd) ≤ A(

d∑

i=1

ℓi)
−s/p
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Then T extends to a bounded operator from the multiparameter Hardy space Hp(Rd) to Lp(Rd) and the

operator norm is bounded by C A. Here C depends only on p, d and s. If T is translation invariant then

T is bounded on Hp(Rd).

We now consider convolution operators T given by Fourier multipliers m via T̂ f(ξ) = m(ξ)f̂(ξ). For

k ∈ Zd1 let Tk be the operator with Fourier multiplier m(ξ)
∏d1

i=1 β(2kiξi). Variants of the standard

Marcinkiewicz multiplier theorem on Hp spaces follow from Theorem 5.1 and

Proposition 5.2. Suppose that 0 < p ≤ 1, α > 1/p − 1/2 and let Q, ǫ be such that Q ≥ [1/p − 1] and

0 < 2ǫ < min{α− 1/p+ 1/2, Q− 1/p+ 2, 1}.
(1) Suppose that 1 ≤ d1 ≤ d− 1 and

(5.3) sup
t∈(R+)d1

sup
(ξd1+1,...,ξd)∈Rd−d1

‖β(1) ⊗ · · · ⊗ β(d1)m(t1·, . . . , td1
·, ξdi+1, . . . , ξd)‖H2

α(Rd1 ) <∞.

Then for all L ∈ Zd1 , for all intervals I in Rd1 with sidelengths 2L1 , . . . , 2Ld1 , for all L2(Rd−d1)

valued (p,Q, I) rectangle atoms a, for all ℓ = (ℓ1, . . . , ℓd1
), ℓi > 1, i = 1, . . . , d1 and for all k ∈ Zd1

(5.4) ‖(Tk)L+ℓa‖Lp(Rd1 ,L2(Rd−d1 )) ≤ C A

d1∏

i=1

2−ǫ(ℓi+|ki|).

(2) The inequality analogous to (5.4) holds for every permutation of the variables x1, . . . , xd.

(3) Suppose that

(5.5) sup
t∈(R+)d

‖β(1) ⊗ · · · ⊗ β(d)m(t1·, . . . , td·)‖H2
α(Rd) <∞.

Then for all L ∈ Zd, for all intervals R in Rd with sidelengths 2L1 , . . . , 2Ld , for all (p,Q,R) rectangle

atoms a, for all ℓ = (ℓ1, . . . , ℓd), ℓi > 1, i = 1, . . . , d, for all k ∈ Zd

(5.6) ‖(Tk)L+ℓa‖Lp(Rd) ≤ C A
d∏

i=1

2−ǫ(ℓi+|ki|).

If (5.5) is valid then m is bounded and (5.3) and the analogous conditions obtained by permuting variables

are also satisfied. In particular (5.5) implies that T is bounded on the multiparameter Hardy space Hp(Rd)

and the operator norm is bounded by C A.

Proposition 5.2 is proved by standard arguments, see for example the proof of [4, Proposition 5.1].

The last conclusion of Proposition 5.2 follows of course by Theorem 5.1. The reader should note that the

multipliers in Theorem 1.7 generally do not satisfy the assumption (5.5), even in the two-dimensional case.

Proof of Theorem 1.7. We may clearly assume that p ≤ 1. Again since characteristic functions of half

spaces with boundaries parallel to the coordinate axes are Fourier multipliers of multiparameter Hardy

spaces there is no loss of generality in assuming that m is supported in {ξ; ξi ≥ 0, i = 1, . . . , d}. We use

the notations introduced in the proof of Theorem 4.1. Let Tn
k is as in (4.9) and set Tn =

∑
k∈Zd Tn

k . We

shall show that Tn is bounded on Hp(Rd) with operator norm bounded by

(5.7) Cs sup
k∈Zd

‖gn
k ‖Lp(Rd−1)2

(n1+···+nd−1)(
2
p
−1)(1 + n1 + · · · + nd−1)

(s+d)/p.
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Since
∑

n∈(N0)d−1

sup
k∈Zd

‖gn
k ‖Lp(Rd−1)2

(n1+···+nd−1)(
2
p
−1)(1 + n1 + · · · + nd−1)

(s+d)/p

≤ Cǫ sup
k∈Zd

‖gk‖Hp
α

if α > 2/p− 1

the conclusion of Theorem 1.7 follows.

We have to verify the hypotheses (5.1) and (5.2) of Theorem 5.1 for the operator Tn. The mixed norm

inequalities are a straightforward consequence of Proposition 5.2. In order to see this let

Fh(ξ) = h(ξ1/ξd, . . . , ξd−1/ξd)

where h is compactly supported in [1/2, 2]d−1. Then for α ≥ 0 one has the inequalities

(5.8) sup
ξd

‖β(1) ⊗ · · · ⊗ β(d) Fh(·, ξd)‖H2
α(Rd−1) ≤ C‖h‖H2

α(Rd−1).

and

(5.9) sup
ξ1

‖β(1) ⊗ · · · ⊗ β(d) Fh(ξ1, ·)‖H2
α(Rd−1)

≤ C

{
‖h‖H2

α(R) if d = 2

‖h‖H2
α(Rd−1) + sups1

∑d−1
k=2 ‖Dα

2 . . .Dα
k−1D2α

k Dα
k+1 . . .Dα

d−1h(s1, ·)‖L2(Rd−2) if d ≥ 3.

It is straightforward to verify (5.8) and (5.9) if α is a nonnegative even integer and the general case follows by

analytic interpolation. Note also that by a version of Sobolev’s imbedding theorem Hp
β(Rd−1) ⊂ H2

α(Rd−1)

if p ≤ 2 and β ≥ α + (1/p − 1/2). Using this and (5.8), (5.9) we see that (5.3) is verified for the case

d1 = d− 1. The other cases follow similarly. An application of Proposition 5.2 implies (5.2).

The main work in the proof consists in the verification of (5.1). Assume that a is a (p,Q,R) rectangle

atom and R is an interval of dimensions 2L1 × · · · × 2Ld . Then we shall prove that

(5.10) ‖(Tn
k )L+ℓa‖p ≤ C2(n1+···+nd−1)N

d∏

i=1

2−ǫ(ℓi+|ki−Li|) ‖gn
k ‖∞, N > 2(1/p− 1/2)

for some ǫ > 0 and also

(5.11) ‖(Tn
k )L+ℓa‖p ≤ C2(n1+···+nd−1)(2/p−1)‖gn

k ‖p.

We shall use (5.11) only if maxj{kj − Lj},maxj{ℓj} ≤ Cp(1 +
∑

i ni) where Cp is a large fixed constant

while (5.10) is a remainder estimate. In fact applying the Sobolev inequality (4.8) with d1 = 0 we see that

(5.10) and (5.11) imply
∥∥∥

∑

k∈Zd

(Tn
k )L+ℓa

∥∥∥
p

≤ C

( ∑

max{|ki−Li|,i=1,...,d}≥

ǫ−1(2N+2/p)(n1+···+nd−1)

2(n1+···+nd−1)(Np+1)
d∏

i=1

2−ǫp(ℓi+|ki−Li|) ‖gn
k ‖p

p

+
∑

max{|ki−Li|,i=1,...,d}<

ǫ−1(2N+2/p)(n1+···+nd−1)

min
{
2(n1+···+nd−1)(2−p); 2(n1+···+nd−1)(Np+1)

d∏

i=1

2−ǫp(ℓi+|ki−Li|)
}
‖gn

k ‖p
p

)1/p

≤ C 2(n1+···+nd−1)(2/p−1) (1 + n1 + · · · + nd−1)
(s+d)/p

(ℓ1 + · · · + ℓd)s/p
‖gn

k ‖p
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and it follows that Tn is bounded on Hp with norm not exceeding (5.7).

The verification of (5.10) is easy. Simply observe that

∣∣∂γ
ξ [φ(ξ)mk,n(ξ)]

∣∣ ≤ Cγ2n1γ1+···+nd−1γd−1(2n1γd + · · · + 2nd−1γd)

and an application of Proposition 5.2 yields (5.10).

We now verify (5.11) and assume for convenience d = 3. We show that (using the notation introduced

in (4.15))

‖(Tn
kν)L+ℓa‖p ≤ Cbnkν 2(n1+n2)(1/p−1)‖gn

k ‖p(5.12)

‖(Tn,1
kν1

)L+ℓa‖p ≤ CNb
n,1
kν1

2n1(1/p−1)2−n2N‖gn
k ‖p(5.13)

‖(Tn,2
kν2

)L+ℓa‖p ≤ CNb
n,2
kν2

2−n1N2n2(1/p−1)‖gn
k ‖p(5.14)

‖(Tn,0
k )L+ℓa‖p ≤ CNb

n
k 2−(n1+n2)N‖gn

k ‖p(5.15)

Using (4.16) and (4.17) with r = p we see that (5.11) follows from (5.12-15). We shall only verify (5.12);

the remaining cases are similar or simpler.

We divide the rectangle R (which has dimensions 2L1 ×2L2 ×2L3) into
∏3

i=1 max{1, 2Li−ki} congruent

intervals Rµ
k of dimensions

min{2L1 , 2k1} × min{2L2 , 2k2} × min{2L3 , 2k3}

and centers yµ
k . Let be aµ

k = aχRµ

k
and let

RL+ℓ
µ = {x; 2Li+ℓi−2 ≤ |xi − (yµ

k )i| ≤ 2Li+ℓi+2, i = 1, 2, 3}.

Then it is easy to check that if y ∈ supp aµ
k , x ∈ RL+ℓ

µ then for Un
kν,N as in Lemma 4.4

Un
kν,N (x− y) ≈ Un

kν,N (x− yµ
k )

and therefore by Lemma 4.4

‖(Kn
kνΦL+ℓ) ∗ a‖p ≤ C

(∑

µ

‖(Kn
kνΦL+ℓ) ∗ aµ

k‖p
p

)1/p

≤ CN bnkν

(∑

µ

∫ [∫
Un

kν,N (x− y)|ΦL+ℓ(x− y)||aµ
k(y)| dy

]p

dx
)1/p

≤ CN 2(n1+n2)(
1
p
−1) bnkν

(∑

µ

∫

RL+ℓ
µ

2−(n1+n2+k1+k2+k3)(p−1)
[
Un

kνN (x− yµ
k )

]p
dx

×
[∫

|aµ
k(y)|dy 2(k1+k2+k3)(

1
p
−1)

]p)1/p

.

(5.16)

Using Hölder’s inequality we see that

(5.17) 2(L1+L2+L3)(
1
p
−1)

(∑

µ

3∏

i=1

[
min{1, 2(ki−Li)(1−p)}

]
‖aµ

k‖
p
1

)1/p

≤ C 2(L1+L2+L3)(
1
p
−1)‖a‖1 ≤ C |R| 1p− 1

2 ‖a‖2 ≤ C ′.
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We perform the linear volume preserving change of variables

(v1, v2, v3) = (x1, x2, 2
k1−k3u1

ν1
x1 + 2k2−k3u2

ν2
x2 + x3)

and see that for N > 1/p∫

RL+ℓ
µ

2−(n1+n2+k1+k2+k3)(p−1)
[
Un

kν,N (x− yµ
k )

]p
dx

≤ C

∫
2−k1−n1

(1 + |2−k1−n1v1|)Np

2−k2−n2

(1 + |2−k2−n2v2|)Np

2−k3

(1 + |2−k3v3|)Np
dv ≤ C ′.

Therefore if ki − Li ≤ 0, i = 1, 2, 3, the desired estimate (5.12) follows from (5.16) and (5.17).

In all other cases we use similar arguments together with the cancellation properties of the atom. For

example assume k1 ≤ L1, k2 ≤ L2, k3 ≤ L3. Since∫∫
aµ

k(y1, y2, y3)y
r1
1 y

r2
2 dy1dy2 = 0

for almost all y3 for 0 ≤ r1, r2 ≤ Q we see using Taylor’s formula that

(Kn
kνΦL+ℓ) ∗ aµ

k(x1, x2, x3) =
∫ 1

0

(1 − s)Q

Q!

∫ ( ∂

∂x3

)Q+1

(Kn
kνΦL+ℓ)(x1−y1, x2−y2, x3−(yµ

k )3+s((y
µ
k )3−y3))((yµ

k )3−y3)Q+1aµ
k(y) dy ds

and using Leibniz’ rule and Lemma 4.4 we see that
∣∣(Kn

kνΦL+ℓ) ∗ aµ
k(x1, x2, x3)

∣∣ ≤ C2L3(Q+1) max{2−k3(Q+1), 2−(L3+ℓ3)(Q+1)}Un
kν,N (x− yµ

k ) bnkν ‖aµ
k‖1.

Similar considerations in the other cases (where we use that aµ
k has cancellation in the yi variable

whenever ki ≥ Li) lead to

‖(Kn
kνΦL+ℓ) ∗ a‖p ≤ CN

3∏

i=1

[
min{1, (2−ℓi + 2Li−ki)}

]Q+1

× bnkν

(∑

µ

∫

RL+ℓ
µ

2(n1+n2+k1+k2+k3)(p−1)
[
Un

kν,N (x− yµ
k )

]p
dx‖aµ

k‖
p
1

)1/p

.

As above it is easy to check that for N > 1/p∫

RL+ℓ
µ

2−(n1+n2+k1+k2+k3)(p−1)
[
Un

kν,N (x− yµ
k )

]p
dx

≤ C min{1, 2L1+ℓ1−k1−n1}min{1, 2L2+ℓ2−k2−n2}min{1, 2L3+ℓ3−k3}.
Therefore

‖(Kn
kνΦL+ℓ) ∗ a‖p ≤C2(n1+n2)(

1
p
−1)bnkν

3∏

i=1

[
min{1, 2(Li+ℓi−ki)/p}min{1, (2−ℓi + 2Li−ki)Q+1}

]

× 2(k1+k2+k3)(
1
p
−1)

(∑

µ

‖aµ
k‖

p
1

)1/p

≤C2(n1+n2)(
1
p
−1)bnkν2(L1+L2+L3)(

1
p
−1)

(∑

µ

‖aµ
k‖

p
1

3∏

i=1

[
min{1, 2(Li−ki)(

1
p
−1)}

]p
)1/p

≤C2(n1+n2)(
1
p
−1)bnkν |R|

1
p
−1‖a‖1

≤C2(n1+n2)(
1
p
−1)bnkν .

This proves (5.12) and concludes the proof of Theorem 1.7. �
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18. J. Garćıa-Cuerva and J. L. Rubio de Francia, Weighted norm inequalities and related topics, North-Holland Math. Studies
116, North-Holland, Amsterdam, New York, Oxford, 1985.

19. C. Herz and N. M. Rivière, Estimates for translation invariant operators on spaces with mixed norm, Studia Math. 44

(1972), 511–515.
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(1983), 81–108.

25. E. M. Stein, Singular integrals and differentiability properties of functions, Princeton Univ. Press, Princeton, N.J., 1971.

26. H. Triebel, Eine Bemerkung zur nicht-kommutativen Interpolation, Math. Nachr. 69 (1975), 57–60.
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