SPHERICAL MAXIMAL OPERATORS ON HEISENBERG
GROUPS: RESTRICTED DILATION SETS

JORIS ROOS  ANDREAS SEEGER  RAJULA SRIVASTAVA

ABSTRACT. Consider spherical means on the Heisenberg group with a
codimension two incidence relation, and associated spherical local max-
imal functions Mg f where the dilations are restricted to a set E. We
prove LP — L7 estimates for these maximal operators; the results de-
pend on various notions of dimension of F.

1. INTRODUCTION

The purpose of this paper is to extend recent LP-improving results for
local spherical maximal functions on the Heisenberg group in [24] to the
setting of restricted dilation sets. To fix notation, for n € N, we let H"
denote the Heisenberg group of Euclidean dimension d = 2n+ 1. We denote
coordinates on H" by z = (z,Z) € R?"® x R. The group law is given by

roy=(z+y,z+y+zTJy),

where J is an invertible skew symmetric 2n x 2n matrix. The Heisenberg
group is equipped with automorphic dilations given by &;(z) = (tz, t2z).

Let p be the normalized rotation-invariant measure on the 2n — 1 dimen-
sional unit sphere in the horizontal subspace R?" x {0}, centered at the
origin. The automorphic dilations map this subspace into itself. We define
the dilates of u by (u¢, f) = (u, f o &), where t > 0. In this paper we study
the averaging operators

[ () = /52711 flz —tw,z —tzT Jw)du(w),

which were introduced by Nevo and Thangavelu [21].

Let E C [1,2]. We are interested in determining the set of exponent pairs

(%, %) € [0,1)? so that the local maximal operator

Mg f =sup|f * pu]
teE

extends to a bounded operator LP(H") — L9(H"™). For the full maximal
function supy.q|f * p¢| sharp LP(H") — LP(H") bounds for n > 2 were
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established by Miiller and the second author [19] and independently by
Narayanan and Thangavelu [20]. The problem of LP — L9 boundedness
of the local version M| 5 was investigated by Bagchi, Hait, Roncal and
Thangavelu [2], who were motivated by applications to sparse bounds and
weighted estimates for the corresponding global maximal function, as well
as for a lacunary variant. LP — L9 results that are sharp up to endpoints,
for both the single averages and full local maximal function, were proved in
our previous paper [24].

In the present paper we ask what happens if we take for £ more general
subsets of [1,2]. This question was recently considered in the Euclidean
setting in [I], [23] (also see the earlier paper [26] for the case p = ¢). While
the LP — LP results depend on the Minkowski dimension of E the new
feature of [1], [23] is the dependence on various different notions of fractal
dimension. These dimensions play a congruent role in the Heisenberg case.
For E C R let N(E,0) be the minimal number of intervals of length ¢
needed to cover E. To state our main result we first recall the Minkowski
and quasi-Assouad dimensions. We say that E has Minkowski dimension
dimps E = § € [0,1] if for every € > 0 there exists ¢ > 0 such that for every
6 >0,

(1.1) N(E, ) < c.07P7=.

The Assouad spectrum is a continuum of fractal dimensions defined in [§]
(see also [10, 9, [7]): for 6 € [0,1] let dimp 9 E denote the smallest number
~ such that for every € > 0 there exists ¢. > 0 such that for every interval
I with |I| > 6% we have

(1.2) N(ENT1,8) < c. (|I]/8)7+.

As 0 — dimp g E is non-decreasing the limit dimga F := limg »; dimp g £
exists and is called the quasi-Assouad dimension, see [16].

To identify classes of sets for which our LP-improving results are sharp
we shall need the concept of quasi-Assouad regularity in [23] (see also [1] for
a related notion). A set E C [1,2] with f = dimy F and v = dimga F is
called quasi-Assouad regular if either v = 0 or diimAﬁ E = dimga £ for all
0 € (1—p3/vy,1). Observe that always 0 < § <~ < 1.

Let R(B,~) denote the closed quadrilateral with corners
Q1= (070)3 QZB = (%7 %),

(1.3) on
_ (2n+1-8 2 _/ n(2n+1) 2
Q3= (2n+37,8’ 2n+37,3)’ Quy = (2n2+3n+2'y’ 2n2+£1+27)'

Theorem 1.1. Let n > 2, E C [1,2] with dimy E =  and dimga E = 7.
Then the following hold.

(i) Mg : LP(H") — L9(H") is bounded for (%, %) in the interior of R(B,7),
and on the line segment [Q1,Q2.3).
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Q4n/
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F1GURE 1. The quadrilateral R(8,7).

(i) If E is quasi-Assouad regular and (%, %) & R(B,7), then Mg does not
map LP(H") to LY(H™).

Note that up to endpoints we recover the corresponding sharp results for
E =[1,2] in [24]. Further examples of quasi-Assouad regular sets include
convex sequences, self-similar sets with § = v (such as Cantor sets) and
many more; see [23, §6]. Note that we do not cover the case n = 1; indeed
it is currently unknown whether the full circular maximal operator on the
Heisenberg group H' is bounded on any LP for p < oo and LP-improving
estimates are even more elusive (see [3] [14] for results on Heisenberg-radial
functions).

The definitions of Minkowski and Assouad dimension in and
allow positive or negative powers of logd~!, or log(§/|I|)~!, and are there-
fore not suitable for the formulation of endpoint results at the boundary of
R(B,7). The following theorem covers such endpoint results for 0 < § < 1.
We define functions Xﬁﬁ, XE,A, :[0,1] — [0,00), by

(1.4a) X11,3(0) = 0° N(E, 9),
(1.4b) Xh(8) = Sg(a/uy)’YN(E N1,6).

As in [23] we refer to Xﬁ 5 as the § -Minkowski characteristic of £/ and to XE,’y
as the y-Assouad characteristic of E. If these characteristics are bounded
then we obtain LP — L? boundedness of Mg on the edges of R(3,), with
the possible exception of corners Q2 g, @33 and Q4.

Theorem 1.2. Letn>2, EC[1,2],0<8<1and 5 <~ <1 and assume
that supg 5.1 XI\E/I,B((S) < 00, SUPgs<1 XE:Y((S) < 00. Then the following hold.

(i) Mg : LP(H") — LIH") for (1, 1) € R(8,7) \ {Q25, Q3.5 Qur }-
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(ii) Mg is of restricted weak type (p,q) for all (%, %) e R(B,7).

The case § = 0 corresponds to single averages for which a stronger result
was proved in [24]. The main ideas for the LP improving results in Theorems
and follow roughly the outline in the Euclidean case [25] [15] [, 23]
(even though the outcomes are quite different) and there are also similari-
ties to the treatment of the full maximal operators on Heisenberg groups H"”
(n > 2) in [24]. However there is an important difference which makes the
proof of the estimate at ()4, harder. Concretely, in the case of a restricted
dilation set we can no longer efficiently use the space-time rotational cur-
vature properties for the averages (x,t) — f * p(x) which we relied on in
[24]. Unlike in the Euclidean case the fixed time averages f * p; do not have
nonvanishing rotational curvature but are Fourier integral operators whose
canonical relations project with fold singularities. As noticed in [19] this
does not severely impact the outcome for the LP — LP-inequalities for the
maximal functions, however it creates technical problems in the proofs of
the sharp LP-improving estimates for (1/p,1/q) away from the diagonals (cf.

).

Further remarks and results. It is natural to ask what happens if in the
above results one drops the assumpton that E be quasi-Assouad regular.
There are many interesting examples, in particular unions of quasi-Assouad
regular sets are typically not quasi-Assouad regular. In the case of finite
unions, one can deduce from the above results that the closure of the sharp
region of boundedness exponents is given by a polygon arising as the intersec-
tion of finitely many quadrilaterals of the form R(8,7). When considering
countable unions, more complicated convex regions can arise. The following
result is a direct analogue of a corresponding result in the Euclidean setting.

Theorem 1.3. Let n > 2 and let Tg be the type set of Mg, i.e. the set
of (%7 %) such that Mg : LP(H™) — LI(H") is bounded. Then the following
hold.

(i) Suppose that E = UijilEi where E; are quasi-Assouad reqular sets with
dimy E; = B; and dimqa E; = ;. Then Tg = N, R(Bi, vi)-

(i) If dimy E = B, dimqa E = v, then R(B,7v) C Tz C R(S, B).

(iii) For every closed convex set T satisfying R(5,v) C T C R(S, ) there
is a set B C [1,2] with dimy E = 8 and dimga E = v such that T =T .

In particular, (ii) and (iii) characterize exactly which closed convex sets
can arise as T for some E C [1,2]. It turns out that the essential sharpness
of the results for quasi-Assouad regular dilation sets in Theorem [I.1] allows
one to give a proof of Theorem[L.3|that is entirely analogous to the arguments
in [23, §5-7] and we will therefore not repeat the details of the constructions
here.

Our results have applications to sparse bounds for global maximal op-
erators given by f — supcz Supiep |f * por,]. We refer to the detailed
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discussion in the paper by Bagchi, Hait, Roncal, Thangavelu [2] who show
how (partial) results on LP-improving esimates imply corresponding partial
results on sparse bounds for the lacunary and full maximal functions (see
also [24], §8] for a discussion of an essentially sharp version of such results).
In the same way our results imply sparse bounds for the global maximal
operators with restricted dilation sets.

Finally we remark that the behavior of maximal operators associated
with the codimension two spherical means considered here is quite different
from the behavior of maximal functions associated with hypersurfaces in
the Heisenberg group. Of particular interest here is the Kordanyi sphere, for
which the sharp LP improving properties of the local full maximal operator
up to endpoints were obtained in a recent paper by one of the authors [27],
see also partial results about averages in previous work [11] by Ganguly and
Thangavelu.

Summary of the paper.

— §2| contains some known preliminary reductions.

— §3|contains the proof of the basic bounds at the points Q1, Q2 3, Q33
and states the estimates proving part (i) of Theorems (1).

- @ is concerned with the estimate at (Q4,. We follow the main ar-
gument in §4] which is the reduction to an L? — L9 estimate. This
is handled by TT* arguments similar to [I], but we have to over-
come difficulties caused by the presence of fold singularities. These
arguments complete the proof of part (i) of Theorems

— In §5| we prove the key kernel estimate, Proposition

— In §6[ we prove part (ii) of Theorems by testing the operator

on some old and new counterexamples.

Notation. Partial derivatives will often be denoted by subscript. P denotes
the (2n—1) x 2n matrix P = (I2,—1 0). By A < B we mean that A < C- B,
where C is a constant and A ~ B signifies that A < B and B < A.
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have improved the exposition.

2. PRELIMINARIES

Via suitable rotation and localization arguments (as explained in Section
2.1 of [24]), we may assume that f is supported in a small neighborhood
of the origin and the measure p is supported in a small neighborhood of
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the vector eg,. Splitting y = (y/,y2,) and using the parametrization w =
(w', g(w")) with g(w') = /1 — |w'|? near the north pole ey, of the sphere, it
suffices to consider maximal functions sup,cp |Rf(x,t)| where the integral
operator (generalized Radon transform) R is defined by

Ri(e,2,6) = [ XtV 62" (.8, 8t
here x is smooth and supported on
(2.1) {(@ zon, Z,t,y) [V <€, 2| <€ |an —t| <€ |T] <€}

The choice of € will be determined by considerations in the proof of Lemma
below, depending on the size of derivatives of phase functions and the
choice of J, but it is not necessary to track this.

(2.2a) sz, t,y) = 20, — tg(=5%),
(2.2b) §(z,t,y) = 2 + 2T JPTY + (w20 — tg(*F5)) (2T Jezn),

where P = (IQn_]_ O) is the matrix of the projection on R2n omitting the
last coordinate. We will need that
(2.3) g(0) =1, Vg(0) =0, ¢"(0) = —Is,_1, ¢""(0) = 0.

It will be convenient to introduce a nonlinear shear transformation in the
x-variables

¥(z) =z,
B(x) =T — zan T Jeay.
By a change of variables it suffices to prove the relevant estimates for

Af(z,t) = Rf(x(x),t). The operator A has a Schwartz kernel which is a
co-normal distribution given by

K(%Ly) - Xl(xatvy/)éo(s%(%t;y/) - anag(m7t7 yl) - g)a

where x1(z,t,y') = x(x(x),t,y), do is Dirac measure at the origin in R? and
(S 8)l (@) = (8°",8) () 1. that is

S () = Ty — t vy ,
(2.4) (z,t,y") = w2 — tg(*5%)

S(x,t,y) =z + (T I)(PTy — tg(*FL)ean),

with ¢ as in (2.3). Note that the function y; is still supported in a set of
the form (12.1)), where we replace € by O(e). It is standard to express dy via
the Fourier transform

(2.5) K(z,t,y) = xi(z,t,y) / G @tnd) s,
feRr?
where the phase function ¥ is given by
(26) \Ij(-ra ta Y, 9) = 92n(52n(xa tv y/) - y2n) + 5(5’(:@ t) y,) - g)

and 0 = (6an, 0).
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We now perform a dyadic decomposition of this modified kernel. Let (y be
a smooth radial function on R? with compact support in {|#] < 1} such that
Co(0) = 1for |0] < 1/2. Weset (1(0) = (o(6/2) —Co(0) and ¢;(0) = ¢1(2'776)
for j > 1.

We set, for £k =0,1,2,...

Mﬂ@=/&@mWWLW@wwWMW@$f@@.
S

For k > 1 this can be rewritten, by a change of variables and the homogeneity
of the phase function with respect to 6, as

1) A =2 [aGety) [ Qo vemn b )y

0cR2

As already observed in [19] these Fourier integral operators lack “rota-
tional curvature” (i.e. the assumption that the associated canonical relation
is locally the graph of a diffeomorphism). Indeed from Hérmander [13] the
“rotational curvature matrix” is given by

Rotcurv(¥) = (k\g"”y 3359)
oy Yoo

which is equal to

92715%3;, + ng/y/ 0 0 S%? Sy
Gel, JPT 0 0 1 0
0 0 0 0 1

2n
(SJ/ )T -1 0 0 0
(Sy)T 0 -1 0 0

One calculates Siln = —Vg(x/;yl), S2n = Vg(x/_y/) and

020ty + 0 Sy =
t (o, + égTJegn)g”(#) +0 [PJPT + B(z,t,y')]
where the (2n — 1) x (2n — 1) matrix B(x,t,y’) is given by
B(z,t,y) = PJegan(x/;yl).

With
(2.8) o(x,0) = Oy + 02T Jeay

we see that Rotcurv(¥) equals

tlog" (L) +G(PIJPT+B) 0 0 —Vg(¥F¥) «
fel JPT 0 0 1 0

0 0 0 0 1

Vg(ZFE)T -1 0 0 0

« 0 -1 0 0
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and by using elementary row operations and the skew-symmetry of .J, it is
not hard to see that

det (Rotcurv(¥)) = det (t 1ag”( ) +60(PJPT+ B — BT)>

Note that PJPT + B — BT is a skew-symmetric matrix of order 2n — 1 and
is thus not invertible. Using [24 Lemma 3.1], we conclude that

tlog" (2= + 6 (PJPT + B — BT)

is invertible if and only if 7& 0. Indeed from the calculations in §3 of [24]
and [19, Lemma 5.4] it follows that

det(Roteurv(¥)) ~ o(x, ).

It is natural to use an idea in [22] to further decompose in terms of the size

of o (see also [6], [19], [3]). For k> 1and 1 < ¢ < | %], we define
(1—¢o(30(x,0))) if€=0,
(2.9) up(z,0) = < (280 (z,0)) if 1 <0< |k/3],

C2¥Blo(x,0))  if €= |k/3],

k
so that Zéié ug = 1 and uy is supported where |o| ~ 27¢ when 1 < ¢ <
|k/3]. Set

(2.10) AP f(x) = AR f(a,t)
= 2% / xi(z,t,y) /9 y G (20)ug(z, )2 V00 A £ (y)dy
<

Furthermore, for k > 1 and 0 < ¢ < [£], we let MY f(z) = sup,cp |AY f ()],

(2.11) My (@) = sup | AV f(@)] and Mipf(a) = 3 My
€
OSZSLgJ
Since for all E C [1,2] the operator MY maps LP — L4 forall1 < p < ¢ < o0

it will be ignored in what follows.

2.1. The operators 0; A%t versus A**. Finally, in order to estimate the max-

imal operators Mgé, we will rely on estimates for 9, A f(z,t). As in [19],
[3] it will be crucial to observe that 9;¥ lies in the ideal generated by o,
indeed

(2.12) 8V (x,y,0) = 0, (tg(25L)) o (z, 6).
In view of ([2.9)), [2.10)), (2.12) the operator 2¢=%9, A%* will usually have the

same quantitative behavior as AF*
To expand on this let K*¢(x,t) be the Schwartz kernel of A¥¢, i.e.

(2.13) KM (@, ty) = 22 | 2 V@tuOa (2 ¢,y 0)dd,
R2
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with U as in ([2.6) and ag(z,t,y/,0) = (2m) x1 (2, t,y')C1(20)ue(z, 0).
For the t-derivatives we compute

8thk’€(x,t,y) = i23k/8t\I/($,t,y,9)ei2k‘1’($’t’y’9)ag(x,t,y’,@) do

+ 2%/eﬂkq](gj’t’y’e)ﬁtw(az,t,y’,0) deb.

Observe that dsas(x,t,y',0) = (Oex1(x,t,y))(1(20)up(z,0) and its deriva-
tives satisfy the same quantitative estimates as ay. Regarding the first sum-
mand we use (2.12)). The expression 9(tg(**)) does not depend on # and

its derivatives satisfy uniform bounds. Since |o(z,0)| ~ 2~¢ we see that the
modified amplitude function

ao(z,t,y,0) = 2'0(2,0)au(z, t, 9/, 0)

satisfies the same estimates as ay, with a similar statement for the deriva-

tives. As a consequence of these considerations we see that the operator

2_k+Z8tAf £ will always satisfy the same estimates as A*¢, and we usually
. k,l

omit a separate proof for 9, A;"".

3. BASIC ESTIMATES
We use the representation (2.13)) for the Schwartz kernel ¥ of A®¢ and
integration by parts yields the estimate
2k—f
(1 + 264 yap — S2(x, t, ) )N
2k:
X — .
(1 + 21@@ - S(:C) t, y/) - QTJeQH(yWL - SZn(x7 t, yl))‘)N

This estimate yields

(3.1) \Kk’g(a:,t,y)] < Cpn

sup sup |[K*(z,t,y)| < 2257,
te[1,2] =y

sup sup / K5 (2, y)dy < 1,
te[L,2] @

sup sup / K5 (2, 1, y)lde < 1,
te[1,2] v

where for the third inequality we used the specific expressions for S$27, S in

(2.4)). Tt follows that

k.t k¢
(32) A o + A Loz S 1,
(3-3) AP N 1o S 22575,

We also have the L? fixed-time estimate

2n

k¢ —k2n=l
(3.4) AL fll 2 mensny S 2772 22| f]|2,
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for0 <4< % Display was established in [19] via estimates for oscil-
latory integrals with fold singularities in [6], see also the detailed treatment
of a relevant extended class of oscillatory integral operators in [3, §6]. By
interpolation we get

Proposition 3.1. Letn > 1 and t € [1,2].
(i) For 1 <p <2,

oot LS S
(3.5) A fllp <27 7 27| fllp
and for 2 < p < oo,

N —k2m=l L
(3.6) IAF Fllp S 27577 20 £l
(i1) For 2 < q < oo,
(3.7) 45N, 5 252G g

(iii) The same estimates hold for 2549, AP in place of AFL.

Proof. Part (i) follows by interpolating between , while Part
(ii) is a consequence of interpolating between (| D and For part (iii)
see the considerations in

The above estimates give the following bounds for the maximal operator
M.

Proposition 3.2. For alln = 1,2,3,... we have the following bounds for
Schwartz functions f on R?"H1,

(i) For 1 < p < oo,
in(1 L min(%
(38) ML, S N(E, 20 k)t pgmhen=minGopr)otminGoir)y gy

(ii) For 2 < q < o0,

3 _
(3.9) IMEEFll, S N(B,20%) /a2 11£lly-

(iii) If dimy E = 3, then for every e > 0

L

_k(2n—1)min(%,p,)2Zmin(%,i)Hpr7 1<p<oo

_p\Bte
IMEEF), Sc 2579572

and

IMELFllg < 2055 =28 09MG D) p) 2 < g < oo

Proof. The fundamental theorem of calculus implies the pointwise bound

27}64»[

My f@) < s (A @1+ [ oAl ds).

tEZ) ¢
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where Z._, consists of the left endpoints of a minimal collection of intervals
of length 27%+¢ that covers E. With this in hand, parts (i) and (ii) follow
directly from Proposition Part (iii) is immediate since

N(E, 27’{4’@) 58 2(k5*‘€)(ﬁ+€)

when dimy; E = . O
For ¢ > 0, we introduce the operator
(3.10) my =y M
k>3¢

Proposition 3.3. Let n > 2, 8 € (0,1] and assume that
supxﬁ 5(0) = supéﬁN(E, 0) <A < 0.
>0 6>0

_ 2n—1 2n—1 _ /2n+1-p 2
Let Q2.8 = (52775 3aetrp) ol Q38 = (5,35 m735)-

(i) If (1/p,1/q) is one of the points Q2. 5, Q3 5 then there is a(p,q) > 0
such that

[R5 Fllzase S A2 DY ] g
and Mg : LPY — LT js bounded.
(i) If (1/p,1/q) belongs to the open line segment connecting Q25 and
Q3. then
|Mefllzer < AN lzer
for all r > 0, in particular Mg is bounded from LP to L9.

Proof. We observe that part (ii) follows from part (i) by real interpolation
(note that the line connecting Q2 5 and ()3 3 has a positive finite slope).
We have, for 1 < p < 2,
k.t —k(2n—1—2n=148y g 148
M fllp £ 27205 g

by Proposition [3.2] (i). By Bourgain’s restricted weak type interpolation
trick (see [4], or the appendix of [5]), applied to 9%, defined in (3.10), we
get

o(1— 1 2n—1
|omet],., . S 2T D, per = 2252
and we have 1 — 1;—’3 —ﬁ% 1+B so that we can sum in £ > 0 if n > 2.

The asserted restricted weak type inequality for Q)2 g follows.
To prove the estimate for ()3 3 we note that for 2 < ¢ < oo we get from

Proposition (i)
k0 1/qok(2—2 (=2
| ME Flly S A7/ 72" 210
and again by the restricted weak type interpolation result,

75_1 _
MG g S 2% ) Fllys o = 2L

=£)
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We have 3(1—6 —-1= 3;% which is negative for n > 2. Summing in ¢ yields

the desired result on Mg. O

Finally, we state the main estimate at the vertex

1y _ (2n+1) 2
(3'11) Q4,7 (p4 Q4) (2n2+3n+27’ 2n2+£1+2'y)'
Proposition 3.4. Letn > 1, v € (0,1) and assume that

supXAﬂ/((S) =sup sup (6/|I|)"N(EN1,0) < Ay < 00.
>0 0>0 |I|>6

Let py, q4 as in (3.11)). Then

1 v
(312) M fllanoo Sp AY P2 fllpa,  for b < MY,

If in addition n > 2 then also
(3.13) 1M fllpasce S AY P f ]| rat.

The assertion for Mg follows from (3.12)) after summing in ¢. Inequality
(3.12) will be proven in the next section as a consequence of Proposition
below.

4. ESTIMATES AT (4,

After a decomposition of F into a finite number of subsets we may assume
that

(4.1) diam(E) < e,

with € as in . Given a non-negative integer m, let Z,,(E) denote the set
of all dyadic intervals of the form (v27™, (v + 1)27™) (with v € Z) which
intersect E. Then one observes that #Z,,(E) < N(E,27™). Thus, for any
interval I of length at least 27" we have

#Ln(ENI) S XK, (27 1727

Further, let Z,,(E) denote the set of left endpoints of intervals I, € Z,,(E),
endowed with the counting measure. The main result of this section is the
following Stein-Tomas type estimate for A**.

2(n+7)

Proposition 4.1. Let n > 1 and g5 = . Suppose

sup Xfﬁ(é) <Ay < oo,
>0

where XE:Y((S) is as defined in (1.4b). Then for any by > g&;z;, we have

7":(22;1 71)2(1)1 .

(4.2) AR L2 mens1) pas oo ment1x 24 _p) Str 2
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Proof that Proposition implies Proposition [3.4). By the fundamental the-
orem of calculus,

k0 k0 20
My F@) < s (A S@1+ [ oA, @)l ds).

te€EZK_y

Thus, taking an L%°° norm on both sides and using Proposition [£.1] we
conclude that

k.t
HME fllzasee < HAk’Zf|’quv°°(R2n+lxz,H)
2[ k

[ 10 @) oo
_f(2ntl n (1=
(43) < 27 9 () gt
We can now use Bourgain’s trick to interpolate between the above es-
timate and the case ¢ = oo of (3.9)), with ¥ = % € (0,1), a =

%m and small € > 0. Observe that a > 0 if n > 2. Note that

2n41 n(1—7) 11
(1=9)(1,0,2,=1) + 9(3, 55,1 = q572< ) T8 = (g 0 —at de)

which implies the desired estimate . U

Outline of the proof of Proposition[{.1. We can use a partial scaled Fourier
transform

k =0 _
(v, 020, 0) / F(y yon, g)e ™% Wanl2nt00) gy,
to write

AR f (2, 1) = 22 / (0S40t gy (2. 1,1/, 0) Fy(y/, Oam, B)dy'do.

By Plancherel’s theorem
(4.4) 1 Fxll2 = 27 27 f12-

Note that ay is supported on a set where |¢| is small and [#] = 1. We
make a finite decomposition of the symbol ay = )", as; where each ay; is
supported on a set of diameter O(e). It will be convenient to rename the
variables (3, 0) = (w', way,w) and replace Fy (v, 02, @) by a general function
w — f(w). We are therefore led to consider the oscillatory integral operator
Tk defined by

TS, t) = [ P (o b)),
R

with the phase function
(4.5) O(z,t,w) = wy, S?(x, t,w') + wS(x,t,w'),
and symbol b, which is a placeholder for one of the ay;. Thus we have

be(x,t,w) = x1(x, t, w )1 (2W)up(x, wop, W)
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with ug as in (2.9). b, is smooth and supported in a set of diameter O(e)
where |[W'| < €, 2] < € |zon — t] S €, |Z] < € [(wap,w)] ~ 1 and where
|t — t°] < e for some fixed ¢°, and finally the size of

(4.6) o(x, Wop, W) = way, + w T Jeg,

(i.e. o asin (2.§)) is about 27
In view of (4.4) we see that (4.2) follows from
_k2ntl
(4.7) HTk’Z”LQ(RQn-&-l)A)Lq‘g,oo(RQn-&-lXZkié) S} 2 a5 2%1.
We remark that for 2¢ < ¢! the estimate follows by the consideration in
[24], indeed then we can apply a theorem about oscillatory integrals with
Carleson-Sjolin conditions (see [28], [L7]). However in view of the properties

of the amplitude function by for large £ these theorems are no longer directly
applicable. In what follows we shall only treat the case for large £.

In order to show (4.7) it will be convenient to work with a subset of Z_,
with some additional separation condition. Given small v such that

n(l—
(4.8) 0<v<i(by— 2((n+1§)

we replace Zj_, with an arbitrary subset Z;°", satisfying the separation
condition

(4.9) tie Z}P t£1 = [t—1{] > 2k,

It is clear that Z;_, can be written as a disjoint family of sets Zj_,;, for
i=1,...,N with N < 2% where each Z,_,, satisfies the condition (4.9).
By Minkowski’s inequality it is therefore enough to prove

. _k2n+1 K'n(lf’y)ﬁ*u’y
(4.10) ”T ? ”LQ(RQn-’—I)Hqu,oo(RQn-FIXzzepe) S 2 a5 27 2(nt+7)

for any subset Z;*, of Zj,_, satisfying (4.9). In what follows we fix such a
subset Z;",. We define the operator Skt acting on functions g : R2"+1 x
ZP, — C by

SElg(,ty = Y TUT) (g ))(),

e Z;®,
where Ttk’ﬁ f(x) =T f(x,t). By a TT* argument, ([4.10) is a consequence
of the following estimate

Z”(l—V)+V7
2 n+y

_2k2n+1
a5

k0
(4'11) HS ’ gHL%’C’o(R?"“xZZefé) S; 2 HgHngﬂl(R%HXzZC_p[)'

For j > 0 and ¢t € Z;",, we define

2] ,(t) = {t' € 2P, 2R <y /) < oAV
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and for j = 0 weset Z)_,(t) = {t}. Note that Zg_g(t) is empty, if j > k—(+4.
Let

SHCURED DI AR R

tezl_,(t)
and observe that
kl k.0
Sht=3"gr"
j=0

We claim that Sj]?’g satisfies for 2 < ¢ < co the estimates

k,l
(412) 115779l pagensrxzger,)

5 2—k4n+2 26((”_’/‘5‘1)5_(”_”))2]‘(w—

q gl o g2nsr zzev, )

which follow by interpolation from

ke —k(2 loj
(4.13) I15; QHLQ(R%sz;ej’E) < 27k )g QWHQHH(R%sz;ej’Z)
and
k,é —l(n—v)o—1
(4.14) 1S5 gl oo mensrwzzen ) S 27279 g]| 1 i zew ).

Clearly, if ¢ > ¢5 = 2(nT+7) we can sum in j in (4.12)) to get
k,l
(4.15)  [IS™ gl La(men+1x z5v))

< 2—k4”+2 24((n—u+1)§—(n—y

! ))HQHLq’(Rszrlszip[), q > gs.

Moreover for ¢ = g5 we can apply Bourgain’s interpolation trick to obtain
the restricted weak type inequality (4.11)).

To prove (4.13]) we estimate

k¢
||Sj g||L2(R2”+1><ZZe_pe)

(X [| = o] w)”

teZ°P, tez] ()

. . 1/2
(X L0 X e )
teZ°P, tez] ,(t)
. . 1/2
SO #8.0 X I e T e lgC 13
teZ;, tez] ,(t)

< A2 IAT | g Lo raniay gmew .

Here we have used the fact that

k¢ —k k.t
1T 22 S 270 1A N o0 S

and that #nge(t’) < A9277 for all ¢ € Zli%' This takes care of (4.13)).

N
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Inequality (4.14)) is a direct consequence of the following kernel estimate,
which shall be proved in

Proposition 4.2. Let k >0 and 0 < ¢ < [k/3]. Let Kf’; denote the kernel
of Ttk’Z(Tf’K)*, which is given by

(4.16) Kff(m,a“:) = / e"Qk(@(I’t’w)*‘I’(f’f’w))bg(sc,t,w)bg(:i*,tu,w) dw.
R2n+1

)

Let v > 0 and
(4.17) 2t-kort < |t — | < 1.
Then for 0 < { < [g], we have
ymif(x,i)! < 2%(1 4 28|t — )™

Remark 4.3. One can run the above arguments also for n = 1. A favorable
L? — L7 bound for Ay, follows if ¢ > 2(1 + «) because then the j-sum of
the terms in (4.12]) converges for the case n = 1 of . The exponent of
2¢ in is now positive for all v > 0 when ¢ < 4, and we have to allow
the range ¢ < k/3. Thus we get a positive result when —g + %(% -1)< -2
which is the case for ¢ < 14/5. This restricts the range of allowable v to
2(1+7) < 14/5,1i.e. v < 2/5. As a result one obtains that Mg maps L?(H")
to LY(H') if dimga £ < 2/5 and ¢ < 14/5. We know from considerations in
[12, 24] that this result is not sharp; this point will be addressed elsewhere.

5. PROOF OF PROPOSITION

In order to estimate the oscillatory integral (4.16|) using stationary phase
arguments we expand the phase ®(z,t,w) — ®(Z,f,w) as

(x — )TV, ® (2,1, w) + (t — 1)o@ (%, 1, w) + O(|(z — &,t — 1))

and thus, for stationary phase calculations it is natural to consider the cur-
vature property of the surface

El‘,t = {vx,tq)(xv tv w)}

where w is close to a reference point w® with (w')® = 0. These consider-
ations are similar to those in the proof of Stein’s result on Carleson-Sjolin
type oscillatory integral operators (see [28, [29] and also [I8]). A potential
difficulty here is that for large ¢ and small |z — &| + |t — £| the amplitudes
do not a priori seem to satisfy the appropriate derivative bounds for an ap-
plication of the stationary phase method. However, a closer examination of
the curvature properties of ¥, ; and their interplay with the geometry of the
fold surface {o = 0} will reveal that this is not a significant obstacle in our
specific situation.
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5.1. Curvature of ¥, ;. We analyze the w-derivatives of
(5.1) E(x,t,w) = Ve 1 (2, t,w) = wn, Vi 1 S2 (2, t,w') + 0V 41 S (0, t,w'),

for a fixed (z,t). These calculation will be the basis for a stationary phase
estimate in We will only consider the case of large ¢ i.e. when

(5.2) o = o(x, wap, W) = way, + wx'Jea,

is small (Jo| < 27%) since the other cases have already been discussed in [24].
We need some modifications because of the lack of good differentiability
properties of the amplitudes for large /.

For the sake of completeness, we include the calculation of the curvature
matrix below, and then establish the invertibility of this minor. Using ,
the expressions for S?7, S, and the skew-symmetry of J we calculate that
E(xz,t,w) is equal to

—Vg(“",_tw/) PJPTw — tg(@)PJegn - (gTJegn)Vg(@)
1 o el JPTw'
9«(7%) g (57 )zT Jean
where
(5.3a) g«(2') = (', Vg(2)) — g(2),
with
(53b) g*(o) = _17 VQ*(O) = 07 gi/(o) = _I2n—1'

The oscillatory integral operator f ~ T*f(-,t) := S, T f(-,t) is an
operator with a folding canonical relation (i.e. two-sided fold singularities),
and the fold surface is parametrized by o = 0 (see [24, Remark 3.2], [19]
and the discussion after (2.7)) in the analogous setting of Fourier integral
operators, for more details).

We compute, for j = 1,...,2n — 1, the partial derivatives (recalling the
expression for o from (5.2))),

t100; V(X)) + wPJ(ej + 0;9(X 7 Jean)
— wel Je;

/

_t—lo.ajg*(m’—tw )

/

—Vg(Z52)
— 1
=Wy, — 0 5



18 J. ROOS A.SEEGER R. SRIVASTAVA

and, with @0 = wan41,

PJPTW — tg(¥5% ) PJey, — 2T Je2, Vg(£72)
el JPTw!

= —
—W2n+4+1 T 1

' —w’

g*( 7 )ITJBQn
For 2/ = w', using the properties of g, h in (2.3]), (5.3b) we get

ij i = (—t_la + u_)J)ej,

O2n—1 PJPTWw —tPJey,
= _ 1 - _ e, JPTw
T g 0 el 1

-1 —zTJeop

Using the defining equations of a unit normal vector IV,
(N,Ep) =0, i=1,...,2n+1

at the north pole (' = w’), we get

(5.4a) 0= (N,Zy,) = ~tloa; +walJej, j<2n-—1.
(5.4Db) 0=(N,Zu,,) | = Qop — Q2ng2,

T =w
and

(540) 0= <N, E'w2n+1> !
QT(PJPTw' — tPJea,) + aopel JPTw' 4+ agpi1 — agntoxT Jeoy,

where NT = (a/T, agp,, @). Equation (5.4d) above expresses ag,41 in terms
of a and asgy,42 and turns out to be not really relevant to our calculations.
Since |N| = 1 we have |a| ~ 1.

The second derivative vectors are given by
~t7200;,Vg(£72) — wt I PJegn 0% 9(2 )
0

Ew-w = )
Wk 0

!

t200% g, (27)

for1 <j,k<2n-—1, and
Ewjuw, =0, i 2n < g,k <2n+ 1.

Moreover, for j =1,...,2n — 1,
t19; V(T2
- 0
Swjwan = 0 )

/

—t10;g.(* )
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and,

PJej+ PJex,djg(Z5%) + t 12T Je2,0,Vg(Z52)

T .
= — e2n‘]e]
SWjwan41 T 0

/

—t 12T J e, 0;g: (T7Y)

We evaluate at ' = w’, using ¢”(0) = ¢7(0) = —I2,—1, ¢"(0) = 0, and see
that the components of the curvature matrix CV at 2’ = w’ are given by
(N, Ewjuw;) = t_l(a')TPJegnw — t 20400,

<N7 ijwk>

' =w’

=0, ifj#£k,

z'=w’

for 1 < j,k <2n — 1. Moreover for 1 < j <2n —1,

1

(N, Ewjwan) e —t" g,
(N, Ewjwanis) e aTJej —t Lozl Jean,
and
(NBuwyu)| =0, jike{2n2n+1}.

Thus, the curvature matrix CV at 2’ = w’ with entries (N, Eww;), 1 <14,5 <
2n +1 (Wlth Won4+1 = TD) is

eN _ clap—1 PA
T \VATPT 0

)
z'=w’

where the scalar ¢ and the 2n x 2 matrix A are given by
(5.5) ¢ = 2y _ Qamiao
A= (1o Ja - Tomg)

(and PA is the (2n — 1) x 2 matrix obtained by deleting the last row of A).
Using [24, Lemma 3.1] and the fact that |a| ~ 1, it can be checked that ||
is uniformly bounded away from zero, which implies that the rank of the
curvature matrix is 2n (indeed by we have PJa = 0 when 2’ = o/
and o = 0, hence rank(PA) = 1).

As a consequence of the above we obtain for the restricted matrices

_ 3 o 2
(5.6) det (Dgu(EN)) | == 2|t2| #0
T =w
(5.7) det (D2, (2, N)) =1 £0
z'=w’

with ¢ as in (5.5)).
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5.2. Proof of Proposition continued. Recall that

Kk’g(x,i) = /emk((b(x’t’w)(b(j’{’w))bg(x,t,w)bg(f,f, w) dw.

b
For ease of notation, we set
X = (a,t), X = (&,1),
and
Bo(X, X, w) = by(, t,w)be(2, L, w).
Recall that the amplitude By is supported in the set where
(58)  lwon, @) ~ 1, [ < e 2| < e [#] <e |7 <e, 7 <e,
|Ton —t] <€, |Fon — 1| <€ [t—1F <€
and
\wap 4+ @ 2T Jean| ~ 27 & |way + 0 2T Jean)|.
We fix a reference point (X°, w®) where
X° = (0,23,,2°,t°), w®=(0,0,2°)

(so that o becomes 0 at (X°,w®), and let N° be one of the unit normals to
Y.xo at w = w°, i.e. we have

(5.9) (N, 0w, Vx®(X°,w®)) =0, for 1 <j<2n+1.
Then By is supported in a ball of radius O(e) centered at (X°, X°, w®).
For a unit vector « define

1
U(X, X, d,w) = / i - Vx®(X +s(X — X),w)ds.
0

Then we can express the phase function corresponding to the kernel Kff as

)

(5.10) 2%(B(X,y)—®(X,y)) = NU(X, X, ﬁ,w), with A = 28| X — X]|.

Define for all 7 € §27+!
I)nf (X> X? ﬁ) = / ei/\\II(X7X7U7w)BZ(X7 X? w)dw
and note that ¥ is a smooth phase, in all arguments.

Lemma 5.1. Let v > 0. For e in (5.8]) sufficiently small the following holds,
for 2t > e 1, X > el
(i) For min{|@ — N°|,|i@ + N°|} > 3/* we have

Zne(X, X, )] < Care2 (2270 M.
(ii) For min{|@ — N°|, |@ + N°|} < €'/2 and 2 < AZOT we have

Too(X, X, @) <c A7
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iii) For min{|@ — N°|, @ + N°|} < €1/2, we have
(iii) ; :

2n—1

Tao(X, X, @) <c 27072

1
If in particular 2° > \20F9) then
Too(X, X, @)| Se 227

Remark. The conclusions in part (ii), (iii) also hold for v = 0 but in (ii)
require a stationary phase estimate for amplitudes x) satisfying endpoint
Calderén-Vaillancourt bounds, i.e. d%(xx(w)) = O(Al®!/2). For our applica-
tion it suffices to take v > 0.

We first show that Lemma implies Proposition We take X # X
and U = |§:§|, and A = 2F|X — X|. Assume min | &:; + No| > 3/4. We
have |t — £| > 267%2"¢ and get from part (i) of Lemma the estimate, for
N >n,

[ Zael S 27027 7N Sy 210D @M X - X)) @X - X))
S; (2k|X - X‘)fn2€(n7171/(N7n)).

The bound |Z, 0| < (2| X — X|)~™ follows if we choose N large enough.
X-X
| X-X]|

lemma, and the bound in Proposition [1.2] is now established for the range
1

2l < (2F|X — X|)20F | fe. |X — X| > 22t(H) -k,
Next assume ¢ # £, | X — X| < 22((04+»)~k 1y the assumed t-variation we
also have the lower bound and | X — X | > 2t(+)=k which is needed to apply

part (i) of Lemma for min | é:% + No| > €%/4. In the opposite range

If min | + Ny| < €%/ the appropriate bound is in part (ii) of the

we apply part (iii) of the lemma. Note that the assumption 2¢ > )\ﬁ
is now equivalent to the required | X — X| > 22004~k We also note that
02, (Bu(X, X, w)) = O(1).

This finishes the proof of Proposition once Lemma [5.1]is verified.

5.3. Proof of Lemma . Let V be the linear space perpendicular to N°;
then V%X w)§> is invertible as a map from R?>"*! to V. Hence

|V (@, Vi ®(X°, w)) e | > €@ — (@, N°YN°| = €¥/4,

and by expanding Vw\II(X,)v(, i, w) about (X°, X° @,w°) we get

Vol (X, X, i@, w) — Vi (@, Vi O(X°,0))| = 0(e).

w=w°

This implies that for |# — N°| > €3/* and ¢ small

Vo ¥(X, X, @, w)| 2 e/
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for (X, X ,w) in the support of By. Since the higher w-derivatives of ¥ are
bounded and since

(5.11) ) [Be(, t,w)] = 020

(0%
(anvw
an integration by parts yields the bound Z, , = O(27¢(A27%)") as asserted.

We now turn to (ii) and apply a stationary phase argument with respect
to the w-variables. By our curvature calculations the (2n x 2n) Hessian
matrix D3, ((N°, Vx®(X°, w, w)))w:wo is invertible, for |u — N°| < €!/?
we get a matrix norm estimate

| D2 ,((N°, Vx®(X°, w0)))wewe — D2, U(X, T, w)|| < e/t

and hence (given that e is small) we see that D2  W(X, i, w) is invertible,
with uniformly bounded inverse. Note that by our assumption on ¢ and
A we have 92By(X, X,w) = O(\N/Z+29)) and so for v > 0 a standard
application of the stationary phase method in the w variables gives the
estimate |Zy /| = O(A™").

For (iii) we argue similarly but in view of the unfavorable differentiabil-
ity properties of By with respect to ws, we are freezing both the ws, and
w variables. We now have that the (2n — 1) x (2n — 1) Hessian matrix
D2, (<N°, Vx®(X°, w, wap, w)>)w:wo is the identity matrix and by a per-
turbation argument as above we see that D2, ,W(X, @, w) is invertible. Since
o does not depend on w’ we have uniform upper bounds for the w’-derivatives
of the amplitude. We can therefore apply the method of stationary phase
in the w'-variables and since the (wg,,w)-integral is extended over a set

of measure O(27) we obtain the asserted estimate |Zy | = O(27°\~ o5 ).
1

The second estimate in (iii) is immediate since the inequality 2¢ > A2+

2n;1 S 2[[/)\7”. D

is equivalent with 274\~

6. NECESSARY CONDITIONS

In this section we prove the sharpness of Theorem for Assouad regular
sets E. Regarding the line connecting ()1 and ()2 g this is just the necessary
condition p < ¢ imposed by translation invariance and noncompactness of
the group H". The necessary conditions for the segments @2 3,Q3 3 and
(QQ1Q4, are quite similar to the consideration in the Euclidean case. However
the example for the segment Q)3 Q)4 , is substantially different from a Knapp
type example for co-dimension two surfaces in the Euclidean case (see also
[24] for a simplified version for the full maximal operator); this indicates a
new phenomenon on the Heisenberg group.

Given § € (0,1), let Z5(F) denote the set of all dyadic intervals of the
form [v6, (v 4 1)6) (with v € Z) which intersect E, and let Z5(E) denote a
subset of E which contains exactly one t € EN I for every I € Zs(E). Let
B = dimy F, and v = dimqa F, respectively.
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6.1. The line connecting Q25 and Q3 3. For any € > 0 there exists a set
A. = {6;:j=1,2,...} with limj_,c §; = 0 such that N(F,§) > §7*¢ for
0 € A.. For 6 € A, let fs be the characteristic function of Bjgs, the ball of
radius 100 centered at the origin. Then

I 5]l ~ 6 TD/P,

For 1 <t < 2 we consider the sets
Rsv = {(z,2) : lla| — t] < 6/20, || < §/20}.
Then |Rs;| 2 6% Let Xyt = {w € §?"! : |z — tw| < §/4} which has
spherical measure ~ §2"~1.
If x € Rsy and w € ¥, then |z — tw| < 0 and using the skew symmetry
of J we get
|z — taTJw| < |Z| + |27 J (tw — )| < 36.
Thus, for x € Rsy,
forpled) = [ fole— to, — o) duw) 2 27,
S2n—1
Passing to the maximal operator, we set
Rs = Uiezs(p)Ro -
We have |Rs| > 62N (E, ) > 6778, Further, for € Rs, there exists a
unique t(z) € Z5(E) such that | f5 % puy( ()] > 62"
This yields the inequality
52n715(2+576)/q < 5(2n+1)/p'
We set 6 = ¢; and let j — oo, and since € > 0 was arbitrary we obtain the
necessary condition

2= _ 2n+1
(6.1) £ ton— 1> 2L
that is, (1/p,1/q) lies on or above the line connecting Q2 3 and Q3 3.

6.2. The line connecting Q1 and Q4. For this line we just use the coun-
terexample for the individual averaging operators, bounding the maximal
function from below by an averaging operator. Given t € [1,2], let g5 be
the characteristic function of the set {(y,9) : ||y| —t| < 104, || < 105}. Thus

”gzs,t’ D S./ 62/]7'
Let z = (i’ j) be such that ‘§| S 5 and |j| S 5 For any w € S?n—l’ we
have that ¢|zTJw| < 26. Thus

||z — tw| — ¢| < 26,
’i“ - thJw‘ < |z| + tlzTJw| < 106

implying that |gs+ * o4(x)| 2 1. This yields the inequality §@nth)/a < 52/p
which leads to the necessary condition

1 2 1
(6.2) 2 Il
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that is, (1/p,1/q) lies on or above the line connecting @1 and Q4.

6.3. The line connecting Q3 and Q4. Here we assume § > 0 (and there-
fore v > 0) since Q30 = Q4,0. By a change of variables, we can assume

that
1 0 I
J =3 (—In 0/’

with I, being the n x n identity matrix.

Let € > 0. By the definition of quasi-Assouad regularity there exists
a sequence {d;}32, of positive numbers with lim;_, J; = 0 and intervals

I; C [1,2] of length 6? with @ = 1 — 3/~ such that
— 1-0)(e—
(6.3) N(EN1;,8;) > (8;/|;])77 = 8=,
We let P. denote the set of pairs (d;,1;) and fix (6,1) € Pe. Set
(6.4) ¢ =01=0/2

Let a be the right end point of the interval I and let f be the characteristic
function of the set

{(2.2) ¢ 1241 S .12 S < llzal — al S 3 llzzal — al S 8,121 S 87,

where z = (21,2,) € R" x R" and z; = (2, 2,) € R"! X R, 2z = (2], 200) €
R"~! x R. Then

(6.5) 1fllp S (726501 (g 1=0F2) 1,
For each t € [1,2], t < a we define the set
Ry = {(z,2) : |2)] S 61 [an] S 07 |2] £ 677, [I(2n, w20)| + ¢ —a| S 0}

Clearly meas(Rf) =~ (5¢71)2"7252%%. Note that there is a constant C > 1
such that R% and R% are disjoint if [t — ¢/| > €. We choose a covering of
E N1 by a collection J of pairwise disjoint intervals, each of length ¢ and
intersecting EN 1. Let J = {I,})_; be a maximal 2C$-separated subset of

intervals in J. For each I, pick t, € I, N E. Then Rfs” and Rg”' are disjoint
if v#1/. Also

(6.6) N =#J > N(ENILSJH).
We now prove the lower bound
(6.7) Mgf(z, &) > 6" for (z,7) € RY.
To see (6.7), we need the lower bound
(6.8) £+ el @) 2 6" for (a,7) € RY.
To this end observe that, given (z,z) € Rg and for w € $?"~! such that

il S5 1w S 6, (@ won) — ek | < 61,
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we have
2y + twj] S, o+ twy] S¢
and
T+ teTJwl < 17|+ Ll — 2wl + L —
|2+ taTJw| S |Z] + 3|aw) — zwi| + 5[Tnwan — Tanwn|
< 146 _ Tan _ _ Tn
SO0+ |an (wan — 1) T e (Wn [

S 51—9 + !%!51_9 + ‘x2n‘51—6 S 51—6'

Also for i = n, 2n, we compute
lx; + twi|2 = |xz]2 + tzlwiIQ + 2tx;w;
< ’xn|2 + ’x2n’2 + 2t|(2p, T2n)| + 2t(wiw; — [(2n, T2n)])
< ((@n, wan)| + t)2 + 2t|(xn,m2n)](mwi — 1)
< (|(n, 2n)| + )% + 2] (20, 20)|(|wi| — 1)
< (|(@n, z2n)| + )% + 2t] (25, 220) | (| (W, w2n)| — 1)
= (s 220)| + 1)+ 26 @y 20) (/1 — 7 — [ 2 — 1).

As ||(xp, x2n)| +t — a] < J, we obtain
|(|(n, @20)| +)* = a®| S,
|2t(96m$2n)|\/1 = Jwp? = w2 = 1] S (Jt = al + O) (|wi]* + [w;[*)
S (1 +90) <0,

where we use |I| = 0% = 62, This implies
||zi + twi]2 - az\ <9

and hence ||z; — tw;| — a| < d. Thus, for (z,z) € R}, we have

£, @) = / @+t T+ taTJw) du(w) 2 22500 = gn(-9)

S2n—1

and is proved. Hence follows.
The lower bound implies

N 1/q
|Mflly > (3 6"~ meas(Ry) )
v=1

> (5n(1_9)N(E NI, 5)1/q((5§—1)2n—252+6)1/q
> gn(1=0) 5 (1+0)n+(1-0)(e=7)+1)

Thus we obtain the necessary condition for LP — L4 boundedness

§7(1-0) 54 (1LHO)n+(1=0)(e=1)+1) < 57 (n(1-6)+2))
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for all (6, 1) = (0;,1;) € P.. Taking the limit as j — oo and using that € > 0
can be chosen arbitrarily small we obtain the necessary condition

n(l—0) + (1+9)n—;/(1—9)+1 > n(l—p9)+2

which using § = 1 — 3/~ is rewritten as
B 1 B 1(n8
(6.9) CHie-Dn+1-8) < L(F+2).

In the preceding inequality we get equality for the points Q3 5, Q4 in (1.3)
and thus expresses that (1/p, 1/q) has to lie on or above the line passing
to @3, and Q4.
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