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Abstract. We prove endpoint results for sparse domination of transla-
tion invariant multiscale operators. The results are formulated in terms
of dilation invariant classes of Fourier multipliers based on natural lo-
calized Mp→q norms which express appropriate endpoint regularity hy-
potheses. The applications include new and optimal sparse bounds for
classical oscillatory multipliers and multi-scale versions of radial bump
multipliers.

1. Introduction

The purpose of this paper is to prove new endpoint bounds in multiscale
sparse domination for certain scale invariant classes of translation invariant
operators. Interesting partial endpoint sparse bounds are known in some
cases (see for example [18, 30]), but they seem to be generally missing in sit-
uations where the sharp Lp-bounds rely on Hardy-space or BMO techniques.
Model cases for these situations are given by oscillatory Fourier multipliers,
for which we obtain optimal endpoint sparse bounds in Theorem 1.6 below,
and multi-scale extensions of radial δ-bumps (see Theorem 1.8).

1.1. Background and definitions. We begin by reviewing some definitions
(see the introduction of [5] for more details). Fix a lattice Q of dyadic cubes
in the sense of Lerner and Nazarov [38, §2]; this implies, in particular, that
the dyadic cubes at a fixed scale are half-open pairwise disjoint cubes, and
that every compact set is contained in some Q ∈ Q. For f ∈ L1

loc, Q ∈ Q

and 1 ≤ p <∞, we set 〈f〉Q,p = (|Q|−1
∫
Q |f(y)|p dy)1/p. Given 0 < γ < 1 a

collection S ∈ Q is called γ-sparse if for every Q ∈ S there is a measurable
subset EQ ⊂ Q so that |EQ| ≥ γ|Q| and the sets EQ with Q ∈ S are pairwise
disjoint. Given a γ-sparse family S of dyadic cubes, and 1 ≤ p1, p2 <∞ the
corresponding sparse form is defined by

ΛS
p1,p2(f1, f2) =

∑
Q∈S
|Q|〈f1〉Q,p1〈f2〉Q,p2 ;
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this is interesting in the range p2 < p′1. The maximal (p1, p2)-form Λ∗p1,p2 is
given by

(1.1) Λ∗p1,p2(f1, f2) = sup
S:γ-sparse

ΛS
p1,p2(f1, f2),

where the supremum is taken over all γ-sparse families of dyadic cubes in Q.
We say that a linear operator T : C∞c (Rd) → D′(Rd) belongs to the space
Spγ(p1, p2) (or satisfies a (p1, p2) sparse bound) if for all f1, f2 ∈ C∞c the
inequality

(1.2) |〈Tf1, f2〉| ≤ CΛ∗p1,p2(f1, f2)

holds with some constant C independent of f1 and f2, and we denote by
‖T‖Spγ(p1,p2) the best constant in this inequality. The norm ‖T‖Spγ(p1,p2) de-

pends on γ, but the space Spγ(p1, p2) does not. As we keep γ fixed through-
out this paper we will drop the subscript γ when using the Spγ(p1, p2) norm.
As mentioned above, the relevant case for applications is p2 < p′1 (and in-
deed if T is a convolution operator with compactly supported kernel, a
(p1, p

′
1) sparse bound follows immediately from the Lp1 boundedness of T ).

We remark that when p2 < p′1 we can change the a priori assumption of
f1, f2 ∈ C∞c to f1, f2 ∈ V where V is any subspace dense in Lp for some

p ∈ (p1, p
′
2); for example, it is natural to choose V = Lp1 ∩ Lp′2 (see [5,

Lemma A.1]).

The interest in (a pointwise/normed version of) sparse domination started
because of its important consequences in weighted inequalities for Calderón–
Zygmund operators [35, 36, 20, 38, 32, 37, 6, 22]. For consequences of the
bilinear sparse domination (1.2) in weighted theory we refer to the paper by
Bernicot, Frey and Petermichl [8]. A detailed exposition of the importance
of sparse domination in harmonic analysis can be found in the introduction
of [43]; for many further examples beyond Calderón–Zygmund theory see
[33, 19, 5] and references therein.

In this paper we shall consider operators that commute with transla-
tions. They are defined as a Fourier multiplier transformation m(D) where

m̂(D)f(ξ) = m(ξ)f̂(ξ). Here we work with f̂(ξ) =
∫
f(y)ei〈y,ξ〉 dy as the

definition of the Fourier transform of f ∈ S(Rd) and denote by qf ≡ F−1[f ]
the inverse Fourier transform. For 1 ≤ p ≤ q < ∞ we denote by Mp→q the
class of Fourier multipliers for which m(D) is bounded as an operator from
Lp to Lq; the norm in Mp→q is just given by the Lp → Lq operator norm of
m(D). A modification is needed for p =∞; then L∞ is replaced by C0.

1.2. Scale invariant classes of multipliers: the main results. We shall now
formulate our three main theorems on sparse domination involving scale in-
variant classes of multipliers and subsequently discuss new sharp results for
oscillatory multipliers and multiscale radial bump multipliers. Our condi-
tions are motivated by p-sensitive endpoint multiplier theorems in [44, 46, 47]
(see also an earlier result by Baernstein and Sawyer [1] on Hp multipliers
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for p < 1). The Mp multiplier hypotheses (in particular the one in [47]) can
be seen as certain localized Besov-conditions where the Besov spaces are
built on suitable Fourier multiplier spaces. Here we will formulate similar
conditions which will be relevant for endpoint sparse bounds.

Let Φ0 ∈ C∞(Rd) be supported in {x ∈ Rd : |x| < 1/2} such that
Φ0(x) = 1 for |x| ≤ 1/4. For ` ∈ Z define

(1.3) Ψ`(x) = Φ0(2−`x)− Φ0(2−`+1x)

which is supported in {x ∈ Rd : 2`−3 ≤ |x| ≤ 2`−1}. For a Banach space X of
distributions (here suitable classes of multipliers) let Bα

1 (X) be the Bα
1 -Besov

space built on X, with norm

‖h‖Bα1 (X) = ‖h ∗ Φ̂0‖X +
∑
`>0

2`α‖h ∗ Ψ̂`‖X.

The standard Besov-classes Bα
u,1 can be recovered by taking X = Lu(Rd);

however for our results it is most appropriate to take for X a multiplier
space such as M r→q for r between p and q. Let φ be a radial C∞ function

supported in {ξ ∈ R̂d : 1/2 < |ξ| < 2} which is not identically zero.1

It was proved in [47] that

(1.4) ‖m‖Mp→p ≤ Cp,r sup
t>0
‖φm(t·)‖

B
d( 1p−

1
r )

1 (Mr→r)
, 1 < p < r ≤ 2.

Inequality (1.4) is related to results in [11, 45] but the latter are not ap-
plicable to endpoint estimates in many situations; indeed, they do not give
satisfactory results for the oscillatory multipliers in (1.6) below.

We state now versions of these results for (p, q′) sparse domination, with
three cases, depending on whether q < 2, q = 2 or q > 2. Multipliers
for which the right-hand side of (1.4) is finite belong at least to the class
Sp(p, r′); this follows from the special case r = q in our first theorem.

Theorem 1.1. Let 1 < p ≤ q ≤ 2. Then for p < r ≤ q,

‖m(D)‖Sp(p,q′) ≤ Cp,r sup
t>0
‖φm(t·)‖

B
d( 1p−

1
q )

1 (Mr→q)
.

For q = 2 we can also let r = p to get a Sp(p, 2) bound.

Theorem 1.2. Let 1 < p < 2. Then

‖m(D)‖Sp(p,2) ≤ Cp sup
t>0
‖φm(t·)‖

B
d( 1p−

1
2 )

1 (Mp→2)
.

For q > 2 we have the following version.

1The assumption that φ is radial is convenient but not crucial; one can show that one
just needs to assume that for all rays emanating from the origin, the restriction of φ to
the ray is not identically zero.
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Theorem 1.3. Let 1 < p < 2 < q ≤ p′. Then for q′ < r ≤ 2,

(1.5) ‖m(D)‖Sp(p,q′) ≤ Cp,q,r×
(sup
t>0
‖φm(t·)‖

B
d( 1p−

1
q )

1 (Mp→q)
+ sup

t>0
‖φm(t·)‖

B
d( 1
q′ −

1
r )

1 (Mr→r)

) .

Remarks. (i) The spaces of multipliers defined by the conditions in the above
three theorems are independent of the choice of the radial non-trivial func-
tion φ and independent of the specific spatial cutoff function. This can be
shown by routine but somewhat lengthy calculations. We omit the proof but
point out that our choice for φ can always be taken as the cutoff function ϕ
used in the Calderón reproducing formula (2.1).

(ii) As noted in [44, p.152] the multipliers in Theorem 1.2 satisfy for
1 < p < 2 an inequality involving the Lorentz space Lp,2,

‖m(D)f‖Lp,2 .p A‖f‖p, with A = sup
t>0
‖φm(t·)‖

B
d( 1p−

1
2 )

1 (Mp→2)
.

This is shown to be a consequence of the weighted norm inequality∫
G[m(D)f ]2w dx . A2

∫
G̃[f ]2(M [|w|s])1/s dx, s = (p′/2)′,

where M is the Hardy-Littlewood maximal operator, and G, G̃ are suitable
Littlewood–Paley–Stein operators. For earlier closely related variants in
non-endpoint cases see [49, Ch.IV], [15].

(iii) The proofs of Theorems 1.1, 1.2, and 1.3 have a similar structure and,
in order to avoid repetitions, we shall present them together. They rely on an
iteration argument common in sparse domination; one main novelty in this
paper is that at every step of the iteration Calderón–Zygmund arguments are
combined with atomic decompositions in Lp-spaces of functions on certain
dyadic cubes. This use of the iterated atomic decompositions is crucial for
the proof of Theorem 1.1, but can be replaced by applications of Littlewood–
Paley theory in the proofs of Theorem 1.2 and 1.3.

We can use the embedding Lu ⊂ Mp→2 for 1 ≤ p ≤ 2, 1/p − 1/2 =
1/u to derive a corollary of Theorem 1.2 which uses standard Besov spaces

B
d(1/p−1/2)
u,1 = B

d(1/p−1/2)
1 (Lu).

Corollary 1.4. Suppose 1 < p < 2, 1/p− 1/2 ≥ 1/u and m ∈ L∞ satisfies

sup
t>0
‖φm(t·)‖

B
d( 1p−

1
2 )

u,1

<∞.

Then m(D) ∈ Sp(p, 2).

Another corollary of Theorem 1.2 involves radial multipliers where Lu

is replaced by L2, as a consequence of the Stein–Tomas Fourier restriction
theorem.
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Corollary 1.5. Let d ≥ 2, 1 < p ≤ 2(d+1)
d+3 . Suppose that

sup
t>0
‖φh(t·)‖

B
d( 1p−

1
2 )

2,1 (R)
<∞.

Then h(|D|) ∈ Sp(p, 2).

1.3. Oscillatory Fourier multipliers and Miyachi classes. For a > 0, a 6= 1
and b ≥ 0 consider the Fourier multipliers

(1.6) ma,b(ξ) = ei|ξ|
a |ξ|−bχ∞(ξ)

where χ∞ ∈ C∞(Rd), χ∞(ξ) = 1 for |ξ| ≥ 1 and χ∞ vanishes in a neighbor-
hood of the origin. It is well-known that the operator ma,b(D) is bounded on

Lp(Rd) for all p ∈ (1,∞) if and only if b ≥ ad/2. Moreover if 0 < b < ad/2,
Lp boundedness holds if and only if 2ad

ad+2b ≤ p ≤ 2ad
ad−2b , i.e., equivalently,

if b ≥ ad|1p −
1
2 | (see [50], [27], [40]). Miyachi [40] considered classes gener-

alizing the oscillatory multipliers ma,b; for 0 < a < 1 these correspond to

translation invariant versions of the pseudo-differential operators with S−b1−a,δ
symbols for which Fefferman [24] had already proved sharp Lp bounds. We
say that m ∈ FM(a, b) if m is supported in {ξ ∈ Rd : |ξ| ≥ 1} and satisfies
the derivative estimates

(1.7) |m(β)(ξ)| ≤ Cβ|ξ|(a−1)|β|−b

for all multiindices β ∈ Nd0. It is proved in [40] that for 1 < p ≤ 2 the
multiplier operators m(D) with m ∈ FM(a, ad(1

p −
1
2)) are bounded on Lp;

this result is optimal.

In [5] it was shown that for 0 < b < ad/2, the operator ma,b(D) belongs

to Sp(p, p) in the open range for 2ad
ad+2b < p ≤ 2. For general multipliers

in FM(a, b) it was shown in [4] that the operators belong to Sp(p, 2), in
the same p-range. We note that no nontrivial (p1, p2) sparse bounds with
p2 < p′1 was obtained at the endpoint p1 = 2ad

ad+2b , i.e. b = ad( 1
p1
− 1

2).

We provide a full characterization of the sparse exponent set for the oscil-
latory multiplier operators ma,b(D) in the relevant parameter case 0 < b <
ad/2, thereby settling the open endpoint problem.

Theorem 1.6. Let a 6= 1 and 0 < b < ad/2. Let 4(a, b) the closed triangle
with vertices Q1 = (1

2 + b
da ,

1
2−

b
da), Q2 = (1

2−
b
da ,

1
2 + b

da), Q3 = (1
2 + b

da ,
1
2 + b

da)
and ma,b be the oscillatory multiplier in (1.6). Then

ma,b(D) ∈ Sp(p1, p2) ⇐⇒ ( 1
p1
, 1
p2

) ∈ 4(a, b).

In particular for the oscillatory multipliers we get the Sp(p1, p2) bound
for the endpoint p1 = 2ad

ad+2b in the optimal range p1 ≤ p2 ≤ p′1. We also

have a sharp result that applies to the full class FM(a, b).

Theorem 1.7. Let a 6= 1 and 0 < b < ad/2. Let (a, b) be the closed
trapezoid with vertices Q1 = (1

2 + b
da ,

1
2 −

b
da), Q2 = (1

2 −
b
da ,

1
2 + b

da), P3 =
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1
p 1

1
p2

1
2

1
2

1
2 + b

ad

1
p 1

1
p2

1
2

1
2

1
2 + b

ad

Figure 1. Sparse bounds for the general multiplier class
FM(a, b) (left) and for the oscillatory multipliers ma,b (right)
for given a, b > 0 with 0 < b < ad/2.

(1
2 ,

1
2 + b

da), P4 = (1
2 + b

da ,
1
2). Then

m(D) ∈ Sp(p1, p2) for all m ∈ FM(a, b) ⇐⇒ ( 1
p1
, 1
p2

) ∈ (a, b).

The results of Theorems 1.6 and 1.7 are illustrated in Figure 1. The
positive results on the edges (Q1Q3] and [Q3Q2) of the triangle on the right
are new for the oscillatory multipliers. For the FM(a, b) class the positive
results on the edges (Q1P3], [P3P4], [P4Q2) of the trapezoid are new.

Remarks. (i) The general positive result about the multipliers in FM(a, b)
can be derived from Corollary 1.4. Indeed, this corollary implies sharp re-
sults for the classes of subdyadic multipliers considered in [3], see also a
relevant discussion in [5]. For the extended region of the oscillatory multi-
pliers we need to use Theorem 1.3.

(ii) The methods in this paper can also be used to strengthen results in
[4] on sparse bounds for pseudo-differential operators with symbols in the
Hörmander classes Sνρ,δ, for 0 < δ ≤ ρ < 1. By [24, 39] these operators are

bounded on Lp (here 1 < p < ∞) provided that ν ≤ −d(1 − ρ)|1p −
1
2 |. In

the range −d
2(1 − ρ) < ν < 0 we now get the full endpoint sparse bounds,

extending the results for the multiplier classes FM(1 − ρ,−ν), that is, the
operators belong to Sp(p1, p2) for (1/p1, 1/p2) ∈ (1− ρ,−ν).

(iii) The multiplier class in Theorem 1.2 is also relevant in the interesting
recent work by Bulj–Kovač [9] and by Stolyarov [51] on lower bounds for
other types of oscillatory multipliers; indeed the theorem allows to derive
upper Sp(p, 2) bounds in their setting.

1.4. Multiscale radial bump multipliers. Let χ be a smooth bump function
supported in (−1/2, 1/2) and set for small δ

(1.8) hδ(t) = χ(δ−1(1− |t|)).
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The multiplier hδ(|ξ|) occurs naturally as a building block for the Bochner–
Riesz multipliers. It is conjectured that in dimension d ≥ 2 we have

(1.9) sup
0<δ<1/2

δ
d( 1
p
− 1

2
)− 1

2 ‖hδ(| · |)‖Mp→p <∞,

for 1 ≤ p < 2d
d+1 . This conjecture is well known in two dimensions (the range

is then 1 ≤ p < 4/3, see [12, 25, 21, 48]), and there are partial results in
higher dimensions. More specifically, by Tao’s arguments in [52] the bound
(1.9) for any fixed p < 2d

d+1 follows from a slightly weaker bound with an
additional factor of cεδ

ε for arbitrary ε > 0 on the left-hand side, and such
estimates with the ε-loss have been verified on a partial range of p (see [28]
for the latest results and more references).

Here, we consider the multiscale version

(1.10) mδ(ξ) =
∑
k∈Z

akhδ(2
k|ξ|).

From [47] we know that if (1.9) holds for some p◦ <
2d
d+1 , then we have

(1.11) sup
0<δ<1/2

δ
d( 1
p
− 1

2
)− 1

2 ‖mδ(D)‖Lp→Lp .p sup
k∈Z
|ak|.

for 1 < p < p◦.

Our purpose here is to illustrate how Theorems 1.1, 1.2 and 1.3 imply
various sharp or essentially sharp sparse domination results in a p-range that
will be optimal in two dimensions; in higher dimensions we limit ourselves

to the range 1 < p < 2(d+2)
d+4 (i.e. the range dual to Tao’s bilinear Fourier

extension theorem [53]), as in this range the known sharp Lp → Lq estimates
for hδ(|D|) are well documented in the literature [2, 29, 14].

Theorem 1.8. Let mδ be as in (1.10) and let d ≥ 2. Then the inequality

(1.12) sup
0<δ<1/2

δ
d( 1
p1
− 1

2
)− 1

2 ‖mδ(D)‖Sp(p1,p2) .p1,p2 sup
k∈Z
|ak|

holds if

(a) 1 < p1 ≤ 2(d+1)
d+3 and p2 ≥ (d−1)p1

d+1−2p1
, or

(b) 2(d+1)
d+3 < p1 <

2(d+2)
d+4 and p2 >

(d−1)p1
d+1−2p1

.

Remarks. (i) Using the building block with a0 = 1 and ak = 0 for k 6= 0
one sees that this result is sharp in the sense that inequality (1.12) fails in

general if 1 < p1 <
2d
d+1 and p2 <

(d−1)p1
d+1−2p1

. This can be deduced directly

from a corresponding result for Bochner–Riesz operators in [34, §5].

(ii) For the proof of sufficiency in Theorem 1.8 we rely on Theorems

1.2 and 1.3 in the range p1 ≤ 2(d+1)
d+3 and on Theorem 1.1 in the range

2(d+1)
d+3 < p1 <

2(d+2)
d+4 .
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1.5. Necessary conditions for sparse domination of convolution operators.
Necessary conditions for general sparse operators were discussed in Chapter
2 of [5]; here we point out that they can be put in a simple form for scalar
operators. This result will be convenient for checking the sharpness of several
of the results mentioned above.

Let T : C∞c (Rd) → D′(Rd) with Schwartz kernel K ∈ D′(Rd × Rd). Let
Ψ ∈ C∞c (Rd) be supported in {x ∈ Rd : 1 ≤ |x| ≤ 2}. Define the distribution
KR as the multiplication of K with the C∞ function Ψ(R−1(x− y)) and let
TR denote the linear operator with Schwartz kernel KR. Define the rescaled
kernels

Kresc
R (x, y) := RdKR(Rx,Ry) = Ψ(x− y)RdK(Rx,Ry),(1.13)

interpreted in the sense of distributions, and let T resc
R be the rescaled version

of TR, with convolution kernel Kresc
R .

Proposition 1.9. Let T : C∞c (Rd) → D′(Rd) be a continuous linear oper-
ator with Schwartz kernel K and let T resc

R be the rescaled version defined in
(1.13). Suppose 1 < p1, p2 < ∞ and T ∈ Sp(p1, p2), with p2 < p′1. Then T

extends to a bounded operator Lp1 → Lp1,∞ and Lp
′
2,1 → Lp

′
2; moreover the

operators T resc
R map Lp1 to Lp

′
2 with uniform operator norm and

‖T‖Lp1→Lp1,∞ + ‖T‖
Lp
′
2,1→Lp

′
2

+ sup
R>0
‖T resc

R ‖
Lp1→Lp

′
2
. ‖T‖Sp(p1,p2).

The proof is based on more general results in [5] and will be given in §10.

Structure of the paper. In §2, we present the induction scheme that proves
the sparse domination Theorems 1.1, 1.2 and 1.3. In §3 we discuss the
atomic decomposition, which is used in §4 to verify the base case for the
induction. In §5 we present a Calderón–Zygmund decomposition based on
the atomic decomposition. The plan for the proof of the induction step is
outlined in §6, with proofs presented in §7 and §8. In §9 we discuss the
applications of the main theorems and, in particular, how they imply the
positive results in Theorems 1.6 and 1.7, and the positive results on radial
multipliers in Corollary 1.5 and Theorem 1.8. Proposition 1.9 and the proof
of the necessary conditions for Theorems 1.6 and 1.7 are presented in §10.
Finally, §11 contains the proofs of some technical facts which are included
for the reader’s convenience.
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2. Structure of the induction argument

In this section we present the proof strategy for Theorems 1.1, 1.2 and 1.3.
We will see that sparse bounds for m(D) can be deduced from sparse bounds
for finite multi-scale sums of spatially (and frequency) localized pieces of
m(D). The proof of the latter is based on an induction on the number of
pieces in the multi-scale sums, similarly to our previous work [5]. As in [5],
it is useful to work with a modified version of our maximal (p1, p2)-form
Λ∗p1,p2 .

Definition 2.1. Given a dyadic cube S0 ∈ Q let

Λ∗∗S0,p,q′(f1, f2) := sup
∑
S∈S
|S|〈f1〉S,p〈f2〉3S,q′

where the supremum is taken over all γ-sparse collections S consisting of
cubes in Q(S0), which denotes the subset of Q of cubes contained in S0.

2.1. Decomposition as a multi-scale sum. Consider η, ϕ ∈ S facilitating the
Calderón reproducing formula, i.e.,

qη has compact support in {|x| ≤ 10−d} and η(0) = 0;(2.1a)

ϕ has compact support in {1/2 < |ξ| < 2};(2.1b) ∑
k∈Z

η2(2−kξ)ϕ(2−kξ) = 1, ξ 6= 0.(2.1c)

For any k ∈ Z, let Lk and Pk be defined by

L̂kf(ξ) = ϕk(ξ)f̂(ξ), where ϕk(ξ) := ϕ(2−kξ),

P̂kf(ξ) = ηk(ξ)f̂(ξ), where ηk(ξ) := η(2−kξ).

Let Tk = m(D)Lk and denote by Kk its convolution kernel, that is Kk =
F−1[ϕkm]. We next perform a spatial decomposition of Kk. Let Φ0 and Ψj

be as in (1.3). Let

K
(−k)
k (x) = F−1[ϕkm](x)Φ0(2kx)

K
(j)
k (x) = F−1[ϕkm](x)Ψj(x) if j > −k

so that we get Kk =
∑∞

j=−kK
(j)
k = K

(−k)
k +

∑
`>0K

(`−k)
k . Let T

(`−k)
k denote

the operator with convolution kernel K
(`−k)
k for ` ≥ 0. Note that by (2.1c)

we have

m(D) =
∑
k∈Z

TkPkPk =
∑
k∈Z

∑
`≥0

T
(`−k)
k PkPk.

It is also convenient to introduce some notation for the operator norm of

T
(`−k)
k . We first note that

(2.2) K̂
(`−k)
k (2kξ) = (ϕm(2k·)) ∗ Ψ̂`(ξ)
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and define the quantities

(2.3) Ak,`p,r,q[m] ≡ Ak,`p,r,q =

{
‖ϕm(2k·) ∗ Φ̂0‖Mr→q , if ` = 0,

‖ϕm(2k·) ∗ Ψ̂`‖Mr→q2
`d( 1

p
− 1
q

)
, if ` > 0,

and

(2.4) Ap,r,q[m] = sup
k∈Z

∑
`≥0

Ak,`p,r,q[m],

assuming that p < q and p ≤ r ≤ q. Then

(2.5) Ap,q,r[m] ≤ sup
t>0
‖ϕm(t·)‖

B
d( 1p−

1
q )

1 (Mr→q)
.

Moreover we have for all k ∈ Z,

(2.6)
∑
`≥0

Ak,`p,r1,q .
∑
`≥0

Ak,`p,r2,q, p ≤ r1 ≤ r2 ≤ q.

This inequality is an immediate consequence of a slightly stronger statement,
Corollary 11.3.

The sparse bounds for sums of operators T
(−k)
k are reduced to standard

sparse bounds for singular integral operators. This only requires the as-
sumption m ∈ L∞; note that

(2.7) ‖m‖∞ . sup
t>0
‖φm(t·)‖B0

1(Mp→p) . sup
t>0
‖φm(t·)‖

B
d(1/p−1/q)
1 (Mp→q)

.

Lemma 2.2. For any 1 < p ≤ q <∞, and for any finite subset z ⊂ Z∣∣∣〈∑
k∈z

T
(−k)
k Pkf1, f2

〉∣∣∣ . ‖m‖∞ Λ∗p,q′(f1, f2),

uniformly in z ⊂ Z, for all f1, f2 ∈ C∞c .

The proof is straightforward and will be given in the auxiliary §11.2.

We now introduce operators which are local at a fixed spatial scale. For
a fixed finite set z ⊆ Z, let kmin := minz and kmax := maxz. Given j ∈ Z,
it is convenient to define

(2.8) Tjf ≡ Tj,zf :=
∑
k∈z
k>−j

T
(j)
k PkPkf

and to note that

(2.9)
∑
k∈z

N∑
`=1

T
(`−k)
k PkPk =

∑
−kmax<j≤−kmin+N

Tj .

By construction, the operators Tj are local at scale 2j , in the sense that if
S is a cube of side length 2j ,

(2.10) supp (f) ⊂ S =⇒ supp (Tjf) ⊂ 3S.

Indeed, by our definition of the Φ0 and the Ψj in (1.3), T
(j)
k PkPk[f1S ] is

supported in the set {x : dist(x, S) ≤ 2j−1 + 10−d2−k+1}. Thus Tj,z[f1S ] is
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supported where dist(x, S) ≤ 2j−1(1+2·10−d), and hence in {x : dist(x, S) <
2j} ⊆ 3S.

The key estimate in proving the sparse bounds for m(D) is the following
modified sparse bound for sums of Tj , uniformly in the number of terms in
the j-sum. Throughout the paper we set

L(Q) = log2(sidelength(Q))

so that L(Q) = N for a dyadic cube of side length 2N .

Theorem 2.3. Let 1 < p < q <∞. Given integers N1 ≤ N2, a dyadic cube
S0 ∈ Q such that L(S0) = N2 and a finite subset z ⊆ Z, the inequality

(2.11)
∣∣∣〈 N2∑
j=N1

Tj,zf1, f2

〉∣∣∣ ≤ c CΛ∗∗S0,p,q′(f1, f2)

holds for all f1, f2 ∈ C∞c uniformly in N1, N2, z and S0, where C is given
by

C := Ap,r,q[m] if 1 < p ≤ q < 2, p < r ≤ q,(2.12a)

C := Ap,p,2[m] if 1 < p < 2 (and q = 2),(2.12b)

C := Ap,p,q[m] +Aq′,r,r[m] if 1 < p < 2 < q < p′, q′ < r ≤ 2,(2.12c)

and c = c(p, q, r, γ, d) is a constant depending only on p, q, r, γ, d.

We note that by the definition of Tj in (2.8), we may assume that the set
z featuring in the left-hand side of (2.11) has the property that k > −N2 =
−L(S0) for k ∈ z.

Also note by (2.10) that in order to prove the theorem we may assume
without loss of generality that f1 is supported in S0 and f2 is supported in
3S0.

We shall use standard arguments in the theory of sparse domination to
make the following

Observation 2.4. In order to prove Theorems 1.1, 1.2 and 1.3, it suffices
to prove Lemma 2.2 and Theorem 2.3.

The proof of this observation is included in the auxiliary §11.1.

2.2. Induction scheme for the proof of Theorem 2.3. We will prove (2.11)
by induction on n where n + 1 is the number of terms in the j-sum.

Definition 2.5. For n = 0, 1, 2, . . . , let U(n) be the smallest nonnegative
constant U so that for all pairs (N1, N2) with 0 ≤ N2−N1 ≤ n, for all finite
sets z ⊂ Z and for all dyadic cubes S0 ∈ Q with L(S0) = N2 we have∣∣〈 N2∑

j=N1

Tj,zf1, f2

〉∣∣ ≤ UΛ∗∗S0,p,q′(f1, f2)

whenever supp (f1) ⊂ S0.
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For the inductive argument we first consider the base case n = 0. We
distinguish two situations, q ≥ 2 and q < 2. For fixed j0 we let

(2.13) Cp,r,q(j0) = sup
k>−j0

Ak,j0+k
p,r,q .

It is immediate that supj0 Cp,r,q(j0) is bounded by C(2.12c) if q ≥ 2, r = p,
bounded by C(2.12b) if r = p, q = 2 and bounded by C(2.12a) if q < 2,
p < r ≤ q.

Lemma 2.6. Let 1 < p ≤ 2 ≤ q ≤ p′ and j0 ∈ Z. Let S0 be a dyadic
cube with L(S0) = j0 and let f1 ∈ Lp be supported in S0. Then we have for
f2 ∈ Lqloc

(2.14) |〈Tj0f1, f2〉| . Cp,p,q(j0)|S0|〈f1〉S0,p
〈f2〉3S0,q′

.

Lemma 2.7. Let 1 < p < r ≤ q ≤ 2 and j0 ∈ Z. Let S0 be a dyadic
cube with L(S0) = j0 and let f1 ∈ Lp be supported in S0. Then we have for
f2 ∈ Lqloc

(2.15) |〈Tj0f1, f2〉| .
(
Cp,p,q(j0) + Cp,r,q(j0)

)
|S0|〈f1〉S0,p

〈f2〉3S0,q′
.

Both lemmata can be reduced to Lp → Lq estimates for the operators
Tj0 ; these and the corresponding reduction are stated in §4 (see (4.4) for the
reduction argument).

Corollary 2.8. With C as in (2.12),

(2.16) U(0) ≤ c0(p, r, q, d) C.

Proof. This is immediate from Lemmata 2.6 and 2.7, in combination with
the inequality (2.6). �

Corollary 2.8 is the base case for our induction. We note that the same
argument implies U(n) ≤ c(n, p, r, q, d)C for any n ≥ 0, but one needs
a uniform bound in n. The key is the verification of the induction step,
formulated in the following claim.

Proposition 2.9 (Inductive claim). There is a constant c = c(p, q, r, γ, d)
such that for all n > 0,

U(n) ≤ max{U(n− 1), c C},

with C as in (2.12).

The proof structure for the inductive claim is presented in §6, with proofs
given in §7 and §8. They are based on Calderón–Zygmund decompositions
combined with the atomic decomposition outlined in §5. By induction, the
conclusion of Theorem 2.3 follows by combining Corollary 2.8 and the in-
ductive claim Proposition 2.9.
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3. Atomic and subatomic decompositions

In this section we fix a dyadic reference cube S0 and outline an atomic
decomposition for a function f supported in a dyadic cube S0 based on
estimates for a martingale square function on the cube S0.

3.1. Local square functions. Let {En}n∈Z be the conditional expectation op-
erators associated to the σ-algebra generated by the subfamily Qn of cubes
in Q with L(Q) = −n (i.e of side length 2−n), that is, Enf(x) = avQf
for every x ∈ Q with Q ∈ Qn. Define the martingale difference operator
Dn := En+1 − En for n ∈ Z. We shall frequently use the familiar properties

(3.1) D2
k = Dk, and DkDk′ = Dk′Dk = 0 for k 6= k′,

as well as

‖Pk2Dk1‖Lp→Lp . 2−(k1−k2)/p if k1 ≥ k2,(3.2a)

‖Ek1Pk2‖Lp→Lp . 2−(k1−k2)/p′ if k2 ≥ k1,(3.2b)

for 1 ≤ p ≤ ∞. From (3.2a), (3.2b) and using duality,

(3.2c) ‖Dk1Pk2‖Lp→Lp + ‖Pk2Dk1‖Lp→Lp . 2−|k1−k2|min{1/p,1/p′}

for 1 ≤ p ≤ ∞ and k1, k2 ∈ Z. The bounds (3.2) follow by standard
computations exploiting cancellation of Pk and Dk (see e.g. [5, Ch. 3]).
They will allow us for example to interchange Dk and Pk in Lp bounds for
1 < p <∞. We note the reproducing formula

(3.3) f = E1−L(S0)f +
∑

k>−L(S0)

Dkf.

We start from E1−L(S0) rather than from E−L(S0) because that will be con-
venient in Section 5. Consider the localized dyadic square function

(3.4) gS0f(x) = |E1−L(S0)f(x)|+
( ∑
k>−L(S0)

|Dkf(x)|2
)1/2

.

Note that gS0f is supported on S0, by definition. By a trivial L2-bound
and standard Calderón–Zygmund decomposition (and using Khintchine’s
inequality), it is well-known that gS0 satisfies an Lp bound for all 1 < p <
∞ with constant only depending on p, d. This is also a special case of
Burkholder’s square-function estimate for more general martingales [10].

It will also be convenient to work with a slightly larger and more robust
square function. Let Qk(x) be the unique dyadic cube of sidelength 2−k

containing x and define a dyadic square function in the spirit of Peetre [42],

(3.5) GS0f(x) = |E1−L(S0)f(x)|+
( ∑
k>−L(S0)

sup
y∈Qk(x)

|Dkf(y)|2
)1/2

.

Since Dkf is constant on dyadic cubes of sidelength 2−k−1 it is easy to see
that supy∈Qk(x) |Dkf(y)| .MHLDkf(x) where MHL is the Hardy–Littlewood
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maximal operator. Using the Fefferman–Stein inequalities [26] for the vector-
valued Hardy–Littlewood maximal operator and the bounds for gS0 we ob-
tain, for 1 < p <∞,

(3.6) ‖GS0f‖Lp(S0) ≤ Csq,p‖f‖Lp(S0),

where Csq,p only depends on p and d.

3.2. Atomic decomposition. We will now perform an atomic decomposition
of f using the local square function GS0f , following ideas in [13] (see also
[47]). Given µ ∈ Z, consider the level sets

(3.7) Ωµ ≡ Ωµ[f ] := {x ∈ S0 : GS0f(x) > 2µ},

and the open sets

(3.8) Ω̃µ ≡ Ω̃µ[f ] := {x ∈ Rd : MHL1Ωµ[f ](x) > 2−1(10
√
d)−d}.

Note that Ω̃µ is not necessarily contained in S0. Of course, Ωµ ⊆ Ω̃µ and

Ω̃µ2 ⊆ Ω̃µ1 if µ1 ≤ µ2. By the Hardy–Littlewood theorem, one has

(3.9) |Ω̃µ| ≤ Cd|Ωµ|, with Cd = 5d2(10
√
d)d

and Chebyshev’s inequality and (3.6) imply

(3.10) |Ωµ| ≤ 2−µp‖GS0f‖pp ≤ 2−µpCpsq,p‖f‖
p
Lp(S0)

for all 1 < p < ∞. Let Rµ ≡ Rµ[f ] denote the family of all dyadic cubes
R ( S0 satisfying

|R ∩ Ωµ| > |R|/2,(3.11)

|R ∩ Ωµ+1| ≤ |R|/2.(3.12)

Lemma 3.1. For all µ ∈ Z and all R ∈ Rµ we have 10
√
dR ⊂ Ω̃µ.

Proof. Let c = 10
√
d. For every x ∈ cR, R ∈ Rµ, we have by (3.11)

1

2(10
√
d)d

<
|R ∩ Ωµ|
cd|R|

≤ |cR ∩ Ωµ|
|cR|

=
1

|cR|

∫
cR
1Ωµ ≤MHL1Ωµ(x).

By the definition (3.8), this implies cR ⊂ Ω̃µ for all R ∈ Rµ. �

The lemma implies in particular that R ⊆ Ω̃µ for R ∈ Rµ. This and
(3.12) further imply

(3.13) |R ∩ (Ω̃µ\Ωµ+1)| = |R| − |R ∩ Ωµ+1| ≥ |R|/2.

We also note that for every dyadic cube R ( S0 there exists a unique µ ∈ Z
such that R ∈ Rµ.

Fix µ ∈ Z. Let W̃µ = {W} denote a family of standard dyadic Whitney

cubes [49, §VI.1] whose union is the open set Ω̃µ, which satisfy

(3.14) diam(W ) ≤ dist(W, Ω̃{µ) ≤ 4 diam(W ).
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If there exists W ∈ W̃µ with S0 ⊆W , then we set

Wµ = {S0}.

Otherwise we have W ( S0 for all W ∈ W̃µ intersecting S0 and we set

Wµ = {W ∈ W̃µ : W ∩ S0 6= ∅}.

The cubes in Rµ have a unique ancestor in Wµ.

Lemma 3.2. For each R ∈ Rµ, there exists a unique W (R) ∈ Wµ contain-
ing R.

Proof. If Wµ = {S0}, then there is nothing to prove. Otherwise, let c =

10
√
d and R ∈ Rµ. By Lemma 3.1, we have cR ⊆ Ω̃µ. Let xR denote the

center of R and let W = W (R) ∈ Wµ such that xR ∈ W . With this setup
and (3.14) we have

dist(xR, (cR){) ≤ dist(xR, Ω̃
{
µ) ≤ diam(W ) + dist(W, Ω̃{µ) ≤ 5 diam(W ).

Noting that dist(xR, (cR){) = cdiam(R)

2
√
d

= 5 diam(R), we obtain that

5 diam(R) ≤ 5 diam(W ).

As R and W are dyadic cubes containing xR, we conclude that R ⊆W . The
uniqueness follows from the disjointess of W ∈ Wµ. �

Given µ ∈ Z and W ∈ Wµ, the sets

RW,µ := {R ∈ Rµ : R ⊆W}

are disjoint for different W , by disjointness of the W . Also, by Lemma 3.2

Rµ =
⋃

W∈Wµ

RW,µ,

where the union is disjoint. We are now ready to define the atoms. First,
for each dyadic cube R ( S0 with L(R) = −k let

eR ≡ eR[f ] := (Dkf)1R = Dk(f1R).

We refer to the eR as subatoms; they are pairwise orthogonal and
∫
eR = 0.

The subatoms are building blocks of larger atoms which are associated to
cubes W . Given µ ∈ Z and W ∈ Wµ, these are defined as

(3.15) aW,µ ≡ aW,µ[f ] :=
∑

R∈RW,µ

eR[f ].

We refer to the aW,µ as atoms, but note that they have a non-standard
normalization with respect to other sources in the literature. Indeed, if we
define the coefficients

(3.16) γW,µ ≡ γW,µ[f ] :=
(
|W |−1

∑
R∈RW,µ

‖eR[f ]‖22
)1/2

,
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then using orthogonality,

(3.17) ‖aW,µ‖2 = |W |1/2γW,µ.

Note that |W |−1/p(γW,µ)−1aW,µ corresponds to a (p, 2)-atom in the classical
atomic Hardy-space theory developed for p ≤ 1 (see e.g. [17]). Note that
for p ≤ 2, Hölder’s inequality and (3.17) imply

(3.18) ‖aW,µ‖p ≤ |W |1/pγW,µ.

In view of (3.3) and the above discussion, we can write the atomic de-
composition as

(3.19) f = E1−L(S0)f +
∑
µ∈Z

∑
W∈Wµ

aW,µ.

In applications it will be useful to use the fine structure of the aW,µ and
further group subatoms that are at the same scale (see (3.28)).

3.3. Properties of the atomic decomposition. The square function GS0 allows

summation of the coefficients |W |1/2γW,µ in `2 over the collection Wµ.

Lemma 3.3. Let µ ∈ Z. Then

(3.20)
( ∑
W∈Wµ

|W |(γW,µ)2
)1/2

=
( ∑
R∈Rµ

‖eR‖22
)1/2

≤ 2µ+3/2|Ω̃µ|1/2.

Proof. The first identity is by definition. Using (3.13),

‖eR‖22 ≤ |R|‖eR‖2∞ ≤ 2|R ∩ (Ω̃µ \ Ωµ+1)| ‖eR‖2∞.

Observe that ∑
R∈Rµ,
L(R)=−k

‖eR‖2∞1R(x) = sup
y∈Qk(x)

|Dkf(y)|2.

Thus, the left-hand side of the square of (3.20) is∑
k>−L(S0)

∑
R∈Rµ,
L(R)=−k

‖eR‖22 ≤ 2

∫
Ω̃µ\Ωµ+1

∑
k>−L(S0)

sup
y∈Qk(x)

|Dkf(y)|2 dx.

which by definition of Ωµ+1 is bounded by 22µ+3|Ω̃µ|, as claimed. �

Even though the coefficients γW,µ incorporate `2 in their definition, there
is an `p-analogue of the above lemma for 1 < p < 2. For notational conve-
nience, define the auxiliary function

(3.21) Fp(x) :=
(∑
µ∈Z

∑
W∈Wµ

(γW,µ[f ])p1W (x)
)1/p

.

The following lemma says that ‖Fp‖p is controlled by ‖f‖p.
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Lemma 3.4. Let 1 < p ≤ 2 and µ ∈ Z. Then

(3.22)
( ∑
W∈Wµ

|W |(γW,µ)p
)1/p

≤ 2µ+3/2|Ω̃µ|1/p ≤ C1/p
d 2µ+3/2|Ωµ|1/p

with Cd as in (3.9). Moreover,

(3.23)
(∑
µ∈Z

2µp|Ωµ|
)1/p

≤ (2Cd)
1/pCsq,p‖f‖p

and

(3.24) ‖Fp‖p ≤ 23/2(2Cd)
1/pCsq,p‖f‖p.

Proof. Fix µ ∈ Z. By Hölder’s inequality, the definition of Wµ, Lemma 3.3
and the estimate (3.9) we have∑

W∈Wµ

|W |(γW,µ)p =
∑

W∈Wµ

|W |1−p/2(|W |1/2γW,µ)p

≤
( ∑
W∈Wµ

|W |
)1−p/2( ∑

W∈Wµ

|W |(γµ,W )2
)p/2

≤ |Ω̃µ|1−p/2(22µ+3|Ω̃µ|)p/2 ≤ Cd|Ωµ|2µp+3p/2.

This proves (3.22). To prove (3.24) we use the definition of Ωµ and (3.6) to
estimate∑
µ∈Z

2µp|Ωµ| =
∑
µ∈Z

(1− 2−p)−1

∫ 2µ

2µ−1

pαp−1 dα
∣∣{x : GS0f(x) > 2µ}

∣∣
≤ (1− 2−p)−1

∫ ∞
0

pαp−1|{GS0f(x) > α}|dα ≤ 2‖GS0f‖pp ≤ 2CdC
p
sq,p‖f‖pp

which gives (3.23) and further implies

‖Fp‖pp =
∑
µ∈Z

∑
W∈Wµ

|W |(γW,µ)p ≤ 23p/2Cd
∑
µ∈Z

2µp|Ωµ| ≤ 2Cd2
3p/2Cpsq,p‖f‖pp,

as desired. �

3.4. Fine structure analysis of atomic decompositions. Note that by (3.17)

(3.25)
∥∥∥∑
µ∈Z

∑
W∈Wµ

aW,µ

∥∥∥
2

= ‖F2‖2

via (3.17), so for p = 2 Lemma 3.4 recovers the trivial inequality

(3.26)
∥∥∥∑
µ∈Z

∑
W∈Wµ

aW,µ

∥∥∥
2
. ‖f‖2,

which follows directly from (3.19). There does not seem to be an Lp ana-
logue of this inequality for 1 < p < 2, because there appears to be no
immediate relation between the Lp norms of

∑
µ∈Z

∑
W∈Wµ

aW,µ and Fp of

the type (3.25). However, we shall rely on other useful analogues where
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either the atoms or subatoms are of a fixed scale (see Lemmata 3.7 and 3.9
below); these will then be used in conjunction with a weak orthogonality or
Littlewood–Paley type argument based on properties of the operator that is
estimated.

We first consider variants where the subatoms correspond to a fixed dyadic
scale. For k ∈ Z, µ ∈ Z and W ∈ Wµ, define the families of cubes

Rkµ := {R ∈ Rµ : L(R) = −k},

RkW,µ := {R ∈ Rkµ : R ⊆W},

the coefficients

(3.27) γkW,µ ≡ γkW,µ[f ] :=
(
|W |−1

∑
R∈RkW,µ

‖eR[f ]‖22
)1/2

,

and the fixed scale atoms

akW,µ ≡ akW,µ[f ] :=
∑

R∈RkW,µ

eR[f ].(3.28)

Note that if k ≤ −L(S0), then Rkµ = RkW,µ = ∅, γkW,µ = 0 and akW,µ = 0 by
definition. We have

γW,µ =
( ∑
k>−L(S0)

(γkW,µ)2
)1/2

and aW,µ =
∑

k>−L(S0)

akW,µ.

We observe that the inequality (3.18) continues to hold when all subatoms
are at a fixed scale.

Lemma 3.5. Let k > −L(S0), µ ∈ Z and W ∈ Wµ. If 1 < p ≤ 2, then

‖akW,µ‖p ≤ |W |1/pγkW,µ.

Proof. By two applications of Hölder’s inequality,( ∑
R∈RkW,µ

‖eR‖pLp
)1/p

≤
( ∑
R∈RkW,µ

‖eR‖2L2

)1/2( ∑
R∈RkW,µ

|R|
) 1
p
− 1

2

≤
( ∑
R∈RkW,µ

‖eR‖2L2

)1/2
|W |

1
p
− 1

2 = γkW,µ|W |1/p.

The result now follow by disjointness of the cubes in R ∈ RkW,µ. �

For the remainder of this section we fix parameters

(3.29) Q ∈ Q(S0) and µmin ∈ Z ∪ {−∞}.

For the time being the reader may pretend that Q = S0 and µmin = −∞,
but we will need the additional localization when combining the atomic
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decomposition with an appropriate Calderón–Zygmund decomposition in
§5. With this in mind, set WQ,µ = {W ∈ Wµ : W ⊆ Q} and

bQ =
∑

µ>µmin

∑
W∈WQ,µ

aW,µ,(3.30a)

bkQ =
∑

µ>µmin

∑
W∈WQ,µ

akW,µ.(3.30b)

Define also

βQ,p =
(∑
µ∈Z

∑
W∈WQ,µ

|W |(γW,µ[f ])p
)1/p

,(3.31a)

βkQ,p =
(∑
µ∈Z

∑
W∈WQ,µ

|W |(γkW,µ[f ])p
)1/p

(3.31b)

and observe that ‖Fp1Q‖p = βQ,p. Note thatWQ,µ and bQ, bkQ, βQ,p, β
k
Q,p all

depend on the function f . Also observe that the truncation in µ is omitted
in the definitions of βQ,p, β

k
Q,p. Our first observation is a variant of (3.25) in

Lp for a fixed scale k.

Lemma 3.6. Let 1 < p ≤ 2 and k > −L(S0). Then

‖bkQ‖p ≤ βkQ,p.

Proof. Note that

‖bkQ‖Lp =
( ∑
µ>µmin

∑
W∈Wµ,Q

∑
R∈RkW,µ

‖eR‖pLp
)1/p

as all the cubes occurring in the definition of bkQ are disjoint. By Lemma
3.5,

�(3.32) ‖bkQ‖Lp ≤
(∑
µ∈Z

∑
W∈WQ,µ

|W |(γkW,µ)p
)1/p

= βkQ,p.

We can sum the coefficients {βkQ,p}k∈Z in `2.

Lemma 3.7. If 1 < p ≤ 2, then( ∑
k>−L(S0)

(βkQ,p)
2
)1/2

≤ ‖Fp1Q‖p = βQ,p.
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Proof. By the definitions and Minkowski’s inequality,( ∑
k>−L(S0)

(βkQ,p)
2
)1/2

=
( ∑
k>−L(S0)

( ∑
µ>µmin

∑
W∈WQ,µ

(γkW,µ)p|W |
)2/p)1/2

≤
( ∑
µ>µmin

∑
W∈WQ,µ

(∑
k∈Z

(γkW,µ)2
)p/2|W |)1/p

=
( ∑
µ>µmin

∑
W∈WQ,µ

(γW,µ)p|W |
)1/p

≤ ‖Fp1Q‖p = βQ,p,

as desired. �

There is a second variant which consists in fixing the scale of the atoms
rather in addition to that of the subatoms. Given integers k ∈ Z and n ≥ 0,
define

(3.33) bk,nQ =
∑

µ>µmin

∑
W∈WQ,µ,

L(W )=−k+n

akW,µ,

and

(3.34) βk,nQ,p =
(∑
µ∈Z

∑
W∈WQ,µ,

L(W )=−k+n

|W |(γkW,µ[f ])p
)1/p

.

Note that by definition, bk,nQ = 0 and βk,nQ,p = 0 unless k > −L(S0). Lemma
3.6 continues to hold for these fixed-scale W versions. A crucial observation
is that we obtain a gain if we move to a larger Lebesgue exponent r > p.
This will allow us to think of the case W = R as the dominant contribution.
This observation will be crucial in later proofs.

Lemma 3.8. Let 1 < p ≤ r ≤ 2. Then for k > −L(S0) and n ≥ 0,

‖bk,nQ ‖r ≤ 2
−nd( 1

p
− 1
r

)
2
kd( 1

p
− 1
r

)
βk,nQ,p.

Proof. Arguing as in the proof of Lemma 3.6,

‖bk,nQ ‖Lr ≤
(∑
µ∈Z

∑
W∈WQ,µ

L(W )=−k+n

|W |(γkW,µ)r
)1/r

.

Using the embedding `p ⊆ `r for p < r,

‖bk,nQ ‖Lr ≤
(∑
µ∈Z

∑
W∈WQ,µ

L(W )=−k+n

(γkW,µ)p|W ||W |
p
r
−1
)1/p

≤ 2
(k−n)d( 1

p
− 1
r

)
βk,nQ,p. �

We also have the following variant of Lemma 3.7.
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Lemma 3.9. For every n ≥ 0,( ∑
k>−L(S0)

(βk,nQ,p)
p
)1/p

≤ ‖Fp1Q‖p = βQ,p.

Proof. This follows since k and n are coupled. �

This lemma allows us to sum in `p rather than `2 provided that the
quantity L(W )− L(R) is constant. In applications, this constitutes a great
advantage which permits us to prove endpoint bounds.

4. The base case

Recalling (3.29) we set

µmin = −∞

throughout this section. We first note the following observations. Let p ≤
r ≤ q. By rescaling (recall (2.2) and (2.3)), we have for j0 > −k,

‖T (j0)
k ‖Lr→Lq = 2

kd( 1
r
− 1
q

)‖ϕm(2k·) ∗ Ψ̂j0+k‖Mr→q(4.1)

= 2
−j0d( 1

p
− 1
q

)
2
−kd( 1

p
− 1
r

)
Ak,j0+k
p,r,q .

It is well-known that sparse domination for single spatial scale operators
follows from certain rescaled Lp → Lq estimates (see, for instance, [5, §3.1]).
In our case, it suffices to verify the Lp → Lq estimates in the following two
lemmata; in both the implicit constants do not depend on j0 and z. Recall

the definition Cp,r,q(j0) = supk>−j0 A
k,j0+k
p,r,q (see (2.13)).

Lemma 4.1. Let 1 < p ≤ 2 ≤ q ≤ p′ and j0 ∈ Z. Let S0 be a dyadic cube
of side length 2j0 and let f ∈ Lp be supported in S0. Then

(4.2) ‖Tj0f‖q . 2
−j0d( 1

p
− 1
q

)Cp,p,q(j0)‖f‖p.

Lemma 4.2. Let 1 < p < r ≤ q ≤ 2 and j0 ∈ Z. Let S0 be a dyadic cube of
side length 2j0 and let f ∈ Lp be supported in S0. Then

(4.3) ‖Tj0f‖q . 2
−j0d( 1

p
− 1
q

)(Cp,p,q(j0) + Cp,r,q(j0)
)
‖f‖p.

Reduction of Lemmata 2.6, 2.7 to Lemmata 4.1, 4.2. Both reductions use the
same argument; we therefore abbreviate by C(j0) the respective constants
Cp,p,q(j0), for q ≤ 2, and Cp,p,q(j0) + Cp,r,q(j0), for q ≥ 2. Keeping in mind

that f1 vanishes in S{0 we estimate

(4.4)
|〈Tj0f1, f2〉| = |〈Tj0f1, f213S0〉| ≤ ‖Tj0f1‖q‖f213S0‖q′

. C(j0)2
−j0d( 1

p
− 1
q

)‖f1‖p‖f213S0‖q′ . C(j0)〈f1〉S0,p
〈f2〉3S0,q′

|3S0|,

which gives the desired sparse bounds (2.14) and (2.15). �
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It remains to prove Lemmata 4.1 and 4.2. The proof of the former is a
short standard argument based on Littlewood–Paley inequalities. The proof
of the latter is longer and relies on the atomic decomposition discussed in
§3.

4.1. The case q ≥ 2: Proof of Lemma 4.1. By the Littlewood-Paley inequal-

ity ‖
∑

k LkPkFk‖q . ‖(
∑

k |Fk|2)1/2‖q and setting Fk = Pkf and applying
(2.1c), we get

(4.5) ‖Tj0f‖q .
∥∥∥(∑

k∈z
|T (j0)
k Pkf |2

)1/2∥∥∥
q
.
(∑
k∈z
‖T (j0)

k Pkf‖2q
)1/2

where we applied Minkowski’s inequality in Lq/2. By (4.1) with r = p we
get

‖Tj0f‖q . Cp,p,q(j0)2
−j0d( 1

p
− 1
q

)
(∑
k∈Z
‖Pkf‖2p

)1/2
.

Using p ≤ 2 and Minkowski’s inequality in L2/p we obtain

‖Tj0f‖q . Cp,p,q(j0)2
−j0d( 1

p
− 1
q

)
∥∥∥(∑

k∈Z
|Pkf |2

)1/2∥∥∥
p

. Cp,p,q(j0)2
−j0d( 1

p
− 1
q

)‖f‖p
and (4.2) is proved. �

4.2. The case q < 2: Proof of Lemma 4.2. Let f ∈ Lp(S0), with L(S0) = j0,
and decompose using (3.3), for fixed k ∈ Z,

f = E1−j0f +
∑

m>−j0−k
Dk+mf.

Next we split

Tj0f = I + II1 + II2,

where

I =
∑
k∈z

T
(j0)
k PkPk[E1−j0f ]

and II1 and II2 are defined in terms of the additional decomposition Dk+mf =∑
n≥0 b

k+m,n
S0

as

II1 =
∑
m≥0

∑
0≤n≤2m

∑
k∈z

IIm,n,k,

II2 =
∑
m<0

∑
n≥0

∑
k∈z

IIm,n,k +
∑
m≥0

∑
n>2m

∑
k∈z

IIm,n,k, where

IIm,n,k = PkT
(j0)
k PkDk+mb

k+m,n
S0

.

It is useful to keep in mind that IIm,n,k = 0 unless k > −j0 and k+m >
−j0. Our goal is to control the Lq norm of the three terms by a constant
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times Cp,r,q(j0)2−j0d(1/p−1/q)‖f‖Lp(S0). For the first two terms we get the
better bound with r = p.

Estimation of ‖I‖q. For the term I we take r = p and estimate, using (3.2b)
and (4.1) with r = p,

‖I‖q .
∑
k∈z
‖T (j0)

k ‖Lp→Lq‖PkE1−j0‖Lp→Lp‖f‖p

. 2
−j0d( 1

p
− 1
q

)
∑
k∈z

Ak,j0+k
p,p,q 2−(k+j0)/p′‖f‖p

. 2
−j0d( 1

p
− 1
q

)Cp,p,q(j0)
∑
`>0

2−`/p
′‖f‖p

and we get the desired bound.

Estimation of ‖II1‖q. By the almost-orthogonality of the Pk and the result-

ing inequality ‖
∑

k PkFk‖q . (
∑

k ‖Fk‖
q
q)1/q we get

‖II1‖q .
∑
m≥0

∑
0≤n≤2m

(∑
k∈z
‖IIm,n,k‖qq

)1/q
.(4.6)

Now, by (4.1), (3.2) and Lemma 3.8, we have for all p ≤ r ≤ q that

(4.7) ‖IIm,n,k‖q . ‖T
(j0)
k ‖Lr→Lq‖PkDk+m‖Lr→Lr‖bk+m,n

S0
‖r

. Cp,r,q(j0)2
−j0d( 1

p
− 1
q

)
2
−kd( 1

p
− 1
r

)
2−|m|/r

′
2
−nd( 1

p
− 1
r

)
2

(k+m)d( 1
p
− 1
r

)
βk+m,n
S0,p

.

We use this with r = p and estimate the right-hand side of (4.6) by a
constant times

2
−j0d( 1

p
− 1
q

)Cp,p,q(j0)
∑
m≥0

∑
0≤n≤2m

2−m/p
′
( ∑
k>−j0

(βk+m,n
S0,p

)q
)1/q

. 2
−j0d( 1

p
− 1
q

)Cp,p,q(j0)
∑
m≥0

∑
0≤n≤2m

2−m/p
′‖f‖p

using `q ⊆ `p, Lemma 3.9 and (3.24). Altogether

‖II1‖q .
∑
m≥0

∑
0≤n≤2m

( ∑
k>−j0

‖IIm,n,k‖qq
)1/q

. Cp,p,q(j0)2
−j0d( 1

p
− 1
q

)
∑
m≥0

(1 + 2m)2−m/p
′‖f‖p

. Cp,p,q(j0)2
−j0d( 1

p
− 1
q

)‖f‖p,

which finishes the estimation of ‖II1‖q.
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Estimation of ‖II2‖q. By the almost orthogonality of the Pk we have∥∥∥∑
k∈z

PkIIm,n,k

∥∥∥
q
.
(∑
k∈z
‖IIm,n,k‖qq

)1/q

.
(∑
k∈z
‖IIm,n,k‖rq

)1/r

We use (4.7) with r > p, followed by the embedding `r ⊆ `p, Lemma 3.9
and (3.24) to deduce(∑

k∈z
‖IIm,n,k

∥∥∥r
q

)1/r

. Cp,r,q(j0)2
−j0d( 1

p
− 1
q

)
2−|m|/r

′
2

(m−n)d( 1
p
− 1
r

)
(∑
k∈z

(βk+m,n
S0,p

)r
)1/r

. Cp,r,q(j0)2
−j0d( 1

p
− 1
q

)
2−|m|/r

′
2

(m−n)d( 1
p
− 1
r

)‖f‖p
and therefore, using r > p,

‖II2‖q .
∑
m∈Z

∑
n≥max{0,2m}

( ∑
k>−j0

‖IIm,n,k‖qq
)1/q

. Cp,r,q(j0)2
−j0d( 1

p
− 1
q

)‖f‖p.

This finishes the estimation of ‖II2‖q and the proof of the lemma. �

5. Combination of atomic and

Calderón–Zygmund decompositions

Let S0 be a dyadic cube, let f1 and f2 be given functions. Assume that
f1 is supported in S0 and that f2 is supported in 3S0. In analogy to the
Calderón–Zygmund decomposition we decompose the functions f1, f2 given
some threshold parameters α1, α2 > 0; these will be defined as

(5.1) α1 = 〈f1〉S0,p, α2 = 〈f2〉3S0,q′ .

The decomposition of f2 will be essentially based on a Calderón–Zygmund
decomposition at level α2, see (5.12), (5.13) below. We describe the decom-
position of f1 which is more involved and essentially based on the atomic de-
composition introduced in §3. The idea of combining atomic and Calderón–
Zygmund decompositions was previously used in [31], and can be traced
back to [16], although here we need a different variant.

In the proof we will use two large constants U1, U2 which need to sig-
nificantly exceed various constants in standard maximal or square function
inequalities, or combinations thereof; we shall see that any choice of U1, U2

with

U1 ≥ (1− γ)−1/p(2100d)d/pCsq,p ,(5.2a)

U2 ≥ (1− γ)−1/q′(2100d)d/q
′
,(5.2b)

and Csq,p as in (3.6), will work.
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We start writing

(5.3) f1 = g1 + b1,

with the “good” function defined as

(5.4a) g1 = E−L(S0)+1f1 +
∑

k>−L(S0)

gk1 ,

where

(5.4b) gk1 =
∑

µ∈Z : 2µ≤U1α1

∑
R∈Rkµ

eR

and the “bad” function defined as b1 = f1 − g1, i.e. b1 =
∑

k>−L(S0) b
k
1 with

(5.5) bk1 =
∑

µ∈Z : 2µ>U1α1

∑
R∈Rkµ

eR.

Note that bk1 = gk1 = 0 for k ≤ −L(S0). Clearly,

|E−L(S0)+1f1(x)| ≤ 2d/pα1 ≤ U1α1 for all x ∈ S0.

Furthermore, the square function associated with the {gk1}k>−L(S0) is point-
wise bounded by 2U1α1. This is analogous to the L∞ estimate for the “good”
function in a standard Calderón–Zygmund decomposition.

Lemma 5.1. For almost every x ∈ S0 we have( ∑
k>−L(S0)

|gk1 (x)|2
)1/2

≤ 2U1α1.

Proof. Fix x ∈ S0. Let z be a finite family of indices with k > −L(S0). It
suffices to show that

(5.6)
(∑
k∈z
|gk1 (x)|2

)1/2
≤ 2U1α1.

Let

Rx =
{
R : R ∈

⋃
2µ≤U1α1

Rµ, x ∈ R, L(R) = −k for some k ∈ z
}
.

Note that these are the only cubes contributing to
∑

k∈z |gk1 (x)|2. We can

assume that Rx 6= ∅, as otherwise
∑

k∈z |gk1 (x)|2 = 0 and the inequality
is trivial. Next, let Rx,k = {R ∈ Rx, L(R) = −k} and let k◦(x) be the
maximal integer k ∈ z for which Rx,k is non-empty. Note k◦(x) exists
as Rx is non-empty and z is finite. Moreover, observe that Rx,k is either
empty or consists only of one (half-open) cube. Let Rx,k◦(x) ∈ Rx,k◦(x).
By definition, there exists a unique µx with 2µx ≤ U1α1 and Rx,k◦(x) ∈
Rµx . Moreover, in view of (3.12), there exists wx ∈ Rx,k◦(x)\Ωµx+1. Thus,

GS0f1(wx) ≤ 2µx+1 ≤ 2U1α1. Note that by the maximality of k◦(x), we
have wx ∈ R for all R ∈ Rx.
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Consequently,(∑
k∈z
|gk1 (x)|2

) 1
2

=
(∑
k∈z

∣∣∣ ∑
R∈Rx,k

eR(x)
∣∣∣2) 1

2 ≤ GS0f1(wx) ≤ 2U1α1. �

The above lemma will be used in the proof of the sparse bound for dealing
with the term that involves g1: see §7.1 for the case q < 2 and §7.2 for the
case q ≥ 2.

We need a further refined decomposition of the bad parts bk1. Recall that
by Lemma 3.4 the function F1,p = Fp satisfies

(5.7) ‖F1,p‖Lp(S0) ≤ 23/2(2Cd)
1/pCsq,p|S0|1/pα1,

where Cd = 5d2(10
√
d)d (defined in (3.9)).

Our next goal is to perform a Calderón–Zygmund decomposition so that
this inequality continues to hold for smaller cubes. We now bring in the
second function f2. Let µ(α1) be the smallest integer µ such that 2µ > U1α1.
Define

(5.8) O = O1 ∪ O2,

where

O1 := Ω̃µ(α1)[f1] ∪ {x : MHL(F p1,p)(x) > Up1α
p
1},(5.9a)

O2 := {x : MHL(|f2|q
′
)(x) > U q

′

2 α
q′

2 }.(5.9b)

Then set

Õ = {x : MHL1O(x) > 2−10d(
√
d)−d} .

The following relation between the sizes of Õ and S0 is key in order to
prove sparse bounds.

Lemma 5.2. If in the definitions (5.8), (5.9) we make the choices of U1, U2

as in (5.2a), (5.2b), then

|Õ| < (1− γ)|S0|.

Proof. By the weak type inequality for the Hardy–Littlewood maximal func-
tion

|Õ| ≤ 5d210d(
√
d)d|O|.

Moreover, by the definition of α2,

|O2| ≤
5d‖f2‖q

′

q′

U q
′

2 α
q′

2

=
5d3d|S0|
U q
′

2

.

Furthermore, by (3.9) and (3.10),

|Ω̃µ(α1)[f1]| ≤ Cd2−µ(α1)pCpsq,p‖f1‖pLp(S0) < CdU
−p
1 Cpsq,p|S0| ;



ENDPOINT SPARSE DOMINATION 27

here we used that 2−µ(α1)p < U−p1 α−p1 . Finally, using (5.7), we obtain∣∣{x : MHL(F p1,p)(x) > Up1α
p
1}
∣∣ ≤ 5d‖F1,p‖pp

Up1α
p
1

≤ 5d23p/22CdC
p
sq,p|S0|

Up1
.

Altogether,
(5.10)

|Õ| ≤ |O1|+ |O2| ≤ 5d210ddd/2
(CdCpsq,p

Up1
+

5d21+3p/2CdC
p
sq,p

Up1
+

15d

U q
′

2

)
|S0|.

For large choices of U1, U2 we get the conclusion of the lemma, and one
checks that the choices of U1, U2 made in (5.2a), (5.2b) achieve this. �

Let Q := {Q} denote the family of dyadic Whitney cubes whose union is

the open set Õ, which satisfy

(5.11) 5 diam(Q) ≤ dist(Q, Õ{) ≤ 12 diam(Q).

We note that here we adapt the standard Whitney decomposition with dif-
ferent constants - it will be important that the constant on the left-hand
side is greater than 3 which ensures the family of triple dilates of Whitney
cubes has bounded overlap (see [41] and [5, §4.4] for more details). Note
that by Lemma 5.2 we have |Q| < |S0| and thus either Q∩S0 = ∅ or Q ⊆ S0,
since Q and S0 are dyadic cubes.

We describe a decomposition of f2 into a good and a bad part which is
analogous to the usual Calderón–Zygmund decomposition at level α2. Define

(5.12) g2(x) = f2(x)1O{(x) +
∑
Q∈Q

( 1

|Q|

∫
Q
f2(w) dw

)
1Q(x)

and let b2 = f2 − g2 which gives b2 =
∑

Q∈Q b2,Q with

(5.13) b2,Q(x) =
(
f2(x)− 1

|Q|

∫
Q
f2(w) dw

)
1Q(x).

We have the standard Calderón–Zygmund properties.

Lemma 5.3. (i) For all Q ∈ Q,
(

1
Q

∫
Q |f2(x)|q′ dx

)1/q′
. α2.

(ii) For almost every x ∈ 3Q, |g2(x)| . α2.

The proof is immediate from the definition of O2, by the standard rea-
soning from Calderón–Zygmund theory (see for example [49]). We omit the
details.

Next we record the following relation between cubes inWµ for 2µ > U1α1

and cubes in Q; note that the family Q does not depend on µ.

Lemma 5.4. Let µ ∈ Z such that 2µ > U1α1. For every W ∈ Wµ[f1] there
exists a unique Q ∈ Q such that W ⊂ Q.
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Proof. We first note that if W ∈ Wµ, then W ⊆ O1. This follows from

the definition of Wµ, as W ⊆ Ω̃µ ⊆ Ω̃µ(α1) for any µ ∈ Z with 2µ > U1α1.

Furthermore, cW ⊆ Õ for sufficiently small c ≥ 1. This follows because if
y ∈ cW , then

MHL1O(y) ≥ 1

|cW |

∫
cW

1O(w) dw ≥ 1

|cW |

∫
W
1O(w) dw =

|W |
|cW |

= c−d

where we used that W ⊆ O. Thus, the claim holds provided 1 ≤ c < 210
√
d.

This claim implies that if xW denotes the center of W , then

dist(xW , Õ{) ≥ dist(xW , (cW ){) =
diam(cW )

2
√
d

=
c

2
√
d

diam(W ).

Furthermore, as xW ∈ W ⊆ Õ, there exists Q ∈ Q such that xW ∈ Q. As

Q ⊆ Õ,

dist(xW , Õ{) ≤ diam(Q) + dist(Q, Õ{) ≤ 13 diam(Q)

where in the last inequality we have used (5.11). Consequently,

c

2
√
d

diam(W ) ≤ 13 diam(Q).

As long as 13 ≤ c
2
√
d
, we have that diam(W ) ⊆ diam(Q). Thus, we require

a choice of c such that 26
√
d ≤ c < 210

√
d. Since W and Q are dyadic, this

implies that W ⊆ Q, and as the cubes in Q have disjoint interior, the cube
Q is unique. �

At this point we set once and for all (throughout the proof of Proposition
2.9 in §6-§8),

µmin = log2(U1α1)

and recalling the definitions of bk1,Q = bkQ, bk,n1,Q = bk,nQ from §3.4 (with f = f1)
we then have

(5.14) bk1 =
∑
Q∈Q

bk1,Q =
∑
n≥0

∑
Q∈Q

bk,n1,Q.

Note that the families

WQ,µ = {W ∈ Wµ : W ⊂ Q}

are disjoint for different Q. For the cubes Q ∈ Q, we have a standard
stopping time condition for the function F1,p.

Lemma 5.5. For every Q ∈ Q, we have

(5.15) β1,Q,p = ‖F1,p1Q‖p =
(∑
µ∈Z

∑
W∈WQ,µ

(γW,µ[f1])p|W |
)1/p

. |Q|1/pα1.
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Proof. Let Q ∈ Q. By (5.11) we have that cQ ∩ Õ{ 6= ∅ provided that c is

sufficiently large, say c = 100
√
d. Let x∗ ∈ cQ ∩ Õ{ ⊆ cQ ∩ O{. Then we

have

1

cd|Q|

∫
Q
|F1,p|p ≤

1

|cQ|

∫
cQ
|F1,p|p ≤MHL(F p1,p)(x

∗) ≤ Up1α
p
1,

as desired. �

Combining this with Lemma 3.7 and Lemma 3.9 we obtain the key esti-
mates

(5.16)
( ∑
k>−L(S0)

(βk1,Q,p)
2
)1/2

≤ β1,Q,p . |Q|1/pα1.

and

(5.17)
( ∑
k>−L(S0)

(βk,n1,Q,p)
p
)1/p

≤ β1,Q,p . |Q|1/pα1.

In the proof of the sparse bounds, the case q ≥ 2 will only require the
decomposition in k but not in n. Correspondingly, Lemma 3.6 and (5.16) will
be essential in the proof of Proposition 6.4 in §8.2. The case q < 2 is more
subtle and requires decomposition in the n-parameter. It will be essential in

our argument that for r > p the Lr norms of bk,n1,Q exhibit exponential decay

in n. Correspondingly, Lemma 3.8 and (5.17) will be of central importance
in the proof of Proposition 6.3 in §8.1.

6. The induction step

Let n ≥ 1. This section is devoted to reducing the proof of the inductive
claim (Proposition 2.9) to a couple of main estimates.

Recall from (2.8) that Tjf =
∑

k∈z
k>−j

T
(j)
k P 2

k f and define

(6.1) T =

N2∑
j=N1

Tj and T Qf =

L(Q)∑
j=N1

Tj [f1Q]

for Q ∈ Q∪{S0}, and note that T S0 = T . Note that by Lemma 5.2, if Q ∈ Q
is such that Q ∩ S0 6= ∅ then Q ( S0. In particular L(Q) < L(S0) = N2,
so L(Q) − N1 < n which puts us in the position to apply the induction
hypothesis to the operators T Q.
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Next, the decomposition f1 = g1 + b1 as in (5.3) and (3.30a) give

|〈T f1, f2〉| ≤ |〈T g1, f2〉|+ |〈T b1, f2〉|

≤ |〈T S0g1, f2〉|+
∣∣∣〈 ∑
Q∈Q
T Qb1, f2

〉∣∣∣+
∣∣∣〈 ∑
N1≤j≤N2

∑
Q∈Q,
L(Q)<j

Tjb1,Q, f2

〉∣∣∣

≤
∑

Q∈Q∪{S0}

|〈T Qg1, f2〉|+
∑
Q∈Q
|〈T Qf1, f2〉|+

∣∣∣〈 ∑
N1≤j≤N2

∑
Q∈Q,
L(Q)<j

Tjb1,Q, f2

〉∣∣∣,(6.2)

where in the last step we used again b1 = f1−g1. We state four propositions
that will be proved in the four subsequent sections. For the good part, i.e.
the first term in (6.2) we have the following propositions. Here we use the
notation j0 = L(S0) as in §4.

Proposition 6.1. Let 1 < p ≤ q ≤ 2. For all Q ∈ Q ∪ {S0},

|〈T Qg1, f2〉| . ‖m‖∞ |Q|〈f1〉S0,p〈f2〉3S0,q′ .

Proposition 6.2. Let 2 < q ≤ p′ <∞, q′ < r ≤ 2. For all Q ∈ Q ∪ {S0},

|〈T Qg1, f2〉| . Aq′,r,r[m] |Q|〈f1〉S0,p〈f2〉3S0,q′ .

Propositions 6.1 and 6.2 will be proved in §7.1 and §7.2, respectively.
Note that disjointness of the cubes in Q ∈ Q implies

∑
Q∈Q |Q| ≤ |S0| and

thus Propositions 6.1 and 6.2 yield∑
Q∈Q∪{S0}

|〈T Qg1, f2〉| . |S0|〈f1〉S0,p〈f2〉3S0,q′ .

The terms involving T Qf1 for Q ∈ Q are estimated using the inductive hy-
pothesis exactly as described in [5, §4.4], as L(Q)−N1 < n. More precisely,
given any ε > 0, for each Q ∈ Q, there exists a γ-sparse family of cubes
SεQ ⊆ D(Q) such that

|〈T Qf1, f2〉| ≤ (U(n− 1) + ε)
∑
Q̃∈SεQ

|Q̃|〈f1〉Q̃,p〈f2〉3Q̃,q′

holds. By disjointness of the Q ∈ Q and Lemma 5.2, the resulting family

Sε = {S0} ∪
⋃

Q∈Q:Q⊆S0

SεQ

is γ-sparse. We then get the desired result from the following propositions
which take care of the third term in (6.2).

Proposition 6.3. Let 1 < p < r ≤ q ≤ 2. Then∣∣∣〈 ∑
N1≤j≤N2

∑
Q∈Q,
L(Q)<j

Tj [b1,Q], f2

〉∣∣∣ . Ap,r,q[m]|S0|〈f1〉S0,p
〈f2〉3S0,q′

.
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Proposition 6.4. Let 2 ≤ q ≤ p′ <∞. Then∣∣∣〈 ∑
N1≤j≤N2

∑
Q∈Q,
L(Q)<j

Tj [b1,Q], f2

〉∣∣∣ . Ap,p,q[m] |S0|〈f1〉S0,p
〈f2〉3S0,q′

.

Propositions 6.3 and 6.4 will be proved in §8.1 and §8.2, respectively. No-
tice that the main induction step for Theorem 1.1 follows from Propositions
6.1 and 6.3. For Theorem 1.2 it follows from Propositions 6.1 and 6.4 and
for Theorem 1.3 it follows from Propositions 6.2 and 6.4.

7. The good part

Here we prove Proposition 6.1 and Proposition 6.2. By the definition of
Tj in (2.8), using (2.10) and substituting j by `− k,

〈T Qg1, f2〉 =
∑
k∈z

∑
`>0

N1≤`−k≤L(Q)

〈T (`−k)
k PkPk[g11Q], f213Q〉.

Next, using the decomposition g11Q = (E1−j0f1)1Q +
∑

k′>−L(Q) g
k′
1 1Q as

in (5.4a),

|〈T Qg1, f2〉| ≤ I + II,

where

(7.1) I =
∑
k∈z

∣∣∣ ∑
`>0

N1≤`−k≤L(Q)

〈PkT
(`−k)
k Pk[E1−j0(f11Q)], f213Q〉

∣∣∣,
(7.2) II =

∣∣∣∑
k∈z

∑
k′>−L(Q)

∑
`>0

N1≤`−k≤L(Q)

〈PkT
(`−k)
k Pk[g

k′
1 1Q], f213Q〉

∣∣∣
and gk

′
1 is as in (5.4b). The main contribution to II is given by the terms

with |k−k′| . 1. Therefore we substitute k′ = k+ν with ν ∈ Z and estimate

II ≤
∑
ν∈Z

∣∣∣∑
k∈z

∑
`>0

N1≤`−k≤L(Q)

〈PkT
(`−k)
k Pk[g

k+ν
1 1Q], f213Q〉

∣∣∣.
From here on the terms I and II will each be estimated differently de-

pending on whether q ≤ 2 or q > 2.

7.1. The case q ≤ 2: Proof of Proposition 6.1. By (2.2) and (1.3) we have
for each fixed k ∈ z and integers 0 < L1 ≤ L2 that

(7.3)
∥∥∥ ∑
L1<`≤L2

T
(`−k)
k

∥∥∥
2→2
≤ 2 sup

`>0
‖ϕm(2k·) ∗ 2`Φ̂0(2`·)‖∞ . ‖m‖∞,

uniformly in k, L1, L2. Using this and the Cauchy–Schwarz inequality we
bound

II . ‖m‖∞
∑
ν∈Z

∑
k∈z
‖PkDk+ν [gk+ν

1 1Q]‖2‖Pk[f213Q]‖2,
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which by another application of the Cauchy–Schwarz inequality and (3.2) is

. ‖m‖∞
∑
ν∈Z

2−|ν|/2
∥∥∥( ∑

k>−j0

|gk1 |2
)1/2∥∥∥

L2(Q)

∥∥∥(∑
k∈Z
|Pk[f213Q]|2

)1/2∥∥∥
2
.

By Lemma 5.1 we have∥∥∥( ∑
k>−j0

|gk1 |2
)1/2∥∥∥

L2(Q)
. α1|Q|

1
2 .

Moreover using q′ ≥ 2,

(7.4)
∥∥∥(∑

k∈Z
|Pk[f213Q]|2

)1/2∥∥∥
2
. ‖f2‖L2(3Q) . |Q|

1
2 〈f2〉3Q,q′ . |Q|

1
2α2,

where the last step follows from Lemma 5.3 in the case Q ∈ Q (and is void
if Q = S0). Thus we obtain II . ‖m‖∞|Q|〈f1〉S0,p〈f2〉3S0,q′ , as desired.

To bound I we again use (7.3), the Cauchy–Schwarz inequality and (3.2)
to arrive at

I . ‖m‖∞
∑
k∈z
‖Pk[(E1−j0f1)1Q]‖2‖Pk[f213Q]‖2

≤ ‖m‖∞
∥∥∥(∑

k∈Z
|Pk(E1−L(Q)f1)1Q|2

)1/2∥∥∥
L2(Q)

∥∥∥(∑
k∈Z
|Pk[f213Q]|2

)1/2∥∥∥
2

. ‖m‖∞‖E1−j0f1‖L2(Q)|Q|
1
2α2 . ‖m‖∞|Q|〈f1〉S0,p〈f2〉3S0,q′ ,

where in the last two steps we have used (7.4) and that

‖E1−j0f1‖L2(Q) . |Q|
1
2 〈f1〉S0,1 ≤ |Q|

1
2 〈f1〉S0,p.

This concludes the proof of Proposition 6.1. �

7.2. The case q > 2: Proof of Proposition 6.2. Here we assume 2 < q ≤
p′ <∞ and let r ∈ (q′, 2]. We begin with estimating the term II. Note that
by Fubini’s theorem,

II ≤
∑
ν∈Z

∣∣∣ ∫ ∑
k∈z

Pk[g
k+ν
1 1Q](x)

∑
`>0

N1≤`−k≤L(Q)

(T (`−k))∗Pk[f213Q](x) dx
∣∣∣.

By the Cauchy–Schwarz inequality applied to the summation in k and
Hölder’s inequality applied to the integration in x, we obtain that the pre-
vious display is no greater than∑

ν∈Z
E1
q,ν · E2

q′ ,
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where

E1
q,ν =

∥∥∥(∑
k∈z

∣∣Pk[gk+ν
1 1Q]

∣∣2)1/2∥∥∥
q
,(7.5a)

E2
q′ =

∥∥∥(∑
k∈z

∣∣∣ ∑
`>0

N1≤`−k≤L(Q)

(T
(`−k)
k )∗Pk[f213Q]

∣∣∣2)1/2∥∥∥
q′
.(7.5b)

By Lemma 5.1 we have E1
q,ν ≤ Cqα1|Q|1/q, uniformly in m. Moreover for q =

2 we can use Fubini’s theorem and (3.2) to see that E1
2,ν . 2−|ν|/2α1|Q|1/2.

By log-convexity of the Lq-norm, we deduce E1
q,ν .q 2−|ν|ε(q)α1|Q|1/q with

ε(q) < 1/q for 2 < q <∞ and thus

(7.6)
∑
ν∈Z
E1
q,ν .q α1|Q|1/q, 2 ≤ q <∞.

We shall now prove that

(7.7) E2
q′ . Aq′,r,rα2|Q|1/q

′
.

By averaging with Rademacher functions the desired bound will follow if we
show that for any sequence {ak}k∈Z with supk |ak| ≤ 1 and subsets Λ(k) of
nonnegative integers we can show that∥∥∥∑

k∈z
ak

∑
`∈Λ(k)

(T
(`−k)
k )∗Pk

∥∥∥
q′→q′

. Aq′,r,r.

This can be established by showing that the associated multipliers

(7.8) h(ξ) =
∑
k∈z

ak
∑
`∈Λ(k)

(
[φm(2k·)] ∗ Ψ̂`

)
(2−kξ)η(2−kξ)

have M q′→q′ norm bounded by a constant times Aq′,r,r, which by (1.4) (with
p replaced by q′) follows from the following lemma.

Lemma 7.1. Suppose q′ < r ≤ 2. Then the multipliers in (7.8) satisfy

(7.9) sup
t>0
‖φh(t·)‖

B
d( 1
q′ −

1
r )

1 (Mr→r)

. Aq′,r,r,

with the implicit constant independent of z, of the sets Λ(k) ⊂ N0 and of
{ak} in the unit ball of c0.

The proof is straightforward but somewhat technical, and therefore post-
poned to §11.4. This finishes the proof of (7.7) and therefore we obtain the
desired estimate for the term II. The bound for the term I is slightly sim-
pler. We again use Fubini’s theorem, the Cauchy–Schwarz inequality and
Hölder’s inequality to obtain that

I ≤ E1
q · E2

q′ ,



34 D. BELTRAN J. ROOS A. SEEGER

where

E1
q =

∥∥∥(∑
k∈z
|Pk[(E1−j0f1)1Q]|2

)1/2∥∥∥
q
.

By Littlewood–Paley theory and Hölder’s inequality,

E1
q . ‖E1−j0f1‖Lq(Q) . 〈f1〉S0,1|Q|1/q ≤ 〈f1〉S0,p|Q|1/q.

Combined with (7.7) we obtain the desired bound for I which concludes the
proof of Proposition 6.2. �

8. The bad part

Here we prove Proposition 6.3 and Proposition 6.4. By the definition of
Tj in (2.8), using b1 =

∑
k′>−j0

∑
Q∈Q b

k′
1,Q and substituting j by `− k and

k′ by k + ν,∣∣∣〈 ∑
N1≤j≤N2

∑
Q∈Q,
L(Q)<j

Tj [b1,Q], f2

〉∣∣∣ ≤
∑
ν∈Z

∑
`>0

∑
k∈z

∣∣∣ ∑
Q∈Q

L(Q)<`−k≤N2

〈T (`−k)
k Pkb

k+ν
1,Q , Pkf2〉

∣∣∣.
For fixed j ≤ j0 we tile S0 with a family Bj = {B} of dyadic cubes B such
that L(B) = j. For convenience we also set Bj = ∅ if j > j0. Then the
previous display is

(8.1) ≤
∑
ν∈Z

∑
`>0

∑
k∈z

∑
B∈B`−k

∣∣∣〈T (`−k)
k Pk

[ ∑
Q∈Q,
Q(B

bk+ν
1,Q

]
, (Pkf2)13B

〉∣∣∣.
Let us also recall the scaling relation

‖T (`−k)
k ‖r→q = 2

kd( 1
r
− 1
q

)‖ϕm(2k·) ∗ Ψ̂`‖Mr→q(8.2)

= 2
−`d( 1

p
− 1
q

)
2
kd( 1

r
− 1
q

)
Ak,`p,r,q.

8.1. The case q ≤ 2: Proof of Proposition 6.3. In view of (2.6) it is no loss
of generality to assume that r > p > 1 is chosen very close to p; indeed, it
will be convenient to assume

(8.3) d(1/p− 1/r) < 1− 1/r,

which is admissible since p > 1. By Hölder’s inequality and (8.2) we can
bound (8.1) by∑

ν∈Z

∑
`>0

∑
k∈z

∑
B∈B`−k

Ak,`p,r,q2
−`d( 1

p
− 1
q

)
2
kd( 1

r
− 1
q

)×

∥∥∥PkDk+ν

[ ∑
Q∈Q,
Q(B

bk+ν
1,Q

]∥∥∥
r
‖(Pkf2)13B‖q′ .
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We next use (3.2) and write bk+ν
1,Q =

∑
n≥0 b

k+ν,n
1,Q so that the above is

(8.4) .
∑
n≥0

∑
ν∈Z

∑
`>0

∑
k∈z

∑
B∈B`−k

Ak,`p,r,q2
−`d( 1

p
− 1
q

)
2
kd( 1

r
− 1
q

)
2−|ν|/r

′

×
∥∥∥ ∑
Q∈Q,
Q(B

bk+ν,n
1,Q

∥∥∥
r
‖(Pkf2)13B‖q′ .

By Lemma 11.4 and disjointness of the Q ∈ Q, we have for B ∈ B`−k∥∥∥ ∑
Q∈Q,
Q(B

bk+ν,n
1,Q

∥∥∥
r
. |B|

1
r
− 1
q

( ∑
Q∈Q
|Q|1−

q
r ‖bk+ν,n

1,Q ‖qr
)1/q

.

By Lemma 3.6, ‖bk+ν,n
1,Q ‖r ≤ 2

(k+ν−n)d( 1
p
− 1
r

)
βk+m,n

1,Q,p . Noting that

2
−`d( 1

p
− 1
q

)
2
kd( 1

r
− 1
q

)|B|
1
r
− 1
q × 2

kd( 1
p
− 1
r

)|Q|
1
p |Q|−

1
r = (|Q|/|B|)

1
p
− 1
r ≤ 1

for Q ⊆ B and r > p, we obtain that (8.4) is bounded by a constant times∑
n≥0

∑
ν∈Z

2
−(n−ν)d( 1

p
− 1
r

)
2−|ν|/r

′×

(8.5)
∑
k∈z

∑
`>0

∑
B∈B`−k

Ak,`p,r,q

( ∑
Q∈Q,
Q(B

|Q|1−
q
p (βk+ν,n

1,Q,p )q
)1/q
‖(Pkf2)13B‖q′ .

In view of (8.3) we now fix n ≥ 0 and ν ∈ Z. Using Hölder’s inequality with
exponents (1

q ,
1
q′ ) on the summation over B, (8.5) is estimated by

Ap,r,q
∑
k∈z

( ∑
Q∈Q
|Q|1−

q
p (βk+ν,n

1,Q,p )q
)1/q
‖Pkf2‖q′ .

Using Hölder’s inequality again with exponents (1
q ,

1
q′ ) on the summation

over k, this is then estimated by

Ap,r,q
(∑
k∈z

∑
Q∈Q
|Q|1−

q
p (βk+ν,n

1,Q,p )q
)1/q(∑

k∈Z
‖Pkf2‖q

′

q′

)1/q′

.

Since q′ ≥ 2 we have(∑
k∈Z
‖Pkf2‖q

′

q′

)1/q′

≤
∥∥∥(∑

k∈Z
|Pkf2|2

)1/2∥∥∥
q′
. |S0|

1
q′ 〈f2〉3S0,q′ .

By the embedding `p ⊆ `q for p ≤ q in the k-sum and (5.17), we estimate(∑
k∈z

∑
Q∈Q
|Q|1−

q
p (βk+ν,n

1,Q,p )q
)1/q

≤
( ∑
Q∈Q
|Q|1−

q
p (
∑
k∈z

(βk+ν,n
1,Q,p )p)q/p

)1/q
. |S0|

1
qα1.

Summing over n ≥ 0 and ν ∈ Z using (8.3) concludes the argument. �
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8.2. The case q ≥ 2: Proof of Proposition 6.4. We decompose f2 = g2 +∑
Q′∈Q b2,Q′ , as in (5.12), (5.13), so that (8.1) is bounded by I + II, where

I =
∑
ν∈Z

∑
`>0

∑
k∈z

∑
B∈B`−k

∣∣∣〈T (`−k)
k Pk

[ ∑
Q∈Q,
Q(B

bk+ν
1,Q

]
, (Pkg2)13B

〉∣∣∣,
II =

∑
ν∈Z

∑
`>0

∑
k∈z

∑
B∈B`−k

∣∣∣〈T (`−k)
k Pk

[ ∑
Q∈Q,
Q(B

bk+ν
1,Q

]
,13B

∑
Q′∈Q

Pkb2,Q′
〉∣∣∣.

8.2.1. The term I. By the Cauchy–Schwarz inequality,

|I| ≤
∑
ν∈Z

∑
`>0

∑
k∈z

∑
B∈B`−k

∥∥∥T (`−k)
k

[
PkDk+ν

∑
Q∈Q,
Q(B

bk+ν
1,Q

]∥∥∥
2
‖(Pkg2)13B‖2.

By a standard localization argument, for p ≤ 2 ≤ q,

‖ϕm(2k·) ∗ Ψ̂`‖Mp→2 . 2
`d( 1

2
− 1
q

)‖ϕm(2k·) ∗ Ψ̂`‖Mp→q = 2
−`d( 1

p
− 1

2
)
Ak,`p,p,q

and thus by the scaling relation (8.2),

(8.6) ‖T (`−k)
k ‖p→2 ≤ 2

−(`−k)d( 1
p
− 1

2
)
Ak,`p,p,q.

By (3.2) and Lemma 11.4 with the exponent pair (p, 2),∥∥∥PkDk+ν

[ ∑
Q∈Q,
Q(B

bk+ν
1,Q

]∥∥∥
p
. 2−|ν|/p

′
∥∥∥ ∑
Q∈Q,
Q(B

bk+ν
1,Q

∥∥∥
p

. 2−|ν|/p
′ |B|

1
p
− 1

2

( ∑
Q∈Q,
Q(B

|Q|1−
2
p ‖bk+ν

1,Q ‖
2
p

)1/2

. 2−|ν|/p
′
2

(`−k)d( 1
p
− 1

2
)
( ∑
Q∈Q,
Q(B

|Q|1−
2
p (βk+ν

1,Q,p)
2
)1/2

,(8.7)

where for the last line we used that |B| = 2(`−k)d and Lemma 3.6. Combining
(8.6) and (8.7) we obtain

|I| ≤
∑
ν∈Z

2−|ν|/p
′∑
`>0

∑
k∈z

Ak,`p,p,q ×

∑
B∈B`−k

( ∑
Q∈Q,
Q(B

|Q|1−
2
p (βk+ν

1,Q,p)
2
)1/2
‖(Pkg2)13B‖2

and after applying the Cauchy–Schwarz inequality to the sum over B we get

|I| ≤ Ap,p,q
∑
ν∈Z

2−|ν|/p
′∑
k∈z

( ∑
Q∈Q
|Q|1−

2
p (βk+ν

1,Q,p)
2
)1/2
‖Pkg2‖2.
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Applying the Cauchy–Schwarz inequality in k and using
∑

ν∈Z 2−|ν|/p
′
. 1,

≤ Ap,p,q
( ∑
Q∈Q

∑
k>−j0

|Q|1−
2
p (βk1,Q,p)

2
)1/2∥∥∥(∑

k∈Z
|Pkg2|2

)1/2∥∥∥
2
.

We apply (5.16) to get
(8.8)( ∑

Q∈Q
|Q|1−

2
p

∑
k>−j0

(βk1,Q,p)
2
)1/2

≤
( ∑
Q∈Q
|Q|1−

2
p |Q|

2
p (α1)2

)1/2
. α1|S0|

1
2 .

By the almost orthogonality of the Pk and Lemma 5.3 (ii),(∑
k∈Z
‖Pkg2‖22

)1/2
. ‖g2‖L2(3S0) . |S0|

1
2α2.

In summary we obtain |I| . Ap,p,q|S0|α1α2 as claimed.

8.2.2. The term II. By the scaling relation (8.2) with r = p, (3.2) and using

|B| = 2d(`−k),∣∣∣〈T (`−k)
k Pk

[ ∑
Q∈Q,
Q(B

bk+ν
1,Q

]
,13B

∑
Q′∈Q

Pkb2,Q′
〉∣∣∣

. 2−|ν|/p
′ |B|−( 1

p
− 1
q

)
Ak,`p,p,q

∥∥∥ ∑
Q∈Q,
Q(B

bk+ν
1,Q

∥∥∥
p

∥∥∥ ∑
Q′∈Q

Pkb2,Q′
∥∥∥
Lq′ (3B)

.

By disjointness of the cubes in Q, Lemma 11.4 and Lemma 3.6,

(8.9)
∥∥∥ ∑
Q∈Q,
Q(B

bk+ν
1,Q

∥∥∥
p
. |B|

1
p
− 1

2

( ∑
Q∈Q,
Q(B

|Q|1−
2
p (βk+ν

1,Q,p)
2
)1/2

and similarly, applying Hölder’s inequality as in the proof of Lemma 11.4
we also get∥∥∥ ∑

Q′∈Q

Pkb2,Q′
∥∥∥
Lq′ (3B)

. |B|
1
q′−

1
2

( ∑
Q′∈Q,
Q′⊆3B

|Q′|1−
2
q′ ‖Pkb2,Q′‖2q′

)1/2
.

Combining these estimates we get

(8.10) |II| .
∑
ν∈Z

2−|ν|/p
′∑
k∈z

∑
`>0

Ak,`p,p,q ×

∑
B∈B`−k

( ∑
Q∈Q,
Q(B

|Q|1−
2
p (βk+ν

1,Q,p)
2
)1/2( ∑

Q′∈Q:
Q′⊆3B

|Q′|1−
2
q′ ‖Pkb2,Q′‖2q′

)1/2

and by the Cauchy–Schwarz inequality applied to the sums over B and k,

|II| . Ap,p,q
( ∑
Q∈Q
|Q|1−

2
p

∑
k>−j0

(βk1,Q,p)
2
)1/2( ∑

Q′∈Q

∑
k∈Z
|Q′|1−

2
q′ ‖Pkb2,Q′‖2q′

)1/2
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Using q′ ≤ 2 and Lemma 5.3 (i),(∑
k∈Z
‖Pkb2,Q′‖2q′

)1/2
.
∥∥∥(∑

k∈Z
|Pkb2,Q′ |2

)1/2∥∥∥
q′
. ‖b2,Q′‖q′ . |Q′|

1
q′ α2

and thus( ∑
Q′∈Q

∑
k∈Z
|Q′|1−

2
q′ ‖Pkb2,Q′‖2q′

)1/2
.
( ∑
Q′∈Q

|Q′|α2
2

)1/2
. α2|S0|

1
2 .

Together with (8.8) this gives |II| . Ap,p,q|S0|α1α2 as desired. �

9. Applications

9.1. The classes FM(a, b). We prove the positive result in Theorem 1.7.
Condition (1.7) can be reformulated as∑

|α|≤n

‖∂α[φm(t·)]‖∞ .n t−b+na

for all n ∈ N and for all t > 1/8 (and we have φm(t·) = 0 for small t). Using
a standard interpolation result for Sobolev spaces ([7, Chapter 5.4]) we also
get for any s ≥ 0

(9.1) ‖φm(t·)‖Bs∞,1 .s t
−b+sa ,

for all t > 1/8, with the implicit constant independent of t.

We now verify m(D) ∈ Sp(ρ1, ρ2) for (1/ρ1, 1/ρ2) on the edge [P3, P4],
thus satisfying 1/ρ1 − 1/ρ′2 = b/da. Here P4 = (1/p4, 1/2) with 1/p4 =
1/2 + b/ad. The results in the remaining parts of the trapezoid then follow
by Hölder’s inequality.

Observe that 1
2 ≤

1
ρ1
≤ 1

p4
. First, we claim that the cases ρ1 = 2,

ρ1 = p4 follow from Theorem 1.2. By duality we only need to discuss the
case ρ1 = p4. Then, taking b = ad(1/p4 − 1/2) and s = d(1/p4 − 1/2) in
(9.1) we get

(9.2) sup
t>0
‖φm(t·)‖

B
d(1/p4−1/2)
∞,1

<∞.

Next, using the compact support of φ and some calculations about the con-
tributions away from the support of φ we have

(9.3) sup
t>0
‖φm(t·)‖

B
d(1/p4−1/2)
1 (Mp4→2)

. ‖m‖∞ + sup
t>0
‖φm(t·)‖

B
d(1/p4−1/2)
∞,1

,

which establishes that m ∈ Sp(p4, 2), as desired. In the remaining case
1
2 <

1
ρ1
< 1

p4
we use Theorem 1.3 (with the parameters p = ρ1, q′ = ρ2; note

that ρ2 < 2). To this end it suffices to verify that

sup
t>0
‖φm(t·)‖

B
d(1/ρ1−1/ρ′2)
1 (Mρ1→ρ′2 )

<∞,(9.4)

sup
t>0
‖φm(t·)‖

B
d(1/ρ2−1/2)
∞,1

<∞.(9.5)
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Note that (9.5) follows from (9.2) since B
d(1/p4−1/2)
∞,1 ↪→ B

d(1/ρ2−1/2)
∞,1 . Finally,

(9.4) follows from (9.3) and (9.2). This is because 1/ρ1 − 1/ρ′2 = 1/p4 −
1/2 and since Mp4→2 = M2→p′4 ↪→ Mρ1→ρ′2 by interpolation (observe that
(1/ρ1, 1/ρ

′
2) lies on the line between (1/p4, 1/2) and (1/2, 1/p′4)).

9.2. Oscillatory multipliers. We next turn to the proof of the positive result
in Theorem 1.6. Consider the oscillatory multipliers ma,b. It is our goal
to establish the endpoint Sp(p1, p1) bound, for 1/p1 = 1/2 + b/(ad), as the
remaining bounds then follow by Hölder’s inequality. Since ma,b belongs to
FM(a, b) we have

sup
t>0
‖φma,b(t·)‖Bd(1/p1−1/2)

1 (M2→2)
<∞

and in order to apply Theorem 1.3 it remains to verify that
(9.6)

sup
t>0

[
‖φma,b(t·)∗Φ̂0‖Mp1→p′1

+
∑
`>0

2`d(1/p1−1/p′1)‖φma,b(t·)∗Ψ̂`‖Mp1→p′1

]
<∞.

We sketch the argument; a similar calculation appears in [5, Chapter
7.2.2]. Note that φma,b(t·) = 0 for t � 1 and that the inequality is trivial
for t ≈ 1. For t� 1 we have

Kt(x) := F−1[φma,b(t·)](x) = (2π)−d
∫

φ(ξ)

tb|ξ|b
eit

a|ξ|a−i〈x,ξ〉 dξ .

For a 6= 1 the Hessian of ξ 7→ |ξ|a has full rank. Thus we get by stationary

phase the bound |Kt(x)| . t−b−ad/2 if |x| ≈ ta, moreover |Kt(x)| .N t−N−b if
|x| � ta and |Kt(x)| .N t−b|x|−N for |x| � ta for allN ≥ 0. These estimates

give M1→∞ bounds for φma,b(t·) ∗ Ψ̂` while we also have the trivial bound

O(t−b) for the M2 norm. Interpolation shows that (for suitable constants
c(a) < C(a))

‖(φma,b(t·)) ∗ Ψ̂`‖Mp→p′ .N


t
−b−da( 1

p
− 1

2
)

if c(a)ta ≤ 2` ≤ C(a)ta

t
−b−Na( 1

p
− 1

2
)

if 2` ≤ c(a)ta

t−b2
−`N( 1

p
− 1

2
)

if 2` ≥ C(a)ta

and since 1/p1 = 1/2 + b/(ad) the inequality (9.6) follows.

9.3. The results for radial multipliers. We use the Fefferman–Stein argu-

ment [23] based on the L2 Stein–Tomas restriction theorem. For radial

m(ξ) = a(|ξ|), 1 ≤ p ≤ 2(d+1)
d+3 , by Plancherel’s theorem we may write

‖m(D)f‖22 as a constant times∫
|m(ξ)f̂(ξ)|2 dξ =

∫ ∞
0
|a(ρ)|2ρd

∫
Sd−1

|f̂(ρθ)|2 dσ(θ)
dρ

ρ
.
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Therefore, by the Stein–Tomas theorem applied to the integral over Sd−1,
(9.7)

‖m‖Mp→2 .
(∫ ∞

0
|a(ρ)|2ρ2d( 1

p
− 1

2
) dρ

ρ

)1/2
= cd

(∫
|m(ξ)|2|ξ|2d( 1

p
−1)

dξ
)1/2

where cd is the surface measure of Sd−1 raised to the power −1
2 .

9.3.1. Proof of Corollary 1.5. We use Theorem 1.2 in conjunction with (9.7).

We set mt(ξ) = φ(|ξ|)h(t|ξ|). We let dµp(ξ) = |ξ|2d( 1
p
−1)

dξ. It suffices to
prove the estimate

(9.8) sup
t>0
‖φ(·)h(t| · |)‖Bα1 (L2( dµp)) . sup

t>0
‖φh(t·)‖Bα2,1(R)

for α > 0, 1 ≤ p < 2 and apply it for α = d(1/p− 1/2) and 1 < p ≤ 2(d+1)
d+3 .

We are assuming that φ is supported in (1/2, 2) and it is convenient to
choose χ to be a radial function supported in {ξ : 1/4 < |ξ| < 4} such that
0 ≤ χ ≤ 1 and χ(ξ) = 1 for 1/3 ≤ |ξ| ≤ 3. For ` > 0, let

I`,t =
(∫ ∣∣(φ(| · |)h(t| · |)) ∗ Ψ̂`(ξ)

∣∣2χ(ξ)|ξ|2d( 1
p
−1)

dξ
)1/2

,

II`,t =
(∫ ∣∣(φ(| · |)h(t| · |)) ∗ Ψ̂`(ξ)

∣∣2(1− χ(ξ))|ξ|2d( 1
p
−1)

dξ
)1/2

and let I0,t, II0,t be the analogous expressions with Φ0 in place of Ψ`.

First note that |ξ|2d(1/p−1) ≈ 1 on the support of χ, and therefore∑
`≥0

2`αI`,t ≤ Cα‖φ(| · |)h(t| · |)‖Bα2,1(Rd).

We observe the inequality

(9.9) ‖χg(| · |)‖Wm
2 (Rd) ≤ Cm‖g‖Wm

2 (R)

which follows by application of the product and chain rules; by real inter-
polation we get for all α > 0

‖χg(| · |)‖Bα2,1(Rd) .α Cα‖g‖Bα2,1(R)

and hence, ∑
`≥0

2`αI`,t .α ‖φh(t·)‖Bα2,1(R).

It remains to estimate the term II`,t. Note that for |ξ| ≥ 3 and N > d,∣∣φ(| · |)h(t| · |)) ∗ Ψ̂`(ξ)
∣∣ ≤ ∫

|y|≥|ξ|−2
|φ(|ξ − y|)h(t|ξ − y|)|2`d(2`|y|)−N dy

.
(∫
|y|≥|ξ|−2

|φ(|ξ − y|)h(t|ξ − y|)|2 dy
)1/2

2`(d−N)|ξ|
d−2N

2
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by the Cauchy–Schwarz inequality. Since 2d(1
p − 1) is negative, we get, for

N > d,(∫
|ξ|≥3

∣∣(φ(| · |)h(t| · |)) ∗ Ψ̂`(ξ)
∣∣2|ξ|2d( 1

p
−1)

dξ
)1/2

.N 2`(d−N)‖φ(| · |)h(t·)‖L2(Rd) .N 2`(d−N)‖φh(t·)‖L2(R).

Similarly, we have(∫
|ξ|≤ 1

3

∣∣(φ(| · |)h(t| · |)) ∗ Ψ̂`(ξ)
∣∣2|ξ|2d( 1

p
−1)

dξ
) 1

2

.N ‖φh(t·)‖L2(R)

(∫
|ξ|≤ 1

3

∫
|y|≥ 1

6

22`d|y2`|−2N dy |ξ|−
2d
p′ dξ

) 1
2

.N 2`(d−N)‖φh(t·)‖L2(R).

Altogether we get for p < 2 (i.e. −2d/p′ > −d),

2`αII`,t . 2`(α+d−N)‖φh(t·)‖L2(R).

The same applies for the term II0,t. Combining the estimates we obtain
(9.8) which concludes the proof of the corollary. �

9.3.2. Proof of Theorem 1.8. Let uδ(ξ) = hδ(|ξ|) = χ(δ−1(1− |ξ|)) in what
follows. To use the notation in our main theorems we are setting p1 = p and
p2 = q′.

The case p ≤ 2(d+1)
d+3 . We are seeking to prove a Sp(p, q′) bound, under the

assumption 1 < p ≤ 2(d+1)
d+3 and 1

q′ ≤
d+1
d−1

1
p −

2
d−1 (which is equivalent with

the condition 1
q ≥

d+1
d−1

1
p′ ). Since Sp(p1, p2) ⊂ Sp(p1, p3) for p3 ≥ p2 we just

need to consider the endpoint line with 1
q′ = d+1

d−1
1
p −

2
d−1 ; note that under

this assumption we have 2 ≤ q < ∞ for 1 < p ≤ 2(d+1)
d+3 and, moreover,

q = 2 if and only p = 2(d+1)
d+3 . In the latter case we use Theorem 1.2 while

for 1 < p < 2(d+1)
d+3 we have q > 2 and use Theorem 1.3.

In order to establish the assertion we have to prove, for 1 < p ≤ 2(d+1)
d+3

and 1
q′ = d+1

d−1
1
p −

2
d−1 the inequality

(9.10)
∑
`>0

2
`d( 1

p
− 1
q

)‖uδ ∗ Ψ̂`‖Mp→q . δ−d( 1
p
− 1

2
)+ 1

2 .

Furthermore for p in the open range 1 < p < 2(d+1)
d+3 (where q′ < 2) we use

Theorem 1.3 and also have to prove, for suitable q′ < r ≤ 2,

(9.11)
∑
`>0

2
`d( 1

q′−
1
r

)‖uδ ∗ Ψ̂`‖Mr→r . δ−d( 1
p
− 1

2
)+ 1

2 .
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From the L2 restriction theorem and (9.7) we get

(9.12) ‖uδ ∗ Ψ̂`‖Mp◦→2 .N δ1/2 min{1, (2`δ)−N}, p◦ = 2(d+1)
d+3 .

By stationary phase and integration by parts arguments we get

(9.13) ‖uδ ∗ Ψ̂`‖M1→∞ . 2−`
d−1
2 δmin{1, (2`δ)−N}.

This implies

(9.14) 2
`d( 1

p
− 1
q

)
δ
d( 1
p
− 1

2
)− 1

2 ‖uδ ∗ Ψ̂`(D)‖Lp→Lq . (2`δ)α(q) min{1, (2`δ)−N},
for 2 ≤ q ≤ ∞, 1

q = d+1
d−1

1
p′ , α(q) > 0.

The relation between p and q can be rewritten as 1
q′ = d+1

d−1
1
p −

2
d−1 . Thus,

given (9.14) we obtain (9.10) for 1 ≤ p < 2(d+1)
d+3 after summing in `.

To verify (9.14) observe that by (9.12) we have (9.14) for (1
p ,

1
q ) equal

to ( d+2
2(d+1) ,

1
2), with α(2) = d( 1

p◦
− 1

2) = d
d+1 . By (9.13) we have (9.14)

for (1
p ,

1
q ) equal to (1, 0), with α(∞) = d+1

2 . Thus by interpolation we get

(9.14) for all 2 ≤ q ≤ ∞, with 1
q = d+1

d−1
1
p′ , and α(q) > 0; more precisely

α(q) = 2d
q(d+1) + (d+ 1)(1

2 −
1
q ).

We still have to verify (9.11), but only when p < 2(d+1)
d+3 . Observe that

q′ < 2 for p < 2(d+1)
d+3 . Choose r with q′ < r ≤ 2, and r very close to q′. Here

it suffices to use classical non-endpoint estimates which give

(9.15) 2
`d( 1

q′−
1
r

)‖uδ ∗ Ψ̂`(D)‖Lr→Lr ≤

CN,ε2
`d( 1

q′−
1
r

)
min{1, (2`δ)−N}

{
δ−d( 1

r
− 1

2
)+ 1

2
−ε if 1 ≤ r ≤ 2(d+1)

d+3

δ−(d+1)(
1
r−

1
2 )−ε if 2(d+1)

d+3 ≤ r ≤ 2
,

with a better result in two dimensions:

(9.16) 2
`2( 1

q′−
1
r

)‖uδ ∗ Ψ̂`(D)‖Lr(R2)→Lr(R2) ≤

CN2
`2( 1

q′−
1
r

)
min{1, (2`δ)−N}

{
δ−2( 1

r
− 1

2
)+ 1

2
−ε if 1 ≤ r < 4/3

δ−ε if 4/3 ≤ r ≤ 2
.

In dimension d ≥ 3 we have to show that for r sufficiently close to q′ the
right-hand side of (9.15) is dominated by

(9.17) min{(2`δ)−ε1 , (2`δ)ε1}δ−d( 1
p
− 1

2
)+ 1

2

under the assumption that 1
q′ = d+1

d−1
1
p −

2
d−1 , for some ε1 > 0 depending on

p, q. Since p < q′ this is immediate for q′ < 2(d+1)
d+3 . When 2 > q′ ≥ 2(d+1)

d+3
the goal is accomplished once

d(1
p −

1
2)− 1

2 − (d+ 1)( 1
q′ −

1
2) > 0, for 1

p = d−1
(d+1)q′ + 2

d+1
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and the given range of q′. The displayed inequality holds for all q′ ∈
[2(d+1)
d+3 , 2) if and only if q′ > 6d+2

5d+1 . Since 2(d+1)
d+3 > 6d+2

5d+1 for d ≥ 3 we

get the bound (9.17) for r close to q′ in dimension d ≥ 3.

In dimension d = 2, the previous argument is not strong enough to cover
the range 6

5 ≤ q
′ ≤ 14

11 . We need to use the better estimate (9.16). Now the

bound (9.17) is immediate for q′ < 4/3 and if 4/3 ≤ q′ < 2 and 1
p = 1

3q′ + 2
3

we have 2(1
p −

1
2)− 1

2 = 2
3q′ −

1
6 > 0 so that the desired bound follows in this

case as well.

We have thus checked the assumptions of Theorem 1.2 (when p = 2(d+1)
d+3 )

and Theorem 1.3 (when p < 2(d+1)
d+3 ) and the theorem is proved for the case

p ≤ 2(d+1)
d+3 .

The case 2(d+1)
d+3 < p < 2(d+2)

d+4 . The proof relies on an inequality in [14,

Proposition 2.4], which in its dual formulation says

(9.18) ‖uδ‖Mρ→q . δ−d( 1
q
− 1

2
)+ 1

2 , 1
q′ = d+1

d−1
1
ρ −

2
d−1 ,

2(d+1)
d+3 ≤ ρ <

2(d+2)
d+4 .

By averaging we can replace uδ with uδ ∗ Ψ̂` or uδ ∗ Φ̂0 in (9.18), and after

an additional interpolation with (9.12) (the case with r = 2(d+1)
d+3 and q = 2)

we also get

(9.19) ‖uδ ∗ Ψ̂`‖Mr→q .N,q min{1, (2`δ)−N}δ−d( 1
q
− 1

2
)+ 1

2 ,

first for 1
q′ = d+1

d−1
1
r −

2
d−1 , 2(d+1)

d+3 ≤ r < 2(d+2)
d+4 . Then, using the compact

support of uδ and the auxiliary Lemma 11.2 we also get (9.19) in the range
1
q′ ≤

d+1
d−1

1
r −

2
d−1 and again 2(d+1)

d+3 ≤ r <
2(d+2)
d+4 .

Now assuming q′ > (d−1)p
d+1−2p we can find r > p such that r < 2(d+2)

d+4 and

q′ ≥ (d−1)r
d+1−2r (which is equivalent with 1

q′ ≤
d+1
d−1

1
r −

2
d−1) and then (choosing

N large enough)∑
`>0

2
`d( 1

p
− 1
q

)‖uδ ∗ Ψ̂`‖Mρ→q . δ−d( 1
p
− 1

2
)+ 1

2 .

This leads to

sup
t>0
‖φmδ(t·)‖Bd/p−d/q1 (Mr→q)

. δ−d( 1
p
− 1

2
)+ 1

2 sup
k∈Z
|ak|

and thus Theorem 1.1 can be applied to complete the proof of part (i) in
Theorem 1.8. �

10. Necessary conditions

In this section we first give a proof of Proposition 1.9 and then discuss the
sharpness of the results on oscillatory multipliers and the classes FM(a, b).
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10.1. Proof of Proposition 1.9. The statements about the Lp1 → Lp1,∞ and

Lp
′
2,1 → Lp

′
2 operator norms are already proved in [5, Theorem 2.5]. More-

over by [5, Lemma 2.4] we have the bound ‖TR‖Lp1→Lp′2 . ‖TR‖Sp(p1,p2),

with the implicit constant independent of R. It thus suffices to prove

(10.1) ‖TR‖Sp(p1,p2) ≤ (2π)−d‖Ψ̂‖1‖T‖Sp(p1,p2).

We have |〈Tf1, f2〉| ≤ ‖T‖Sp(p1,p2)Λ
∗
p1,p2(f1, f2) for all f1, f2 ∈ C∞c , and the

same inequality holds with T replaced by TR. To see (10.1) we write

Ψ(R−1(x− y)) = (2π)−d
∫

Ψ̂(ω)eiR
−1〈ω,x〉e−iR

−1〈ω,y〉 dω

and thus we have for f1, f2 ∈ C∞c

〈TRf1, f2〉 = (2π)−d
∫

Ψ̂(ω)〈T [f1,ω], f2,ω〉 dω

where f1,ω(y) = f1(y)e−iR
−1〈ω,y〉 and f2,ω(x) = f2(x)eiR

−1〈ω,x〉. Since 〈fi,ω〉pi =

〈fi〉pi we get

|〈TRf1, f2〉| ≤ (2π)−d‖Ψ̂‖1‖T‖Sp(p1,p2)Λ
∗
p1,p2(f1, f2)

which shows (10.1). �

10.2. Sharpness of results on Miyachi and oscillatory multipliers. Proposi-
tion 1.9 and stationary phase calculations such as in §9.2 can be used to
show that the condition (1/p1, 1/p2) ∈ ∆(a, b) in Theorem 1.6 is necessary
for ma,b(D) ∈ Sp(p1, p2). See also calculations in the proof of [5, Prop. 7.10]
and related arguments for the multiplier in (10.3) below. We now construct
an example completing the proof of Theorem 1.7.

Proposition 10.1. Let 0 < b < ad/2, a 6= 1. There is m ∈ FM(a, b) such
that m(D) ∈ Sp(p1, p2) if and only if (1/p1, 1/p2) ∈ (a, b).

Proof. Let ϕ◦ ∈ C∞c be supported in {ξ : 3
4 < |ξ| <

5
4} such that ϕ◦(ξ) = 1

for 7
8 < |ξ| < 9

8 . Let η◦ = F−1[ϕ◦]. Let N1, N2 be two infinite disjoint
subsets of N such that N := N1 ∪ N2 is well separated in the sense that
n ≥ 1 + 10

|1−a| and |n− ñ| > 1 + 10
|1−a| if n, ñ ∈ N and n 6= ñ. Define

m = m1 +m2,

where

m1(ξ) =
∑
k∈N1

2−kbϕ◦(2
−kξ)e−i2

−k(1−a)ξ1 ,(10.2)

m2(ξ) =
∑
k∈N2

2−kbϕ◦(2
−kξ)ei2

−k(2−a)|ξ|2/2(10.3)

and note that m ∈ FM(a, b). We remark that for the purpose of Lp → Lp

inequalities m1 behaves better than the oscillatory multipliers ma,b, indeed
if b > 0 then m1(D) maps Lp → Lp for all 1 < p <∞; yet m1(D) provides
an example for the sharpness of the line through P3 and P4 in Theorem 1.7.
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Let K = F−1[m]. Assuming that m belongs to Sp(p, q′) we must show
that (1/p, 1/q′) are on or below the line connecting P3 = (1

2 ,
1
2 + b

da), and

P4 = (1
2 + b

da ,
1
2), that is 1/p + 1/q′ ≤ 1 + b/(da) or equivalently, b ≥

da(1/p−1/q). Moreover, we must show that (1/p, 1/q′) lies on or to the left
of the segment Q1P4 i.e. satisfies b ≥ da(1

p −
1
2).

Let T resc
R be the convolution operator with kernel Ψ(x)RdK(Rx) then by

Proposition 1.9 we get that T resc
R is bounded from Lp → Lq with operator

norm uniformly bounded in R. Here we may use a suitable Ψ ∈ C∞c sup-
ported in {x : 1/2 < |x| < 2} such that Ψ(x) = 1 for 2−1/2 ≤ |x| ≤ 21/2. We
shall use this for the parameters

(10.4) Rn = 2−n(1−a).

We also let κn be the convolution kernel of T resc
Rn

. We shall show the following
lower bounds:

For n ∈ N1: ‖T resc
Rn ‖Lp→Lq & 2

−n(b−ad( 1
p
− 1
q

))
.(10.5)

For n ∈ N2: ‖T resc
Rn ‖Lp→Lq & 2

−n(b−ad( 1
p
− 1

2
))
.(10.6)

These imply after letting n → ∞ within N1, N2, that the conditions b ≥
ad(1/p−1/q), b ≥ ad(1/p−1/2), are indeed necessary for m(D) ∈ Sp(p, q′).
Since for convolution operators the Sp(p1, p2) and Sp(p2, p1) norms coincide
we get that (1/p1, 1/p2) ∈ (a, b) is necessary for m(D) to belong to the
class Sp(p1, p2). A calculation yields

κn(x) = Ψ(x)
∑
k∈N

Kn,k(x),

where Kn,k is defined by the following:

For k ∈ N1 : Kn,k(x) = 2−kb2(k−n(1−a))dη◦(2
−n(1−a)2kx− 2kae1).(10.7)

For k ∈ N2 : K̂n,k(ξ) = 2−kbϕ◦(2
n(1−a)−kξ)ei(2

2n(1−a)−k(2−a))|ξ|2/2.(10.8)

We let n ∈ N and decompose

κn = κmain
n + un +

∑
k 6=n

κn,k,

where

κmain
n (x) = Kn,n(x),(10.9a)

un(x) = (Ψ(x)− 1)Kn,n(x),(10.9b)

κn,k(x) = Ψ(x)Kn,k(x).(10.9c)

We first consider the case n ∈ N1 and show a lower bound for the Lp → Lq

norm of the operator T resc
Rn,main with convolution kernel κmain

n := Kn,n. By
scaling and translation we have

(10.10) ‖T resc
Rn,main‖Lp→Lq = ‖ϕ◦‖Mp→q2

−n(b−ad( 1
p
− 1
q

))
, n ∈ N1.
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Moreover, for n ∈ N2,

‖T resc
Rn,main‖Lp→Lq = ‖2−nbϕ◦(2−na·)e−i2

−na|·|2/2‖Mp→q

= 2−nb2
nad( 1

p
− 1
q

)‖ϕ◦ei2
na|·|2/2‖Mp→q .

Applying the method of stationary phase we get

|F−1[ϕ◦e
i2na|·|2/2](x)| ≈ 2−nad/2 for ||x| − 2na| ≤ 2na/4.

Hence

‖ϕ◦ei2
na|·|2/2‖Mp→q &

(∫
||x|−2na|≤2−na/4

∣∣F−1[ϕ◦e
i2na|·|2/2]

∣∣q dx
)1/q

& 2
nad( 1

q
− 1

2
)

and combining the above we get for q ≥ p,

(10.11) ‖T resc
Rn,main‖Lp→Lq & 2

−n(b−ad( 1
p
− 1

2
))
, n ∈ N2.

In order to deduce (10.5), (10.6) from (10.10), (10.11) we show error bounds
for the convolution operators with kernels un and ΨKn,k.

The contributions for Kn,k are negligible for k, n ∈ N with k 6= n. Indeed
from (10.7) it is immediate that for k ∈ N1, n ∈ N , k 6= n,

|Kn,k(x)| .N 2−kb
2(k−n(1−a))d

(1 + 2k−n(1−a)|x− 2(n−k)(1−a)e1|)N
.

Now consider k ∈ N2 and if n 6= k for n ∈ N , then (n−k)(1−a) /∈ [−10, 10].
We have then

Kn,k(x) = (2π)−d2−kb
∫
ϕ◦(2

n(1−a)−kξ)eiφn,k(x,ξ) dξ,

where φn,k(x, ξ) = 22n(1−a)−k(2−a)|ξ|2/2 − 〈x, ξ〉. Compute that for x ∈
supp Ψ, |ξ| ≈ 2k−n(1−a)

|∇ξφn,k(x, ξ)| ≈

{
2(n−k)(1−a) if (n− k)(1− a) ≥ 10

1 if (n− k)(1− a) ≤ −10.

This implies after an N -fold integration by parts for |x| ≈ 1, k ∈ N2, n ∈ N ,
|(n− k)(1− a)| ≥ 10

|Kn,k(x)| .N

{
2−kb2−(n−k)(1−a)d2−ka(N−d) for (n− k)(1− a) ≥ 10,

2−kb2−ka(N−d)2(n−k)(1−a)(N−d) for (n− k)(1− a) ≤ −10.

Finally, by the support properties of (1−Ψ) and ϕ◦, an integration by parts
also yields

|un(x)| .N 2−nb+na(N−d)(1 + |x|)−N

for all n ∈ N .



ENDPOINT SPARSE DOMINATION 47

The above estimates and the resulting consequences for upper bounds
for the corresponding Lp → Lq operator norms (obtained via Young’s in-
equality) show that those terms are small compared to the lower bounds in
(10.10), (10.11) and as a consequence we obtain (10.5), (10.6). �

11. Proofs of some auxiliary facts

11.1. Proof of Observation 2.4. We first note that the estimate (2.11) im-
mediately implies the analogous estimate with L(S0) ≥ N2, by writing S0 as
a disjoint union of cubes Q ∈ Q(S0) with L(Q) = N2, applying the estimate
on each such Q, and noting that by the disjointness of such Q,

(11.1) SS0 :=
⋃

Q∈Q(S0)
L(Q)=N2

⋃
SQ⊆Q(Q)

SQ:γ−sparse

SQ

is a γ-sparse collection of cubes in Q(S0).

Secondly, following the argument in [5, §4.2] (based on results from [38]),
one can replace Λ∗∗S0,p,q′

in (2.11) by an actual maximal sparse form Λ∗S0,p,q′

as in (1.1); we omit the details. Lastly, in view of (2.9), the sums
∑N2

j=N1
Tj

in (2.11) can be replaced by
∑

k∈z
∑N

`=1 PkT
(`−k)
k Pk.

To summarize the above reductions we see that Theorem 2.3 implies that
the inequality

(11.2)
∣∣∣〈∑
k∈z

N∑
`=1

PkT
(`−k)
k Pkf1, f2

〉∣∣∣ . C Λ∗p,q′(f1, f2)

holds uniformly in N and z, for all C∞c functions f1, f2.

We now use a limiting argument from [5] together with Lemma 2.2 to
show that (11.2) can be upgraded to

(11.3)
∣∣〈m(D)f1, f2〉

∣∣ . C Λ∗p,q′(f1, f2),

which in conjunction with (2.5) leads to the statements of Theorems 1.1, 1.2
and 1.3.

To this end we use (2.1c) to decompose, for f ∈ S,

(11.4) m(D)f =
∑
k∈Z

Pkm(D)LkPkf

with convergence in the sense of tempered distributions. We now apply [5,
Lemma A.1] for the subspace V ≡ V1 = V2 consisting of all f ∈ S for which

f̂ is compactly supported in Rd \{0} (and use that these are dense in Lρ for
1 < ρ <∞). This lemma tells us that it suffices to prove the inequality

(11.5) |〈m(D)f1, f2〉| . C Λ∗p,q′(f1, f2)
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for all f1, f2 ∈ V. For fixed f1 ∈ V the k-sum in (11.4) reduces to a sum
over indices in a finite set z(f1). It therefore suffices to prove the inequality

(11.6)
∣∣∣〈∑
k∈z

Pkm(D)LkPkf1, f2

〉∣∣∣ . C Λ∗p,q′(f1, f2)

for all finite families z ⊂ Z and for all f1, f2 ∈ V. Again, by [5, Lemma A.1]

it follows that (11.6) for all f1, f2 ∈ V is equivalent to (11.6) for all f1 ∈ Ṽ1,

f2 ∈ Ṽ2 where, for given ρ with p < ρ < q′, Ṽ1 is any dense subspace of Lρ,

and Ṽ2 is any dense subspace of Lρ
′
. It thus suffices to prove (11.6) for all

f1, f2 ∈ C∞c and all finite families z ⊂ Z.

Let f1, f2 ∈ C∞c so that the union of the supports of f1 and f2 is contained
in a set of diameter R. Let kmax = maxz. Observe that for all k ∈ z,

〈T (`−k)
k f1, f2〉 = 0 if 2`−kmax−3 > R and ` > 0 .

Then, we have
∑

k∈z Pkm(D)LkPkf1 = limN→∞
∑

k∈z
∑N

`=0 PkT
(`−k)
k Pkf1.

The terms for ` = 0 are taken care of by Lemma 2.2; note that by (2.7) C
can be used both in Lemma 2.2 and Theorem 2.3. We have thus shown that
(11.6) follows from (11.2) for f1, f2 ∈ C∞c and the proof is complete. �

11.2. Proof of Lemma 2.2. We are proving that for any 1 < p ≤ q <∞ the
inequality

(11.7) |〈
∑
k∈z

T
(−k)
k Pkf1, f2〉| ≤ C‖m‖∞ Λ∗p,q′(f1, f2)

holds uniformly in z.

The assertion can be derived for example from [5, Theorem 1.1]. The ver-
ification of the hypotheses on that theorem is similar to the computations in

[5, §6.3] and it is included for completeness. Let mz =
∑

k∈z K̂
(−k)
k η(2−k·),

so that Tmz =
∑

k∈z T
(−k)
k Pk. The support condition [5, (1.6)] clearly holds.

The boundedness conditions [5, (1.7)] follow from the standard Hörmander
multiplier theorem after verifying that

(11.8)
∑
|α|≤d+1

sup
t>0

sup
ξ∈Rd
|∂αξ (ϕmz(t·))(ξ)| . ‖m‖∞

uniformly in z. We need to analyze the derivatives of

ϕmz(tξ) =
∑
k∈z

2−kt∼1

ϕ(ξ)

∫
ϕ(ω)m(2kω)Φ̂0(2−ktξ − ω) dω

and (11.8) follows after straightforward computation.

For the hypothesis [5, (1.8)], we have

‖Dil2−kT
(−k)
k Pk‖Lp→Lq = ‖η

(
[ϕm(2k·)] ∗ Φ̂0

)
‖Mp→q

. ‖η‖1‖Φ0‖∞‖F−1[ϕm(2k·)]‖∞ . ‖m‖∞,
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for all 1 < p ≤ q <∞, using the compact support of Φ0 and ϕ. Finally, the
hypothesis [5, (1.9)] also follows from noting that

‖Dil2−kT
(−k)
k Pk‖Lp→Lq ≤ ‖η[ei〈·,h〉 − 1]‖Mp‖[ϕm(2k·)] ∗ Φ̂0‖Mp→q ,

the previous bound ‖[ϕm(2k·)] ∗ Φ̂0‖Mp→q . ‖m‖∞ and that

‖η[ei〈·,h〉 − 1]‖Mp ≤ ‖qη(·+ h)− qη‖1 . |h|

for any 1 < p <∞. �

11.3. Some embeddings for multiplier classes. We begin with a simple ob-
servation for compactly supported multipliers.

Lemma 11.1. Let 1 ≤ p ≤ q ≤ ∞ and m ∈ Mp→q be supported in a
compact set E. Then m ∈M1→∞ and ‖m‖M1→∞ .E ‖m‖Mp→q .

Proof. Let χ ∈ C∞c be such that χ is supported on a compact subset of diam-
eter less than twice the diameter of E, such that χ(ξ) = 1 on a neighborhood
of E. Since χ ∈M1→p ∩M q→∞ we get

‖F−1[mf̂ ]‖∞ ≤ ‖χ‖Mq→∞‖F−1[mf̂ ]‖q
‖F−1[mf̂ ]‖q ≤ ‖m‖Mp→q‖‖F−1[χf̂ ]‖p
‖F−1[χf̂ ]‖p ≤ ‖χ‖M1→p‖f‖1

and putting the three inequality together we deduce the assertion. �

Lemma 11.2. For r1 ≤ r2 ≤ q let g ∈ M1→∞ be supported in a compact
set E. Let Φ be a Schwartz function and Φ`(x) = Φ(2−`x). Then

‖g ∗ Φ̂`‖Mr1→q . ‖g ∗ Φ̂`‖Mr2→q + CN2−`N‖g‖M1→∞ .

Proof. Let E◦ be a compact set which contains a neighborhood of E and
let χ ∈ C∞c such that χ(ξ) = 1 for ξ in a neighborhood of E◦. Clearly
χ ∈M r1→r2 and therefore

(11.9)
∥∥χ(g ∗ Φ̂`)

∥∥
Mr1→q . ‖g ∗ Φ̂`‖Mr2→q .

Next we will examine the multiplier

(1− χ(ξ))
(
g ∗ Φ̂`(ξ)

)
= (1− χ(ξ))

〈
g, Φ̂`(ξ − ·)

〉
where 〈g, ·〉 refers to the standard pairing of a tempered distribution g with
a Schwartz function. We have M1→∞ = FL∞ ↪→ L2

−N with any N > d/2,

where ‖f‖2
L2
−N

=
∫

(1 + |ξ|2)−N |f̂(ξ)|2 dξ. Since g is supported in an open
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subset of E◦ we have for ξ /∈ supp (χ)∣∣∣∂γξ [(1− χ(ξ))
〈
g, Φ̂`(ξ − ·)

〉]∣∣∣
.N ‖g‖L2

−N

∑
β+β′=γ

|∂β
′

ξ (1− χ(ξ))|
∥∥∂βξ Φ̂`(ξ − ·)

∥∥
L2
N (E◦)

.N,γ,N1 ‖g‖L2
−N

2`(d+|γ|+N) sup
η∈K◦

|2`dist(ξ, η)|−N1

.N,|γ|,N1
‖g‖M1→∞2`(d+|γ|+N)−N1 sup

η∈K◦
|dist(ξ, η)|−N1 .

We use that dist(supp (1 − χ), E◦) > 0. We apply the displayed inequality
for any |γ| ≤ 2d and then choose N1 > 3d+N +N2 to get (for all 1 ≤ r1 ≤
q ≤ ∞)

(11.10)
∥∥(1− χ)

(
g ∗ Φ̂`

)∥∥
Mr1→q .N 2−`N2‖g‖M1→∞ .

The desired estimate follows from (11.9) and (11.10). �

Corollary 11.3. Let Ak,`p,r,q be as in (2.3). For p ≤ r1 ≤ r2 ≤ q we have

(11.11) Ak,`p,r1,q . A
k,`
p,r2,q + CN2−`N

∑
˜̀≥0

2
−˜̀d( 1

p
− 1
q

)
Ak,

˜̀
p,r2,q.

Proof. Use Lemma 11.2 with g = ϕm(2k·), expand for the error term g =

g ∗ Φ̂0 +
∑

˜̀>0 g ∗ Ψ̂˜̀ and invoke Lemma 11.1. �

11.4. Proof of Lemma 7.1. Define

uλ(ξ) = φ(ξ)η(λξ)

ρ`,k(ξ) = [φm(2k·)] ∗ Ψ̂`(ξ)

ρ`,k,t(ξ) = ρ`,k(t2
−kξ)

and verify that

φ(ξ)h(tξ) =
∑
k∈z

akut2−k(ξ)
∑
`∈Λ(k)

ρ`,k,t(ξ).

We shall use that η is a Schwartz function which vanishes at the origin
and thus get the estimate

(11.12a) |F−1[uλ](x)| ≤ CN

{
λ(1 + |x|)−N if λ ≤ 1

λ−N (1 + |x|)−N if λ ≥ 1

for all N . Consequently,

(11.12b) ‖F−1[uλ]‖1 .N min{λ, λ−N}.
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For any t > 0 we have

(11.13) ‖φh(t·)‖
B
d( 1
q′ −

1
r )

1 (Mr→r)

≤
∑
n≥0

2
nd( 1

q′−
1
r

)
∑
k∈z

∑
`∈Λ(k)

‖[ut2−kρ`,k,t] ∗ Ψ̂n‖Mr→r .

We split the sets Λ(k) = Λ∗(k, t, n) ∪ Λ∗(k, t, n) where

Λ∗(k, t, n) =
{
` ∈ Λ(k) : 2` ≥ 2n−5 min{1, 2kt−1}

}
Λ∗(k, t, n) = Λ(k) \ Λ∗(k, t, n).

We first argue that in (11.13) the terms with ` ∈ Λ∗(k, t, n) are negligible.
For ` ∈ Λ∗(k, t, n) we have 2n ≥ 2`+5 max{1, 2−kt}. We use crude estimates
for F−1[ρ`,k,t] and take advantage of support properties. Write ρ`,k(ξ) =∫

Ψ̂`(ξ−ω)φ(ω)m(2kω) dω and by a (d+ 1)-fold integration by parts we get

|F−1[ρ`,k](w)| ≤ 2`(d+1)(1 + |w|)−d−1‖φm(2k·)‖∞,
and we have F−1[ρ`,k](w) = 0 for |w| > 2`−1. Hence we obtain

|F−1[(ut2−kρ`,k,t) ∗ Ψ̂n](x)|

≤ |Ψn(x)|
∫
|F−1[ut2−k ](y)|(2kt−1)d|F−1[ρ`,k](2

kt−1(x− y))|dy

≤ |Ψn(x)|
∫
|x−y|≤2−kt2`−1

min{t2−k, (t2−k)−N}
(1 + |y|)N

2`(d+1)(2kt−1)d

(1 + 2kt−1|x− y|)d+1
dy.

We invoke the condition 2` ≤ 2n−5 min{1, 2kt−1} for ` ∈ Λ∗(k, t, n). For
x ∈ supp Ψn we have |x| ≥ 2n−3. Thus in the above integral we can use

|y| ≥ |x|−|x−y| ≥ 2n−3−2−kt2`−1 ≥ 2n−3−2n−6 2−ktmin{1, 2kt−1} ≥ 2n−4

and hence

‖F−1[(ut2−kρ`,k,t) ∗ Ψ̂n]‖1

. 2`(d+1)

∫
|y|≥2n−4

min{t2−k, (t2−k)−N}
(1 + |y|)N

∫
(2kt−1)d

(1 + 2kt−1|x− y|)d+1
dx dy

. 2`(d+1)2−n(N−d) min{t2−k, (t2−k)−N}.

Consequently, using ‖[ut2−kρ`,k,t] ∗ Ψ̂n‖Mr→r ≤ ‖F−1[(ut2−kρ`,k,t) ∗ Ψ̂n]‖1 in
(11.13) we get (assuming N > 3d)∑

n≥0

2
nd( 1

q′−
1
r

)
∑
k∈z

∑
`∈Λ∗(k,t,n)

‖[ut2−kρ`,k,t] ∗ Ψ̂n‖Mr→r(11.14)

.
∑
n≥0

2
nd( 1

q′−
1
r

)
2−n(N−d)

∑
k

min{t2−k, (t2−k)−N}
∑
`≤n−5

2`(d+1)

.
∑
n≥0

2n(3d−N)
∑
k

min{t2−k, (t2−k)−N} . 1.
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We now turn to the main terms with ` ∈ Λ∗(k, t, n) in (11.13), i.e. the
terms with 2n < 2`+5 max{1, 2−kt}. Notice that

‖[ut2−kρ`,k,t] ∗ Ψ̂n‖Mr→r . ‖ut2−k‖1‖ρ`,k,t‖Mr→r = ‖ut2−k‖1‖ρ`,k‖Mr→r

. min{t2−k, (t2−k)−N}Ak,`q′,r,r2
−`d( 1

q′−
1
r

)
.

Hence in (11.13) we can estimate the terms with ` ∈ Λ∗(k, t, n) as∑
n≥0

2
nd( 1

q′−
1
r

)
∑
k∈z

∑
`∈Λ∗(k,t)

‖[ut2−kρ`,k,t] ∗ Ψ̂n‖Mr→r

.
∑
k∈z

2−kt≤1

2−kt
∑
`>0

Ak,`q′,r,r2
−`d( 1

q′−
1
r

)
∑

1≤2n≤2`+5

2
nd( 1

q′−
1
r

)

+
∑
k∈z

2−kt>1

(2−kt)−N
∑
`≥0

Ak,`q′,r,r2
−`d( 1

q′−
1
r

)
∑
1≤2n

≤2`+22−kt

2
nd( 1

q′−
1
r

)

. sup
k

∑
`≥0

Ak,`q′,r,r.

This finishes the proof of (7.9) and thus the proof of the lemma. �

11.5. An elementary lemma. The following elementary lemma is repeatedly
used in the induction step for constructing sparse families of cubes.

Lemma 11.4. Let Q be a family of cubes with bounded overlap and let
{fQ}Q∈Q be a family of functions such that supp fQ ⊆ Q. Then, for all
1 ≤ p ≤ q <∞,∥∥∥ ∑

Q∈Q
fQ

∥∥∥
p
.
( ∑
Q∈Q
|Q|
) 1
p
− 1
q

( ∑
Q∈Q
|Q|1−

q
p ‖fQ‖qp

)1/q
.

Proof. By assumption, there is a constant C such that every x is contained in
at most C of the cubes in Q. We may split Q into O(C) disjoint families Qν
and it suffices to prove the inequality for each Qν . From Hölder’s inequality,∥∥∥ ∑

Q∈Qν

fQ

∥∥∥
p

=
( ∑
Q∈Qν

‖fQ‖pp
)1/p

=
( ∑
Q∈Qν

|Q|1−p/q|Q|p/q−1‖fQ‖pp
)1/p

≤
( ∑
Q∈Qν

|Q|
)1/p−1/q( ∑

Q∈Qν

|Q|1−q/p‖fQ‖qp
)1/q

. �
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Birkhäuser/Springer, Cham, 2019, pp. 159–239.

[44] Andreas Seeger, A limit case of the Hörmander multiplier theorem, Monatsh. Math.
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