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Abstract. Consider Rd × Rm with the group structure of a two-step
nilpotent Lie group and natural parabolic dilations. The maximal func-
tion originally introduced by Nevo and Thangavelu in the setting of the
Heisenberg group deals with noncommutative convolutions associated
to measures on spheres or generalized spheres in Rd. We drop the non-
degeneracy assumptions in the known results on Métivier groups and
prove the sharp Lp boundedness result for all two step nilpotent Lie
groups with d ≥ 3.

1. Introduction

We consider the problem of bounding maximal operators for averages over
spheres with higher codimension on a two-step nilpotent Lie group G which
was introduced for the special case of the Heisenberg group by Nevo and
Thangavelu [16]. The setup is as follows: The Lie algebra splits as a direct
sum in two subspaces referred to as the horizontal and the vertical part,
g = whor⊕wvert, where dimwhor = d, dimwvert = m, and wvert ⊆ z(g), with
z(g) the center of the Lie algebra. We use the natural parabolic dilation
structure on whor ⊕ wvert, and define for X ∈ whor, X ∈ wvert, δt(X,X) =
(tX, t2X). Using exponential coordinates on the group we identify G with
whor ⊕ wvert ≡ Rd ⊕ Rm. With x = (x, x) ∈ Rd × Rm the group law then
becomes

(1.1) (x, x) · (y, y) = (x+ y, x+ y + xᵀ ~Jy)

where xᵀ ~Jy :=
∑m

i=1 eix
ᵀJiy, {ei}mi=1 is the standard basis of unit vectors in

Rm and J1, . . . , Jm are d× d skew-symmetric matrices. The above dilations
on g induce automorphisms δt : (x, x) 7→ (tx, t2x) on the group. We will
study averaging operators which will be convolution operators; the noncom-
mutative convolution for functions f ∗ K(x) =

∫
f(y)K(y−1 · x)dy is then

given in the form

f ∗K(x, x) =

∫
f(y, y)K(x− y, x− y + xᵀ ~Jy) dy(1.2)

=

∫
f(x− w, x− w − xᵀ ~Jw)K(w,w)dw.
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Let Ω be a bounded open convex domain in whor ≡ Rd × {0} containing
the origin and assume throughout the paper that the boundary Σ ≡ ∂Ω
is smooth with nonvanishing Gaussian curvature. In most previous papers
one takes for Ω the unit ball in Rd × {0}. Let µ be the normalized surface
measure on Σ. For t > 0 the dilate µt is defined by 〈f, µt〉 =

∫
f(tx, 0)dµ.

For Schwartz functions f on Rd+m the averages over dilated spheres are then
given by the convolutions

(1.3) Af(x, t) = f ∗ µt(x) =

∫
Σ
f
(
x− tω, x− t xᵀ ~Jω

)
dµ(ω).

The analogue of the Nevo–Thangavelu maximal operator is defined (a priori
for Schwartz functions) by

(1.4) Mf(x) := sup
t>0

∣∣f ∗ µt(x)
∣∣.

The objective is to establish an Lp(Rd+m) → Lp(Rd+m) bound for M,
in an optimal range of p. Taking Σ = Sd−1 a partial boundedness result
for p > d−1

d−2 was first obtained by Nevo and Thangavelu on the Heisenberg
groups Hn, for 2n ≡ d ≥ 4; here m = 1 and J = J1 is an invertible
symplectic matrix. The optimal result on Lp boundedness on the Heisenberg
group Hn, for n ≥ 2, namely that M is bounded on Lp(Rd+1) for p > d

d−1

was obtained by Müller and the second author [14] and independently by
Narayanan and Thangavelu [15]. The paper [14] also establishes this result in
the more general setting of Métivier groups, that is, under the nondegeneracy
condition that for all θ ∈ Rm \ {0} the matrices

∑m
i=1 θiJi are invertible.

Regarding the case n = 1 it is not currently known whether M is bounded
on Lp(H1) for any p <∞ (see however results restricted to Heisenberg radial
functions in [5] and [12]).

The purpose of this paper is to examine the behavior of the maximal
function on general two-step nilpotent Lie groups with d ≥ 3, i.e. when
the nondegeneracy condition on Métivier groups fails. A trivial special case
occurs when all the matrices Ji are zero; in this case one immediately obtains
the same Lp boundedness result for p > d

d−1 , d ≥ 3 by applying Stein’s result

[21] (or Bourgain’s result [4] when d = 2) in the horizontal hyper-planes and
then integrating in wvert. The two extreme cases of Euclidean and Métivier
groups suggest that Lp boundedness for p > d

d−1 should hold independently
of the choice of the matrices Ji. However the intermediate cases are harder,
and neither the slicing argument nor the arguments in [14, 15, 11, 18] for the
Heisenberg and Métivier cases seem to apply; this was posed as a problem
in [14]. In particular there seems to be no regularity theorem on Fourier
integral operators which covers the averages in this general case. The special
case m = 1 was recently considered by Liu and Yan [13] who obtain Lp

boundedness of M in the partial range p > d−1
d−2 and d ≥ 4. Here we prove

the optimal result in the range p > d
d−1 , for all two-step nilpotent Lie groups

with d ≥ 3.
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Theorem 1.1. Let d ≥ 3, let G be a general two step nilpotent Lie group
of dimension d + m, with group law (1.1). Let d

d−1 < p < ∞. Then for

f ∈ Lp(G) and almost every x ∈ G the functions t→ Af(x, t) are continuous
and the maximal operator M extends to a bounded operator on Lp(G).

By a standard argument Theorem 1.1 implies

Corollary 1.2. Let f ∈ Lp(G), p > d
d−1 . Then limt→0Af(x, t) = f(x)

almost everywhere.

To show in Theorem 1.1 the continuity in t, for a.e. x ∈ G, we shall prove

a stronger inequality involving the standard Besov space B
1/p
p,1 (R) which

is embedded in the space of bounded continuous functions. Namely, for

u ∈ C∞c ((1
4 , 4)) and λ > 0 the functions s → u(s)Aλsf(x) are in B

1/p
p,1 ;

this implies that supt>0 |Atf(x)| = supt∈Q |Atf(x)| almost everywhere and
establishes Mf as a well defined measurable function, for every f ∈ Lp. In
fact one gets the following global result which implies Theorem 1.1.

Theorem 1.3. Let d ≥ 3, d
d−1 < p <∞. Then for u ∈ C∞c ((1

4 , 4))

(1.5)
(∫

G

[
sup
n∈Z
‖u(·)Af(x, 2n·)‖

B
1/p
p,1 (R)

]p
dx
)1/p

. ‖f‖p.

Remark 1.4. The smoothness parameter for the Besov space in the s-variable

can be increased in Theorem 1.3. In fact we can replace B
1/p
p,1 with B

β+1/p
p,1

where β < d − 1 + d
p if d

d−1 < p ≤ 2 and β < d−2
p if 2 ≤ p < ∞, see also

a relevant discussion in §4. Such improvements will not yield additional
insights on the maximal operator.

It is also of interest to consider a local variant for which we get a restricted
weak type inequality at the endpoint p = d

d−1 :

Theorem 1.5. Let d ≥ 3, p ≥ d
d−1 and let I ⊂ (0,∞) be a compact interval.

Then A maps Lp,1(G) to Lp,∞(G;L∞(I)).

The optimality of the p-range in the above maximal function theorems is
shown by modifying an example of Stein [21], see also the discussion in [13].

Outline of the paper and methodology. In §2 we reduce matters to the case
where the matrices J1, . . . , Jm are linearly independent. In §3 we set up stan-
dard dyadic frequency decompositions of the underlying spherical measures
and formulate the main Proposition 3.1 to be proved for the boundedness
of the local maximal operator (with dilation parameters in a compact in-
terval). The arguments to extend to the global maximal operator (and the
slightly stronger Theorem 1.3) are modifications from those in [14]; this is
taken up in §4. The main L2 estimates are discussed in §5; here we first
recast Proposition 3.1 in a convenient form using Fourier integral operators,
and then reduce matters to the problem of getting uniform estimates for a
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family of oscillatory integral operators acting on functions in Rd. The main
L2 estimates for this family are stated in Proposition 5.2. The crucial and
most novel part of the paper is §6 where we give the proof of this proposi-
tion via two decompositions of the operator into more elementary building
blocks which are combined via almost orthogonality arguments.

Notation. For nonnegative quantities a, b write a . b to indicate a ≤ Cb for
some constant C. We write a ≈ b to indicate a . b and b . a.

Acknowledgements. The second author thanks Shaoming Guo for re-raising
the question, Detlef Müller for useful remarks on Carnot groups, and Brian
Street for conversations on general pointwise convergence issues. We are
indebted to the anonymous referee for a thorough and careful reading of
the manuscript and for very helpful suggestions to improve it. The first
author was supported in part by KIAS Individual Grant MG087001 during
a research stay at UW Madison. The second author was supported in part
by NSF Grant DMS-2054220.

2. Preliminary reductions

In the following theorem (which will be proved in subsequent sections)
we formulate the main results, with a hypothesis of linear independence on
the skew-symmetric matrices entering in the group structure. We then show
how the proof of Theorems 1.3 and 1.5 are reduced to this result.

Theorem 2.1. Let S1, . . . , Sm be a linearly independent set of d × d skew
symmetric matrices. Let U be a neighborhood of the origin of Rd−1 and let
g : U → R be a C∞ function satisfying g(0) = 1, g′(0) = 0, g′′(0) positive-
definite. There exists ρ > 0 such that the following holds for C∞c functions
β0 supported in a ball Uρ ⊂ U of diameter ρ centered at the origin in Rd−1:

Let Γg(ω
′) = g(ω′)e1 +

∑d
i=2 ωiei, and define Af(x, t) ≡ Atf(x) by

(2.1) Af(x, t) =

∫
f
(
x− tΓg(ω′), x− t

m∑
i=1

eix
ᵀSiΓg(ω

′)
)
β0(ω′)dω′ .

Let u ∈ C∞c ((1
4 , 4)). Then for p > d

d−1 the inequality

(2.2)
∥∥∥ sup

n
‖u(s)Af(·, 2ns)‖

B
1/p
p,1 (R,ds)

∥∥∥
Lp(Rd+m)

≤ C‖f‖Lp(Rd+m)

holds for all functions f ∈ Lp(Rd+m). Here C depends on p but is inde-
pendent of f , and independent of β0 as β0 ranges over a bounded subset of
C∞c (Uρ). Moreover for a compact interval I ⊂ (0,∞)

(2.3)
∥∥ess supt∈I |Atf |

∥∥
Lp,∞(Rd+m)

≤ CI‖f‖Lp,1(Rd+m), p = d
d−1 .

We shall now show in several steps how Theorems 1.1, 1.3 and 1.5 are
implied by Theorem 2.1. In our first reduction we reduce to the situation
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that the manifold Σ ⊂ Rm that supports the measure µ is given as a graph
with the property required in Theorem 2.1.

We fix a point y◦ ∈ Σ and consider the operator f 7→ f ∗ (χy◦µ)t where
χy◦ is a C∞c function supported in a neighborhood of y◦. It suffices to prove
the analogues of Theorem 1.1 and 1.3 for these convolutions; once this is
achieved one can use a compactness and partition of unity argument to
deduce Theorems 1.1, 1.3 in their original formulation. Let e◦,1 = y◦/|y◦|
(recall that the origin lies in the domain surrounded by Σ and thus y◦ 6= 0).
Pick unit vectors e◦,i, 2 ≤ i ≤ d so that e◦,1, . . . , e◦,d is an orthonormal basis

of Rd. As e◦,1 does not belong to the tangent space to |y◦|−1Σ at e◦,1 we
may parametrize |y◦|−1Σ near e◦,1 by

Γ(ω′) = G(ω′)e◦,1 +

d∑
i=2

ωie◦,i;

here (ω′)ᵀ = (ω2, . . . , ωd) and the function G satisfies

G(0) = 1, G′(0) = b and G′′(0) positive definite.

We then have for ν = χy◦µ

f ∗ νt(x) =

∫
f(x− t|y◦|Γ(ω′), x− t|y◦|xᵀ ~JΓ(ω′))χ◦(ω

′)dω′

with χ◦(ω
′) = χy◦(|y◦|Γ(ω′))|y◦|d(1+ |G′(ω′)|2)1/2 and xᵀ ~JΓ(ω′) denotes the

vector
∑m

i=1 eix
ᵀJiΓ(ω′).

Let P be the (d−1)×d matrix defined by P =
(
0 Id−1

)
, corresponding to

the projection (x1, x2, . . . , xd)
ᵀ 7→ (x2, . . . , xd)

ᵀ. Let R denote the rotation
satisfying Re◦,i = ei for i = 1, . . . , d. Then

RΓ(ω′) = ΓG(ω′) := G(ω′)e1 +
d∑
i=2

ωiei ≡ G(ω′)e1 + P ᵀω′.

Setting J̃i = |y◦|2RJiRᵀ we define A[1]f(x, t) ≡ A[1]
t f(x) by

(2.4) A[1]
t f(x) =

∫
f(x− tΓG(ω′), x− t

m∑
i=1

eix
ᵀJ̃iΓG(ω′))χ◦(ω

′)dω′.

Then we compute

f ∗ νt(x) = A[1]
t h(|y◦|−1Rx, x), with h(x, x) = f(|y◦|Rᵀx, x).

Since R−1 = Rᵀ it suffices to prove (1.5) and the maximal bounds with A[1]

in place of A.

We now use another transformation to reduce to the situation in Theorem
2.1. To this end we set g(ω′) = G(ω′)−bᵀω′ so that g′(0) = 0 as in Theorem
2.1 (recall b = G′(0)).
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We then have (splitting x = (x1, x
′) ∈ R× Rd−1)

A[1]
t f(x) =

∫
f(x1 − tg(ω′)− tbᵀω′, x′ − tω′, x− tv(x, ω′))χ◦(ω

′)dω′

where v = (v1, . . . , vm) with

vi(x, ω
′) = xᵀJ̃i(g(ω′) + bᵀω′)e1 + xᵀJ̃iP

ᵀω′.

Now write

(2.5) x1 − tg(ω′)− tbᵀω′ = x1 − bᵀx′ − tg(ω′) + bᵀ(x′ − tω′)

and

vi(x, ω
′) =(x′)ᵀP J̃ie1g(ω′) + (x′)ᵀP J̃ie1(bᵀω′) + (bᵀx′)eᵀ1J̃iP

ᵀω′

+ (x1 − bᵀx′)eᵀ1J̃iP
ᵀω′ + (x′)ᵀP J̃iP

ᵀω′.

Observe that, with Γg(ω
′) = g(ω)e1 + P ᵀω′,

(x′)ᵀP J̃ie1(bᵀω′) = −xᵀP ᵀP J̃ᵀi e1b
ᵀPΓg(ω

′)

(bᵀx′)eᵀ1J̃iP
ᵀω′ = xᵀP ᵀbeᵀ1J̃iP

ᵀPΓg(ω
′),

also the analogous formulas remain true if on the right hand sides x is
replaced with (x1 − bᵀx′)e1 + P ᵀx′. Furthermore

(x′)ᵀP J̃ie1g(ω) + (x1 − bᵀx′)eᵀ1J̃iP
ᵀω′ + (x′)ᵀP J̃iP

ᵀω′

=
[
(x1 − bᵀx′)e1 + P ᵀx′]ᵀJ̃iΓg(ω

′).

We combine the above observations, and setting

(2.6) Ji = J̃i + P ᵀbeᵀ1J̃iP
ᵀP − P ᵀP J̃ᵀi e1b

ᵀP

we see that Ji are skew symmetric d × d matrices satisfying Jie1 = J̃ie1,
and that

(2.7) vi(x, ω
′) =

[
(x1 − bᵀx′)e1 + P ᵀx′]ᵀJiΓg(ω′).

Now if we define A[2]
t by

(2.8) A[2]
t f(x) =

∫
f(x− tΓg(ω′), x− t

m∑
i=1

eix
ᵀJiΓg(ω′))χ◦(ω′)dω′

then it follows from (2.5) and (2.7) that

(2.9)
A[1]
t f(x1, x

′, x) = A[2]
t fb(x1 − bᵀx′, x′, x)

with fb(y1, y
′, y) = f(y1 + bᵀy′, y′, y).

Hence the desired bounds for the families (A[1]
t )t>0 and (A[2]

t )t>0 are equiv-
alent. For the case that the matrices J1, . . . ,Jm are linearly independent
(1.5) and the Lp boundedness of the maximal operator in theorem 1.1 can
now be obtained from Theorem 2.1 (using Si = Ji in that theorem).
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In the other extreme case, when all Ji are the zero-matrices the Lp bound-
edness of the maximal operator operator (and the analogue of (1.5)) follows
by an application of the spherical maximal theorems in the Euclidean case
in Rd ([21]) and integration in the vertical variables. In this case we also
have the result for d = 2 by using Bourgain’s theorem [4] (although this is
not needed in our proof). If d ≥ 3 the restricted weak type inequality for
p = d

d−1 can be deduced from [3] and a slicing argument. These slicing argu-

ments also apply to the variants where a B
1/p
p,1 -norm is used on the dilation

parameter.

It remains to consider the case where the matrices Ji are not all zero but
are linearly dependent. For this case we need a further reduction.

Lemma 2.2. Assume that J1, . . . ,Jm are not all zero. Then there exist
linearly independent skew symmetric d × d matrices S1, . . . , Sn, with 1 ≤
n ≤ m, and an orthogonal matrix V ∈ O(m) such that for A[2]

t as in (2.8)

(2.10) A[2]
t f(x) = A[3]

t fV (x, V x),

with fV (y) = f(y, V ᵀy) and

(2.11) A[3]
t f(x) =

∫
f(x− tΓg(ω′), x− t

n∑
i=1

eix
ᵀSiΓg(ω

′))χ◦(ω
′)dω′ .

Proof. Consider a basis E1, . . . E d(d−1)
2

in the space of d× d skew symmetric

matrices. We can express the Ji in terms of the basis matrices, and obtain

Ji =
∑ d(d−1)

2
j=1 cijEj , i = 1, . . . ,m for suitable scalars cij . We denote by

C the m × d(d−1)
2 matrix whose (i, j) entry is given by cij . We apply the

singular value decomposition of the transposed matrix Cᵀ. That is, we

decompose Cᵀ = UDV where U is an orthogonal d(d−1)
2 × d(d−1)

2 matrix, V

is an orthogonal m×m matrix and D is a d(d−1)
2 ×m matrix such that

Dij =

{
si if 1 ≤ i = j ≤ n
0 otherwise.

Here n ≤ min{d(d−1)
2 ,m} and s1 ≥ · · · ≥ sn > 0 are the singular values. For

the coefficients of C we then get

cij = (Cᵀ)ji =

d(d−1)
2∑

k=1

m∑
`=1

UjkDk`V`i =
n∑
k=1

UjkskVki.

Defining

Sk = sk

d(d−1)
2∑
j=1

UjkEj , k = 1, . . . n,
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it is clear by the invertibility of U that S1, . . . , Sn are linearly independent
skew symmetric matrices and we obtain

Ji =

d(d−1)
2∑
j=1

cijEj =

d(d−1)
2∑
j=1

n∑
k=1

UjkskVkiEj =

n∑
k=1

VkiSk , i = 1, . . . ,m.

Hence (using V ᵀ = V −1)

x− t
m∑
i=1

eix
ᵀJiΓg(ω′) = V ᵀ

[
V x− t

n∑
k=1

ekx
ᵀSkΓg(ω

′)
]

which gives (2.10). �

By Lemma 2.2 the desired bounds for A[2]
t and A[3]

t are equivalent. We
show how Theorem 2.1 yields the analogue of Theorem 1.3 for the family

(A[3]
t )t>0 in place of (At). In Rm we split variables x = (x̃, x̆) ∈ Rn×Rm−n.

For h ∈ Lp(Rd+n) we define Ah(x, t) = Ath(x) by

Ath(x, x̃) =

∫
h(x− tΓg(ω′), x̃− t

n∑
i=1

eix
ᵀSiΓg(ω

′))χ◦(ω
′)dω′.

We get from Theorem 2.1 applied with n in place of m, that∥∥∥ sup
`∈Z
‖u(s)A2`sh‖B1/p

p,1 (R,ds)

∥∥∥
Lp(Rd+n)

. ‖h‖Lp(Rd+n), p >
d

d− 1
.

Let f x̆(x, x̃) = f(x, x̃, x̆), and observe that A[3]
t f(x, x̃, x̆) = Atf

x̆(x, x̃).
We apply the Lp(Rd+n)-boundedness result stated above to the functions
for h = f x̆ and get∫∫

sup
`∈Z
‖u(s)A[3]

2`s
f(x, x̃, x̆)‖p

B
1/p
p,1 (R,ds)

dxdx̃ ≤ Cp
∫∫
|f(x, x̃, x̆)|pdxdx̃,

with C independent of x̆. Integrating over x̆ ∈ Rm−n gives the desired result.

We have now reduced the proof of Theorem 1.1 to the inequalities (2.2) in
Theorem 2.1. The above arguments also reduce (after minor modifications)
the proof of Theorem 1.5 to the proof of inequality (2.3). For the remainder
of the paper we will be concerned with the proof of Theorem 2.1.

Remark. The shear transformation showing the equivalence of the Lp bound-
edness of the operators associated with A[1] and A[2] is not needed for the
spherical case Σ = Sd−1, when b = 0. However in the general case it seems
necessary, and we take this opportunity to correct an inaccuracy in [14]
which deals with the case of Métivier groups (i.e. the matrices

∑m
i=1 ciJi

are invertible if (c1, . . . , cm) 6= 0). There it is stated that this reduction
follows for more general Σ by a rotation argument which is not the case.
One can use the above shear transformations instead and deduce that the
arguments in [14] apply to surfaces Σ that are small perturbations of the
sphere. Such a perturbation assumption would be needed for the proof in
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[14] since the Métivier condition on the matrices Ji (and, equivalently, on

the J̃i = |y◦|2RJiRᵀ) guarantees the Métivier condition on the matrices Ji
in (2.6) only when b is sufficiently small. In the setup of this paper there is
no such small smallness assumption on b needed.

For the remainder of the paper we will give the proof of Theorem 2.1 and
fix linearly independent skew symmetric matrices S1, . . . , Sm. For later use
notice that this assumption implies that there is a c0 > 0 such that

(2.12) c0 ≤
∥∥∥ m∑
i=1

θiSi

∥∥∥ ≤ c−1
0 for all θ ∈ Rm with 1/4 ≤ |θ| ≤ 4.

This is immediate from the fact that θ → ‖
∑m

i=1 θiSi‖ is a continuous
function which takes a minimum and a maximum on the annulus {θ : 1/4 ≤
|θ| ≤ 4}, and by the assumed linear independence this minimum is positive.

3. Dyadic frequency decompositions

We now use the group structure on Rd+m given by (1.1) but with the Ji
replaced by the skew symmetric matrices Si, with S1, . . . , Sm linearly inde-
pendent. We denote by ν the measure defined by 〈ν, f〉 =

∫
f(g(ω′), ω′, 0)dω′

which can also be written as the pairing of the distribution

β0(x′)β1(x1, x)δ(x1 − g(x′), x)

with f ; here δ is the Dirac measure in Rm+1, β0 is a C∞ function supported
on a ball of radius % centered at the origin of Rd−1 and β1 is a C∞ function
supported on an %2-ball centered at (1, 0, . . . , 0) ∈ Rm+1, here ε◦ � %. We
assume that % is small compared with the reciprocal of the C3 norm of g,
also %� ‖(g′′(0))−1‖−1 and finally %� c0 where c0 is as in (2.12).

We use a dyadic frequency decomposition of the Fourier integral of δ to
decompose ν =

∑∞
k=0 ν

k where

(3.1) νk(x) =
β1(x1, x)β0(x′)

(2π)m+1

∫∫
ζk(
√
σ2 + |τ |2)eiσ(x1−g(x′))+i〈τ,x〉dσdτ

where ζ0 ∈ C∞c (R) is supported on (−1, 1), ζ0(s) = 1 for |s| < 3/4 and
ζk(s) = ζ0(2−ks) − ζ0(21−ks) when k ≥ 1; hence, for k ≥ 1 the function

ζk = ζ1(2−(k−1)·) is supported in (−2k−1,−2k−3) ∪ (2k−3, 2k−1). For k > 0
we make a further decomposition in the σ-variables setting

(3.2) νk,l(x) =
β1(x1, x)β0(x′)

(2π)m+1

∫∫
ζk,l(σ, τ)eiσ(x1−g(x′))+i〈τ,x〉dσdτ

where

ζk,l(σ, τ) =

{
ζ1(21−k√σ2 + |τ |2)ζ1(2l+1−kσ) for l < k

ζ1(21−k√σ2 + |τ |2)ζ0(σ) for l = k
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i.e., for k ≥ 1, l < k we have the restriction |σ| + |τ | ≈ 2k and |σ| ≈ 2k−l

in the frequency variables. We set νk,lt (x) = t−d−2mνk,l(t−1x, t−2x) and
similarly define νkt .

We state the main local estimates for f ∗ νk,lt .

Proposition 3.1. Let ε > 0. Let I be a compact subinterval of (0,∞).
Then there exists a constant C = C(ε, I) > 0 such that the following holds.

(3.3)
(∫

I
‖f ∗ νk,lt ‖

p
Lp(Rd+m)

dt
)1/p

+ 2l−k
(∫

I
‖∂t(f ∗ νk,lt )‖p

Lp(Rd+m)
dt
)1/p

≤

C2
− k(d−1)

p′ 2
l( d−2

p′ +ε)‖f‖Lp(Rd+m) if 1 ≤ p ≤ 2,

C2
− k(d−1)

p 2
l( d−2

p
+ε)‖f‖Lp(Rd+m) if 2 ≤ p <∞.

Corollary 3.2. Let d
d−1 < p < ∞, u ∈ C∞c ((0,∞)). Let f ∈ Lp(Rd+m).

Then for almost every x ∈ Rd+m the function t 7→ Af(x, t) is continuous,
and for any λ > 0

(3.4)
(∫

Rd+m

∥∥u(·)Af(x, λ·)
∥∥p
B

1/p
p,1

dx
)1/p

. ‖f‖Lp(Rd+m).

Proof. By scaling we can assume that λ = 1. The first statement follows

from the second, since B
1/p
p,1 embeds into the space of bounded continuous

functions. Let 1 ≤ p ≤ 2. Set Rk,lf(x, s) = u(s)f ∗ νk,ls (x). We use
the interpolation inequality ‖g‖Bθp,1 . ‖g‖

1−θ
p ‖g′‖θp (0 < θ < 1), Hölder’s

inequality, Fubini and the proposition to deduce that the left hand side of
(3.4) is dominated by

‖Rk,lf‖
Lp(B

1/p
p,1 )
. ‖Rk,lf‖1−θLp(Lp)‖∂tR

k,lf‖θLp(Lp)

. 2
−k( d−1

p′ −θ)2
l( d−2

p′ −θ+ε)‖f‖p.

The desired inequality follows by summing over l ≤ k and then summing
over k (which is possible if d ≥ 3 and d

d−1 < p ≤ 2, θ = 1/p). A similar
argument applies for p > 2. �

Proof of the restricted weak type inequality in Theorem 2.1. Let Rk,lf(x, t) :=

f ∗ νk,lt and as in the proof of Corollary 3.2 we have that Rk,l maps Lp to

Lp(L∞) with operator norm O(2
k( 1
p
− d−1

p′ )
2
−l( 1

p
− d−2

p′ −ε)). If 1 ≤ p < d−1
d−2 we

may (for sufficiently small ε) sum in l and obtain in this range

‖ess supt∈I |f ∗ νkt ‖p . 2
k( 1
p
− d−1

p′ )‖f‖p.

We are now applying the ‘Bourgain trick’ in [3] to sum in k and deduce that

‖ess supt∈I |f ∗ νt|‖Lp,∞ . ‖f‖Lp,1 , p = d
d−1 . �
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The most interesting part of Proposition 3.1 is the L2-estimate. The Lp

estimates follow by interpolation with L1 estimates which we now briefly
discuss.

L1 and L∞ estimates. In what follows β(x) = β1(x1, x)β0(x′). By integra-
tion by parts with respect to σ, τ we obtain the inequality

(3.5) |νk,l(x)| .N
2k−l

(1 + 2k−l|x1 − g(x′)|)N
2km

(1 + 2k|x|)N
;

moreover 2−k∇νk,l, 2l−k∂sν
k,l
s , 2l−2k∂s∇νk,ls satisfy for |s| ≈ 1 the same

pointwise bounds. Hence we obtain

(3.6) ‖νk,l‖1 + 2l−k‖∂sνk,ls ‖1 . 1.

For later use we also record

(3.7) ‖∇νk,l‖1 + 2l−k‖∇∂sνk,ls ‖1 . 2k.

We will show in the next section §4 how to prove the Lp boundedness for
the global maximal operator and its strengthening in Theorem 1.3, given
the result of Proposition 3.1 and (3.6), (3.7). The proof of Proposition 3.1
will be given in §5 -§6.

4. The global maximal operator

We prove the global bound in Theorem 1.3, given Proposition 3.1. The
reduction to Proposition 3.1 follows closely arguments in [14]; we include
details for the convenience of the reader.

Let I = (1
4 , 4) and u ∈ C∞c (I). We will prove the estimate

(4.1)
∥∥∥ sup
n∈Z

∥∥u(s)f ∗ νk,l2ns‖B1/p
p,1

∥∥∥
p

≤ Cε

{
(1 + k)1/p2

k( 1
p
− d−1

p′ )
2
l( d−2

p′ −
1
p

+ε)‖f‖p, 1 < p ≤ 2

(1 + k)1/p2kd/p2
l( d−1

p
+ε)‖f‖p, 2 ≤ p <∞,

for 0 ≤ l ≤ k; here the Besov-norm is taken with respect to the s variable.
Summing in l, k for p > d

d−1 implies (1.5).

Recall that νk,l is compactly supported and that∣∣∣ ∫ νk,l(x)dx
∣∣∣ .N 2−kN ;

this is seen by using (3.2) and repeated integration by parts, with respect
to (x1, x), if l is small and with respect to x if l is large.

As noted in [14] we can write

νk,l(x, x) = Kk,l(x, x) + γk,lρ(x, x)
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where ρ ∈ C∞c (Rd+m) function supported near the origin, |γk,l| ≤ cN2−kN

for 0 ≤ l ≤ k and

(4.2)

∫
Kk,l(x)dx = 0.

Set Kk,lt (x, x) = t−d−2mKk,l(t−1x, t−2x), ρt(x, x) = t−d−2mρ(t−1x, t−2x).

The contribution from γk,lρ is harmless, indeed for all n ∈ Z, s ∈ [1/4, 4]
with j = 0, 1, 2, . . . ∣∣∣( d

ds
)j
[
u(s)f ∗ ρ2ns(x)

]∣∣∣ . cjMf(x)

whereM is the Hardy-Littlewood maximal operator associated to the Carnot-
balls on the group G. This implies∥∥∥ sup

n∈Z
‖u(s)f ∗ ρ2nsγk,l‖B1/p

p,1

∥∥∥
p
≤ CN2−kN‖f‖p.

Therefore we need to show the equivalent of (4.1) where νk,l is replaced
by Kk,l. This is implied by two stronger inequalities where the sup in n is
replaced by an `2 norm in n when 1 < p ≤ 2 and by an `p norm in n when
2 < p <∞.

We shall prove for 1 < p ≤ 2
(4.3)∥∥∥(∑

n∈Z
‖u(s)f ∗ Kk,l2ns‖

2

B
1/p
p,1

)1/2∥∥∥
p
≤ Cε,p(1 + k)1/p2

k( 1
p
− d−1

p′ )
2
l( d−2+ε

p′ −
1
p

)‖f‖p

and for 2 ≤ p <∞

(4.4)
∥∥∥(∑

n∈Z
‖u(s)f ∗ Kk,l2ns‖

p

B
1/p
p,1

)1/p∥∥∥
p
≤ Cε,p(1 + k)1/p2

−k d−2
p 2

l d−3+ε
p ‖f‖p

We use the interpolation inequality

(4.5) ‖g‖
B

1/p
p,1

. ‖g‖p + ‖g‖1−1/p
p ‖g′‖1/pp

which is elementary and also expresses the identification of B
1/p
p,1 as the real

interpolation space [Lp,W 1,p]1/p,1.

We focus on the case 1 ≤ p ≤ 2 and prove (4.3). The embedding inequality
implies∥∥∥(∑

n∈Z
‖u(s)f ∗ Kk,l2ns‖

2

B
1/p
p,1

)1/2∥∥∥
p
.
∥∥∥(∑

n∈Z

(∫
I
|f ∗ Kk,l2ns|

pds
)2/p)1/2∥∥∥

p

+
∥∥∥(∑

n

(∫
I
|f ∗ Kk,l2ns|

pds
) 2
pp′
(∫

I

∣∣f ∗ d
dsK

k,l
2ns

∣∣pds) 2
p2
)1/2∥∥∥

p
=: E1 + E2 .
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For the first expression on the right hand side we have by the integral
Minkowski’s inequality for `2/p

E1 ≤
∥∥∥(∫

I

(∑
n

|f ∗ Kk,l2ns|
2
)p/2

ds
)1/p∥∥∥

p

and for the second term we use applications of Hölder and then the integral
Minkowski inequality

E2 ≤
∥∥∥(∑

n

(∫
I
|f ∗ Kk,l2ns|

pds
) 2
p
) 1

2p′
(∑

n

(∫
I
|f ∗ d

dsK
k,l
2ns|

pds
) 2
p
) 1

2p
∥∥∥
p

≤
∥∥∥(∑

n

(∫
I
|f ∗ Kk,l2ns|

pds
) 2
p
) 1

2
∥∥∥ 1
p′

p

∥∥∥(∑
n

(∫
I
|f ∗ d

dsK
k,l
2ns|

pds
) 2
p
) 1

2
∥∥∥ 1
p

p

≤
∥∥∥(∫

I

(∑
n

|f ∗ Kk,l2ns|
2
) p

2
ds
) 1
p
∥∥∥ 1
p′

p

∥∥∥(∫
I

(∑
n

|f ∗ d
dsK

k,l
2ns|

2
) p

2
ds
) 1
p
∥∥∥ 1
p

p
.

Since we may interchange the x and the s integration, everything for p ≤ 2
follows now from

(4.6a)
(∫∫

G×I

(∑
n

|f ∗ Kk,l2ns(x)|2
) p

2
dx ds

) 1
p

.ε (1 + k)1/p2
−k d−1

p′ 2
l( d−2

p′ +ε)‖f‖p
and

(4.6b)
(∫∫

G×I

(∑
n

|f ∗ d
dsK

k,l
2ns(x)|2

) p
2
dx ds

) 1
p

.ε 2k−l(1 + k)1/p2
−k d−1

p′ 2
l( d−2

p′ +ε)‖f‖p .

We prove (4.6) by Marcinkiewicz interpolation, using the L2 bounds

(4.7a)
(∫∫

G×I

∑
n∈Z
|f ∗ Kk,l2ns|

2dx ds
) 1

2
.ε (1 + k)

1
2 2−k

d−1
2

+l( d−2
2

+ε)‖f‖L2 ,

(4.7b)
(∫∫

G×I

∑
n∈Z

∣∣f ∗ d
dsK

k,l
2ns(x)

∣∣2dx ds) 1
2

.ε 2k−l(1 + k)
1
2 2−k

d−1
2

+l( d−2
2

+ε)‖f‖L2 ,

and the weak type (1, 1) inequalities

(4.8a) meas
(
{(x, s) ∈ G× I :

(∑
n∈Z
|f ∗ Kk,l2ns(x)|2

) 1
2 > α}

)
. (1 + k)α−1‖f‖1,
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(4.8b) meas
(
{(x, s) ∈ G× I :

(∑
n∈Z
|f ∗ d

ds
Kk,l2ns(x)|2

)1/2
> α}

)
. (1 + k)2k−lα−1‖f‖1 .

The kernels Kk,l2ns and 2l−k ddsK
k,l
2ns enjoy similar qualitative and quantitative

properties and therefore we shall only give the proofs of (4.7a) and (4.8a);
the proofs of (4.7b), (4.8b) require only minor notational modifications.

Proof of (4.7a). As a consequence of Proposition 3.1 and scaling we have,
for each fixed n,(∫

I
‖f ∗ Kk,l2ns‖

2
L2ds

)1/2
.ε 2−k

d−1
2

+l( d−2
2

+ε)‖f‖L2 .

Note that Proposition 3.1 was stated for νk,lt , but clearly by the above dis-

cussion we can replace νk,lt with Kk,lt .

To combine the estimates for different n we need the following variant of
the Cotlar-Stein lemma. Let H1, H2 be Hilbert spaces and let Tn : H1 → H2,
n ∈ Z be bounded operators. Assume B ≥ 2A, and

‖Tn‖H1→H2 ≤ A, ‖TnT ∗n′‖H2→H2 ≤ B22−ε|n−n
′|

for all n, n′ ∈ Z. Then for all f ∈ H1

(4.9)
(∑
n∈Z
‖Tnf‖2H2

)1/2
.ε A

√
log(ε−1B/A)‖f‖H1 .

This is proved for the case H1 = H2 in [14, Lemma 3.2] but the proof also
extends to the situation of two different Hilbert spaces.

We apply this with H1 = L2(Rd+m) and H2 = L2(Rd+m × [1, 2]), for

the operators Tn : H1 → H2 given by Tnf(x, s) = f ∗ Kk,l2ns. Clearly we

have ‖TnT ∗n′‖ .ε A2
k,l with Ak,l = 2−k(d−1)/2+l(d−2+ε)/2; we use this for

|n − n′| ≤ 2(m + 2)k. For large |n − n′| we need to establish exponential
decay in |n − n′| but in view of the logarithmic dependence on B in (4.9)
we do not have to care about any blowup in terms of powers of 2k in such
an estimate.

As νk,ls and 2−k∇νk,ls are for s ≈ 1 pointwise dominated by the right hand

side of (3.5) the kernels Kk,ls , 2−k∇Kk,ls , satisfy up to a constant the same
bounds. Since they are also supported on a fixed common compact set we
have

(4.10) ‖Kk,ls ‖1 + 2−k‖∇Kk,ls ‖1 = O(1)

for |s| ≈ 1. For the orthogonality arguments it is convenient to just use
the following trivial pointwise bounds with an exponential dependence on
k, with N > max{d,m}:

(4.11)
|Kk,l(x)|+ 2−k|∇Kk,l(x)| .N 2k(m+1)(1 + |x|)−2N

.N 2k(m+1)(1 + |x|)−N (1 + |x|)−N .
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Clearly, (4.11) is implied by the stronger bounds in (3.5).

A standard argument using (4.11) and the cancellation property (4.2)
gives the (non-optimal) estimate

‖K̃k,l2ns ∗ K
k,l

2n′s
‖1 . 2k(2m+3)2−|n−n

′|/2;

here we use the notation K̃(x) = K(−x). We refer to [22, ch.XIII, §5.3] for
a very similar calculation. Consequently

‖f ∗ K̃k,l2ns ∗ K
k,l

2n
′
s
‖2 + 2l−2k‖f ∗ ∂sK̃k,l2ns ∗ ∂sK

k,l

2n
′
s
‖2 . 2k(2m+3)2−|n−n

′|/2‖f‖2.

Hence we get ‖Tn′T ∗n‖ . B22−|n−n
′|/2, with B2 = 2k(2m+3). We may thus

apply the almost orthogonality inequality (4.9) with log(B/Ak,l) . 1 + k,
and (4.7a) follows. �

Proof of (4.8a). We use a Calderón-Zygmund decomposition of f ∈ L1(G),
at height α, as described in [9, Ch.3A]. The Carnot-Carathéodory balls
B(0, r) at the orgin are given by {y : |y| ≤ r, |y| ≤ r2}, and the ball centered

at some z is just the left translate, i.e., B(z, r) = {y : z−1 · y ∈ B(0, r)}.
One can decompose an L1(G) function f as f = g+ b where ‖g‖1 . ‖f‖1,

‖g‖∞ . α, and b =
∑

ν bν where bν are supported on the balls B(yν , rν)
which are explicitly given by

B(yν , rν) = {(y, y) : | − y
ν

+ y| ≤ rν , | − yν + y − yᵀ
ν
~Sy| ≤ r2

ν}.

Moreover, the bν satisfy
∫
bν(y)dy = 0 and

∑
ν ‖bν‖1 . ‖f‖1. Finally

the B(yν , rν) have bounded overlap and if for A ≥ 2 we define Ωα :=
∪νB(yν , Arν), then

(4.12) meas(Ωα) . Ad+2mα−1‖f‖1.

We set ‖~S‖ :=
∑m

i=1 ‖Si‖ (with the matrix norm associated to the Eu-

clidean norm in Rd) and we will choose A ≥ 10(‖~S‖+ 1).

We now turn to the estimation of (4.8a). By Chebyshev’s inequality and
then (4.7a)

meas
(
{(x, s) ∈ G× I :

(∑
n∈Z
|g ∗ Kk,l2ns(x)|2

) 1
2 > α/2}

)
. α−2

∫∫
G×I

∑
n∈Z
|g ∗ Kk,l2ns|

2dx ds . α−2‖g‖22 . α−1‖f‖1.
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Moreover meas(Ωα × I) ≤ 4|Ωα| . α−1‖f‖1. It remains to estimate the
contribution involving b, namely

meas
(
{(x, s) ∈ Ω{α × I :

(∑
n∈Z
|b ∗ Kk,l2ns(x)|2

) 1
2 > α/2}

)
. α−1

∫
I

∫
Ω{
α

(∑
n∈Z
|b ∗ Kk,l2ns(x)|2

) 1
2 dx ds

. α−1
∑
ν

∫
I

∫
(B(yν ,Arν)){

(∑
n∈Z
|bν ∗ Kk,l2ns(x)|2

) 1
2 dx ds

. α−1
∑
ν

sup
s∈I

∑
n∈Z

∫
(B(yν ,Ar)){

|bν ∗ Kk,l2ns(x)| dx

We claim that for s ∈ I and fixed ν,
(4.13)∫

(B(yν ,Ar)){
|bν ∗ Kk,l2ns(x)| dx .


1 for all n ∈ Z
2k(m+1)2nr−1

ν for n ≤ log2 rν

2k(m+2)(2−nrν)1/2 for n ≥ log2 rν

We use the first bound when log2 rν−10km ≤ n ≤ log2 rν+10km, the second
bound when n < log2 rν − 10km and the third when n > log2 rν + 10km.
Summing these yields

sup
s∈I

∑
n∈Z

∫
(B(yν ,Ar)){

|bν ∗ Kk,l2ns(x)| dx . (1 + k)‖bν‖1.

If we then sum over ν and use
∑

ν ‖bν‖1 . ‖f‖1 above we get

meas
(
{(x, s) ∈ G× I :

(∑
n∈Z
|g ∗ Kk,l2ns(x)|2

) 1
2 > α/2}

)
. (1 + k)α−1‖f‖1.

We now prove (4.13). The O(1) bound in (4.13) is immediate and follows

from ‖Kk,l2ns‖1 = O(1) which is a consequence of (3.6). For the second and
third case in (4.13) we will just use the trivial pointwise bounds in (4.11).

We now assume that n ≤ log2 rν to prove the second bound in (4.13). Here
we will strongly use that the integration is extended over the complement

of (B(yν , Arν)){ and split it as X1 ∪X2 where

X1 = {(x, x) : |x− y
ν
| ≥ Arν},

X2 = {(x, x) : |x− y
ν
| ≤ Arν , | − yν + x− yᵀ

ν
~Sx| ≥ A2r2

ν}.
Then∫

X1

|bν ∗ Kk,l2ns(x)|dx . 2k(m+1)

∫
B(yν ,rν)

|bν(y)| ×∫
|x−y

ν
|≥Arν

(2ns)−d

(
|x−y|
2ns )N

∫
x

(2ns)−2m

(1 +
|x−y+xᵀ ~Sy|

(2ns)2
)N
dx dx dy .
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The x-inner integral is O(1) and in the x-integral we can use |x−y| ≈ |x−y
ν
|

and get a bound (Arν(2ns)−1)d−N here. Hence

(4.14)

∫
X1

|bν ∗ Kk,l2ns(x)|dx . 2k(m+1)(2−nrν)d−N . 2k(1+m)2nr−1
ν ‖bν‖1.

For the X2-contribution

(4.15)

∫
X2

|bν ∗ Kk,l2ns(x)|dx . 2k(m+1)

∫
B(yν ,rν)

|bν(y)| ×∫
|x−y

ν
|≤Arν

(2ns)−d

(1 +
|x−y|
2ns )N

∫
|x−yν+xᵀ ~Sy

ν
|≥A2r2ν

(2ns)−2m

(
|x−y+xᵀ ~Sy|

(2ns)2
)N
dx dx dy .

Here we gain in the x-integral. For this observe for x ∈ X2, y ∈ B(yν , rν)∣∣∣|x− y + xᵀ~Sy| − |x− yν + xᵀ~Sy
ν
|
∣∣∣ ≤ |yν − y + xᵀ~S(y − y

ν
)|

≤ |yν − y + yᵀ
ν
~S(y − y

ν
)|+ |(x− y

ν
)ᵀ~S(y − y

ν
)|

≤ |y − yν + yᵀ~Sy
ν
|+ |x− y

ν
|‖~S‖|y − y

ν
| ≤ r2

ν +A‖~S‖r2
ν ≤ (Arν)2/2

(here we used that |x − y
ν
| ≤ Arν in X2 and A � ‖~S‖). The displayed

inequality tells us that we can replace |x− y + xᵀ~Sy| with |x− yν + xᵀ~Sy
ν
|

in the integrand of the inner integral in (4.15). Then we get the bound

O
((
Arν(2ns)−1

)−(2N−2m))
for this inner integral. This proves the second

bound in (4.13).

Finally, we prove the third bound in (4.13); assume 2n ≥ rν and extend
the integration over all of Rd+2m. Let, with δ ∈ (0, 1),

X3 = {x : |x− y
ν
| ≥ rν (

2n

rν
)1+δ}, X4 = X{3 .

Clearly for y ∈ B(yν , rν) we have |x−y| ≈ |x−y
ν
| and thus integrating first

in x,∫
X3

|bν ∗ Kk,l2ns(x)|dx . 2k(m+1)

∫
|x−y

ν
|≥rν(2n/rν)1+δ

(2ns)−d

(
|x−y

ν
|

2ns )N
dx ‖bν‖1

. 2k(m+1)(2nr−1
ν )−δ(N−d)‖bν‖1.

For x ∈ X4 we use the mean value zero property of bν and write

bν ∗ Kk,l2ns(x) =∫
bν(y)

[
Kk,l2ns(x− y, x− y + xᵀ~Sy)−Kk,l2ns(x− yν , x− yν + xᵀ~Sy

ν
)
]
dy
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and from this∫
X4

|bν ∗ Kk,l2ns(x)|dx . 2k(m+2)‖bν‖1 ×

sup
y∈B(yν ,rν)

[
(2ns)−1|y

ν
− y|+ (22ns2)−1 sup

x∈X4

| − y + yν + xᵀ~S(y − y
ν
)|
]
.

For x ∈ X4 and y ∈ B(yν , rν),

| − y + yν + xᵀ~S(y − y
ν
)| ≤ |(x− y

ν
)ᵀ~S(y − y

ν
)|+ | − y + yν + yᵀ

ν
~S(y − yν)|

≤ |x− y
ν
|‖~S‖|y − y

ν
|+ |y − yν − yᵀν

~Sy|

≤ 2rν
(2n

rν

)1+δ‖~S‖rν + r2
ν . 2n(1+δ)r1−δ

ν + r2
ν .

Using this in the estimate above and combining with the integral over X3

yields∫
|bν ∗ Kk,l2ns(x)|dx

. ‖bν‖1
[
2k(m+1)

( rν
2n
)δ(N−d)

+ 2k(m+2)
( rν

2n
+
( rν

2n
)1−δ

+
r2
ν

22n

)]
and choosing δ = 1/2 gives the third estimate in (4.13), for 2n ≥ rν . �

The case 2 ≤ p <∞. We prove (4.4). We are again using the Sobolev em-
bedding inequality (4.5), now for p > 2. We proceed similarly as in the p < 2
case (however the proof is now simpler since we are working with `p-valued
functions and not with `2-valued functions and this allows to use trivial L∞

bounds in place of the previously used Calderón-Zygmund estimates). After
uses of Hölder’s inequality we get∥∥∥(∑

n∈Z
‖u(s)f ∗ Kk,l2ns‖

p

B
1/p
p,1

) 1
p
∥∥∥
p
.
(∑
n∈Z

∫
I

∥∥f ∗ Kk,l2ns

∥∥p
p
ds
) 1
p

+
(∑
n∈Z

∫
I

∥∥f ∗ Kk,l2ns

∥∥p
p
ds
) 1
pp′
(∑
n∈Z

∫
I

∥∥f ∗ d
dsK

k,l
2ns

∥∥p
p
ds
) 1
p2 .

Hence (4.4) follows from

(4.16a)
(∑
n∈Z

∫
I

∥∥f ∗ Kk,l2ns

∥∥p
p
ds
) 1
p
.ε (1 + k)

1
p 2
−k d−1

p
+l( d−2

p
+ε)‖f‖p

and

(4.16b)
(∑
n∈Z

∫
I

∥∥f ∗ d
dsK

k,l
2ns

∥∥p
p
ds
) 1
p
.ε 2k−l(1 + k)

1
p 2
−k d−1

p
+l( d−2

p
+ε)‖f‖p .

We now have for p =∞ the inequalities

(4.17a) sup
n

sup
s∈I

sup
x∈G
|f ∗ Kk,l2ns(x)| . ‖f‖∞
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and

(4.17b) sup
n

sup
s∈I

sup
x∈G
|f ∗ d

dsK
k,l
2ns(x)| . 2k−l‖f‖∞

which are immediate consequences of ‖Kk,l2ns‖ = O(1), ‖ ddsK
k,l
2ns‖ = O(2k−l)

(see (3.6)). Inequality (4.16a) follows from (4.7a), (4.17a) by interpolation,
and likewise (4.16b) follows from (4.7b), (4.17b). This finishes the proof of
(4.4). �

Comment on Remark 1.4. An examination of the proof above allows, for
fixed p, inclusions of factors of 2(k−l)β on the left hand sides of the inequalities
(4.3) for p ≤ 2 and (4.4) for p > 2. Specifically we can have β < d−1

p′ −
1
p

for d
d−1 < p ≤ 2 and β < d−2

p for p > 2. This observation can be used

to justify replacing the Besov space B
1/p
p,1 in the s variable with B

β+1/p
p,1 in

those ranges. For the cases where β+ 1/p ≥ 1 one needs to use that also for

j > 1 the terms 2(l−k)j( dds)
jνk,ls behave like νk,ls (in particular this requires a

straightforward extension of calculations for j = 1 at the end of §5.1 below).

5. Basic considerations for the L2 estimate in Proposition 3.1

It suffices to prove the proposition for functions that are supported in a
small neighborhood of the origin of diameter � %2 � 1 since one can use
a standard argument using a tiling via the group translations to reduce to
the general case (for more details we refer to §2 of [18]). We follow [18] to
discuss further reductions which will simplify the forthcoming L2 bounds.

5.1. A shear transformation. When acting on functions f supported in an

%2-ball centered at the origin we can rewrite f ∗ νk,lt = Ak,lf(x, t) where

Ak,lf(x, t) =

∫
Kk,l
t (x, y)f(y)dy

and Kk,l
t is given by

Kk,l
t (x, y) = t−d−2mνk,l(t−1(x− y), t−2(x− y + xᵀ~Sy))

= å(x, t, y)

∫∫
ζk,l(σ, τ)ei

σ
t

(x1−y1−tg(
x′−y′
t ))+i〈 τ

t2
,x−y+xᵀ ~Sy〉dσdτ(5.1)

with

å(x, t, y) = (2π)−m−1t−d−2mβ1(x1−y1t ,
x−y+xᵀ ~Sy

t2
)β0(x

′−y′
t )χ%(y)

and y 7→ χ%(y) supported in a %2 neighborhood of the origin. Notice that
å lives, where |t − 1| ≤ %2, |x1 − 1| . %2, |x′|, |x|, |y| . %2. Introducing the
frequency variables ϑ = (ϑ1, ϑ) ∈ Rm+1, with ϑ1 = 21−kt−1σ, ϑi = 21−kt−2τi
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we can rewrite the integral as

(5.2) Kk,l
t (x, y) = 2(k−1)(1+m)å(x, t, y)

∫∫
ζ1(2ltϑ1)υ1(t, ϑ1, ϑ) ×

ei2
k−1(ϑ1(x1−y1−tg(

x′−y′
t ))+〈ϑ,x−y+xᵀ ~Sy〉)dϑ1dϑ.

where we have abbreviated

υ1(t, ϑ1, ϑ) = t1+2mζ1((t2ϑ2
1 + t4|ϑ|2)1/2).

When l = k we get a similar formula where ζ1(2ktϑ1) is replaced with
ζ0(2ktϑ1).

Following [18] we rewrite the phase and verify that

ϑ1

(
x1 − y1 − tg(x

′−y′
t )

)
+

m∑
i=1

ϑi(xi − yi + xᵀSiy)

=
(
ϑ1 −

m∑
i=1

ϑix
ᵀSie1

)(
x1 − y1 − tg(x

′−y′
t )

)
(5.3)

+

m∑
i=1

ϑi
(
xi + x1x

ᵀSie1 − yi + xᵀSiP
ᵀy′ − xᵀSie1tg(x

′−y′
t )

)
.

Setting θ1 = ϑ1 −
∑m

i=1 ϑix
ᵀSie1, θi = ϑi, we can write the Schwartz

kernel using the (θ1, θ) frequency variables. Define the phase function Ψ by

(5.4) Ψ(x, t, y, θ) =

θ1(x1 − y1 − tg(x
′−y′
t )) +

m∑
i=1

θi(xi − yi + xᵀSiP
ᵀy′ − xᵀSie1tg(x

′−y′
t )) .

Making the substitution (ϑ1, ϑ) = (θ1 + xᵀSθe1, θ), here using the notation

Sθ =
∑m

i=1 θiSi we obtain

(5.5) Kk,l
t (x, y) = 2(k−1)(1+m)å(x, t, y)

∫∫
ei2

k−1Ψ(x,x+x1xᵀ ~Se1,t,y,θ)×

ζ1(2lt(θ1 + xᵀSθe1))υ1(t, θ1 + xᵀSθe1, θ)dθ1dθ;

here note the nonlinear shear transformation

(x, x) 7→ (x, x+ x1x
ᵀ~Se1)

which is present in the phase function. It is now natural to consider a variant
Ak,l which is related to Ak,l via this shear transformation. Let

Ak,lf(x, t) ≡ Ak,lt f(x) =

∫
K
k,l
t (x, y)f(y)dy
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where the Schwartz kernel is given by

(5.6) K
k,l
t (x, y) = 2(k−1)(1+m)a(x, t, y)

∫∫
ei2

k−1Ψ(x,t,y,θ)×

ζ(2lt(θ1 + xᵀSθe1))υ(t, θ1 + xᵀSθe1, θ)dθ1dθ,

here s 7→ ζ(s) is supported where |s| ≈ 1, and we use the modification that

for k = l we replace ζ(2kt(θ1 + xᵀSθe1)) with ζ0(2kt(θ1 + xᵀSθe1)). We are
still assuming that a is supported where

supp(a) ⊂ {(x, t, y) : |t− 1| ≤ %2, |x1 − 1| . %2, |x′|, |x|, |y| . %2}.
Notice that the nonlinear shear transformation does not essentially change
this support assumption since by the skew-symmetry of the Si we have
|x1x

ᵀSie1| . %2.

With the choice of

a(x, t, y) = å(x, x− x1x
ᵀ~Se1, t, y), ζ = ζ1, υ = υ1

we get for l < k

(5.7) Ak,lf(x, x, t) = Ak,lt f(x, x+ x1x
ᵀ~Se1, t)

(and the same with ζ = ζ0 if k = l).

We deduce the L2-estimate in Proposition 3.1 from the following variant.

Proposition 5.1. Let ε > 0. Then there exists a constant C = C(ε) > 0
such that

(5.8) ‖Ak,lf‖L2(Rd+m×[ 1
2
,2]) ≤ C2−

k(d−1)
2 2l(

d−2
2

+ε)‖f‖L2(Rd+m),

with C bounded as ζ, υ, a are varying over bounded subsets of C∞c (with the
above support assumptions).

Proof that Proposition 5.1 implies Proposition 3.1. By (5.7) Proposition 5.1
immediately implies the first half of (3.3), by a change of variable. To prove
the derivative bound in (3.3) first observe

∂tΨ(x, x+ x1x
ᵀ~Se1, t, y, θ) =

(
θ1 + xᵀSθe1

)(
〈x
′−y′
t ,∇g(x

′−y′
t )〉 − g(x

′−y′
t )

)
.

From (5.5) we calculate that

∂tA
k,lf(x, t) =

∑
i=1,2,3

A
k,l,[i]
t f(x) + 2k−lA

k,l,[4]
t f(x)

where the Schwartz kernel of A
k,l,[i]
t is given by K

k,l,[i]
t , defined as in (5.5)

but with ζ, a, υ replaced by ζ [i], å[i], υ[i] for i = 1, 2, 3, 4, resp., with the
following definitions (for l < k)

ζ [1](s) = sζ ′1(s), ζ [2](s) = ζ [3](s) = ζ1(s), ζ [4](s) =
is

2
ζ1(s),

υ[1] = υ[2] = υ[4] = υ1, υ[3] = ∂tυ1,

å[1] = t−1å, å[2] = ∂t̊a, å[3] = å,
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and

å[4](x, t, y) = t−1å(x, t, y)
(
〈x
′−y′
t ,∇g(x

′−y′
t )〉 − g(x

′−y′
t )

)
.

For l = k replace ζ1 by ζ0. These formulas show that the derivative bound
in (3.3) follows from Proposition 5.1 as well, as we have

A
k,l,[i]
t f(x, x) = Ak,l,[i]t f(x, x+ x1x

ᵀ~Se1)

where, with a[i](x, t, y) = å[i](x, x − x1x
ᵀ~Se1, t, y), the operator Ak,l,[i]t has

Schwartz kernel

K
k,l,[i]
t (x, y) = 2(k−1)(1+m)a[i](x, t, y)

∫∫
ei2

k−1Ψ(x,t,y,θ)×

ζ [i](2lt(θ1 + xᵀSθe1))υ[i](t, θ1 + xᵀSθe1, θ)dθ1dθ.

Now we can use a change of variables and apply Proposition 5.1 to Ak,l,[i]t ,
for i = 1, 2, 3, 4 to complete the proof of Proposition 5.8. �

5.2. A family of oscillatory integral operators. It remains to prove Proposi-
tion 5.1. We reduce it to a result on oscillatory integrals acting on functions
on Rd. Here we write, x = (x1, x

′), y = (y1, y
′) for the vectors in Rd, omit-

ting the underbar. In what follows we are given a skew-symmetric d × d
matrix S and assume that its matrix norm satisfies

(5.9) c0 ≤ ‖S‖ ≤ c−1
0

with 0 < c0 ≤ 1; in particular the rank of S is at least 2.

We define the phase function ψ by

(5.10) ψ(x, t, y) = y1(x1 − tg(x
′−y′
t )) + xᵀS(P ᵀy′ − tg(x

′−y′
t )e1)

and set

(5.11) σ(x′, y1) = y1 + (x′)ᵀPSe1.

The function ζ1 can be split as ζ1 = ζ+
1 + ζ−1 where supp(ζ+

1 ) ⊂ (1
2 , 2) and

supp(ζ−1 ) ⊂ (−2,−1
2).

Setting λ = 2k−1 and letting l ≤ k we define, for functions f ∈ L2(Rd),

(5.12) T λ,lf(x, t) =

∫
eiλψ(x,t,y)χl(x, t, y)f(y)dy

where

(5.13) χl(x, t, y) =

{
χ(x, t, y)ζ(2ltσ(x′, y1)), l ≤ k − 1

χ(x, t, y)ζ0(2ltσ(x′, y1)), l = k.

Here χ is C∞c -function supported where t ≈ 1, |x′|, |y′| ≤ %, and the diameter
of supp(χ) does not exceed %. For l ≤ k−1 we use the convention for ζ to be
either ζ+

1 or ζ−1 . Note then that for l ≤ k− 1 we have |σ| ≈ 2−l on supp(χl)
and in addition the sign of σ is the same for all (x, t, y) in the support.
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Proposition 5.2. Suppose c0 ≤ ‖S‖ ≤ c−1
0 . For ε > 0,

(5.14) ‖T λ,lf‖L2(Rd×[1/2,2]) . Cε2
l( d−2

2
+ε)λ−

d
2 ‖f‖L2(Rd) .

The constant Cε depends on c0 but not on the specific matrix S, and stays
bounded if ζ0, ζ

±
1 , χ range over a bounded set of C∞c functions.

For l� 1 this is the key technical result of this paper; see §6.

5.3. Reduction of Proposition 5.1 to oscillatory integral operators. We will
use Proposition 5.2 to deduce Proposition 5.1. The estimate is more straight-
forward if a can be written as a tensor product of functions of each of the vari-
ables xi, t, yj . To reduce to this situation we choose functions xi 7→ αi(xi),
t 7→ γ(t), yj 7→ βj(yj), 1 ≤ i, j ≤ d+m, all with compact support such that

ă(x, t, y) := γ(t)
d+m∏
i=1

αi(xi)
d+m∏
j=1

βj(yj)

equals 1 on supp(a), so that the support of each factor is contained in an
interval of length less than 2π.

On the support of ă we have the following Fourier series expansion

a(x, t, y) =
∑

(n,ν,µ)∈Z×Zd+m×Zd+m
cn,ν,µe

itn
d+m∏
i=1

eixiνi
d+m∏
j=1

eiyjµj

where the coefficients cn,ν,µ are rapidly decreasing. This yields a decompo-
sition

(5.15) Ak,lf(x, t) =
∑
n,ν,µ

cn,ν,µe
itn

d+m∏
i=1

eixiνiAk,lµ f(x, t)

where Ak,lµ is factorized as a composition of three operators,

(5.16) Ak,lµ f(x, t) = 2(k−1)(m+1)Fmk Gk,lFm+1
k,µ f(x, t);

here Fmk is defined on functions (x, θ, t) 7→ G(x, θ, t) by

(5.17) Fmk G(x, x, t) =

d+m∏
i=d+1

αi(xi)

∫
Rm

G(x, θ, t)ei2
k−1〈x,θ〉dθ,

Gk,l is defined on functions (θ1, y
′, θ) 7→ F (θ1, y

′, θ) by

(5.18) Gk,lF (x, θ, t) = γ(t)

d∏
i=1

αi(xi)

∫
θ1,y′

ei2
k−1ψθ(x1,x′,t,θ1,y′)

× ζ1(2lt(θ1 + xᵀSθe1))υ(t, θ1, θ)
d∏
j=2

βj(yj)F (θ1, y
′, θ)dθ1dy

′
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with

(5.19) ψθ(x1, x
′, t, θ1, y

′) = θ1(x1 − tg(x
′−y′
t )) + xᵀSθ(P ᵀy′ − tg(x

′−y′
t )e1),

and finally Fm+1
k,µ is defined on functions (y1, y

′, y) 7→ f(y1, y
′, y) by

(5.20) Fm+1
k,µ f(θ1, y

′, θ)

=

∫
e−i2

k−1(y1θ1+〈y,θ〉)ei〈µ,y〉β1(y1)
d+m∏
j=d+1

βj(yj)f(y1, y
′, y)dy1dy.

We have the estimates

‖Fmk G‖L2(Rd+m+1) . 2−km/2‖G‖L2(Rd+m+1)(5.21)

‖Gk,lF‖L2(Rd+m+1) ≤ Cε2l(
d−2
2

+ε)2−kd/2‖F‖L2(Rd+m)(5.22)

‖Fm+1
k,µ f‖L2(Rd+m) . 2−k(m+1)/2‖f‖L2(Rd+m)(5.23)

and clearly the desired estimate (5.8) follows from (5.21), (5.22), (5.23) in
conjunction with (5.15), (5.16) and the rapid decay of the cn,µ,ν .

We justify the L2 estimates. (5.21) is an immediate consequence of
Plancherel’s theorem in Rm and likewise (5.23) is a consequence of Plancherel’s
theorem in Rm+1. It remains to consider (5.22); here we rely on Proposition

5.2. With ψθ as in (5.19) define for functions (θ1, y
′) 7→ g(θ1, y

′)

(5.24) T λ,l
θ
g(x, t) =∫

θ1,y′
exp(iλψθ(x, t, θ1, y

′))χθ(x, t, θ1, y
′)ζ1(2ltσθ(x′, θ1))g(θ1, y

′)dθ1dy
′

where σθ(x′, θ1) = θ1 + xᵀSθe1 = θ1 + (x′)ᵀPSθe1; moreover

χθ(x, t, θ1, y
′) = γ(t)υ(t, θ1, θ)

d∏
i=1

αi(xi)

d∏
j=2

βj(yj) .

By Proposition 5.2 we have with λ ≈ 2k

(5.25) ‖T λ,l
θ
g‖L2(Rd+1) . 2l(

d−2
2

+ε)2−kd/2‖g‖L2(Rd)

uniformly in θ; note that we have exactly the setup in (5.12), except there we

use the notation x for x, y1 for θ1, and S for Sθ. For the estimate (5.25) the
uniformity assertion in Proposition 5.2 is crucial and so is the assumption of
the Si being linearly independent and therefore satisfying (2.12). We have

Gk,lF (x, θ, t)=T 2k−1,l

θ
[F (·, θ)] and thus applying (5.25) gives (5.22). This

covers the case l < k, and the case l = k is analogous, requiring a minor
notational modification. This finishes the proof of Proposition 5.1, given
Proposition 5.2.
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6. Proof of Proposition 5.2

For small l we shall rely on a standard T ∗T argument from [10]. The
main part of the proof concerns the case of large l; here we rely on almost
orthogonality arguments based on the Cotlar-Stein lemma, in the following
version. Consider a finite set V indexing bounded operators Tν : H1 → H2

where H1, H2 are Hilbert spaces. Then we have the following bound for the
operator norm of the sum:

(6.1)
∥∥∥∑
ν∈V

Tν

∥∥∥
H1→H2

. sup
ν

∑
ν′

‖T ∗ν Tν′‖
1/2
H1→H1

+ sup
ν

∑
ν′

‖TνT ∗ν′‖
1/2
H2→H2

.

This well known version follows by a simple modification of the proof in [22,
ch. VII.2] (cf. also [7, p.223]).

6.1. The case of small l. This is the regime where one can use a standard
T ∗T argument (cf. [10]). Recall that g(0) = 1, ∇g(0) = 0, diam(supp(χ)) ≤
% � 1, in particular |x′|, |y′| ≤ % � 1 for (x, t, y) ∈ supp(χ). Denote as
before

(6.2) σ = σ(x′, y1) = y1 + (x′)ᵀPSe1.

Let the (d+ 1)× d matrix ∂ᵀy∂x,tψ be defined by (∂ᵀy∂x,tψ)i,j = ∂xi∂yjψ for

1 ≤ i, j ≤ d and (∂ᵀy∂x,tψ)d+1,j = ∂t∂yjψ for 1 ≤ j ≤ d. One calculates ([18])

(6.3) ∂ᵀy∂x,tψ
∣∣
(x,t,y)

= 1 eᵀ1SP
ᵀ

−g′(x
′−y′
t ) t−1σ(x′, y1)g′′(x

′−y′
t ) + PSP ᵀ + PSe1(g′(x

′−y′
t ))ᵀ

−1 + g̃(x, t, y) −t−2σ(x′, y1)(x′ − y′)ᵀg′′(x
′−y′
t )


where g̃(x, t, y) := 1− g(x

′−y′
t ) + t−1g′(x

′−y′
t )(x′ − y′).

Using (6.3) we obtain for the determinant of the d× d submatrix ∂ᵀy∂xψ

det(∂ᵀy∂xψ(x, t, y)) = det
(
t−1σ(x′, y1)g′′(x

′−y′
t ) + PSP ᵀ

)
+O(%).

From [14, Lemma 5.3], it follows that the matrix t−1σg′′(x
′−y′
t ) + PSP ᵀ

is invertible. This says that ∂ᵀy∂xψ(x, t, y) is invertible for all (x, t, y) ∈
supp(χ). Also, the derivatives of the amplitude χ(x, t, y)ζ(2ltσ(x′, y1)) are
bounded when 2l ≈ 1. Thus the standard oscillatory integral theorem from
[10] applies and we may conclude the bound ‖T λ,lf(·, t)‖2 ≤ C(l)λ−d/2‖f‖2
which one uses for 2l . %−1.

6.2. The case of large l. We may assume that 2−l � %� 1 (recall from the
beginning of §3 the specifications of the parameter %). Choose an orthonor-
mal basis e1, . . . , ed with e1 = e1, and Se1 ∈ span(e2). Set

(6.4) δl = max{|Se1|, 2−l}
To prepare for almost orthogonality arguments we tile Rd into boxes with
sidelengths (2lε/dλ−1, 2lε/dλ−1δ−1

l , 2l(1+ε/d)λ−1, . . . , 2l(1+ε/d)λ−1), with the
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sides parallel to the e1, e2, e3, . . . , ed. The family of boxes s can be parametrized
by Zd; we define the lower corners by c(z) = 2lε/d

(
λ−1z1e1 + λ−1δ−1

l z2e2 +∑d
i=3 2lλ−1ziei

)
, and let

s(z) = {y : 〈c(z1, . . . , zd), ei〉 ≤ 〈y, ei〉 < 〈c(z1+1, . . . , zd+1), ei〉, i = 1, . . . , d}.
We also write cs = c(z) if s = s(z). Denote by S the (finite) family of
those boxes which intersect {y : (x, t, y) ∈ supp(χ) for some (x, t)}. We
then decompose

(6.5) T λ,l =
∑
s∈S

T λ,ls , with T λ,ls [f ] = T λ,l[f1s].

Note that

(6.6) T λ,ls (T λ,ls′ )∗ = 0 if s 6= s′.

Notice that we have |T λ,ls f(x, t)| . |s|1/2‖f‖2. Because of the compact
support of the kernel in the (x, t) variable we see that the L2 operator norm

‖T λ,ls ‖2→2 is O(|s|1/2). It is crucial for our analysis that this can be improved

by a factor of δ
1/2
l :

Lemma 6.1. There exists a constant C > 0 independent of s ∈ S such that
the estimate ∥∥T λ,ls f(·, t)

∥∥
L2(Rd)

≤ Cλ−
d
2 2l(

d−2
2

+ε)‖f‖L2(Rd)

holds for every s ∈ S, with C independent of t ∈ [1
4 , 4] and s.

Proof of Lemma 6.1. We freeze t ∈ [1
4 , 4] for this proof and write T λ,ls f(x) =

T λ,ls f(x, t), all estimates will be uniform in t.

We have |s| . 2l(d−2+ε)δ−1
l λ−d and therefore obtain from the Cauchy-

Schwarz inequality

‖T λ,ls ‖L2→L2 . 2l(d−2+ε)/2δ
−1/2
l λ−d/2.

Let c1 � c0 be a small constant, and the displayed estimate is already
sufficient if |Se1| ≥ c1. In what follows we consider the case |Se1| ≤ c1. We
note that in this case

(6.7) sup
w′∈Rd−1,|w′|=1

|PSP ᵀw′| ≥ c0/2.

Indeed, write w = (w1, w
′) and Sw =

(
eᵀ1SP

ᵀw′, w1PSe1 + PSP ᵀw′
)
; we

have |eᵀ1SP ᵀw′|+ |w1PSe1| . c1|w| with c1 � c0 and (6.7) holds by (5.9).

Let d◦ be the smallest integer greater than or equal to (d − 1)/2. Since
PSP ᵀ is skew-symmetric, there exists nonnegative numbers s1 ≥ · · · ≥ sd◦
and orthonormal vectors ~u1, . . . ~ud−1 ∈ Rd−1 such that

PSP ᵀ~u2i−1 = si~u2i,

PSP ᵀ~u2i = −si~u2i−1,
(6.8a)
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for 1 ≤ i ≤ d◦ if d− 1 is even, and

PSP ᵀ~u2i−1 = si~u2i,

PSP ᵀ~u2i = −si~u2i−1,
PSP ᵀ~u2d◦−1 = 0(6.8b)

for 1 ≤ i ≤ d◦ − 1, if d− 1 is odd. By (6.7), we have s1 & c0.

To estimate T λ,ls f , we further decompose the slab s into smaller pieces.

We may write PSe1 =
∑d−1

i=1 αi~ui and let b = β1~u1 +β2~u2 where β2
1 +β2

2 = 1
and α2β1 − α1β2 = 0. Then b is a unit vector in span(~u1, ~u2) with the
property that PSP ᵀb = −β2s1~u1 + β1s1~u2 is perpendicular to PSe1. For
later use notice that |PSP ᵀb| = s1.

We now decompose s into subsets rn(s) defined for n ∈ Z by

(6.9) rn(s) = {y = (y1, y
′) ∈ s : 2lε/dλ−1n ≤ 〈b, y′〉 < 2lε/dλ−1(n+ 1)}.

Define T λ,ls,n f = T λ,ls [f1rn(s)] so that T λ,ls =
∑

n T
λ,l
s,n . As 〈P ᵀb, e1〉 = 0 we

have

|rn(s)| . 2l(d−2+ε)λ−d,

and by the Cauchy-Schwarz inequality we get

(6.10) ‖T λ,ls,n ‖L2→L2 . 2l(d−2+ε)/2λ−d/2.

Since in view of the disjointness of the sets rn(s) we have T λ,ls,n (T λ,ls,n′)
∗ = 0

for n 6= n′ it suffices, by the Cotlar-Stein Lemma, to show

(6.11) ‖(T λ,ls,n )∗T λ,ls,n′‖L2→L2 . 2l(d−2+ε)λ−d|n− n′|−N if |n− n′| ≥ C1

for some large C1.

We now assume that y ∈ rn(s), z ∈ rn′(s); since both y, z belong to s this

means that |n− n′| ≤ C2l. The Schwartz kernel of (T λ,ls,n )∗T λ,ls,n′ is given by

(6.12) Hn,n′(y, z) = 1rn(s)(y)1rn′ (s)

∫
e−iλφ(x,t,y,z)χl(x, t, y)χl(x, t, y) dx

where

(6.13) φ(x, t, y, z) = ψ(x, t, y)− ψ(x, t, z).

The argument will rely on an integration by parts using the directional
derivative

(6.14) 〈v, ∂x′〉 =

d∑
i=2

vi
∂

∂xi
with v =

PSP ᵀb

|PSP ᵀb|
.

Note that

〈v, ∂x′〉φ(x, t, y, z) =

d∑
i=2

vi

∫ 1

0
∂ᵀy∂xiψ(x, t, wτ (y, z)) dτ (y − z)(6.15)

where wτ ≡ wτ (y, z) := (1− τ)y + τz.(6.16)
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Using (6.3), we write

(6.17) ∂ᵀy∂x′ψ
∣∣
(x,t,wτ )

(y − z) = 〈y′ − z′, b〉PSP ᵀb+ PSP ᵀΠb⊥(y′ − z′) +

t−1σ(x′, wτ1)g′′(x
′−wτ ′
t )(y′−z′)−g′(x′−wτ ′t )(y1−z1)+PSe1(g′(x

′−wτ ′
t ))ᵀ(y′−z′).

Since PSP ᵀb and thus v is perpendicular to both PSe1, PSP ᵀΠb⊥(y′− z′),
and |PSP ᵀb| = s1 we have

(6.18) ∂ᵀy 〈v, ∂x′〉ψ
∣∣
(x,t,wτ )

(y − z) = s1〈y′ − z′, b〉+

(ts1)−1σ(x′, wτ1)(PSP ᵀb)ᵀg′′(x
′−wτ ′
t )(y′−z′)−s−1

1 (y1−z1)(PSP ᵀb)ᵀg′(x
′−wτ ′
t ).

Notice from (6.2) that

(6.19) σ(x′, (1− τ)y1 + τz1) = (1− τ)σ(x′, y1) + τσ(x′, z1).

Thus if χl(x, t, y) 6= 0 and χl(x, t, z) 6= 0 then σ(x′, wτ1(y, z)) = O(2−l). Since

y, z ∈ s, we also have |y1− z1| . λ−12lε/d and |y′− z′| . λ−12(1+ε/d)l. Hence

the expression in the second line of display (6.18) is O(λ−12lε/d). Finally

|〈y′− z′, b〉| ≈ |n− n′|λ−12lε/d because (y, z) ∈ rn(s)× rn′(s). Thus, we may
use these observations in (6.15), (6.18) to conclude that

(6.20)
∣∣〈v, ∂x′〉φ(x, t, y, z)

∣∣ & |n− n′|λ−12lε/d, if |n− n′| ≥ C1

for a large constant C1. This lower bound allows us to integrate by parts in
the integral (6.12).

Let L be the formal adjoint of g 7→ (−〈v, ∂x′〉φ)−1〈v, ∂x′〉g, i.e.

Lg = 〈v, ∂x′〉
( g

〈v, ∂x′〉φ
)

=
〈v, ∂x′〉g
〈v, ∂x′〉φ

− g〈v, ∂x′〉2φ
(〈v, ∂x′〉φ)2

.

Setting

(6.21) ηl(x, t, y, z) := χl(x, t, y)χl(x, t, z)

we have

(6.22) Hn,n′(y, z) = 1rn(s)(y)1rn′ (s)(z)

∫
eiλφ(x,t,y,z)LNηl(x, t, y, z)

(−iλ)N
dx.

In order to estimate LNηl we first observe that because v and PSe1 are
perpendicular we have 〈v, ∂x′〉σ(x′, y1) ≡ 0 and 〈v, ∂x′〉∂yσ(x′, y1) ≡ 0. This
implies that the functions 〈v, ∂x′〉j∂yiψ(x, t, wτ ), 2 ≤ i ≤ d, j ≥ 2, belong

to ideal generated by σ(x′, y1), a quantity which is O(2−l). This in turn
implies that for (x, t, y, z) ∈ supp(ηl), y, z ∈ s

|〈v, ∂x′〉jφ(x, t, y, z)| . |y1 − z1|+ 2−l|y′ − z′| . 2lε/dλ−1.

A straightforward calculation together with (6.20) shows

|LNηl(x, t, y, z)| . λN (2lε/d|n− n′|)−N for y ∈ rn(s), z ∈ rn′(s)
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and from (6.22) we get

sup
z

∫
|Hn,n′(y, z)| dy+ sup

y

∫
|Hn,n′(y, z)|dz . 2l(d−2+ε−Nε/d)λ−d|n−n′|−N

for |n− n′| ≥ C1. Hence we get (6.11) by Schur’s test. �

In order to finish the proof of Proposition 5.2 using Lemma 6.1 and (6.1),

it remains to show that the operator norms of (T λ,ls )∗T λ,ls′ are small if s, s′

are far apart. In order to quantify this we decompose the set of pairs (s, s′)
in families Uκ1,κ2,κ3 with κi ∈ {0, 1, 2, . . . } which we now define. For s ∈ S,

we write cis = 〈cs, ei〉, i = 1, 2, c⊥s = Πspan(e1,e2)⊥ =
∑d

k=3 c
k
s ek.

Let κ1, κ2, κ3 ∈ N0 ≡ {0, 1, 2, . . . } such that 2κi ≤ 4λ. To parse the
following definition note that 2b2κ−1c = 2κ if κ ∈ N and 2b2κ−1c = 0 if
κ = 0. We define Uκ1,κ2,κ3 as the set of pairs (s, s′) ∈ S×S such that

2b2κ1−1cλ−1 ≤ 2−lε/d|c1
s − c1

s′ | ≤ 2κ1+1λ−1,(6.23a)

2b2κ2−1c2κ1λ−1δ−1
l ≤ 2−lε/d|c2

s − c2
s′ | < 2κ2+κ1+1δ−1

l λ−1,(6.23b)

2b2κ3−1c2κ2+κ1λ−12l ≤ 2−lε/d|c⊥s − c⊥s′ | ≤ 2κ3+κ2+κ1+1λ−12l .(6.23c)

We let U s
κ1,κ2,κ3 = {s′ ∈ S : (s, s′) ∈ Uκ1,κ2,κ3}. It is easy to see that for

every s ∈ S

S =
⋃

κ1,κ2,κ3≥0

U s
κ1,κ2,κ3 .

When all κi are small we can use Lemma 6.1. The following lemma gives
improved bounds if at least one of κ1, κ2, κ3 is large.

Lemma 6.2. For κ1, κ2, κ3 ∈ N0, (s, s′) ∈ S × S we have the following
estimates:

(i) If κ1 ≥ 5, κ2, κ3 ≤ 10 and (s, s′) ∈ Uκ1,κ2,κ3 then for all N > 0

(6.24) ‖(T λ,ls )∗T λ,ls′ ‖L2→L2 .N 2−( lε
d

+κ1)N2l(d−2+ε)δ−1
l λ−d .

(ii) If κ2 ≥ 5, κ3 ≤ 10 and (s, s′) ∈ Uκ1,κ2,κ3 then for all N > 0

(6.25) ‖(T λ,ls )∗T λ,ls′ ‖L2→L2 .N 2−( lε
d

+κ1+κ2)N2l(d−2+ε)δ−1
l λ−d .

(iii) If κ3 ≥ 5 and (s, s′) ∈ Uκ1,κ2,κ3 then for all N > 0

(6.26) ‖(T λ,ls )∗T λ,ls′ ‖L2→L2 .N 2−( lε
d

+κ1+κ2+κ3)N2l(d−2+ε)δ−1
l λ−d .

Lemma 6.2 will be proved in §6.3. In each case, we will analyze for y ∈ s

and z ∈ s′ the size of the Schwartz kernel Ks,s′ ≡ K
λ,l
s,s′ of (T λ,ls )∗T λ,ls′ given

by

(6.27) Ks,s′(y, z) = 1s(y)1s′(z)

∫
eiλφ(x,t,y,z)ηl(x, t, y, z) dxdt
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with ηl as in (6.21). Note that whenever l ≤ k− 1 the definition (6.21) of ηl
via (5.13) implies that σ(x′, y1) and σ(x′, z1) have the same sign, and abso-
lute value comparable to 2−l. Our proof will then rely on various integration
by parts in the integral (6.27). Specifically for (s, s′) ∈ Uκ1,κ2,κ3 we use in-
tegration by parts with respect to t, when κ1 ≥ 5, κ2, κ3 ≤ 10, integration
by parts with respect to x1, when |Se1| ≥ 2−l and κ2 ≥ 5, κ3 ≤ 10, and in-

tegration by parts using the directional derivative 〈 y
′−z′
|y′−z′| , ∂x′〉, either when

κ3 ≥ 5 or when κ2 ≥ 5, κ3 ≤ 10, |Se1| ≤ 2−l (see §6.3 below). Assuming
Lemma 6.2 we can now give the

Proof of Proposition 5.2. We verify (6.1). In view of (6.6) it suffices to prove
for each s

(6.28)
∑
s′

‖(T λ,ls )∗T λ,ls′ ‖
1/2 . 2l(

d−2+ε
2

)λ−d/2

with implicit constant independent of s. From the definition of Uκ1,κ2,κ3 it
is easy to see that

(6.29) sup
s

#(U s
κ1,κ2,κ3) . 2κ1d+κ2(d−1)+κ3(d−2).

From Lemma 6.1 we have

‖(T λ,ls )∗T λ,ls′ ‖ . ‖T
λ,l
s ‖‖T

λ,l
s′ ‖ . 2l(d−2+ε)λ−d

and thus by (6.29) for κi ≤ 10, i = 1, 2, 3 we have

(6.30) sup
s

∑
κ1,κ2,κ3≤10

∑
s′∈Us

κ1,κ2,κ3

‖(T λ,ls )∗T λ,ls′ ‖
1/2 . 2l(d−2+ε)/2λ−d/2.

Moreover using that δ−1
l ≤ 2l we obtain from Lemma 6.2 and (6.29)

sup
s

∑
max{κ1,κ2,κ3}≥5

∑
s′∈Us

κ1,κ2,κ3

‖(T λ,ls )∗T λ,ls′ ‖
1/2

. 2l
d−2+ε

2 λ−
d
2 2l(

1
2
− εN

2d
)

∑
(κ1,κ2,κ3)∈N3

0

2−(κ1+κ2+κ3)(N
2
−d).

For N > 2d we can sum in κ1, κ2, κ3, and if in addition we also choose

N > 1+d/ε we get the bound O(2l
d−2+ε

2 λ−
d
2 ) for the last display and (6.28)

follows. �

6.3. Proof of Lemma 6.2. We verify first (6.24), then (6.25) in the case

|Se1| ≥ 2−l and then give a unified treatment of (6.26) and the case |Se1| ≤
2−l in (6.25).
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Proof of (6.24). We are now in the case κ1 ≥ 5, and κ2, κ3 ≤ 10 in (6.23).

We examine the Schwartz kernel Ks,s′ of (T λ,ls )∗T λ,ls′ given in (6.27); in

the case under consideration we have |y1 − z1| ≈ 2κ1λ−12lε/d, |〈y − z, e2〉| .
δ−1
l λ−12κ12lε/d, |〈y−z, ei〉| . λ−12κ12l(1+ε/d), i = 3, . . . , d. We now integrate

by parts with respect to t; for this observe that (with wτ as in (6.16))
(6.31)
∂tφ(x, t, y, z) = ∂tψ(x, t, y)− ∂tψ(x, t, z) = −(y1 − z1)+∫ 1

0

[
g̃(x, t, wτ )(y1 − z1)− t−2σ(x′, wτ1)(x′ − wτ ′)ᵀg′′(x′−wτ ′t )(y′ − z′)

]
dτ.

Since |x′ − y′| ≤ % � 1 we have |g̃(x, t, wτ )| � 1, and from, (6.31) and
|σ| . 2−l we see that

(6.32) |∂tφ(x, t, y, z)| ≈ |y1 − z1| ≈ 2κ1λ−12lε/d .

Observe that the higher t-derivatives of g̃ are . %� 1. Moreover σ does
not depend on t and we see that

|∂Nt φ(x, t, y, z)| .N |y1 − z1|+ 2−l|y′ − z′| . 2κ12lε/dλ−1,

|∂Nt [ηl(x, t, y, z)]| .N 1.

Hence integration by parts with respect to t yields the pointwise bound
|Ks,s′(y, z)| . (2κ12lε/d)−N which gives

sup
y

∫
|Ks,s′(y, z)|dz + sup

z

∫
|Ks,s′(y, z)|dy .N

λ−d2l(d−2+ε)δ−1
l

(2κ12lε/d)N
.

As δ−1
l ≤ 2l we obtain (6.24), by Schur’s test.

Proof of (6.25) in the case |Se1| ≥ 2−l. This now concerns the case κ2 ≥ 5.
We will integrate by parts with respect to x1 in (6.27) and observe

∂x1φ(x, t, y, z) = ∂x1ψ(x, t, y)− ∂x1ψ(x, t, z)

= y1 − z1 + eᵀ1SP
ᵀ(y′ − z′) = y1 − z1 − |Se1|〈y′ − z′, e2〉.

In the present case |Se1| = δl and (s, s′) ∈ Uκ1,κ2,κ3 with κ2 ≥ 5 and thus
for y ∈ s, z ∈ s′

|〈y − z, e2〉| ≥ 2κ2−1+κ1λ−1δ−1
l 2lε/d, |y1 − z1| ≤ 2κ1+1λ−12lε/d;

hence

(6.33) |∂x1φ(x, t, y, z)| ≈ |Se1||〈y′ − z′, e2〉| ≈ 2κ1+κ2λ−12lε/d.

Note that σ does not depend on x1 and ∂Nx1φ = 0 for N ≥ 2. After N -fold

integration by parts with respect to x1 we get |Ks,s′(y, z)| . (2κ1+κ22lε/d)−N .
As above, the asserted estimate (6.25) follows by Schur’s test. �
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Proof of (6.25) in the case |Se1| ≤ 2−l and proof of (6.26). Notice that in

view of the small support of χ we have in the present case K
λ,l
s,s′ = 0 when

2lλ−1 ≥ 1, so the case l = k is trivial. In what follows we assume l ≤ k − 1;
it will be crucial that in this case σ(x′, y1), σ(x′, z1) have the same sign for
y ∈ s and z ∈ s′.

If |Se1| ≤ 2−l we have δl = 2−l and for the proof of (6.25) we have also
κ3 ≤ 10 and we shall prove the pointwise estimate

(6.34) |Ks,s′(y, z)| .N (2κ1+κ22lε/d)−N

under the assumption that y ∈ s, z ∈ s′ satisfy

(6.35)
2κ1+κ2−1λ−12l ≤ 2−lε/d|〈y − z, e2〉| ≤ 2κ1+κ2+2λ−12l,

2−lε/d|(y − z)⊥| . 2κ1+κ2+11λ−12l, |Se1| ≤ 2−l.

here (y − z)⊥ :=
∑d

i=3〈y − z, ei〉ei.
Moreover for (6.26) we shall prove

(6.36) |Ks,s′(y, z)| .N (2κ1+κ2+κ32lε/d)−N

under the assumption that κ3 ≥ 5 and that y ∈ s, z ∈ s′ satisfy

(6.37)
2κ1+κ2+κ3−1λ−12l ≤ 2−lε/d|(y − z)⊥| ≤ 2κ1+κ2+κ3+2λ−12l,

2−lε/d|〈y − z, e2〉| ≤ 2κ1+κ2+2δ−1
l λ−1.

We use the directional derivative 〈 y
′−z′
|y′−z′| , ∂x′〉 in our integration by parts

argument. From (6.3) we get (with wτ as in (6.16))

∂x′φ(x, t, y, z) =

∫ 1

0
∂ᵀy∂x′ψ(x, t, wτ )(y − z)dτ(6.38)

=

∫ 1

0

[
− g′(x′−wτ ′t )(y1 − z1) +

σ(x′, wτ1)

t
g′′(x

′−wτ ′
t )(y′ − z′)

+ PSP ᵀ(y′ − z′) + PSe1(g′(x
′−wτ ′
t )ᵀ(y′ − z′))

]
dτ.

Take the scalar product with y′−z′
|y′−z′| and use that (y′−z′)ᵀPSP ᵀ(y′−z′) = 0

to get

(6.39)
〈 y
′−z′
|y′−z′| , ∂x′〉φ(x, t, y, z) =

∫ 1

0

σ(x′, wτ1)

t
dτ

(y′ − z′)ᵀg′′(0)(y′ − z′)
|y′ − z′|

+R1(x, t, y, z) +R2(x, t, y, z)

where

R1(x, t, y, z) =
( y′−z′
|y′−z′|)

ᵀ
∫ 1

0

σ(x′, wτ1)

t

(
g′′(x

′−wτ ′
t )− g′′(0)

)
dτ(y′ − z′)
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and

R2(x, t, y, z) =∫ 1

0

[
− 〈 y

′−z′
|y′−z′| , g

′(x
′−wτ ′
t )〉(y1 − z1) + 〈 y

′−z′
|y′−z′| , PSe1〉(g′(x

′−wτ ′
t )ᵀ(y′ − z′))

]
dτ

= −
(
y1 − z1 − |Se1|〈y′ − z′, e2〉

) ∫ 1

0
g′(x

′−wτ ′
t )ᵀ

( y′−z′
|y′−z′|

)
dτ.

By the single-signedness of σ we have |
∫ 1

0 t
−1σ(x′, wτ1)dτ | & 2−l; here we

use (6.19). Hence, because of the positive definiteness of g′′(0) we see that
the main term in (6.39) satisfies the lower bound∣∣∣ ∫ 1

0

σ(x′, wτ1)

t
dτ

(y′ − z′)ᵀg′′(0)(y′ − z′)
|y′ − z′|

∣∣∣ & 2−l|y′ − z′|

and we use

2−l|y′ − z′| ≈ 2−l|〈y − z, e2〉| ≈ 2lε/d2κ1+κ2λ−1 if (6.35) holds,

2−l|y′ − z′| ≈ 2−l|(y − z)⊥| ≈ 2lε/d2κ1+κ2+κ3λ−1 if (6.37) holds.

Since ‖g′′(x′−wτ ′t )− g′′(0)‖ = O(%) we get

|R1(x, t, y, z)| . %2−l|y′ − z′| .

{
%2κ1+κ2λ−12lε/d if (6.35) holds

%2κ1+κ2+κ3λ−12lε/d if (6.37) holds.

Finally

|R2(x, t, y, z)| . %
(
|y1 − z1|+ |Se1||〈y′ − z′, e2〉|)

and we have |y1 − z1| . 2κ1λ−12lε/d and thus clearly

|R2(x, t, y, z)| . %
(
|y1− z1|+ 2−l|y′− z′|

)
. %2κ1+κ2λ−12lε/d if (6.35) holds.

Moreover we get this when (6.37) holds and |Se1| ≤ 2−l.

Now consider the case that (6.37) holds and |Se1| ≥ 2−l. Then

|Se1||〈y′ − z′, e2〉| . 2κ1+κ2+2λ−12lε/d

and thus we also get

|R2(x, t, y, z)| . %2κ1+κ2λ−12lε/d if (6.37) holds.

Altogether, for y ∈ s, z ∈ s′,

(6.40) |〈 y
′−z′
|y′−z′| , ∂x′〉φ(x, t, y, z)| & 2κ1+κ2λ−12lε/d if (6.35) holds,

and

(6.41) |〈 y
′−z′
|y′−z′| , ∂x′〉φ(x, t, y, z)| & 2κ1+κ2+κ3λ−12lε/d if (6.37) holds.

We need corresponding upper bounds for the higher derivatives 〈 y
′−z′
|y′−z′| , ∂x′〉.

First observe that

(6.42) 〈 y
′−z′
|y′−z′| , ∂x′〉σ(x′, y1) = 〈 y

′−z′
|y′−z′| , PSe1〉.
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Clearly this is O(2−l) when δl = 2−l, in particular under assumption (6.35).
On the other hand, if δl > 2−l then we use that PSe1 = |Se1|e2 and if we now

assume (6.37) we have |〈y′ − z′, PSe1〉| ≤ δl|〈y − z, e2〉| ≤ 2κ1+κ2+2λ−12lε/d

and |y′ − z′| ≥ |(y − z)⊥| ≥ 2κ1+κ2+κ3−1λ−12l2lε/d; hence 〈 y
′−z′
|y′−z′| , PSe1〉 =

O(2−l) and therefore 〈 y
′−z′
|y′−z′| , ∂x′〉σ(x′, y1) = O(2−l).Moreover, for the higher

derivatives we have 〈 y
′−z′
|y′−z′| , ∂x′〉

Nσ = 0 for N ≥ 2. This implies, for all N ,∣∣〈 y′−z′|y′−z′| , ∂x′〉
N [ηl(x, t, y, z)]

∣∣ .N 1.

Differentiating in (6.39) and using these estimates for σ and 〈 y
′−z′
|y′−z′| , ∂x′〉σ,

also yields∣∣〈 y′−z′|y′−z′| , ∂x′〉
Nφ(x, t, y, z)| . 2−l|y′ − z′|+ |y1 − z1|+ |Se1|〈y′ − z′, e2〉|

.

{
2κ1+κ2λ−12lε/d if (6.35) holds

2κ1+κ2+κ3λ−12lε/d if (6.37) holds

An integration by parts yields

(6.43) Ks,s′(y, z) = 1s(y)1s′(z)

∫
eiλφ(x,t,y,z)LNηl(x, t, y, z)

(−iλ)N
dxdt

where

Lg(x, t, y, z) =
〈 y′ − z′
|y′ − z′|

, ∂x′
〉( g

y′−z′
|y′−z′|∂x′φ

)
;

and we have

|LN [ηl(x, t, y, z)]| .

{
(2κ1+κ22lε/d)−NλN if (6.35) holds

(2κ1+κ2+κ32lε/d)−NλN if (6.37) holds.

By (6.43) this leads to the pointwise estimates (6.34) (under assumption
(6.35)) and (6.36) (under assumption (6.37)). By applying Schur’s test we
obtain the claimed bounds in both cases. �

7. Open problems and further directions

7.1. d = 2. The problem of nontrivial Lp bounds for the Nevo-Thangavelu
maximal operator when d = 2 remains currently open even in the model
case of the Heisenberg group H1.

7.2. A restricted weak type endpoint bound. Theorem 1.5 establishes a re-

stricted weak type ( d
d−1 ,

d
d−1) endpoint estimate for the local maximal op-

erator, when d ≥ 3. Does this endpoint bound also hold for the global
operator? This is the case when all Ji are zero (cf. [3]).
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7.3. Lp-improving estimates. One can ask whether the local operator f 7→
sup1≤t≤2 |f ∗µt| maps Lp to Lq for some q > p; this would imply correspond-
ing sparse bounds for the global maximal operator (see [2]). As a model case
for the case m = 1 the precise q-range for such results should depend on
the rank of J1 (and no Lp improving takes place when J1 = 0). For m ≥ 2
the dependence on the matrices J1, . . . , Jm could be quite complicated. The
case of Heisenberg type groups is covered in [18].

7.4. Restricted dilation sets. One can also consider maximal functions with
restricted dilation sets. The Lp → Lp estimates with Minkowski dimension
type assumptions are rather straightforward; one can combine the methods
of this paper with elementary arguments in [20, 19]. In contrast the Lp-
improving estimates are harder; for the Heisenberg groups Hn, with n ≥ 2,
this problem was considered in [19]. For general dilation sets there is a large
variety of possible type sets (cf. [17, Thm.1.2]), and much remains open.

7.5. Higher step groups. It would be interesting to develop versions of our
theorem which apply in the general setting of stratified groups; here only
the case of lacunary dilations is well understood (see e.g. [8]).

7.6. Averages over tilted measures. The above problems can also be formu-
lated for the case where the spherical measure µ is no longer supported in a
subspace invariant under the automorphic dilations. The assumption of in-
variance under automorphic dilations is crucial for the analysis in the present
paper but it has been relaxed in [1, 18] which cover results on maximal func-
tions associated with such tilted measures on Heisenberg or Heisenberg type
groups.
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