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Abstract. We consider Haar multiplier operators Tm acting on Sobolev
spaces, and more generally Triebel-Lizorkin spaces F s

p,q(R), for indices
in which the Haar system is not unconditional. When m depends only
on the Haar frequency, we give a sufficient condition for the boundedness
of Tm in F s

p,q, in terms of the variation norms ∥m∥Vu , which is optimal
in u (up to endpoints) when p, q > 1.

1. Introduction

Consider the classical Haar system in R,
(1.1) H =

{
hj,µ : j ≥ −1, µ ∈ Z

}
,

where, if h = 1[0,1/2) − 1[1/2,1), we let

hj,µ(x) = h(2jx− µ) , for j = 0, 1, 2, . . . , µ ∈ Z,
while for j = −1 we let

h−1,µ = 1[µ,µ+1), µ ∈ Z.

We shall refer to the elements of the family Hj = {hj,µ : µ ∈ Z} as Haar
functions of frequency 2j .

Let F s
p,q denote the usual Triebel-Lizorkin space in R; see [17]. It is known

from the work of Triebel [19, Theorem 2.9.ii] that H is an unconditional
basis of F s

p,q(R) when s belongs to the range

(1.2) max
{
1/p− 1, 1/q − 1

}
< s < min

{
1/p, 1/q, 1

}
.

That this range is actually optimal was shown by the last two authors in
[13, 14]. More recently, we proved in [3] that H is a Schauder basis of
F s
p,q(R) (with respect to natural enumerations) in the larger range

(1.3) 1/p− 1 < s < min
{
1/p, 1

}
, (for all 0 < q < ∞),
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while at the endpoints (see [5]) the property holds if and only if

(1.4) s = 1/p− 1 and 1/2 < p ≤ 1,

also for all 0 < q < ∞. These regions are depicted in Figure 1 below.
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Figure 1. Parameter domain for H to be an unconditional
basis (left figure) or a Schauder basis (right figure) in F s

p,q(R).

We shall mainly be interested in values of the parameters outside the
region of unconditionality. In that range, it becomes a natural question to
find sufficient conditions on a sequence {mj,µ} so that the mapping

f 7−→
∑
j≥0

∑
µ∈Z

mj,µ 2
j⟨f, hj,µ⟩hj,µ,

defined say for f ∈ spanH , extends as a bounded linear operator in the
space F s

p,q.

In this paper we regard this problem in the special case when the sequence
is constant in each frequency level, namely, if m = {m(j)}j≥0, we consider
the operators

Tmf =
∑
j≥0

m(j)Djf,

where Dj denotes the orthogonal projection onto the space generated by Hj ,
that is

Djf =
∑
µ∈Z

2j⟨f, hj,µ⟩hj,µ, j ≥ 0.

It is well known that one can write

Dj = Ej+1 − Ej ,

where Ej is the conditional expectation operator defined by

(1.5) Ejf(x) =
∑
µ∈Z

1Ij,µ(x) 2
j

∫
Ij,µ

f(y)dy ,
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associated with the dyadic intervals Ij,µ = [µ2−j , (µ+ 1)2−j), µ ∈ Z.
The uniform boundedness of the operators EN in F s

p,q (and Bs
p,q) has

been throughly studied in the papers [3, 4, 5]. In particular, it is shown in
those papers that H is a Schauder basis of F s

p,q (with respect to natural
enumerations) if and only if

sup
N≥0

∥∥EN

∥∥
F s
p,q→F s

p,q
< ∞ and spanH is dense in F s

p,q,

and this in turn is equivalent to (s, p, q) belonging to the ranges in (1.3) and
(1.4). In those cases, an elementary summation by parts argument and the
σ-triangle inequality, with σ = min{1, p, q}, imply that

(1.6) ∥Tmf∥F s
p,q

≲ ∥m∥ℓ∞ +
[ ∞∑
j=1

|m(j)−m(j − 1)|σ
] 1

σ
,

for all f ∈ spanH with ∥f∥F s
p,q

≤ 1.

We shall next formulate a stronger multiplier result which involves the
Wiener space notion of sequences of bounded u-variation. We recall how
these are defined. If u ≥ 1, we let Vu(m) be the u-variation of the sequence
{m(j)}j≥0, defined by

Vu(m) = sup
( N∑

n=1

|m(jn)−m(jn−1)|u
)1/u

with the supremum taken over all finite strings of numbers {j0, . . . , jN}
satisfying jn−1 < jn for 1 ≤ n ≤ N , and jn ∈ N ∪ {0}. Note that if u = 1
we simply have

V1(m) =
∞∑
j=1

|m(j)−m(j − 1)|.

We denote by Vu the space of all m : N ∪ {0} → C for which

∥m∥Vu := ∥m∥∞ + Vu(m) < ∞.

In particular, if 1 ≤ u1 ≤ u2 < ∞, it holds

V1 ↪→ Vu1 ↪→ Vu2 ↪→ ℓ∞,

As an example, observe that m(n) = 1/(n+1)α belongs to V1 for all α > 0,
while the alternate sequence M(n) = (−1)nm(n) belongs to Vu iff α > 1/u.

We wish to find, in the region of exponents (s, p, q) where H is a con-
ditional basis of F s

p,q, the largest possible u for which m ∈ Vu implies the
boundedness of the operator Tm in F s

p,q. The examples given in [13], based
on multipliers taking the values 0 and 1 (suitable characteristic functions of
finite sets of integers), show that for 1/u < s − 1/q there are m ∈ Vu such
that the corresponding operators Tm are unbounded on F s

p,q; see also §3.3
below. Our main result in this note shows that, in the case 1 < p, q < ∞,
boundedness holds in the complementary range, except perhaps at the end-
point.
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Theorem 1.1. Let 1 < p < q < ∞ and 1/q ≤ s < 1/p. Then

∥Tm∥F s
p,q→F s

p,q
+ ∥Tm∥F−s

p′q′→F−s
p′q′

≤ C∥m∥Vu , if
1

u
> s− 1

q
.

Remark 1.2. The appearance of the variation norms is inspired by a result of
Coifman, Rubio de Francia and Semmes [2] on Fourier multipliers (which is
based on the square function result of Rubio de Francia [8], see also [15, 6]).
However the variation spaces come up in quite different ways in [2] where
the variation norm is taken over dyadic intervals [2j , 2j+1), with a bound
uniformly in j. This has no analogue in our situation as for each interval
[2j , 2j+1) there is only one Haar frequency; instead our conditions involve
the variation norms in the parameter j.

2. Subspaces of Vu

As in [2], in order to analyze functions in Vu it is convenient to consider
certain subspaces Ru of Vu built on convex combinations of characteristic
functions of unions of disjoint dyadic intervals. This is sketched in [2], but
for the convenience of the reader we give a detailed exposition in the setting
of variation spaces for functions on the integers.

For 1 ≤ u < ∞, let ru be the class of functions g : N0 → C which are of
the form

g =
∑
ν

aνχIν , with (
∑
ν

|aν |u)1/u ≤ 1,

where the Iν are mutually disjoint intervals. Then Ru is the space of all
sequences of the form

(2.1) m =
∑
l

clgl, with gl ∈ ru and
∑

|cl| < ∞.

The norm ∥m∥Ru is defined as the infimum of
∑

l |cl| over all representations
as in (2.1). These definitions (for functions on the real line) can be found in
[2]. The following result is a discrete analogue of [2, Lemme 2], whose proof
is sketched for completeness.

Proposition 2.1. For ε > 0, and 1 ≤ u < ∞ we have

(2.2) Ru ⊂ Vu ⊂ Ru+ε

with continuous embedding.

Proof. Consider first g ∈ ru, with g =
∑

ν aνχIν . It is straightforward to see
that Vu(g) ≤ 2∥a∥ℓu , thus Ru ⊂ Vu.

For the second inclusion assume that f ∈ Vu, with

Vu(f) = 1,

for some u < ∞. This implies that limn→∞ f(n) exists and is finite.
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Let w(0) = 0, and for n ≥ 1, let w(n) be the u-th power of the u-variation
of f over [0, n], that is

w(n) = sup
0≤n0<n1<···<nN≤n

N∑
i=1

|f(ni)− f(ni−1)|u.

Clearly w is positive, increasing and Vu(f) = limn→∞[w(n)]1/u so that w
takes values in [0, 1]. There are two situations (i) w(n) < 1 for all n ∈ N,
and (ii) w(n) = 1 for n ≥ N0 (and some N0). In what follows we assume (i)
and omit the minor modification for (ii) (in the second case one works with
finite sequences instead of infinite sequences).

As stated in [1, Theorem 2] and used in [2] one can express

f = ρ ◦ w, where ρ ∈ C1/u[0, 1].

To verify this we may choose a strictly increasing sequence of nonnegative
integers {jn}∞n=0 so that j0 = 0 and

w(jn) < w(jn+1), w(jn) = w(k) for jn ≤ k < jn+1.

This implies f(k) = f(jn) for jn ≤ k < jn+1. We now define a piecewise
linear function ρ(t), 0 ≤ t < 1, as follows

ρ(t) = f(jn) +
f(jn+1)− f(jn)

w(jn+1)− w(jn)
(t− w(jn)), w(jn) ≤ t < w(jn+1).

So ρ(0) = f(0), and if we let ρ(1) = limn→∞ f(n), then ρ is continuous in
[0, 1]. Observe also that ρ ◦ w = f , since for jn ≤ k < jn+1 we have

ρ(w(k)) = ρ(w(jn)) = f(jn) = f(k).

We now show the Hölder condition

(2.3) |ρ(t)− ρ(t′)| ≤ 3|t− t′|1/u , 0 ≤ t′ < t ≤ 1.

By the definitions of ρ and w we have for n′ < n

(2.4a) |ρ(w(jn))− ρ(w(jn′))| = |f(jn)− f(jn′)| ≤ (w(jn)− w(jn′))1/u.

For w(jn) ≤ t < w(jn+1)

|ρ(t)− ρ(w(jn))| =
∣∣∣ f(jn+1)− f(jn)

w(jn+1)− w(jn)

∣∣∣|t− w(jn)|(2.4b)

≤
∣∣w(jn+1)− w(jn)

∣∣−1+ 1
u |t− w(jn)| ≤ |t− w(jn)|1/u,

since u ≥ 1. Similarly

|ρ(w(jn+1))− ρ(t)| =
∣∣∣ f(jn+1)− f(jn)

w(jn+1)− w(jn)

∣∣∣|w(jn+1)− t|(2.4c)

≤
∣∣w(jn+1)− w(jn)

∣∣−1+ 1
u |w(jn+1)− t| ≤ |w(jn+1)− t|1/u.

Combining the three cases we obtain (2.3) for all t, t′ ∈ [0, 1), and by conti-
nuity the result also holds true on [0, 1].



6 G. GARRIGÓS A. SEEGER T. ULLRICH

We now use the expansion of ρ in terms of the Haar system in [0, 1], that
is {1[0,1), hj,µ} with j ≥ 0 and 0 ≤ µ < 2j . Here

hj,µ = 1Ileftj,µ
− 1

Irightj,µ

with I leftj,µ and Irightj,µ the left and right halves of Ij,µ = [2−jµ, 2−j(µ + 1)).
Then

ρ(t)−
∫ 1

0
ρ(s)ds =

∞∑
j=0

ρj(t)

where

ρj(t) =
2j−1∑
µ=0

2j⟨hj,µ, ρ⟩hj,µ(t) = ρj,1(t)− ρj,2(t)

with

ρj,1(t) =
2j−1∑
µ=0

2j⟨hj,µ, ρ⟩1Ileftj,µ
(t), and ρj,2(t) =

2j−1∑
µ=0

2j⟨hj,µ, ρ⟩1Irightj,µ
(t).

Now

|2j⟨hj,µ, ρ⟩| = 2j
∣∣∣ ∫ hj,µ(t)

[
ρ(t)− ρ

(
2−j(µ+ 1

2)
)]
dt
∣∣∣ ≤ 3 · 2−1/u 2−j/u,

by (2.3). Thus, if ε > 0 we have( 2j−1∑
µ=0

|2j⟨hj,µ, ρ⟩|u+ε
) 1

u+ε ≤ 3 · 2−
1
u 2−

j
u 2

j
u+ε =: cj,ε.

Since w is increasing it is clear that the functions

n 7→ 1Ileftj,µ

(
w(n)

)
, n 7→ 1

Irightj,µ

(
w(n)

)
are characteristic functions of intervals restricted to the integers. For fixed
j these intervals are also mutually disjoint, so we see that

gj,ε :=
1

2cj,ε

(
ρj ◦ w

)
∈ ru+ε.

Since Cε := 2
∑

j≥0 |cj,ε| < ∞, it then follows that

f = ρ ◦ w =

∫ 1

0
ρ+

∞∑
j=0

2cj,ε gj,ε ∈ Ru+ε, with ∥f∥Ru+ε ≤ 1 + Cε.

□

Remark 2.2. Observe that the previous proof actually shows that, if m ∈
Vu and ε > 0, then one can write m =

∑∞
j=0 cjmj with mj ∈ ru+ε and∑∞

j=1 |cj |σ < ∞, for all σ > 0.
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3. The proof of Theorem 1.1

We shall actually prove a stronger result than Theorem 1.1, which pro-
vides optimal boundedness (up to endpoints) in a slightly larger region of
indices. Given a fixed q > 1, we denote by Tq the open triangle in the plane
(1/p, s) with vertices (1, 1), (1/q, 1/q) and (1 + 1/q, 1/q); see Figure 2.

1/p

s

1 21
q
+ 1

1

1
q

1
q−1

−1

Figure 2. In red, the region Tq.

For this region we give the following result, which includes Theorem 1.1
as a special case.

Theorem 3.1. Let 1 < q < ∞ and (1/p, s) ∈ Tq. Then, for all u ≥ 1 such
that 1/u > s− 1/q, it holds

(3.1) ∥Tmf∥F s
p,q→F s

p,q
≤ c ∥m∥Vu , m ∈ Vu.

Moreover, a necessary condition for (3.1) to hold for all such m is that
1/u ≥ s− 1/q.

In view of Proposition 2.1, we shall first consider sequences from the class
ru, that is multipliers m of the form

(3.2) m[a, I] =
∑
ν

aν1Iν ,

where I = {Iν} is a family of disjoint intervals and a = {aν} a sequence in
ℓu. For these multipliers we have the following result.

Proposition 3.2. Let 1 < q < ∞ and (1/p, s) ∈ Tq. Then, for all u ≥ 1
such that 1/u > s− 1/q, there exists c = c(p, q, s, u) > 0 such that

(3.3) ∥Tm[a,I]f∥F s
p,q

≤ c ∥a∥ℓu∥f∥F s
p,q
, ∀ f ∈ F s

p,q(R), a ∈ ℓu,

for every multiplier m[a, I] defined as in (3.2). Moreover, a necessary con-
dition for (3.3) to hold for all such m[a, I] is that 1/u ≥ s− 1/q.

Remark 3.3. We emphasize that the constant c in (3.3) does not depend on
the family of disjoint intervals I = {Iν}.
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In the next subsections we shall prove Proposition 3.2. For the sufficiency
part we shall use complex interpolation applied to the bilinear operator

(a, f) 7−→ T [a, f ] := Tm[a,I]f.

For simplicity we shall remove the dependence on I in the subsequent no-
tation, as it will be clear from the proofs that the involved constants do not
depend on it.

3.1. Interpolation with varying q and p = 1. We first prove an inequality for
p = 1 which is efficient for s near 1, namely

(3.4) ∥T [a, f ]∥F s
1,q

≲ ∥a∥ℓu∥f∥F s
1,q
, s < 1, 1/u > 1− 1/q.

Since the Haar system is an unconditional basis on F s
1,1 = Bs

1,1, 0 < s < 1

(see Theorem 2.9 in [19]) we have

∥T [a, f ]∥F s
1,1

≲ ∥a∥ℓ∞∥f∥F s
1,1
, 0 < s < 1.

Next, the uniform boundedness of the operators EN in F s
1,q1

(see [3, Corollary

1.3]) and the trivial estimate in (1.6) (with σ = 1) imply that for any
q1 ∈ (q,∞)

∥T [a, f ]∥F s
1,q1

≲ ∥a∥1∥f∥F s
1,q1

, 0 < s < 1.

By complex interpolation we then obtain (3.4) for 1/u = (1−1/q)/(1−1/q1),
which after choosing q1 large enough implies (3.4) whenever 1/u > 1− 1/q.

3.2. Interpolation with fixed q. Let q ∈ (1,∞) be fixed, and let (1/p, s) ∈ Tq.
We shall prove (3.3) by interpolating sufficiently close to the upper vertex
(1, 1) and the lower segment (1/p1, 1/q) of Tq.

1/p

s

1 21
q
+ 1

1

1
q

F 1
1,q

F
1/q
p1,q

F s
p,q

Figure 3. Interpolation strategy for points (1/p, s) ∈ Tq.

Let P = (1/p, s) ∈ Tq and ε1 > ε0 > 0 be sufficiently small, to be chosen.
Let P0 = (1, s0) with s0 = 1 − ε0. Draw a line through P0 and P , and let
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P1 = (1/p1, s1) be the intersection with the horizontal line s1 = 1/q − ε1.
That is,

P = (1− θ) · P0 + θ · P1, with θ =
s0 − s

s0 − s1
.

Choosing ε0, ε1 sufficiently small we can guarantee that s1 < s < s0 (and
hence θ ∈ (0, 1)), and that P1 lies in the green region. Next, take

1

u0
:= 1− 1

q
+ ε1 − ε0 > 1− 1

q
.

From the previous step and the unconditional basis property we have

T : ℓu0 × F s0
1,q → F s0

1,q and T : ℓ∞ × F s1
p1,q → F s1

p1,q.

Using complex interpolation this yields

(3.5) ∥T [a, f ]∥F s
p,q

≲ ∥a∥ℓu∥f∥F s
1,q
,

with
1

u
=

1− θ

u0
+

θ

∞
=

s− s1
s0 − s1

· 1

u0
= s− 1

q
+ ε1.

Letting ε1 ↘ 0 we deduce the validity of (3.5) whenever 1
u > s − 1

q . This

completes the proof of the sufficient condition in Proposition 3.2.

3.3. Necessary condition. Suppose first that 1 < p < q with 1/q < s < 1/p.
Then, the example constructed in [13, §5] gives a multiplier of the form
m = 1E , so that cardE = 2N (with the elements in E being N -separated),
and with the property that

(3.6) ∥Tm∥F s
p,q→F s

p,q
≳ 2

N(s− 1
q
)
.

Since we can write m in the form (3.2) (with Iν = {ν} and aν = 1, for
ν ∈ E), then the validity of (3.3) will imply that

2
N(s− 1

q
) ≲ ∥Tm∥F s

p,q→F s
p,q

≲ ∥a∥ℓu = 2N/u.

Thus, we must necessarily have 1/u ≥ s− 1/q.

Arguing by interpolation as in [13, §7] one can show that (3.6) (with an
ε loss) continues to hold for all (1/p, s) with

(3.7) max{1/q, 1/p− 1} < s < min{1/p, 1}

which is a larger region than Tq; see Figure 2.

To be more precise, let P1 = (1/p, s) belong to the open quadrilateral
defined by (3.7), where we assume p ≤ 1. We shall interpolate close to the
points shown in Figure 4.

Namely, given ε > 0, let P0 = (1q ,
1
q − ε). Draw a segment from P0 to

P1, and consider the convex combination of P0 and P1 with first coordinate
(1 + ε)−1; i.e let θ ∈ (0, 1) and sθ be such that

(3.8)
(

1
1+ε , sθ

)
= (1− θ)

(
1
q ,

1
q − ε

)
+ θ

(
1
p , s

)
.
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1/p

s

1 21
q
+ 1

1

1
q

F s
p,q

F
1/q
q,q

F sθ
1,q

Figure 4

Then, by complex interpolation we have

∥Tm∥F sθ
1+ε,q

≲ ∥Tm∥1−θ

F
1
q−ε

q,q

∥Tm∥θF s
p,q

By unconditionality, ∥Tm∥
F

1
q−ε

q,q

≲ 1, so we arrive at

∥Tm∥F s
p,q

≳ ∥Tm∥1/θ
F

sθ
1+ε,q

≳ 2
N
θ
(sθ− 1

q
)
,

the last bound due to (3.6). Now, solving for sθ in (3.8) we see that

sθ −
1

q
=

(
s− 1

q

)
θ − (1− θ)ε.

Thus,

∥Tm∥F s
p,q

≳ 2
N [(s− 1

q
)− 1−θ

θ
ε]
.

So, if (3.3) was true, arguing as above we would arrive at

1

u
≥ (s− 1

q
)− 1− θ

θ
ε,

which letting ε ↘ 0 leads to 1
u ≥ s− 1

q .

3.4. Conclusion of the proof of Theorem 3.1. Let q > 1 and let (1/p, s) ∈ Tq

be fixed. Let 1/u > s− 1/q and m ∈ Vu with u ≥ 1. Then, for some u1 > u
we also have 1/u1 > s− 1/q. By Remark 2.2 we can write m =

∑∞
j=0 cjmj

with mj ∈ ru1 and
∑∞

j=0 |cj |σ ≲ ∥m∥σVu
, with σ = min{1, p}. Then, using

the σ-triangle inequality, we have

∥Tmf∥σF s
p,q

≤
∞∑
j=0

|cj |σ ∥Tmjf∥σF s
p,q
, f ∈ F s

p,q.

By Proposition 3.2, ∥Tmjf∥F s
p,q

≲ ∥f∥F s
p,q
, for all j ≥ 0, so we conclude that

∥Tm∥F s
p,q→F s

p,q
≲ ∥m∥Vu .

□
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Remark 3.4. When p > 1, the assertion

∥Tm∥F−s
p′,q′→F−s

p′,q′
≲ ∥m∥Vu

stated in Theorem 1.1 follows from (3.1) by duality. So, when q > 1, the
condition on Vu is optimal (up to endpoints) also in the lower triangle on
the left of Figure 1.

Remark 3.5. When 1/2 < p ≤ 1, we did not state any result for the right
upper triangle in Figure 2. It is also possible to obtain, by complex inter-
polation, a sufficient condition for multipliers of the form m[a, I] in terms
of ∥a∥ℓu , although in this range the value of u will no longer match the
necessary condition from §3.3.

Remark 3.6. When 1/2 < q ≤ 1, one can also prove by interpolation, for
multipliers of the form m[a, I], that

∥a∥ℓu < ∞,
1

u
>

1

q
− 1− s,

is a sufficient condition in the open triangle with vertices (0,−1), (1/q, 1/q−
1) and (1/q − 1, 1/q − 1); see Figure 5 below. This matches the necessary
condition from the examples in [13, §5] (except for the endpoint). In the
remaining part of the figure, however, the sufficient condition obtained by
interpolation will be weaker than this one.

1/p

s

1 2

1

1
q −1

−1

Figure 5. Parameter domain for the cases 1/2 < q < 1.

Remark 3.7. It may be interesting to note that even for the special case of
Sobolev spaces Hs

p = F s
p,2, 1 < p < 2, 1/2 ≤ s < 1/p and u < 2

2s−1 the
use of Triebel-Lizorkin spaces F s

p,q with q ̸= 2 is crucial. Such interpola-
tion arguments were used for multiplier transformations in other contexts
to establish endpoint results on Lorentz spaces Lp,2, see [10, 11] for basic
versions, and [12, 16] for more advanced versions.
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Verlag, Basel, 1992.
[19] . Bases in function spaces, sampling,discrepancy, numerical integration. EMS

Tracts in Mathematics, 11. European Mathematical Society (EMS), Zürich, 2010.
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