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Abstract. We consider Bochner-Riesz means on weighted Lp spaces, at the
critical index λ(p) = d( 1

p
− 1

2
)− 1

2
. For every A1-weight we obtain an extension of

Vargas’ weak type (1, 1) inequality in some range of p > 1. To prove this result we
establish new endpoint results for sparse domination. These are almost optimal
in dimension d = 2; partial results as well as conditional results are proved in
higher dimensions. For the means of index λ∗ = d−1

2d+2
we prove fully optimal

sparse bounds.

1. Introduction

Let Ω be a convex open subset of Rd, d ≥ 2, containing the origin. We assume
that Ω has C∞-boundary with nonvanishing Gaussian curvature. Let

ρ(ξ) := inf{t > 0 : ξ/t ∈ Ω}

be the Minkowski functional of Ω. Then ρ ∈ C∞(Rd \ {0}), ρ is homogeneous of
degree 1, ρ(ξ) > 0 for ξ ̸= 0 and ρ(ξ) = 1 on the boundary ∂Ω. Let a > 0. Given
λ > 0, we define the Riesz means of index λ of the inverse Fourier integral by

Rλ
a,tf(x) :=

1

(2π)d

∫ (
1− ρ(ξ)a

ta

)λ

+
f̂(ξ)ei⟨x,ξ⟩ dξ,

where f̂(ξ) =
∫
f(y)e−i⟨y,ξ⟩ dy denotes the Fourier transform of a Schwartz function

f on Rd and s+ := max{s, 0}. The case of Ω = {ξ : |ξ| ≤ 1} yields ρ(ξ) = |ξ|; in
this case the means with a = 1 are the classical radial Riesz means of index λ while
the case a = 2 corresponds to the Bochner-Riesz means of index λ.

Given 1 ≤ p < 2d
d+1 , the value

(1.1) λ(p) := d
(1
p
− 1

2

)
− 1

2

is referred to as the critical index, and it is conjectured that in this range the

operators Rλ(p)
a,t are of weak type (p, p). The case p = 1, corresponding to the index

λ(1) = d−1
2 , was first proved by Christ [9] and later substantially extended by Vargas

[35] who proved an L1(w) → L1,∞(w) result for all A1 weights w, that is, for all
w ∈ L1

loc(Rd) satisfying the pointwise inequality Mw ≲ w, where M denotes the
Hardy-Littlewood maximal operator. Sharp weak type endpoint results for p > 1
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were proved by Christ [8] in the range 1 < p < 2(d+1)
d+3 , by Tao for p = 2(d+1)

d+3 , and

complete results in two dimensions were obtained by one of the authors in [30].
Later, Tao [34] showed that for 1 < p < 2d

d+1 the weak type endpoint estimates

follow from the corresponding strong type results for all λ > λ(p). For d = 2 these
are well-known and due to Carleson-Sjölin [6], allowing to recover the weak-type
results from [30]. In higher dimensions many sharp partial results for the strong
type estimate have been proved; see [14, 25, 26, 37, 17] and the references in those
papers.

The goal of this paper is to establish new estimates for the operators Rλ(p)
a,t when-

ever 1 < p < 2d
d+1 .

1.1. Weighted estimates. We will be concerned with weights in the Muckenhoupt
As classes and the reverse Hölder classes RHσ; see §9 for the precise definitions. By
testing against Schwartz functions it is easy to see that for p < 2d

d+1 the operators

Rλ(p)
a,t fail to satisfy weighted weak-type (p, p) estimates for the power weights |x|ε

for any ε > 0. This rules out, in particular, the Muckenhoupt As classes for any
s > 1 (which can also be ruled out by the weak-type version of Rubio de Francia’s
extrapolation theorem [28]). However, it is natural to ask whether the L1(w) →
L1,∞(w) estimate for A1 weights w has an extension for the critical λ(p) and some
p > 1, and what the p-range of this extension is. We give an affirmative answer to
the first part of this question.

Theorem 1.1. Let a > 0. For every w ∈ A1 there exists an exponent p1(w) > 1

such that the operators Rλ(p)
a,t are bounded from Lp(w) to Lp,∞(w) for 1 ≤ p < p1(w),

uniformly in t > 0. Moreover, limt→∞ ∥Rλ(p)
a,t f − f∥Lp,∞(w) = 0 for all f ∈ Lp(w).

The case p = 1 in Theorem 1.1 is Vargas’ result [35]; our contribution here
corresponds to p > 1.

In order to prove Theorem 1.1, we establish new sparse domination results for
Bochner-Riesz means at the critical index, which will be presented in §1.2. These
can be combined with a result of Frey and Nieraeth [16] to yield that, under the

assumptions of the Bochner–Riesz conjecture in d dimensions, the operators Rλ(p)
a,t

map Lp(w) to Lp,∞(w) for w ∈ A1 ∩ RHσ and p < 1 + d−1
d+1(1 − 1

σ ). This holds
unconditionally if d = 2 or if d ≥ 3 and σ belongs to a suitable range that includes
[1, d+3

2 ]: see Section 9. Theorem 1.1 will be a consequence of this, using the standard
fact that every A1 weight belongs to RHσ for some σ > 1.

It does not seem to be known whether p < 1 + d−1
d+1(1 −

1
σ ) is the sharp p-range

in terms of the reverse Hölder exponent σ in the Lp(w) → Lp,∞(w) estimates. It
would be interesting to investigate relevant examples.

1.2. Sparse bounds. Let D denote a dyadic lattice in the sense of the monograph by
Lerner and Nazarov [27, §2]. For a locally integrable function f , a cube Q ∈ D and

1 ≤ p < ∞, let ⟨f⟩Q,p = (|Q|−1
∫
Q |f(y)|p dy)1/p. Given 0 < γ < 1, the collection

S ∈ D is called γ-sparse if for every Q ∈ S there is a measurable subset EQ ⊂ Q
so that |EQ| ≥ γ|Q| and {EQ : Q ∈ S} is a collection of pairwise disjoint sets. Let

1 ≤ p, q < ∞. For a γ-sparse family S of cubes we define a sparse form ΛS
p,q and a
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corresponding maximal form Λ∗
p,q by

ΛS
p,q(f1, f2) =

∑
Q∈S

|Q|⟨f1⟩Q,p⟨f2⟩Q,q,(1.2)

Λ∗
p,q(f1, f2) = sup

S:γ-sparse
ΛS
p,q(f1, f2),(1.3)

where the sup is taken over all γ-sparse families (which are allowed to be subcol-
lections of different dyadic lattices). These definitions are of interest in the range
p ≤ q < p′. A linear operator T : C∞

c (Rd) → D′(Rd) satisfies a (p, q) sparse bound
if for all f1, f2 ∈ C∞

c the inequality

(1.4) |⟨Tf1, f2⟩| ≤ CΛ∗
p,q(f1, f2)

holds with some constant C independent of f1, f2. In this case, we say that T
belongs to the space Spγ(p, q;Rd) and we denote by ∥T∥Spγ(p,q;Rd) the best constant

in (1.4). The space Spγ(p, q;Rd) does not depend on γ (cf. [27]), so we usually keep
γ fixed and drop the subscript γ. If the dimension is clear from the context we will
also drop the mention of Rd.

Given 0 < λ ≤ d−1
2 , let d(λ) denote the trapezoid with corners

(1.5)
P1 = (2λ+d+1

2d , d−2λ−1
2d ), P2 = (2λ+d+1

2d , d−1
2d + λ(d+1)

d(d−1) ),

P3 = (d−1
2d + λ(d+1)

d(d−1) ,
2λ+d+1

2d ), P4 = (d−2λ−1
2d , 2λ+d+1

2d ) .

One might conjecture that sparse bounds for Rλ
a,t and λ > 0 hold for all (1p ,

1
q ) ∈

d(λ). This would be a strengthening of the Lebesgue mapping properties of Rλ
a,t;

thus, one typically aims to only obtain the sparse improvement for values of λ > 0 for
which the Bochner-Riesz conjectured has been verified. It was observed in [4, 24]
that for (1p ,

1
q ) in the interior of the trapezoid, (p, q)-sparse bounds for Rλ

a,t can

be obtained via a single-scale analysis, with affirmative results depending on the
partial knowledge on the Bochner-Riesz conjecture. Henceforth we will focus on the
endpoint cases in which (1p ,

1
q ) belongs to the boundary of d(λ). Furthermore,

since sparse bounds are scale-invariant we will consider the case t = 1, and write
Rλ

a = Rλ
a,1.

The sharpness of the region d(λ) was first observed in [4], and can also be
deduced from general necessary conditions for sparse domination (cf. [2, Prop.1.9]).
The numerology of (1.5) at P2 is related to the conjectured Lp → Lr bounds for
Fourier multiplier operators with radial bumps on thin annuli (see (2.4) below),
which have as necessary condition 1

r ≥ d+1
d−1(1−

1
p) from Knapp examples. Note that

P2 = ( 1
p2
, 1
q2
) in (1.5) satisfies 1− 1

q2
= d+1

d−1(1−
1
p2
) and that the vertical line segment

P1P2 corresponds to the critical case where λ = λ(p).
Almost sharp results at the critical line P1P2 were obtained in the case λ = d−1

2
(that is, p = 1) by Conde-Alonso–Culiuc–Di Plinio–Ou [13]; namely they proved a
(1, q) sparse bound for all q > 1. Partial results on the line P1P2 were obtained in
two dimensions by Kesler and Lacey [22] whenever 0 < λ < 1/2. At the critical
pλ = 4

3+2λ , they showed a Sp(pλ, q;R2) bound for q > 4, thereby strengthening

the weak type (pλ, pλ) inequality in [30]. They posed as an open question whether



4 D. BELTRAN J. ROOS A. SEEGER

1
p

1
q

1

1

1
pλ

1
pλ

1
4 P1

P2

P3
P4

1
p

1
q

1

1

1
4

3
4

5
6

P1

P2

P3
P4

Figure 1. Sparse bounds for Riesz meansRλ
a,t in R2 for any 0 < λ <

1/2 on the left, and for the special case λ = 1/6 on the right. The
blue boundary segments correspond to the new content of Theorems
1.2 and 1.5, resp. Similar figures hold for d ≥ 3 for a restricted range
of λ; see Remarks after Theorem 1.3, and Theorem 1.5.

Sp(pλ, q;R2) bounds hold in the range 4
1+6λ < q ≤ 4. Here we answer this question

affirmatively, so that by duality we obtain a positive result for the full interior of
the sides (P1P2) and (P3P4) in 2(λ). It remains open what happens on the top
side P2P3 of 2(λ), except for the special case λ∗ = 1/6 covered in Theorem 1.5
below.

Theorem 1.2. Let d = 2, a > 0. For 0 < λ < 1/2, let pλ = 4
3+2λ . Then we have

∥Rλ
a∥Sp(pλ,q;R2) < ∞, for q > 4

1+6λ .

In higher dimensions, we obtain similar optimal results but only for a partial range
of λ away from 0. This is natural in view of the currently incomplete knowledge
on Lp → Lr bounds for Bochner-Riesz type operators. It will be convenient to
formulate the sparse bounds conditional on off-diagonal Lebesgue space estimates for
the Bochner-Riesz operators Rλ

1 (and unconditional for the Stein–Tomas exponent
and some range beyond).

Theorem 1.3. Let d ≥ 2, a > 0 and 2(d+1)
d+3 ≤ p◦ < 2d

d+1 . Assume that for all

r◦ ∈ [p◦,
d−1
d+1p

′
◦) the operator Rλ

1 maps Lp◦(Rd) → Lr◦(Rd) for all λ > λ(r◦). Then

Rλ(p)
a ∈ Sp(p, q) for 1 ≤ p < p◦ and q > qopt :=

(d−1)p
d+1−2p .

Several remarks are in order.

Remark 1.4. (i) The condition q > qopt is equivalent to saying that for the value
λ = λ(p), sparse bounds hold on the critical vertical line segment P1P2, except at
the point P2.

(ii) Theorem 1.2 is an immediate corollary of Theorem 1.3 due to the resolution
of the Bochner–Riesz conjecture in 2 dimensions.
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(iii) For d ≥ 3, we are seeking to show that

(1.6) Rλ
a ∈ Sp(pλ, q), pλ = 2d

d+1+2λ , q > 2(d−1)d
2λ(d+1)+(d−1)2

,

in a large range of λ. Since λ(pλ) = λ this corresponds to bounds on the critical
endpoint segment P1P2, and the range of q is optimal up to P2. By Theorem 1.3
this can be achieved if we have a non-endpoint Bochner-Riesz Lp◦ → Lr◦ bound
for some p◦ > pλ and all r◦ ∈ [p◦,

d−1
d+1p

′
◦). Instances for which this Bochner-Riesz

hypothesis is known (and therefore our theorem is unconditional) are:

• The Stein–Tomas [14] exponent p◦ =
2(d+1)
d+3 . This leads to (1.6) for d−1

2(d+1) <

λ < d−1
2 .

• The so-called bilinear Fourier restriction exponent, that is, for p◦ < 2(d+2)
d+4 ,

proven in [7] for ρ(ξ) = |ξ|. This leads to (1.6) for d−2
2(d+2) < λ < d−1

2 .

• The exponents obtained through multilinear restriction: p◦ < 2(d2+3d−2)
d2+5d−2

for even d ≥ 4, and p◦ < 2(d2+4d−1)
d2+6d+1

for odd d ≥ 5, proven in [23] via the

oscillatory integral estimates in [18]; these exponents correspond to the dual
exponents to q◦ in [23, (1.15)]. This extends (1.6) to a range of λ’s smaller
than d−2

2(d+2) .

(iv) Key to Theorem 1.3 is Theorem 2.3, which replaces the non-endpoint Bochner–
Riesz boundedness assumption by an endpoint variant for certain vector-valued
functions, labelled VBR(p, r) in Definition 2.2. For further details see §2.

(v) Theorem 1.3 follows from a more general result that only imposes the Lp◦ →
Lr◦ non-endpoint inequalities for the Bochner-Riesz operator in Theorem 1.3 for a
specific r◦ (instead of the almost optimal range of r◦). Such a theorem is formulated
as Theorem 2.1 below.

In Theorems 1.2 and 1.3 it remains open whether the Sp(pλ, qopt,λ) bound holds

with qopt ,λ := 2(d−1)d
2λ(d+1)+(d−1)2

, that is, at the endpoint P2. We can prove this when

the Bochner-Riesz index is equal to λ∗ = d−1
2(d+1) ; in this instance qopt ,λ = 2. This

corresponds to the endpoint in the Stein-Tomas restriction theorem and gives us
added flexibility to use L2 methods. We also obtain the corresponding sparse bounds
on the full top side P2P3, thereby proving the optimal sparse bounds in the closed
trapezoid d(λ∗), for this special case.

Theorem 1.5. Let d ≥ 2, a > 0. Let λ∗ = d−1
2(d+1) and (1p ,

1
q ) ∈ d(λ∗). Then

Rλ∗
a ∈ Sp(p, q;Rd).

The main novelty of this paper is the introduction of a refined decomposition
of the Riesz means Rλ

a,t which has improved kernel localization properties in the
spirit of Christ [9] but still retains good Fourier support properties. This allows to
combine the two existing sparse endpoint approaches for Rλ

a,t, that is, the p = 1
result of [13], and the partial two-dimensional result for p > 1 of [22]. When q = 2
one can further exploit the Fourier orthogonality properties of the decomposition to
obtain Theorem 1.5.
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Notation. We list some frequently used notation.

◦ Families of dyadic cubes. We let D be a dyadic lattice of cubes in the
sense of Lerner and Nazarov [27]. We use Q for general subcollections of
D. We use the notation W if such a subcollection is obtained by a Whitney
decomposition of an open set with certain quantitative properties. We use
S for sparse families of dyadic cubes. The sidelength of a dyadic cube Q is
denoted by 2L(Q) with L(Q) ∈ Z. For a collection Q of cubes we denote by
Qj the collection of cubes in Q with sidelength 2j . Similarly Q≥j denotes
the cubes Q ∈ Q with L(Q) ≥ 2j . Analogously we define Q≤j ,Q>j ,Q<j .

◦ Normalized bump functions. For M ≥ 1 let YM be the class of all CM

functions χ supported on (12 , 2) such that ∥χ∥CM :=
∑M

ν=0 ∥χ(ν)∥∞ ≤ 1.

◦ Riesz multipliers. We write hλ(ϱ) = χ(ϱ)(1−ϱ)λ+ with χ ∈ C∞
c ((1/2, 2)) and

χ(ϱ) = 1 near ϱ = 1 (see (3.1) below). The decomposition hλ =
∑∞

ℓ=0 hλ,ℓ
is defined in (3.9).

Outline of the paper. In §2 we formulate refined versions of Theorem 1.3 involving
Bochner–Riesz type inequalities for certain vector-valued functions and discuss how
Theorems 1.2 and 1.3 follow from them. In §3 we introduce a crucial decomposition
of the Riesz multipliers. In §4 we shall state the main technical estimates used
in the sparse domination argument, with a key result (Theorem 4.2) proved in
§5. Theorem 2.3, which is the main black-box sparse domination result, is proved
in §6. The endpoint sparse domination results for the Riesz means at the index
λ = d−1

2d+2 (Theorem 1.5) are treated in §7 and §8. Some consequences for weak type
inequalities with weights, including the proof of Theorem 1.1, are discussed in §9.

Acknowledgements. This research was supported through the program Oberwolfach
Research Fellows by Mathematisches Forschungsinstitut Oberwolfach in 2023. The
authors were supported in part by National Science Foundation grants DMS-1954479
(D.B.), DMS-2154835 (J.R.), DMS-2054220 (A.S.), and by the AEI grants RYC2020-
029151-I and PID2022-140977NA-I00 (D.B.).

2. A refined version of Theorem 1.3 and Bochner-Riesz type bounds

for vector-valued functions

We next formulate a more refined version of Theorem 1.3 which only involves
a Bochner-Riesz non-endpoint Lp◦ → Lr◦ assumption for a specific value of r◦, as
opposed to all values of r◦ ∈ [p◦,

d−1
d+1p

′
◦).

Let d ≥ 2, 2(d+1)
d+3 ≤ p◦ < 2d

d+1 , and p◦ ≤ r◦ ≤ d−1
d+1p

′
◦. Define the exponent

r∗(p, p◦, r◦) and its dual q∗(p, p◦, r◦) by
(2.1)

1− 1

q∗(p, p◦, r◦)
=

1

r∗(p, p◦, r◦)
:=


1
r0

(
d+3

2(d+1)−
1
p )+

1
2
(
1
p−

1
p◦

)

d+3
2(d+1)−

1
p◦

if 2(d+1)
d+3 ≤ p < p◦,

d+1
d−1(1−

1
p) if 1 ≤ p ≤ 2(d+1)

d+3 .

These are motivated by interpolation numerology between the pairs ( 1
p◦
, 1
r◦
) and

( d+3
2(d+1) ,

1
2) when

2(d+1)
d+3 < p < p◦. Moreover, q∗(p, p◦, r◦) =

(d−1)p
d+1−2p when p ≤ 2(d+1)

d+3



SHARP SPARSE BOUNDS FOR BOCHNER-RIESZ OPERATORS 7

and

(2.2) lim
r◦→d−1

d+1p
′
◦

r∗(p, p◦, r◦) =
d−1
d+1p

′ , lim
r◦→d−1

d+1p
′
◦

q∗(p, p◦, r◦) =
(d−1)p
d+1−2p

for all p < p◦. The refinement of Theorem 1.3 is as follows.

Theorem 2.1. Let d ≥ 2, a > 0, 2(d+1)
d+3 ≤ p◦ < 2d

d+1 and p◦ ≤ r◦ ≤ d−1
d+1p

′
◦.

Assume that the operator Rλ
1 maps Lp◦(Rd) to Lr◦(Rd) for all λ > λ(r◦). Then

Rλ(p)
a ∈ Sp(p, q) for all 1 ≤ p < p◦ and q > q∗(p, p◦, r◦).

Note that Theorem 1.3 follows from Theorem 2.1 by using the second limiting
relation in (2.2).

2.1. Auxiliary inequalities on vector-valued functions. The proof of Theorem 2.1
relies on certain inequalities for families of operators of Bochner-Riesz type acting
on certain vector-valued Lp spaces, depending on admissible parameters p and r.
We give a formal statement in the following definition; the set of normalized bump
functions YM is defined in the notation section above.

Definition 2.2. Let 1 ≤ p ≤ r < ∞. Let VBR(p, r) denote the following statement.
There is M > 0 such that for all collections χj of functions in YM the inequality

(2.3)
∥∥∥∑

j>0

2j
d+1
2 χj(2

j(1−ρ(D)))
[ ∑
Q∈Dj

fQ
]∥∥∥

Lr(Rd)
≤ Cp,r,d

( ∑
Q∈D

|Q|∥fQ∥rLp(Rd)

)1/r

holds for all families {fQ}Q∈D of Lp functions fQ with supp (fQ) ⊂ Q.

Applying (2.3) to a family of cubes of a fixed sidelength 2j shows that VBR(p, r)
yields the multiplier bound for a single bump χ ∈ YM

(2.4) ∥χ(2j(1− ρ(D)))∥Lp→Lr = O(2jλ(r))

which is conjectured to hold for 1 ≤ p < 2d
d+1 , p ≤ r ≤ d−1

d+1p
′; recall λ(r) =

d(1r −
1
2)−

1
2 . The inequalities (2.3) are a multi-scale version of (2.4).

The main technical result that is used to prove essentially sharp sparse bounds

for Rλ(p)
a reduces the conclusion of sparse bounds to estimates of VBR-type.

Theorem 2.3. Let d ≥ 2, a > 0, 2(d+1)
d+3 ≤ p◦ < 2d

d+1 and p◦ ≤ r◦ ≤ d−1
d+1p

′
◦.

Assume that VBR(p, r) holds for all p ∈ [2(d+1)
d+3 , p◦) and r ∈ [p, r∗(p, p◦, r◦)). Then

Rλ(p)
a ∈ Sp(p, q) for 1 ≤ p < p◦, q > q∗(p, p◦, r◦).

The proof of Theorem 2.3 will be given in §§4–6. The conclusion of Theorem 2.3

also holds with p = 2(d+1)
d+3 and q = 2; this is the statement of Theorem 1.5, which is

proved in §§7–8.

2.2. Instances in which VBR(p, r) holds and relation with Theorem 2.1. In order to
fill Theorem 2.3 with content we first gather known results regarding VBRd(p, r).
The following results are available in the literature.

(i) For d ≥ 2, VBR(p, r) holds for 1 ≤ p ≤ 2(d+1)
d+3 , and p ≤ r ≤ 2.

(ii) For d = 2, VBR(p, r) holds for 1 ≤ p < 4/3, p ≤ r < min{p′/3, 2}.
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(iii) Suppose that 1 < p◦ < 2d
d+1 and suppose that Rλ

1 is bounded on Lp◦ for all

λ > λ(p◦). Then VBR(p, p) holds for 1 ≤ p < p◦.

Part (i) of this statement for r = 2 is just Lemma 3.7 and it is a standard
consequence of the L2-restriction theorem. The statement for p ≤ r < 2 is in [29], in
the slightly more general setup for spectral multipliers on compact manifolds. Part
(ii) for p = r is an immediate consequence of a vector-valued inequality in [30], the
general case follows by interpolating with the result in part (i). The conditional
result in part (iii) was proved by Tao in his paper [34] on weak type (p, p) estimates
for Bochner-Riesz means.

The bounds (i)-(iii) can be combined with Theorem 2.3 to deduce endpoint sparse
bounds for Rλ

a .

(i’) The VBR inequalities in two dimensions stated in (ii) yield Theorem 1.2 (with-
out passing through Theorem 1.3).

(ii’) The VBR inequalities in the Stein-Tomas-range in (i) yield (1.6) for d−1
2(d+1) <

λ < d−1
2 (that is, the conclusion of Theorem 1.3 if one inputs p◦ =

2(d+1)
d+3 ).

(iii’) The VBR(p, p) bounds by Tao in (iii) for 2(d+1)
d+3 < p < p◦ yield some endpoint

(p, q)-sparse bounds on a portion of the segment P1P2. However, this does
not yet lead to close to optimal bounds for q in the sparse bounds. This phe-
nomenon also occurs in the work by Kesler and Lacey [22] in two dimensions
who essentially work with a VBR(p, p) input bound from [30].

In order to effectively prove sparse bounds in the whole (open) segment P1P2

beyond the Stein-Tomas range one needs to obtain an off-diagonal version of Tao’s
theorem. Tao [34, p. 1111] raises this question on whether there are such Lp → Lr

versions of his theorem. Away from the critical line r = d−1
d+1p

′ such versions can be
obtained by using modifications of his proof which relies on ε-removal arguments.
The interested reader can find the details in [3].

Theorem 2.4 ([3, Theorem 1.2]). Let d ≥ 2, 2(d+1)
d+3 < p◦ < 2d

d+1 and p◦ ≤ r◦ ≤
d−1
d+1p

′
◦. Assume that the operator Rλ

1 maps Lp◦ → Lr◦ for all λ > λ(r◦). Then

VBR(p, r) holds for 2(d+1)
d+3 ≤ p < p◦, p ≤ r < r∗(p, p◦, r◦).

It is clear that Theorem 2.1 is now a consequence of Theorems 2.3 and 2.4, which
in turn implies Theorem 1.3.

3. Decompositions of Riesz means

We introduce a decomposition of the Riesz multipliers which has strong localiza-
tion properties on both the kernel and the multiplier side and will play a crucial role
in the estimates needed to establish the sparse domination results. We remark that
rudimentary versions of this decomposition already featuring variants of condition
(3.2) below go back to [8] and [33]. However, these have weaker conclusions that we
found to be insufficient for our arguments in the proof of Theorem 2.3.

We start with some basic reductions. Let χ̃ ∈ C∞ be supported in (1/2, 2)
such that χ̃(ϱ) = 1 in a neighborhood of 1. We note that for all 1 ≤ p < ∞,
a standard sparse Sp(p, p) bound holds for the Fourier multiplier operator with
multiplier (1 − χ̃(ρ(ξ))(1 − ρ(ξ)a)λ+. Indeed, note that for α ∈ Nd

0 with |α| ≥ 1 we
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have ∣∣∂α
ξ

[
(1− χ̃(ρ(ξ))(1− ρ(ξ)a)λ+

]∣∣ ≲α (1 + |ξ|a−|α| + |ξ|1−|α|)

which together with the support property implies a kernel estimate O((1+ |x|)−d−ε)
with ε < min{1, a} for the underlying kernel. We therefore focus on the essential
contribution, corresponding to the multiplier χ̃(ρ(ξ))(1−ρ(ξ)a)λ+. We also note that
we can assume without loss of generality that a = 1. This is because

(3.1a) χa,λ(ϱ) = χ̃(ϱ)
(1− ϱa)λ

(1− ϱ)λ

is smooth near ϱ = 1 and thus it suffices to just consider the multiplier hλ(ρ(ξ))
with

(3.1b) hλ(ϱ) = χa,λ(ϱ)(1− ϱ)λ+,

where for fixed a, the family {χa,λ : |λ| ≤ d} is a bounded collection of C∞
c functions

supported in (12 , 2). We shall write χ ≡ χa,λ in what follows.
The following lemmas will be useful in further splitting the multiplier hλ.

Lemma 3.1. Let λ > 0, N◦ ∈ N. There exists an even C∞
c (R) function Φ◦ such

that Φ◦(s) = 1 for |s| ≤ 1/2 and Φ◦(s) = 0 for |s| ≥ 1 and, in addition,

(3.2)

∫ ∞

0
ϱλ

(
d
dϱ

)j
Φ̂◦(ϱ) dϱ = 0 for j = 0, 1, . . . , N◦, j ̸= λ.

Proof. We consider the interval I = [−7/4,−5/4] and L2(I) with the usual scalar
product. Let V be the span of the functions s 7→ |s|−λ+j

1[−7/4,−5/4] where j =

0, . . . , N◦ with j ̸= λ. We pick u ∈ L2 supported on I such that∫
I
u(s) ds = 1

and such that u ∈ V⊥; that is, we have
∫
I u(s)|s|

j−λ ds = 0 for integers 0 ≤ j ≤ N◦

with j ̸= λ. Note that also
∫ 0
−∞ u(s/t)|s|j−λ ds = 0 for those j and all t > 0.

This suggests that in order to regularize u we should work with a multiplicative
convolution. Let 0 < ε < 1/8 and w ∈ C∞

c supported in (1 − ε, 1 + ε) with∫
w(x) dx = 1. Define for x < 0

U(x) =

∫ ∞

0
u
(x
t

)
w(t)

dt

t
=

∫ ∞

0
u(−t)w

(−x

t

) dt

t

and set, for x > 0, U(x) = −U(−x), and U(0) = 0. In view of the support properties
of u and w, we see that U is an odd C∞

c function supported in (−2,−1)∪ (1, 2) and
we have

(3.3)

∫ 0

−∞
U(s)|s|j−λ ds =

∫ 1+ε

1−ε
w(t)tj−λ dt

∫
I
u(s)|s|j−λ ds = 0

for all j ∈ {0, 1, . . . , N◦}\{λ}, since I ⊆ [−2/t,−1/t] for t ∈ (1− ε, 1+ ε). Similarly,
for −1 ≤ x ≤ 1,∫ x

−∞
U(s) ds =

∫ −1

−∞
U(s) ds =

∫ 1+ε

1−ε
w(t) dt

∫
I
u(s) ds = 1.
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We now define

Φ◦(x) :=

∫ x

−∞
U(s) ds.

From the above calculations, we obtain that Φ◦ is an even C∞
c function supported

in (−2, 2) such that Φ◦(x) = 1 for |x| ≤ 1 and

(3.4)

∫ 2

1
Φ′
◦(x)x

j−λ dx = 0, j ∈ {0, 1, . . . , N◦} \ {λ}.

We will next show that (3.4) implies (3.2).
Recall that for λ > −1 the distributional Fourier transform of ϱλ+/Γ(λ+1) is the

distribution e−iπ(λ+1)/2(ξ − i0)−λ−1; see for example [20, p.167]. This means that
for Schwartz functions ϕ we have

(3.5)

∫ ∞

0
ϕ̂(ϱ)

ϱλ

Γ(λ+ 1)
dϱ = e−iπ(λ+1)/2 lim

y→0+

∫ ∞

−∞
ϕ(x)(x− iy)−λ−1 dx

and the limit exists (cf. [20, Thm 3.1.11]); moreover the tempered distribution
(x − i0)−λ−1 is identified with the function x−λ−1 in (0,∞). The previous display
gives∫ ∞

0
ϱλ

( d

dϱ

)j
Φ̂◦(ϱ) dϱ =

Γ(λ+ 1)

eiπ(λ+1)/2
lim

y→0+

∫ ∞

−∞
(−ix)jΦ◦(x)(x− iy)−λ−1 dx.

In view of the existence of the boundary value distribution (x− i0)−λ−1 it is imme-
diate that for j ≥ 1

lim
y→0+

∫ ∞

−∞
(−i)j

(
xj − (x− iy)j

)
Φ◦(x)(x− iy)−λ−1 dx = 0;

indeed the integral can be written as
∑j

k=1 y
k
∫
ϕk(x)(x− iy)−λ−1 dx with suitable

test functions ϕk. Therefore we get∫ ∞

0
ϱλ

( d

dϱ

)j
Φ̂◦(ϱ) dϱ =

(−i)jΓ(λ+ 1)

eiπ(λ+1)/2
lim

y→0+

∫ ∞

−∞
Φ◦(x)(x− iy)j−λ−1 dx.

Integrating by parts and using j ̸= λ we also get for fixed y > 0∫ ∞

−∞
Φ◦(x)(x− iy)j−λ−1 dx = − 1

j − λ

∫ ∞

−∞
Φ′
◦(x)(x− iy)j−λ dx

= − 1

j − λ

(∫ 2

1
Φ′
◦(x)(x− iy)j−λ dx+

∫ −1

−2
Φ′
◦(x)(x− iy)j−λ dx

)
.

For j ̸= λ the boundary value distribution (x− i0)j−λ is identified with the function
xj−λ on (0,∞) and with the function (e−iπ|x|)j−λ on (−∞, 0). Also recall that
Φ′
◦ ≡ U is odd. Combining the above observations we obtain after taking the limit,∫ ∞

0
ϱλ

( d

dϱ

)j
Φ̂(ϱ) dϱ =

Γ(λ+ 1)

eiπ(λ+1)/2

(−1)j+1

j − λ
(1− eiπ(j−λ))

∫ 2

1
Φ′
◦(x)x

j−λ dx

and (3.2) follows from (3.4). □

The condition (3.2) fails when j = λ. In this case we have instead
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Lemma 3.2. For all even Schwartz functions ϕ, and j = 0, 1, 2, 3, . . .

(3.6)

∫ ∞

0
ϱj
( d

dϱ

)j
ϕ̂(ϱ) dϱ = (−1)jπj!ϕ(0).

Proof. A j-fold integration by parts yields that∫ ∞

0
ϱj
( d

dϱ

)j
ϕ̂(ϱ) dϱ = (−1)jj!

∫ ∞

0
ϕ̂(ϱ) dϱ =

(−1)j

2
j!

∫ ∞

−∞
ϕ̂(ϱ) dϱ,

where the second identity follows since ϕ̂ is even. The claim now follows from the
Fourier inversion formula. □

As an immediate consequence of Lemma 3.1, and in the case of integer λ also
Lemma 3.2, we obtain

Corollary 3.3. Let λ > 0, N◦ ∈ N. Let Φ◦ be as in Lemma 3.1 and let

(3.7) Ψ(x) = Φ◦(x/2)− Φ◦(x).

Then Ψ is an even C∞
c (R) function such that Ψ(s) = 0 for |s| ≤ 1/2 and Ψ(s) = 0

for |s| ≥ 2 and such that

(3.8)

∫ ∞

0
ϱλ

(
d
dϱ

)j
Ψ̂(ϱ) dϱ = 0, j = 0, 1, . . . , N◦.

We now decompose F−1
R [(1− ϱ)λ+] dyadically, using the functions Φ◦, and dilates

of Ψ as in (3.7). In the following definition (and then throughout the paper) we will
assume that N◦ in (3.2) satisfies N◦ > d. We get

hλ =
∞∑
ℓ=0

hλ,ℓ with(3.9a)

hλ,0(ϱ) =
χ(ϱ)

2π

∫ ∞

−∞
(1− u)λ+Φ̂◦(ϱ− u) du,(3.9b)

hλ,ℓ(ϱ) =
χ(ϱ)

2π

∫ ∞

−∞
(1− u)λ+2

ℓ−1Ψ̂(2ℓ−1(ϱ− u)) du, ℓ > 0.(3.9c)

Lemma 3.4. For all N1 ∈ N and for all α ∈ Nd
0 with |α| ≤ N1

(3.10) |∂α
ξ [hλ,ℓ ◦ ρ](ξ)| ≤ CN1,α2

−ℓ(λ−|α|)(1 + 2ℓ|1− ρ(ξ)|)−N1 .

Let ℓ ≥ 0, N◦ as in Corollary 3.3 and |α| ≤ N◦. Then

(3.11) |∂α
ξ [hλ,ℓ ◦ ρ](ξ)| ≲ 2−ℓ(λ−|α|)|2ℓ(1− ρ(ξ))|N◦+1−|α| if |1− ρ(ξ)| ≤ 2−ℓ.
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Proof. Repeated integration by parts yields (3.10). We use Corollary 3.3 and Tay-
lor’s theorem to compute for ℓ ≥ 1

hλ,ℓ(ϱ) = χ(ϱ)
1

2π

∫ 1

−∞
(1− u)λ2ℓΨ̂(2ℓ(ϱ− u)) du

=
χ(ϱ)

2π

∫ 1

−∞
(1− u)λ2ℓ

[
Ψ̂(2ℓ(ϱ− u))−

N◦∑
j=0

(2ℓ(ϱ− 1))j

j!
Ψ̂(j)(2ℓ(1− u))

]
du

= (2ℓ(ϱ− 1))N◦+1χ(ϱ)

2π
×∫ 1

0

(1− σ)N◦

N◦!

∫ 1

−∞
(1− u)λ2ℓΨ̂(N◦+1)(2ℓ(1− u+ σ(ϱ− 1))) dudσ

which in turn gives |hλ,ℓ(ϱ)| ≲ 2−ℓλ|2ℓ(1 − ϱ)|N◦+1 for |1 − ϱ| ≤ 2−ℓ. Thus, setting

ϱ = ρ(ξ), (3.11) follows for α = 0. A similar calculation follows for ∂j
ϱhλ,ℓ and then

(3.11) for higher derivatives follows by applications of the multivariate Leibniz rule
and the Faà di Bruno’s formula. □

Since ∇ρ is homogeneous of order zero and since ∇ρ does not vanish on ∂Ω there
are two positive constants c0, C0 such that C0 ≥ 1 and

(3.12a) c0 < |∇ρ(ξ)| ≤ C0 for all ξ ̸= 0.

Later in the paper it will also be useful to fix a positive integer n◦ such that

(3.12b) 2d+4C0 < 2n◦ .

We next study the properties of the convolution kernels

Kλ,ℓ(x) := F−1[hλ,ℓ ◦ ρ](x), ℓ ≥ 0.

The next lemma shows that for ℓ > 0, the kernels Kλ,ℓ are essentially supported in

{x : c02
ℓ−2 ≤ |x| ≤ C02

ℓ+2}. No curvature assumption is necessary here.

Lemma 3.5. For all N ∈ N,

|Kλ,ℓ(x)| ≲N

{
|x|−N for |x| ≥ 2ℓ+2C0

2−ℓN for |x| ≤ 2ℓ−2c0.

Proof. The statement for ℓ = 0 follows from integration by parts. We thus assume
ℓ ≥ 1 in what follows. We use the definition hλ,ℓ ◦ ρ to write

hλ,ℓ(ρ(ξ)) = mλ,ℓ,1(ξ) +mλ,ℓ,2(ξ)

where mλ,ℓ,1(ξ) = χ(ρ(ξ)) 1
2π

∫∫
χ1(u)(1− u)λ+Ψ(2−ℓs)eis(ρ(ξ)−u) ds du. We have

(3.13) F−1[mλ,ℓ,1](x) =

1

(2π)d+1

∫∫
χ1(u)(1− u)λ+Ψ(2−ℓs)e−isu

∫
χ(ρ(ξ))eisρ(ξ)+i⟨x,ξ⟩ dξ dsdu.

Analyzing the gradient of the phase function in the inner ξ integral we get for
2ℓ−1 < s < 2ℓ+1

|s∇ρ(ξ) + x| ≥

{
|x|/2 for |x| ≥ 2ℓ+2C0

2−ℓ−2c0 for |x| ≤ 2ℓ−2c0
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and an integration by parts in ξ shows that for 2ℓ−1 < s < 2ℓ+1

(3.14)
∣∣∣ ∫ χ(ρ(ξ))eisρ(ξ)+i⟨x,ξ⟩ dξ

∣∣∣ ≲N

{
|x|−N−1 for |x| ≥ 2ℓ+2C0

2−ℓ(N+1) for |x| ≤ 2ℓ−2c0

which after a trivial integration in s and u implies the desired bounds on F−1[mλ,ℓ,1](x).
We now examine F−1[mλ,ℓ,2] where mλ,ℓ,2(ξ) = hλ,ℓ(ρ(ξ))−mλ,ℓ,1(ξ). The defini-

tion of of mλ,ℓ,2 involves a one-dimensional Fourier transform of u 7→ (1−χ1(u))(1−
u)λ+, where the latter is supported in (−∞, 4/5). We perform a dyadic decomposition
in the negative u variables. Let η0 ∈ C∞

c (R) such that η0 is supported in (−5/6, 5/6)
and η0(u) = 1 for u ∈ (−4/5, 4/5) and let, for k ≥ 1, ηk(u) = η0(2

−ku)− η0(2
1−ku).

We then have mλ,ℓ,2 =
∑∞

k=0mλ,ℓ,2,k where by integration by parts for all N1 ≥ 0,

mλ,ℓ,2,k(ξ) =
χ(ρ(ξ))

2π

∫∫
ηk(u)(1− χ1(u))(1− u)λ+Ψ(2−ℓs)eis(ρ(ξ)−u) ds du

=
χ(ρ(ξ))

2π

∫∫
∂N1
u

[
ηk(u)(1− χ1(u))(1− u)λ+

]Ψ(2−ℓs)

(is)N1
eis(ρ(ξ)−u) ds du

and the sum in k converges rapidly in view of the estimate

|mλ,ℓ,2,k(ξ)| ≲ 2k(λ−N1)2ℓ(1−N1).

Note that because of the cutoff χ(ρ(ξ)) the same bound immediately holds for
∥F−1[mλ,ℓ,2,k]∥∞. We will apply this with N1 ≫ N+λ. After summing in k we get a

satisfactory bound for |x| ≤ C02
ℓ+3. For |x| ≥ C02

ℓ+2 we again integrate by parts in

ξ (cf. (3.14)) and obtain the bound |F−1[mλ,ℓ,2,k](x)| ≲ 2k(λ−N1)2ℓ(1−N1)(2ℓ|x|)−N−1

which again can be summed in k. Altogether we get

(3.15) |F−1[mλ,ℓ,2](x)| ≲N 2−ℓN (1 + 2−ℓ|x|)−N

for all x ∈ Rd, which completes the proof. □

We get sharp estimates for the region |x| ≈ 2ℓ since ∂Ω has nonvanishing Gaussian
curvature everywhere.

Lemma 3.6. ∥Kλ,ℓ∥∞ ≲ 2−ℓ(λ+ d+1
2

).

Proof. By Lemma 3.5 it suffices to prove the bound for |x| ≈ 2ℓ. We write the Fourier
integral in ρ-polar coordinates ξ = ϱξ′ with ξ′ ∈ ∂Ω, dµ(ξ′) = ⟨n(ξ′), ξ′⟩dσ(ξ′), where
n is the outer normal at ξ′ ∈ ∂Ω. We obtain

(2π)d+1Kλ,ℓ(x) =

∫∫
(1− u)λ+Ψ(2−ℓs)e−isu

∫∫
ϱd−1χ(ϱ)eisϱ+i⟨x,ϱξ′⟩ dµ(ξ′) dϱ ds du

=c

∫
Ψ(2−ℓs)s−λ−1

∫
ϱd−1χ(ϱ)eis(ϱ−1)

∫
∂Ω

eiϱ⟨x,ξ
′⟩ dµ(ξ′) dϱds.

Since ∂Ω has nonvanishing Gaussian curvature, the inner integral can be writ-
ten, by the method of stationary phase, as a sum of two expressions of the form

c±e
iϱ⟨x,ξ′±(x)⟩a±(ϱ, x) where a± are smooth and, together with their derivatives,

satisfy the bound O((1 + |x|)−
d−1
2 ). The points ξ′±(x) are the two unique points
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on ∂Ω where x is normal to ∂Ω. Subsequent integration by parts in ρ yields for
|s| ≈ |x| ≈ 2ℓ ∣∣∣ ∫ ϱd−1χ(ϱ)eis(ϱ−1)

∫
∂Ω

eiϱ⟨x,ξ
′⟩ dµ(ξ′) dϱ

∣∣∣ ≲ 2−ℓ(d+1)/2

and after integrating in s obtain the asserted bound. □

Stein–Tomas type estimates. For the proof of Theorem 1.5 we need the following
consequences of the Stein–Tomas restriction theorem. Note that (3.18) corresponds
to the VBR(p, 2) condition mentioned in (i), §2.2.

Lemma 3.7. Let 1 ≤ p ≤ 2(d+1)
d+3 and let M be an integer with M > d(1p − 1

2). Let

s 7→ ϑj(s) satisfy, for ν = 0, 1, . . . ,M ,

(3.16)
∣∣∣( d

ds

)ν(
ϑj(s))

∣∣∣ ≤ (1 + |s|)−M .

Let mj(ξ) = ϑj(2
j(1− ρ(ξ)). Then for each j ≥ 0

(3.17)
∥∥∥ ∑
Q∈Dj

2j
d+1
2 mj(D)[fQ1Q]

∥∥∥
2
≲

( ∑
Q∈Dj

|Q|∥fQ∥2p
) 1

2
.

If, in addition, the functions ϑj are supported in (1/4, 4) then

(3.18)
∥∥∥∑

j≥0

∑
Q∈Dj

2j
d+1
2 mj(D)[fQ1Q]

∥∥∥
2
≲

( ∑
Q∈D

|Q|∥fQ∥2p
) 1

2
.

We omit the proof; it relies on a standard argument by Fefferman and Stein [15],
with a refinement in [29].

4. The main estimates

At the heart of the matter of the proof of Theorem 2.3 lie certain estimates
in Proposition 4.4 below in terms of collections of functions stemming from the
Calderón–Zygmund decomposition. To prove these estimates it is convenient to
introduce a family of bilinear operators which allow an abstract formulation that is
a priori unrelated to the Calderón–Zygmund decomposition.

In the following let Q ⊂ D≥0. On the set Q we will consider the atomic measure
given by µ({Q}) = |Q|; i.e. for each subset E ⊂ Q we have

(4.1) µ(E) =
∑
j≥0

2jd#Ej

where again Ej is the subset of E consisting of cubes of sidelength 2j . This choice of
measure is natural since in the special case where E is a disjoint collection of dyadic
cubes µ(E) is just the Lebesgue measure of the union of the Q in E. Fix λ and let
hλ,ℓ be defined as in (3.9). Set

(4.2) Aλ,ℓf = 2ℓ(λ+
d+1
2

)hλ,ℓ(ρ(D))f.

For Q ⊂ D and functions β : Q → C we denote by ℓr(Q, µ) the space of all

β such that ∥β∥ℓr(µ) = (
∑

Q∈Q |β(Q)|r|Q|)1/r and by ℓr,1(Q, µ) the corresponding

Lorentz space. We also consider families of Lp(Rd) functions F = {FQ}Q∈Q and set
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∥F∥ℓ∞(Lp) = supQ∈Q ∥FQ∥p. For any integer s ≥ 0, define the bilinear operators

Ξs,Q acting on ℓ∞(Lp(Rd))× ℓr,1(µ) by

(4.3) Ξs,Q[F, β] :=
∑
ℓ≥s

∑
Q∈Qℓ−s

β(Q)Aλ,ℓ[FQ1Q].

The definition of Ξs,Q depends on λ via Aλ,ℓ in (4.2) but the operators Aλ,ℓ satisfy
bounds that are uniform in λ when λ varies over a compact set, and this will also
hold for the Ξs,Q. In analogy with the setup in [19], the normalization chosen in
(4.2) is advantageous for standard interpolation arguments. To shorten the notation
we use the following.

Definition 4.1. Let Hyp(p◦, r◦) denote the statement that VBR(p, r) holds for all

p ∈ [2(d+1)
d+3 , p◦) and r ∈ [p, r∗(p, p◦, r◦).

Note that these correspond exactly to the hypothesis in Theorem 2.3.

Theorem 4.2. Let d ≥ 2, 2(d+1)
d+3 ≤ p◦ < 2d

d+1 , p◦ ≤ r◦ ≤ d−1
d+1p

′
◦ and assume

that Hyp(p◦, r◦) holds. Then for 1 ≤ p < p◦ and p < r < r∗(p, p◦, r◦) there is
ε = ε(p, r) > 0 such that for all s ≥ 0 and collections of disjoint cubes Q ⊂ D≥0,

∥Ξs,Q[F, β]∥Lr ≲ 2
s( d

p
−ε)∥β∥ℓr,1(µ)∥F∥ℓ∞(Lp).

We will prove Theorem 4.2 in §5. It will be convenient to also state a straightfor-
ward variant with larger cubes in Qℓ+n, which is implied by Theorem 4.2.

Corollary 4.3. Assume the assumptions of Theorem 4.2 and let for n ≥ 0,

Ξ−n,Q[F, β] :=
∑
ℓ≥0

∑
Q∈Qℓ+n

β(Q)Aλ,ℓ[FQ1Q].

Then for all n ≥ 0, and collections of disjoint cubes Q ⊂ D≥0,

∥Ξ−n,Q[F, β]∥r ≲ ∥β∥ℓr,1(µ)∥F∥ℓ∞(Lp).

Proof. We apply Theorem 4.2 for s = 0. Indeed let for each cube Q ∈ D denote by

Rn(Q) the unique cube in DL(Q)+n which contains Q. Let Q̃ be the collection of all
cubes Q ∈ D≥0 such that Rn(Q) ∈ Q. If the cubes in Q are disjoint then the cubes

in Q̃ are also disjoint. For Q ∈ Q̃ we set β̃(Q) = β(Rn(Q)) and F̃Q = FRn(Q). Then

Ξ−n,Q(F, β) = Ξ
0,Q̃

(F̃ , β̃), ∥F̃∥
ℓ∞(Q̃,Lp)

= ∥F∥ℓ∞(Q,Lp) and

∥β̃∥r
ℓr(µ,Q̃)

=
∑
ℓ≥0

∑
Q∈Q̃ℓ

|Q||β̃(Q)|r =
∑
ℓ≥0

∑
Q′∈Qℓ+n

∑
Q∈Dℓ
Q⊂Q′

|Q||β(Q′)|r = ∥β∥rℓr(µ,Q).

The corollary now follows applying Theorem 4.2 to Ξ
0,Q̃

[F̃ , β̃]. □

The main motivation for Theorem 4.2 is its applications to the action of Bochner-
Riesz type operators on the collection of functions in a Calderón–Zygmund decom-
position.



16 D. BELTRAN J. ROOS A. SEEGER

Proposition 4.4. Let d ≥ 2, 2(d+1)
d+3 ≤ p◦ < 2d

d+1 , p◦ ≤ r◦ ≤ d−1
d+1p

′
◦ and assume that

Hyp(p◦, r◦) holds. Let 1 ≤ p < p◦ and p < r < r∗(p, p◦, r◦). Let Q ⊂ D≥0 be a
collection of disjoint cubes, α > 0 and {fQ}Q∈Q functions with supp (fQ) ⊂ Q and

(4.4)

∫
Q
|fQ|p ≤ αp|Q| for all Q ∈ Q.

Then there exists an ε = ε(p, r) > 0 such that for all s ≥ 0, the inequality

(4.5)
∥∥∥∑

ℓ≥s

uℓhλ(p),ℓ(ρ(D))
[ ∑
Q∈Qℓ−s

fQ
]∥∥∥r

r
≲ ∥u∥rℓ∞2−εsrαr−p

∑
Q∈Q

∥fQ∥pp

holds for all sequences of complex numbers u = {uℓ}∞ℓ=0. Moreover, for all n ≥ 0,

(4.6)
∥∥∥∑

ℓ≥0

uℓhλ(p),ℓ(ρ(D))
[ ∑
Q∈Qℓ+n

fQ
]∥∥∥r

r
≲ ∥u∥rℓ∞2ndr/pαr−p

∑
Q∈Q

∥fQ∥pp.

Proof (assuming Theorem 4.2). Note hλ(p),ℓ(ρ(D)) = 2−ℓd/pAλ(p),ℓ. For Q ∈ Q set

FQ(x) =

{
fQ/∥fQ∥p, if ∥fQ∥p ̸= 0

0 otherwise
and β(Q) = uL(Q)+s2

−L(Q)d/p∥fQ∥p.

Then we get, with Ξs,Q as in (4.3),∑
ℓ≥s

uℓhλ(p),ℓ(ρ(D))
[ ∑
Q∈Qℓ−s

fQ
]
= 2−sd/pΞs,Q[F, β]

where we have of course used that ℓ = L(Q) + s for Q ∈ Qℓ−s. Applying Theorem
4.2 and the normalization ∥F∥ℓ∞(Lp) ≤ 1 the left-hand side of (4.5) is dominated

by [C2−εs∥β∥ℓr,1(µ)]r. For p < r < ∞ the space ℓr,1 is the real interpolation space
[ℓ∞, ℓp]ϑ,1 with ϑ = p/r and therefore

∥β∥ℓr,1(Q,µ) ≲ ∥β∥1−
p
r

ℓ∞(Q,µ)∥β∥
p
r

ℓp(Q,µ)

≲ ∥u∥∞
(
sup
Q

( 1

|Q|

∫
Q
|fQ|p

)1/p)1− p
r
( ∑

Q∈Q
∥fQ∥pp

)1/r

≲ ∥u∥∞ α1− p
r

( ∑
Q∈Q

∥fQ∥pp
)1/r

using the assumption (4.4). This establishes (4.5) and (4.6) is obtained in the same
way, using Corollary 4.3. □

5. Proof of Theorem 4.2

5.1. Reduction to a linear operator. With Q,Qj as above and Aλ,ℓ defined as in
(4.2), let

(5.1) As,QF :=
∑
ℓ≥s

∑
Q∈Qℓ−s

Aλ,ℓ[FQ1Q].

We will show that Theorem 4.2 is a consequence of the following.
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Theorem 5.1. Let d ≥ 2, 2(d+1)
d+3 ≤ p◦ < 2d

d+1 , p◦ ≤ r◦ ≤ d−1
d+1p

′
◦ and assume that

Hyp(p◦, r◦) holds. Then for 1 ≤ p < p◦, p < r < r∗(p, p◦, r◦) there is ε = ε(p, r) > 0
such that for all s ≥ 0, and all collections of disjoint cubes Q ⊂ D≥0

(5.2) ∥As,QF∥r ≲ 2
s( d

p
−ε)

µ(Q)1/r∥F∥ℓ∞(Lp).

Proof of Theorem 4.2 assuming Theorem 5.1. For completeness we include the stan-
dard argument (cf. [32, Ch. V.3]). Let β∗ be the nonincreasing rearrangement of β.
We may decompose β =

∑
k∈Z β

k where βk(Q) = β(Q)1Ek(Q) and Ek = {Q ∈ Q :

β∗(2k+1) < |β(Q)| ≤ β∗(2k)}. Observe that µ(Ek) ≤ 2k+1, which also shows that
the Ek are finite sets. We have ∥Ξs,Q[F, β]∥r ≲

∑
k ∥Ξs,Q[F, β

k]∥r which is written
as ∑

k

β∗(2k)∥Ξs,Q[F,
β1

Ek

β∗(2k)
]∥r =

∑
k

β∗(2k)∥As,EkF k∥r

where the functionGk is defined by F k
Q(x) = FQ(x)1Ek(Q) β(Q)

β∗(2k)
. Note that |F k

Q(x)| ≤
|FQ(x)|. Applying Theorem 5.1 to As,EkF k we get∑

k

β∗(2k)∥As,Ek [F k]∥r ≲ 2
s( d

p
−ε)

∑
k

β∗(2k)µ(Ek)1/r∥F k∥ℓ∞(Lp)

and since µ(Ek)1/r ≲ 2k/r and ∥F k∥ℓ∞(Lp) ≤ ∥F∥ℓ∞(Lp) we see that the right-hand

side is ≲ 2
s( d

p
−ε)∥β∥ℓr,1∥F∥ℓ∞(Lp), as desired. □

The key to prove Theorem 5.1 are the following propositions.

Proposition 5.2. Let d ≥ 2, 2(d+1)
d+3 ≤ p◦ < 2d

d+1 , p◦ ≤ r◦ ≤ d−1
d+1p

′
◦ and assume that

Hyp(p◦, r◦) holds. Then for 2(d+1)
d+3 ≤ p < p◦, p ≤ r < r∗(p, p◦, r◦) and all s ≥ 0, and

collections of disjoint cubes Q ⊂ D≥0,

(5.3) ∥As,QF∥r ≲ 2
s d
pµ(Q)

1
r ∥F∥ℓ∞(Lp).

Proposition 5.3. Let d ≥ 2. For all 1 < r < ∞ there exists ε(r) > 0 such that for
all s ≥ 0, and collections of disjoint cubes Q ⊂ D≥0,

(5.4) ∥As,QF∥r ≲ 2s(d−ε(r))µ(Q)
1
r ∥F∥ℓ∞(L1).

We note that Proposition 5.2 is essentially a re-statement of Hyp(p◦, r◦), and
Proposition 5.3 is an improvement over the trivial

(5.5) ∥As,QF∥1 ≲ 2sdµ(Q)∥F∥ℓ∞(L1)

which follows since the L1 → L1 operator norm of 2ℓ(λ+
d+1
2

)hλ,ℓ(ρ(D)) is O(2ℓd).
They will be proven in §5.2 and §5.3 respectively.

Theorem 5.1 now follows by a standard complex interpolation argument based on
the interpolation formula

[ℓ∞(Lu0), ℓ∞(Lu1)]ϑ = ℓ∞(Lu)

with (1 − ϑ)/u0 + ϑ/u1 = 1/u which holds if the ℓ∞ norms are taken on a finite

set (as in our applications).1 We first interpolate (5.3) for p = 2(d+1)
d+3 and (5.4) to

1One has to use the second [·, ·]θ method by Calderón in the general case.
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obtain

(5.6) ∥As,QF∥v ≲ 2s(
d
u
−ε(u,v))µ(Q)

1
v ∥F∥ℓ∞(Lu), for 1 < u < 2(d+1)

d+3 , u < v < d−1
d+1u

′

for some ε(u, v) > 0. Now fix p and r with 2(d+1)
d+3 ≤ p < p◦ and p < r < r∗(p, p◦, r◦).

We can then find pairs (u, v) such that 1 < u < 2(d+1)
d+3 , u < v < d−1

d+1u
′ and (p1, r1)

such that 2(d+1)
d+3 ≤ p1 < p◦, p1 ≤ r1 < r∗(p1, p◦, r◦), with (1p ,

1
r ) in the open line

segment connecting ( 1u ,
1
v ) with ( 1

p1
, 1
r1
), i.e. (1p ,

1
r ) = (1 − ϑ)( 1

p1
, 1
r1
) + ϑ( 1u ,

1
v ) for

some ϑ ∈ (0, 1).2 Now interpolate (5.3) for ( 1
p1
, 1
r1
) with (5.6) for ( 1u ,

1
v ). We then

obtain (5.2) for the pair (1p ,
1
r ) with ε(p, r) := ϑε(u, v) > 0.

5.2. Proof of Proposition 5.2. As mentioned above, this is essentially a reformulation

of Hyp(p◦, r◦) in which one replaced the normalized bumps χ(2ℓ(1−ϱ)) by 2ℓλhℓ,λ(ϱ).
The technical lemma that takes care of it is the following.

Lemma 5.4. Let d ≥ 2, 1 ≤ p ≤ r < ∞ and assume that VBR(p, r) holds. Then
for all s ≥ 0,

(5.7)
∥∥∥∑

ℓ≥s

Aλ,ℓ

[ ∑
Q∈Dℓ−s

fℓ,Q1Q
]∥∥∥

r
≲ 2

s d
p

(∑
ℓ

∑
Q

|Q|∥fℓ,Q∥rp
) 1

r
.

If fℓ,Q = FQ for Q ∈ Qℓ−s (and 0 otherwise) then the right-hand side in (5.7) is

clearly bounded by 2
s d
pµ(Q)

1
r ∥F∥ℓ∞(Lp), implying thus Proposition 5.2.

Proof. We first examine the case s = 0. Let η ∈ C∞
c be supported in (1/2, 2) such

that
∑

k∈Z η(2
ku) = 1 for u > 0. In view of the support of hλ,ℓ, decompose the

convolution kernel of Aλ,ℓ using

(5.8a) 2ℓ(λ+
d+1
2

)hλ,ℓ =
∑

0≤m1<ℓ

θλ,ℓ,m1 +
∑
m2>0

θ̃λ,ℓ,m2

where

θλ,ℓ,m1(ϱ) = 2ℓ(λ+
d+1
2

)hλ,ℓ(ϱ)η(2
ℓ−m1(1− ϱ)),(5.8b)

θ̃λ,ℓ,m2(ϱ) = 2ℓ(λ+
d+1
2

)hλ,ℓ(ϱ)η(2
ℓ+m2(1− ϱ)).(5.8c)

This decomposition is done to exploit the hypothesis VBR(p, r), since the θλ,ℓ,m1

and θ̃λ,ℓ,m2 are now compactly supported. Our goal is to show the inequalities

∥∥∥ ∑
ℓ>m1

∑
Q∈Dℓ

θλ,ℓ,m1(ρ(D))[fℓ,Q1Q]
∥∥∥
r
≲N 2−m1(N+λ(r))

(∑
ℓ

∑
Q∈Dℓ

2ℓd∥fℓ,Q∥rp
)1/r

(5.9)

∥∥∥∑
ℓ>0

∑
Q∈Dℓ

θ̃λ,ℓ,m2(ρ(D))[gℓ,Q1Q]
∥∥∥
r
≲ 2m2(λ(p)−N◦)

(∑
ℓ

∑
Q∈Dℓ

2ℓd∥fℓ,Q∥rp
)1/r

.(5.10)

Combining the estimates (5.9) and (5.10) (and recalling that N◦ > λ(p)) yields (5.7)
for s = 0.

2Here (p1, r1) should be thought of being sufficiently close to (p◦, r◦); note that r∗(p◦, p◦, r◦) = r◦.
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Using Lemma 3.4 we can write

θλ,ℓ,m1(ϱ) = cN,λ2
−m1N2ℓ

d+1
2 χλ,ℓ,m1(2

ℓ−m1(1− ϱ)),(5.11a)

θ̃λ,ℓ,m2(ϱ) = c̃N◦,λ2
−m2N◦2ℓ

d+1
2 χ̃λ,ℓ,m2(2

ℓ+m2(1− ϱ)),(5.11b)

for suitable χλ,ℓ,m1 , χ̃λ,ℓ,m2 ∈ YM .
For each R′ ∈ Dℓ−m1 we let Q(R′) be the unique Q ∈ Dℓ that contains R′.

Writing 1Q =
∑

R′⊂Q 1R′ we then have

∥∥∥ ∑
ℓ>m1

∑
Q∈Dℓ

θλ,ℓ,m1(ρ(D))[fℓ,Q1Q]
∥∥∥
r
= cN,λ2

−m1(N− d+1
2

)×∥∥∥ ∑
ℓ>m1

∑
Q∈Dℓ

∑
R′∈Dℓ−m1

2(ℓ−m1)
d+1
2 χλ,ℓ,m1(2

ℓ−m1(1− ρ(D)))[fℓ−m1,Q(R′)1R′ ]
∥∥∥
r

and we can use the hypothesis VBR(p, r) to bound the expression on the right-hand
side by a constant times

2−m1(N− d+1
2

)
( ∑

ℓ>m1

∑
Q∈Dℓ

∑
R′∈Dℓ−m1

R′⊂Q

[
2(ℓ−m1)d/r∥fℓ,Q1R′∥p

]r)1/r

≲ 2−m1(N+ d
r
− d+1

2
)
(∑

ℓ

∑
Q∈Dℓ

[
2ℓd/r∥fℓ,Q1Q∥p

]r)1/r

where we have used r ≥ p,
∑

R′∈Dℓ−m1
∥fℓ,Q1R′∥rp ≤ ∥fℓ,Q∥rp for all Q ∈ Dℓ. This

finishes the proof of (5.9).
We now turn to the proof of (5.10). To apply Lemma 3.4 we label j = ℓ +m2,

and set, for R′ ∈ Dj ,

gm2
j,R′ =

∑
Q∈Dj−m2

:Q⊂R′

fj−m2,Q1Q.

Then∥∥∥∑
ℓ>0

∑
Q∈Dℓ

θ̃λ,ℓ,m2(ρ(D))[fℓ,Q1Q]
∥∥∥
r

= 2−m2(N◦+
d+1
2

)
∥∥∥ ∑
j>m2

∑
R′∈Dj

2j
d+1
2 χ̃λ,j−m2,m2(2

j(1− ρ(D)))gm2
j,Q

∥∥∥
r

≲ 2−m2(N◦+
d+1
2

)
( ∑

j>m2

∑
R′∈Dj

[
2jd

∥∥gm2
j,R′

∥∥
p

]r) 1
r
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where we applied the hypothesis VBR(p, r) to get the bound in the third line. Now
for j > m2,( ∑

R′∈Dj

2jd
∥∥gm2

j,R′

∥∥r
p

) 1
r
=

( ∑
R′∈Dj

2jd
( ∑

Q∈Dj−m2
Q⊂R′

∥fj−m2,Q∥pp
) r

p
) 1

r

≲ 2m2d/p
(
2(j−m2)d

∑
Q∈Dj−m2

∥fj−m2,Q∥rp
) 1

r
,

by Hölder’s inequality in the inner Q-sum. Combining the above we get (5.10).
Finally we consider the case s > 0. Define for R′ ∈ Dℓ, Fℓ,R′ =

∑
Q⊂R′ fℓ−s,Q

where the sum is taken over the cubes in Dℓ−s which are subcubes of R′. Note that∥∥Fℓ,R′∥p =
( ∑

Q∈Dℓ−s

Q⊂R′

∥fℓ−s,Q∥pp
) 1

p ≤ 2
sd( 1

p
− 1

r
)
( ∑

Q∈Dℓ−s

Q⊂R′

∥fℓ−s,Q∥rp
) 1

r
.

Applying the result for s = 0 proved above to the family of functions {Fℓ,R′} we get
that the left-hand side of (5.7) is dominated by a constant times(∑

ℓ≥s

∑
R′∈Dℓ

2ℓd∥Fℓ,R′∥rp
)1/r

≲ 2sd/p
(∑

ℓ≥s

∑
Q∈Dℓ−s

2(ℓ−s)d∥fℓ−s,Q∥rp
)1/r

and we get (5.7) for all s ≥ 0. □

5.3. Proof of Proposition 5.3. It follows from the inequalities

∥As,QF∥2 ≲ 2s(3d+1)/4µ(Q)1/2∥F∥ℓ∞(L1)(5.12)

∥As,QF∥r1 ≲ 2sdµ(Q)1/r1∥F∥ℓ∞(L1), 1 ≤ r1 < ∞.(5.13)

Indeed, if 2 ≤ r < ∞ we choose r1 > r large in (5.13) and obtain (5.4) by taking
a mean of (5.12) and (5.13). Similarly (but less interesting for our purpose) one
gets (5.4) for 1 < r ≤ 2 by taking a mean of (5.12) and (5.5). We note that our
argument for (5.12) does not use the disjointness property of the family of cubes Q,
but the argument for (5.13) strongly relies on it.

5.3.1. The case p = 1, r = 2: proof of (5.12). We will first formulate a version

of (5.12) for linear combinations of radial bump multipliers χ(2ℓ(1 − ρ)), and then
subsequently replace the radial bumps by the multipliers 2ℓλhλ,ℓ ◦ ρ to get (5.12).

Lemma 5.5. Let d ≥ 2 and {χj}j ⊆ YM for large M ≫ 10d. For all s ≥ 0,

(5.14)
∥∥∥ ∑
j≥2s

2j
d+1
2 χj(2

j(1− ρ(D)))
[ ∑
Q∈Qj−s

FQ1Q

]∥∥∥
2
≲ 2s

d+1
2 µ(Q)

1
2 ∥F∥ℓ∞(L1)

holds for all finite Q ⊂ D≥0. Moreover, for j ≥ 0, 0 < L ≤ j/2

(5.15)
∥∥∥2j d+1

2 χj(2
j(1− ρ(D)))

[ ∑
Q∈QL

FQ1Q

]∥∥∥
2
≲ 2j

3d+1
4

−Ldµ(Q)
1
2 ∥F∥ℓ∞(L1).

An immediate corollary (unifying and slightly weakening (5.14), (5.15)) is



SHARP SPARSE BOUNDS FOR BOCHNER-RIESZ OPERATORS 21

Corollary 5.6. For κ ≥ 0 we have

(5.16)
∥∥∥∑

j≥κ

2j
d+1
2 χj(2

j(1− ρ(D)))
[ ∑
Q∈Qj−κ

FQ1Q

]∥∥∥
2
≲ 2κ

3d+1
4 µ(Q)

1
2 ∥F∥ℓ∞(L1).

Proof. The term
∑

j≥2κ is handled using (5.14) which gives the better L2-bound

2κ
d+1
2 µ(Q)1/2. For

∑
κ≤j<2κ we apply (5.15) with L = j − κ ∈ [0, j/2]. By

Minkowski’s inequality the resulting L2 bound is
∑

κ≤j≤2κ 2
κd−j d−1

4 µ(Q)
1
2 ∥F∥ℓ∞(L1) ≲

2κ
3d+1

4 µ(Q)
1
2 ∥F∥ℓ∞(L1). This gives (5.16). □

Proof of Lemma 5.5. Assume, without loss of generality, that ∥F∥ℓ∞(L1) ≤ 1. We
use arguments by Christ–Sogge [10, 11]; these do not require a curvature assumption
on ∂Ω. One can decompose

(5.17) χj(2
j(1− ρ(ξ))) =

∑
ν

χj,ν(ξ)

where the sum in ν is extended over an index set Ij of cardinality O(2j(d−1)/2). Each

multiplier χj,ν is supported in a (2−j , 2−j/2, . . . , 2−j/2) box essentially tangential
to ∂Ω. Moreover, the supports of χj,ν have bounded overlap in the sense that∑

j,ν |χj,ν(ξ)| ≲ 1, and we have the kernel estimates

(5.18) |F−1[χj,ν ](x)|+ |F−1[|χj,ν |2](x)|

≲ Kj,ν(x) := 2−j(d+1)/2(1 + 2−j |⟨x, ej,ν⟩|)−N1(1 + 2−j/2|P⊥
j,ν(x)|)−N2 ;

here ej,ν is a unit vector orthogonal to the surface ∂Ω on a point in supp (χj,ν) and

P⊥
j,ν is the orthogonal projection to the hyperplane orthogonal to ej,ν and N1, N2 ≤

M (and by choosing M large enough we may assume that N1 > 1, N2 > d− 1).
By orthogonality (due to the bounded overlap condition) we have

(5.19)
∥∥∥ ∑
j>2s

2j
d+1
2 χj(2

j(1− ρ(D)))
[ ∑
Q∈Qj−s

FQ

]∥∥∥
2

≲
( ∑

j>2s

2j(d+1)
∑
ν∈Ij

∥∥∥χj,ν(D)
[ ∑
Q∈Qj−s

FQ

]∥∥∥2
2

)1/2

and, similarly for every j, L ≤ j/2,

(5.20)
∥∥∥2j d+1

2 χj(2
j(1− ρ(D)))

[ ∑
Q∈QL

FQ

]∥∥∥2
2

≲ 2j(d+1)/2
( ∑

ν∈Ij

∥∥∥χj,ν(D)
[ ∑
Q∈QL

FQ

]∥∥∥2
2

)1/2
.

We claim that for fixed j ≥ 0, ν ∈ Ij∥∥∥χj,ν(D)
[ ∑
Q∈Qj−s

FQ

]∥∥∥
2
≲ 2s

d+1
2

−j 3d+1
4 µ(Qj−s)

1
2 , s ≤ j/2,(5.21)

∥∥∥χj,ν(D)
[ ∑
Q∈QL

FQ

]∥∥∥
2
≲ 2−Ldµ(QL)

1
2 , L ≤ j/2(5.22)
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and then the inequality (5.14) follows from (5.19) and (5.21), together with the

bound #Ij ≲ 2j(d−1)/2 and
∑

j µ(Qj−s) ≤ µ(Q). Likewise (5.15) follows from

(5.20) and (5.22).
It remains to prove (5.21) and (5.22). For (5.21) we use ∥F∥ℓ∞(L1) ≤ 1 and write∥∥∥χj,ν(D)

[ ∑
Q∈Qj−s

FQ

]∥∥∥2
2
=

∫∫
F−1[|χj,ν |2](x− y)

∑
Q∈Qj−s

FQ(y) dy
∑

Q∈Qj−s

FQ(x) dx

≲ #Qj−s sup
x

∫
Kj,ν(x− y)

∑
Q∈Qj−s

|FQ(y)|dy

with Kj,ν as in (5.18). For x ∈ Rd and n1, n2 > 0, define the regions

R0,0
j,ν,s(x) := {y ∈ Rd : |⟨x− y, ej,ν⟩| ≤ 2j , |P⊥

j,ν(x− y)| ≤ 2j−s},

Rn1,0
j,ν,s(x) := {y ∈ Rd : 2j+n1−1 ≤ |⟨x− y, ej,ν⟩| ≤ 2j+n1 , |P⊥

j,ν(x− y)| ≤ 2j−s},

R0,n2
j,ν,s(x) := {y ∈ Rd : |⟨x− y, ej,ν⟩| ≤ 2j , 2j−s+n2−1 ≤ |P⊥

j,ν(x− y)| ≤ 2j−s+n2},

Rn1,n2
j,ν,s (x) := {y ∈ Rd : 2j+n1−1 ≤ |⟨x− y, ej,ν⟩| ≤ 2j+n1 ,

2j−s+n2−1 ≤ |P⊥
j,ν(x− y)| ≤ 2j−s+n2}.

Observe that #Qj−s ≲ 2(s−j)dµ(Qj−s). Moreover, for s ≤ j/2 we have for all
n1, n2 ≥ 0

sup
x

sup
y∈Rn1,n2

j,ν,s (x)

|Kj,ν(x− y)| ≤ CN1,N22
−j d+1

2 2−n1N1−(n2+
j
2
−s)N2 ,(5.23)

sup
x

#{Q ∈ Qj−s : Q ∩Rn1,n2
j,ν,s (x) ̸= ∅} ≲ 2s+n1+n2(d−1) .(5.24)

Combining these observations and summing in n1, n2 ≥ 0 yields (5.21).
In order to prove (5.22) we argue similarly. For L < j/2 we get as above∥∥∥χj,ν(D)

[ ∑
Q∈QL

FQ

]∥∥∥2
2
≲ #QL sup

x

∫
Kj,ν(x− y)

∑
Q∈QL

|FQ(y)|dy.

Now use #QL ≲ 2−Ldµ(QL), (5.23) with s = j/2 and the estimate

sup
x

#{Q ∈ QL : Q ∩Rn1,n2

j,ν,j/2(x) ̸= ∅} ≲ 2−Ld2j
d+1
2 2s+n1+n2(d−1).

This leads to (5.22). □

We next show how to replace the normalized bumps in Corollary 5.6 by 2ℓλhℓ,λ(ρ)
to obtain (5.12). The argument is very similar to that in Lemma 5.4.

Proof of (5.12). Assume, without loss of generality, that ∥F∥ℓ∞(L1) ≤ 1. We de-

compose as in (5.8) and write 2ℓ(λ+
d−1
2

)hλ,ℓ(ϱ) as

CM2ℓ
d+1
2

[ ∑
m1≤ℓ

2−m1Nχλ,ℓ,m1(2
ℓ−m1(1− ϱ)) +

∑
m2>0

2−m2N◦χ̃λ,ℓ,m2(2
ℓ+m2(1− ϱ))

]
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with χλ,ℓ,m1 , χ̃λ,ℓ,m2 ∈ YM and M > 100d. We then bound ∥As,QF∥2 by a constant
times

(5.25)
∑
m1>s

2−m1(N− d+1
2

)Im1 +
s∑

m1=0

2−m1(N− d+1
2

)IIm1 +
∑
m2≥0

2−m2(
d+1
2

+N◦)IIIm2

where

Im1 =
∥∥∥ ∑
ℓ≥m1

∑
R∈Dℓ−m1

∑
Q∈Qℓ−s

2(ℓ−m1)
d+1
2 χλ,ℓ,m1(2

ℓ−m1(1− ρ(D)))[FQ1R∩Q]
∥∥∥
2
,

IIm1 =
∥∥∥∑

ℓ≥s

2(ℓ−m1)
d+1
2 χλ,ℓ,m1(2

ℓ−m1(1− ρ(D)))[
∑

Q∈Qℓ−s

FQ1Q]
∥∥∥
2
,

IIIm2 =
∥∥∥∑

ℓ≥s

2(ℓ+m2)
d+1
2 χ̃λ,ℓ,m2(2

ℓ+m2(1− ρ(D)))[
∑

Q∈Qℓ−s

FQ1Q]
∥∥∥
2
.

Let m1 > s and Qm1−s(R) be the unique dyadic cube with sidelength 2L(R)+m1−s

containing R. Let Rm1−s(Q) be the family of all R ∈ D such that L(R) ≥ 0 and
such that Qm1−s(R) belongs to Q. Parametrizing j = ℓ −m1 the term Im1 can be
rewritten as

∥
∑
j≥0

∑
R∈Rm1−s

j (Q)

2j
d+1
2 χλ,j+m1,m1(2

j(1− ρ(D)))[fR1R]∥2, with fR := FQm1−s(R).

We now apply Corollary 5.6 with κ = 0 and note that µ(Rm1−s
j (Q)) = µ(Qj+m1).

Since ∥fR∥1 ≤ 1, we obtain Im1 ≲ µ(Q)1/2 and thus the first term on the right-hand

side of (5.25) is bounded by Cµ(Q)1/2, which is a better bound.
For the terms IIm1 we have s ≥ m1. Changing the summation variable to j =

ℓ−m1 one can apply Corollary 5.6 with κ = s−m1 to get IIm1 ≲ 2(s−m1)
3d+1

4 µ(Q)1/2

Similarly for IIIm2 , changing the summation variable to j = ℓ + m2 we see that

Corollary 5.6 with κ = s+m2 yields the bound IIIm2 ≲ 2(s+m2)
3d+1

4 µ(Q)1/2. After
summing we bound the second and third terms on the right-hand side of (5.25) both

by C2s(3d+1)/4µ(Q)1/2. □

5.3.2. The case p = 1, r > 2: proof of (5.13). Since the inequality has already
been proved (in fact improved) for r ≤ 2 we focus on the case for large r, and by
interpolation it suffices to assume that r > 2 is an integer. We now rely on the
kernel estimates in §3. We prove straightforward size estimates which are close to
an argument used by Conde-Alonso, Culiuc, Di Plinio, and Ou [13] in the analysis
of rough singular integral operators.

We let Kℓ = F−1[2ℓ(
d+1
2

+λ)hλ,ℓ ◦ ρ], the convolution kernel of the operator Aλ,ℓ.

From Lemmas 3.5 and 3.6 we have the kernel estimates |Kℓ(x)| ≲ 1 for |x| ≈ 2ℓ,
2−ℓd|Kℓ(x)| ≲ cN2−ℓN for |x| ≤ c◦2

ℓ, and 2−ℓd|Kℓ(x)| ≲ c̃N |x|−N for |x| > C◦2
ℓ.

We shall only use the slightly weaker bound

(5.26) 2−ℓd|Kℓ(x)| ≲
∑
n≥0

2−n(N−d)Hℓ,n(x) with Hℓ,n(x) = 2−(ℓ+n)d
1{|x|≤2ℓ+n},

where N > d. These favorable L∞ bounds are crucial for our argument; if we were
to replace 2ℓλhℓ,λ(ϱ) with χ(2ℓ(1 − ϱ)) for generic χ ∈ YM they would no longer
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hold. Assume, without loss of generality, that ∥F∥ℓ∞(L1) ≤ 1. By (5.26)

∥As,QF∥r ≲
∞∑
n=0

2−n(N−d)
∥∥∥∑

ℓ>s

2ℓdHℓ,n ∗
∑

Q∈Qℓ−s

|FQ|1Q
∥∥∥
r
.

Setting GL := 2Ld
∑

Q∈QL
|FQ|1Q the inequality ∥As,QF∥r ≲ 2sdµ(Q)1/r follows

from the bound

(5.27)
∥∥∥∑

ℓ>s

Hℓ,n ∗Gℓ−s

∥∥∥r
r
≲r µ(Q).

Since r is an integer we have that the left-hand side in (5.27) is bounded by

(5.28) Cr!
∑

ℓ1≥ℓ2≥···≥ℓr

∫
(y1,...,yr)

∈(Rd)r

∫ r∏
i=1

[
Hℓi,n(x− yi)Gℓi−s(y

i)
]
dx d(y1, . . . , yr).

Observe that if there is an x such that
∏r

i=1Hℓi,n(x − yi) ̸= 0 then we have

|yi − yi+1| ≤ 2ℓi+n+1 for i = 1, . . . , r − 1. In this situation we also have the identity

Hℓi,n(x− yi) = Hℓi,n(
yi−yi+1

2 ) for 1 ≤ i ≤ r− 1; in addition,
∫
Hℓr,n(x− yr) dx ≲ 1.

We use these pointwise estimates and integrate in x first to bound (5.28) by a
constant times

(5.29)

∫
(Rd)r

∑
ℓ1

Gℓ1−s(y
1)

r−1∏
i=1

[ ℓi∑
ℓi+1=0

Hℓi,n(
yi−yi+1

2 )Gℓi+1−s(y
i+1)

]
dyr . . . dy1.

For fixed yi, with 1 ≤ i ≤ r − 1 we have∫
yi+1∈Rd

ℓi∑
ℓi+1=0

Hℓi,n(
yi−yi+1

2 )Gℓi+1−s(y
i+1) dyi+1

≲ 2−(ℓi+n)d

∫
|yi+1−yi|≤2ℓi+n+1

ℓi∑
ℓi+1=0

2(ℓi+1−s)d
∑

Q∈Qℓi+1−s

|FQ(y
i+1)1Q(y

i+1)| dyi+1

≲ 2−(ℓi+n)d
ℓi∑

ℓi+1=0

∑
Q∈Qℓi+1−s

dist(Q,yi)≤2ℓi+n+1

|Q|
∫

|FQ(y
i+1)|dyi+1 ≲ 1

where we used that the cubes in Q are disjoint and the FQ have normalized L1

norm. Thus integrating in (5.29) first in yr, then in yr−1, and so on, we obtain∥∥∥∑
ℓ>s

Hℓ,n ∗Gℓ−s

∥∥∥r
r
≲r

∫
y1∈Rd

∑
ℓ1

Gℓ1−s(y
1) dy1

≲r

∑
ℓ1

∑
Q∈Qℓ1−s

|Q|∥FQ∥1 ≲ µ(Q)

and (5.27) is proved. This finishes the proof of (5.13). □
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6. Sparse domination, Part I

Here we prove Theorem 2.3. Without loss of generality, we will assume that
q < p′; the less interesting sparse bound (p, q1) with q1 ≥ p′ would be implied by
Hölder’s inequality from any (p, q) with q < p′. In what follows we assume that n◦
is a fixed positive integer as in (3.12b); in particular, this implies n◦ ≥ 5. Implicit
constants are allowed to depend on n◦. Define the modified functionals (allowing
averages over triple cubes for the functions |f2|q)

Λ̃S
p,q(f1, f2) =

∑
Q∈S

|Q|⟨f1⟩Q,p⟨f2⟩3Q,q,(6.1)

Λ∗∗
p,q(f1, f2) = sup

S⊂D:
S:γ-sparse

Λ̃S
p,q(f1, f2).(6.2)

We use, for a cube S ∈ D, the notation ΛS,∗∗
p,q (f1, f2) if we require that all the

sparse families featuring in the sup consist of cubes contained in S. Recall the
definition of q∗(p, p◦, r◦) in (2.1). Fix p and let

(6.3) Tℓ = hλ(p),ℓ(ρ(D)).

Definition 6.1. Let d ≥ 2, 2(d+1)
d+3 ≤ p◦ < 2d

d+1 , p◦ ≤ r◦ ≤ d−1
d+1p

′
◦ and assume that

Hyp(p◦, r◦) holds. Let 1 ≤ p < p◦ and q∗(p, p◦, r◦) < q < p′. For n = 0, 1, 2, . . .
let U(n) ≡ Up,q(n) be the smallest constant U such that for all bounded measurable
functions f1, f2 with compact support and for all S ∈ D with n◦ ≤ L(S) ≤ n◦ + n,∣∣〈 ∑

ℓ≤L(S)−n◦

Tℓ[f11S ], f213S
〉∣∣ ≤ UΛS,∗∗

p,q (f1, f2).

The convolution kernels of Tℓ are Schwartz functions and therefore it is immediate
that Up,q(n) are finite for all q ≤ p′. Our main task will be to prove for that
supnUp,q(n) < ∞ for p and q as above. This will be done by induction, by proving
that there is a constant C such that for n ≥ 1

(6.4) U(n) ≤ max{U(n− 1), C}.

The main iteration step in the sparse domination argument has the same form as
in [22].

Proposition 6.2. Let 2(d+1)
d+3 ≤ p◦ < 2d

d+1 , p◦ ≤ r◦ ≤ d−1
d+1p

′
◦ and assume that

Hyp(p◦, r◦) holds. Let 1 ≤ p < p◦ and q∗(p, p◦, r◦) < q < p′. Then there is a
constant C > 0 such that for every S ∈ D>0 and every bounded f1 : S → C,
f2 : 3S → C, there is a collection W of disjoint dyadic subcubes of S with the
properties ∣∣∣ ⋃

Q∈W
Q
∣∣∣ ≤ (1− γ) |S|,(6.5)

(6.6)∣∣∣ L(S)−n◦∑
ℓ=0

⟨Tℓf1, f2⟩
∣∣∣ ≤ C|S|⟨f1⟩S,p⟨f2⟩3S,q +

∑
Q∈W≥n◦

∣∣∣ L(Q)−n◦∑
ℓ=0

⟨Tℓ[f11Q], f213Q⟩
∣∣∣.
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Proof of Theorem 2.3, given Proposition 6.2. In order to prove (6.4) we fix n ≥ 1
and let S ∈ Dn◦+n. Let ϵ > 0. Let W be the family of dyadic subcubes guaranteed
by Proposition 6.2 such that (6.6) holds. Note that n◦ ≤ L(Q) < n◦ + n for all
Q ∈ W≥n◦ . Therefore, by the induction hypothesis, for each Q ∈ W≥n◦ there is a
γ-sparse family SQ of dyadic subcubes of Q such that

∣∣∣ L(Q)−n◦∑
ℓ=0

⟨Tℓ[f11Q], f213Q⟩
∣∣∣ ≤ U(n− 1)Λ̃

SQ
p,q (f1, f2) + ϵ.

Setting ES := S\
⋃

Q∈WQ, the collection S = {S} ∪
⋃

Q∈WSQ is a γ-sparse family
of dyadic subcubes of S and we have

|S|⟨f1⟩S,p⟨f2⟩3S,q +
∑
Q∈W

Λ̃
SQ
p,q (f1, f2) ≤ Λ̃S

p,q(f1, f2).

Since ϵ > 0 was arbitrary we deduce (6.4).
Finally, if f1, f2 are compactly supported L∞-functions we choose N so that

2n◦+10supp (f1), 2
n◦+10supp (f2) ⊂ [−N,N ]d. By the properties of the Lerner–

Nazarov [27] dyadic lattice D and by Lemma 3.5, there is a cube S ∈ D which
contains [−N,N ]d such that |⟨Tℓf1, f2⟩| = |⟨Tℓ[f11S ], f213S⟩| ≲ ϵ2−ℓ for sufficiently
large ℓ. Since ϵ > 0 is arbitrary, this together with the main estimate (6.4), noting
from (3.9a) that hλ =

∑∞
ℓ=0 hλ,ℓ, yields the bound

|⟨hλ(p)(ρ(D))f1, f2⟩| ≲ Λ∗∗(f1, f2).

A well-known argument relying on the three lattice theorem in [27] allows to replace
Λ∗∗ by the more standard maximal sparse form Λ∗ (see e.g. [1, Ch.4.2] for details).

Since Rλ(p)
a − hλ(p)(ρ(D)) satisfies a standard Sp(p, p) bound for all p ≥ 1 (see the

beginning of §3) we obtain the desired Sp(p, q) bound for Rλ(p)
a . □

Proof of Proposition 6.2. Let α = ⟨f1⟩S,p and Ω = {x : MHL(|f1|p) ≥ 100d
1−γ α

p},
where MHL denotes the Hardy–Littlewood maximal function. Let W be the collec-
tion of Whitney cubes of Ω satisfying that Ω =

⋃
Q∈WQ and

(6.7) diam(Q) ≤ dist(Q,Ω∁) ≤ 4 diam(Q)

for all Q ∈ W; see [31, Ch. VI.1]. Since |Ω| ≤ (1− γ)|S|, condition (6.5) follows.
Define next g = f11Ωc and bQ = f11Q for each Q ∈ W. By the standard

Calderón–Zygmund properties,

∥g∥∞ ≲ α and

∫
Q
|bQ|p ≤ αp|Q|.

Let

B0 =
∑

Q∈W≤0

bQ, Bj =
∑

Q∈Wj

bQ, j > 0.

With these definitions we have
∫
Q |Bj |p ≲ αp|Q| whenever Q is a dyadic cube with

L(Q) ≥ j ≥ 0; note that we also have
∫
Q |Bj | ≤ α|Q|.
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Let T S =
∑L(S)−n◦

ℓ=0 Tℓ. Then |⟨T Sf1, f2⟩| ≤ I + II + III, where

I = |⟨T Sg, f2⟩|, II =
∣∣∣〈 L(S)−n◦∑

ℓ=0

Tℓ[
∑

0≤j<ℓ+n◦

Bj ], f2

〉∣∣∣,
III =

∣∣∣〈 L(S)−n◦∑
ℓ=0

Tℓ[
∑

j≥ℓ+n◦

Bj ], f2

〉∣∣∣.
Estimation of I. Hyp(p◦, r◦) implies VBR(p, p) and together with Lemma 5.4 this

implies ∥Tℓ∥Lp→Lp = O(1). Since ∥hλ(p),ℓ∥∞ = O(2−λ(p)) and |1p − 1
2 | > |1q − 1

2 | we
get ∥Tℓ∥Lq→Lq ≲ 2−εℓ for some ε > 0, by interpolation. We can also apply this for
the adjoint operators; indeed T ∗

ℓ (hλ∗(ρ(D))∗ = hλ,∗(ρ̃(D)) where ρ̃ is the Minkowski

functional of −Ω. Hence ∥T ∗
ℓ ∥Lq→Lq ≲ 2−εℓ. Therefore

I = |⟨g1S , (T S)∗f2⟩| ≲ α

∫
S
|(T S)∗f2| ≲ α|S|1−1/q

∞∑
ℓ=0

∥T ∗
ℓ f2∥q

≲ α|S|1−1/q
(∫

3S
|f2|q

)1/q
≲ |S|⟨f1⟩S,p⟨f2⟩3S,q.(6.8)

Estimation of II. We estimate II ≤
∑

s≥−n◦
IIs where (with s ∧ 0 := max{s, 0})

IIs =
∣∣∣〈 L(S)−n◦∑

ℓ=s∧0
TℓBℓ−s, f2

〉∣∣∣.
First assume s > 0. We use Proposition 4.4 with r = q′ and Q = W≥1. Then∥∥∥ L(S)−n◦∑

ℓ=s+1

TℓBℓ−s

∥∥∥q′
q′
≲ 2−sϵq′αq′−p

∑
Q∈W

∥bQ∥pp

≲ 2−sϵq′αq′−p
∑
Q∈W

αp|Q| ≲ 2−sεq′αq′ |S|.

For the term with ℓ = s we use Proposition 4.4 with r = q′ and Q = D0; note that
for R ∈ D0 and fR :=

∑
Q∈W,Q⊂R bQ we have

∫
R |fR|p ≲ αp|R|. In (4.5) we set

uℓ = 1 if ℓ = s and uℓ = 0 for ℓ ̸= s and obtain∥∥TsB0

∥∥q′
q′
≲ 2−sϵq′αq′−p

∑
R∈D0

∥∥∥ ∑
Q∈W
Q⊂R

bQ

∥∥∥p
p
≲ 2−sϵq′αq′−p

∑
Q∈W

∥bQ∥pp

≲ 2−sϵq′αq′−p
∑
Q∈W

αp|Q| ≲ 2−sεq′αq′ |S|.

Finally, the terms with −n◦ ≤ s ≤ 0 are treated by part (ii) of Proposition 4.4 with
n ≤ n◦ (so that the polynomial growth of the constant in n is irrelevant). We get∥∥∥ L(S)−n◦∑

ℓ=0

TℓBℓ−s

∥∥∥q′
q′
≲n◦ αq′ |S|.
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Combining these estimates we get for all s ≥ −n◦

IIs ≤
∥∥∥ L(S)−n◦∑

ℓ=s∧0
TℓBℓ−s

∥∥∥
q′
∥f2∥q ≲ min{2−sε, 1}α|S|1−

1
q

(∫
3S

|f2|q
)1/q

≲ 2−sε|S|⟨f1⟩S,p⟨f2⟩3S,q(6.9)

by the definition α = ⟨f1⟩S,p. After summing in s ≥ −n◦ we obtain

(6.10) II ≲ |S|⟨f1⟩S,p⟨f2⟩3S,q.

Estimation of III. Write III = |
∑

j≥n◦

∑j−n◦
ℓ=0

〈
Tℓ[

∑
Q∈Wj

bQ], f2
〉
| and estimate

III ≤ IIImain + IIIerr where

(6.11)

IIImain =
∑
Q∈W

∣∣∣〈 L(Q)−n◦∑
ℓ=0

Tℓ[f11Q], f213Q
〉∣∣∣,

IIIerr =
∑
Q∈W

∣∣∣〈 L(Q)−n◦∑
ℓ=0

Tℓ[f11Q], f21(3Q)∁

〉∣∣∣.
Note that IIImain is the last term in (6.6). By the estimations for I and II we are
done if we prove the stronger estimate

(6.12) IIIerr ≲ |S|⟨f1⟩S,p⟨f2⟩3S,1
since by Hölder’s inequality ⟨f2⟩3S,1 ≲ ⟨f2⟩3S,q.

To see (6.12) we use Lemma 3.5 and estimate IIIerr by∑
Q∈W

∫
Q
|f1(y)|

∫
(3Q)∁∩3S

|x− y|−N |f2(x)|dx dy

≲
∞∑

m=n◦

∑
Q∈Wm

α|Q|
∞∑
n=1

2−(n+m)N

∫
2n+1Q

|f2|

≲ α
∑
m,n

2−(m+n)(N−d)
∑

R∈Dm+n

∫
3R

|f2| ≲ α

∫
3S

|f2|

which gives (6.12). □

7. Auxiliary estimates for the proof of Theorem 1.5

We consider multiplier transformations acting on families of functions F = {fQ},
with fQ : Rd → C in Lp, indexed by cubes Q ∈ D≥0. These functions are assumed
to belong to weighted ℓr(Lp) spaces Vp,r of vector-valued functions, with norm

(7.1) ∥F∥Vp,r =
( ∞∑

j=0

∑
Q∈Dj

[2
−jd( 1

p
− 1

r
)∥fQ∥p]r

)1/r
.

In the present paper we take r = 2. The following result is equivalent with

VBR(2(d+1)
d+3 , 2). Fix λ∗ =

d−1
2(d+1) as in Theorem 1.5 and let

(7.2) Tλ∗,ℓf = hλ∗,ℓ(ρ(D))f.
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Lemma 7.1. Let p = 2(d+1)
d+3 . Then for 0 ≤ ν ≤ 4n◦,

(7.3)
∥∥∥ ∞∑

ℓ=0

uℓTλ∗,ℓ

[ ℓ+ν∑
j=0

∑
Q∈Dj

fQ]
∥∥∥
2
≲ ∥u∥∞∥F∥Vp,2

for any bounded sequence u = {uℓ}∞ℓ=0. Moreover,

(7.4)
( ∞∑

ℓ=0

∥∥∥Tλ∗,ℓ

[ ℓ+ν∑
j=0

∑
Q∈Dj

fQ
]∥∥∥2

2

)1/2
≲ ∥F∥Vp,2 .

Proof. The inequality (7.4) is a formal consequence of (7.3); this can be seen by
taking uℓ = rℓ(t) where the rℓ are the Rademacher functions, and then averaging in
t. Following an idea in [33] we may split, for any choice of j,

Tλ∗,ℓ = 2−jλ∗ωℓ,j(ρ(D))ϑj(ρ(D)),

where

ωℓ,j(ϱ) = 2(j−ℓ)λ∗ 2
ℓλ∗hλ∗,ℓ(ϱ)

ϑj(ϱ)
, with ϑj(ϱ) = (1 + 22j(1− ϱ)2)−d.

We change variables ℓ = j +n. Using the estimates in Lemma 3.4 with large N1 we
obtain for each n ≥ −ν and for ϱ = ρ(ξ) ∈ supp (χ),

|ωj+n,j(ϱ)| ≲ 2−nλ∗ min{(2(j+n)|1− ϱ|)N◦+1, (1 + 2j+n|1− ϱ|)−N1}
(1 + 22j |1− ϱ|2)−d

and from this

sup
ξ

∑
j≥0∧−n

|ωj+n,j(ρ(ξ))| ≤ C2−nλ∗

with C independent of n (only dependent of |ν| ≲ n◦ which is fixed). Hence with
gj :=

∑
Q∈Dj

fQ

∥∥∥ ∞∑
ℓ=0

uℓTλ∗,ℓ

ℓ+n◦∑
j=0

gj

∥∥∥
2
=

∞∑
n=−n◦

∥∥∥ ∑
j≥0∧−n

2−jλ∗uj+nωj+n,j(ρ(D))ϑj(ρ(D))gj

∥∥∥
2

≲
∞∑

n=−n◦

2−nλ∗
( ∑

j≥0∧−n

|uj+n|2
∥∥2−jλ∗ϑj(ρ(D))gj

∥∥2
2

)1/2
.(7.5)

For j ≥ 0 we have by (3.17)∥∥2−jλ∗ϑj(ρ(D))gj∥2 ≲
( ∑

Q∈Dj

2
−jd( 2

p
−1)∥fQ∥2p

) 1
2

and (7.3) follows by combining the two previous displays. □

In order to prove Theorem 1.5 for (1p ,
1
q ) on the open edge connecting ( d+3

2(d+1) ,
1
2)

with (12 ,
d+3

2(d+1)) we need a refined bilinear variant of Lemma 7.1.
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Let u ∈ ℓ∞(N0), Fi = {fi,Q}Q∈D≥0
, i = 1, 2, ℓ, j1, j2 ≥ 0, λ∗ = d−1

2(d+1) and

Q,Q′ ⊂ D≥0. Define

(7.6) Γℓ,j1,j2
Q,Q′ (F1, F2) :=

〈
Tλ∗,ℓ

[ ∑
Q∈Qj1

f1,Q1Q
]
,

∑
Q′∈Q′

j2

f2,Q′1Q′

〉
.

Next define a family of bilinear forms, depending on parameters 0 ≤ ν1, ν2 ≤ 4n◦ by

(7.7) ΓQ,Q′(F1, F2, u) :=
∑
ℓ≥0

uℓ
∑

0≤j1<ℓ+ν1

∑
0≤j2≤ℓ+ν2

Γℓ,j1,j2
Q,Q′ (F1, F2).

Proposition 7.2. Let Q ⊂ D≥0, Q
′ ⊂ D≥0 each be disjoint families of cubes such

that

(7.8) dist(Q,Q′) > 1
2 diam(Q′)

for all (Q,Q′) ∈ Q×Q′ satisfying L(Q′) ≥ L(Q) + 4. Then for (1p ,
1
q ) on the closed

edge connecting ( d+3
2(d+1) ,

1
2) with (12 ,

d+3
2(d+1)),

(7.9)
∣∣ΓQ,Q′(F1, F2, u)

∣∣ ≲ ∥u∥∞∥F1∥Vp,2∥F2∥Vq,2 .

We need an auxiliary lemma that states that under the separation condition (7.8)
(which is common in Whitney type decompositions) the terms Γℓ,j1,j2 are negligible
when j1 ≤ ℓ ≪ j2. Here we have essentially no restrictions on p, q, r.

Lemma 7.3. Let Q ⊂ D≥0, Q
′ ⊂ D≥0 for which the separation condition (7.8) is

satisfied. Let 1 ≤ r < ∞, 1 ≤ p, q ≤ ∞. Then for any N ≥ 0, 0 ≤ j1 ≤ ℓ + 2n◦,
j2 > ℓ+ 3n◦,

(7.10)
∣∣Γℓ,j1,j2

Q,Q′ (F1, F2)
∣∣ ≲ 2−j2N∥F1∥Vp,r∥F2∥Vq,r′ .

Proof. Note that if j1 ≤ ℓ + 2n◦, j2 > ℓ + 3n◦, Q ∈ Qj1 , Q′ ∈ Q′
j2

then j2 ≥
4 + j1 and thus (7.8) holds by assumption. This separation condition implies

dist(2ℓ+n◦Q,Q′) ≥
√
d(2j2−1 − 2ℓ+n◦+1) ≥ 2j2−2 ≥ 2ℓ+2n◦ so that the first esti-

mate in Lemma 3.5 applies. That is, if Kλ∗,ℓ = F−1[hλ∗,ℓ ◦ ρ] and x ∈ Q′, y ∈ Q

then |Kλ∗,ℓ(x− y)| ≲N1 |x− y|−N1 , and |x− y| ≈ dist(Q,Q′). This yields for fixed
j1, j2 the bound

(7.11) |Γℓ,j1,j2
Q,Q′ (F1, F2)| ≲

∞∑
m=0

2−(j2+m)N1
∑

Q′∈Q′
j2

Im
j1,j2,Q′ ,

with Im
j1,j2,Q′ =

∫
Q′

|f2,Q′(x)|
∑

Q∈Qj1
:2j2+m−2≤

dist(Q,Q′)<2j2+m+2

∫
Q
|f1,Q(y)|dy dx.
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Now, ∑
Q′∈Q′

j2

Im
j1,j2,Q′ ≲ 2

j2
d
q′

∑
Q′∈Q′

j2

∥f2,Q′∥q
∑

Q∈Qj1
:dist(Q,Q′)≈2j2+m

2
j1

d
p′ ∥f1,Q∥p

≲ 2
j2

d
q′

∑
Q′∈Q′

j2

∥f2,Q′∥q
( ∑

Q∈Qj1
:dist(Q,Q′)≈2j2+m

2
j1

rd
p′ ∥f1,Q∥rp

)1/r
2(j2+m−j1)

d
r′

≲ 2m
d
r′ 2

j2d(2− 1
r
− 1

q
)+j1d(

1
r
− 1

p
)
( ∑

Q′∈Q′
j2

∥f2,Q′∥r′q
) 1

r′
( ∑

Q∈Qj1
,Q′∈Q′

j2

dist(Q,Q′)≈2j2+m

∥f1,Q∥rp
) 1

r

≲ 2(j2+m)d
( ∑

Q∈Qj1

[
2
−j1d(

1
p
− 1

r
)∥f1,Q∥p

]r) 1
r
( ∑

Q∈Q′
j2

[
2
−j2d(

1
q
− 1

r′ )∥f2,Q∥q
]r′) 1

r′

where in the last inequality we have used that for any Q ∈ Qj1 we have

#{Q′ ∈ Q′
j2 : dist(Q,Q′) ≈ 2j2+m} ≈ 2md.

The claimed bound now follows immediately from (7.11) with N1 > N + d. □

Proof of Proposition 7.2. First consider the case p = p1 = 2(d+1)
d+3 ; q = q1 = 2. We

let Gℓ =
∑

0≤j2≤ℓ+ν2

∑
Q′∈Q′

j2

f2,Q′1Q′ , and observe that

(7.12) ΓQ,Q′(F1, F2, u) =
∑
ℓ≥0

uℓ

〈
Tλ∗,ℓ

[ ∑
0≤j1<ℓ+ν1,

Q∈Qj1

f1,Q1Q
]
, Gℓ

〉
.

Split

(7.13) Gℓ = G−Mℓ − Eℓ, with G =
∑

Q′∈Q′
≥0

f2,Q′1Q′ ,

Mℓ =

ℓ+4n◦∑
j2=ℓ+ν2+1

∑
Q′∈Q′

j2

f2,Q′1Q′ , Eℓ =
∑

Q′∈Q′
>ℓ+4n◦

f2,Q′1Q′ .

We then have

ΓQ,Q′ = Γ full
Q,Q′ − Γmid

Q,Q′ − Γ err
Q,Q′

where Γ full
Q,Q′(F1, F2, u), Γ

mid
Q,Q′(F1, F2, u) and Γ err

Q,Q′(F1, F2, u) are defined as in (7.12)

but with Gℓ replaced by G, Mℓ and Eℓ, respectively. By Lemma 7.1 and the Cauchy-
Schwarz inequality we see that

Γ full
Q,Q′(F1, F2, u) =

∣∣∣ ∞∑
ℓ=0

uℓ

〈
Tλ∗,ℓ

[ ∑
0≤j1<ℓ+ν1,

Q∈Qj1

f1,Q1Q
]
, G

〉∣∣∣
≲ ∥u∥∞∥F1∥Vp1,2

∥G∥2 ≲ ∥u∥∞∥F1∥Vp1,2
∥F2∥V2,2
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where the last inequality uses the disjointness of the cubes in Q′. Next we apply
the Cauchy-Schwarz inequality with respect to x and ℓ and get∣∣Γmid

Q,Q′(F1, F2, u)
∣∣ = ∣∣∣ ∞∑

ℓ=0

uℓ

〈
Tλ∗,ℓ

[ ∑
0≤j1<ℓ+ν1,

Q∈Qj1

f1,Q1Q
]
,Mℓ

〉∣∣∣
≲

( ∞∑
ℓ=0

|uℓ|2
∥∥∥Tλ∗,ℓ

[ ∑
0≤j1<ℓ+ν1,

Q∈Qj1

f1,Q1Q]
∥∥∥2
2

)1/2( ∞∑
ℓ=0

∥Mℓ∥22
)1/2

≲ ∥u∥∞∥F1∥Vp1,2
∥F2∥V2,2

where in the last inequality we have used Lemma 7.1 and the square-function esti-
mate (

∑∞
ℓ=0 ∥Mℓ∥22)1/2 ≲ ∥F2∥V2,2 . For the terms involving the Eℓ we use Lemma

7.3 and obtain∣∣Γ err
Q,Q′(F1, F2, u)

∣∣ = ∣∣∣ ∞∑
ℓ=0

uℓ

〈
Tλ∗,ℓ

[ ∑
0<j1<ℓ+ν1,

Q∈Qj1

f1,Q1Q
]
, Eℓ

〉∣∣∣
≲

∞∑
ℓ=0

∑
0<j1<ℓ+ν1

∑
j2≥ℓ+4n◦

2−j2N∥u∥∞∥F1∥Vp1,2
∥F2∥V2,2 ≲ ∥u∥∞∥F1∥Vp1,2

∥F2∥V2,2 .

Combining the estimates for Γ full
Q,Q′ , Γmid

Q,Q′ and Γ err
Q,Q′ we get

(7.14)
∣∣ΓQ,Q′(F1, F2, u)

∣∣ ≲ ∥u∥∞∥F1∥Vp1,2
∥F2∥V2,2 .

Next observe that

ΓQ,Q′(F1, F2, u) = Γ̃Q′,Q(F2, F1, u),

where Γ̃ is the bilinear form associated with the domain −Ω. Hence we get

(7.15)
∣∣ΓQ,Q′(F1, F2, u)

∣∣ ≲ ∥u∥∞∥F1∥V2,2∥F2∥Vp1,2
.

It is straightforward to show the interpolation formula [Vq1,2,Vq2,2]θ = Vq,2 for the
Calderón complex interpolation spaces with (1−θ)/q1+θ/q2 = 1/q, 1 ≤ q1, q2 < ∞.
Thus the assertion (7.9) follows by complex interpolation of (7.14) and (7.15). □

8. Sparse domination, Part II

We now prove Theorem 1.5. We have λ∗ = d−1
2(d+1) and it only remains to prove

the Sp(p, q) bound for (1p ,
1
q ) on the closed line segment connecting ( d+3

2(d+1) ,
1
2) and

(12 ,
d+3

2(d+1)); note that the points on this segment satisfy 1
p + 1

q = d+2
d+1 . As the point

( d+2
2(d+1) ,

d+2
2(d+1)) is the center of this line segment we may, by symmetry of sparse

bounds, assume that 1
p ≥ d+2

2(d+1) . As before Tλ∗,ℓ = hλ∗,ℓ(ρ(D)) as in (7.2).

Setting up an induction argument as in §6 one reduces the proof of the sparse
bound to the following proposition which contains the main iteration step.

Proposition 8.1. Let 2(d+1)
d+3 ≤ p ≤ 2(d+1)

d+2 , 1
q = d+2

d+1 − 1
p . Then there is a constant

C > 0 such that for every S ∈ D>0 and bounded f1 : S → C, f2 : 3S → C, there is
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a collection W of disjoint dyadic subcubes of S with the properties∣∣∣ ⋃
Q∈W

Q
∣∣∣ ≤ (1− γ) |S|,(8.1)

(8.2)∣∣∣ L(S)−n◦∑
ℓ=0

⟨Tλ∗,ℓf1, f2⟩
∣∣∣ ≤ C|S|⟨f1⟩S,p⟨f2⟩3S,q+

∑
Q∈W≥n◦

∣∣∣ L(Q)−n◦∑
ℓ=0

⟨Tλ∗,ℓ[f11Q], f213Q⟩
∣∣∣.

Proof. Let α1 = ⟨f1⟩S,p, α2 = ⟨f2⟩3S,q and let Ω = Ω1 ∪ Ω2 where

Ω1 = {x : MHL(|f1|p) ≥ 100d
1−γ α

p
1}, Ω2 = {x ∈ 3S : MHL(|f2|q) ≥ 100d

1−γ α
q
2}.

Let W consist of the subcubes of S which are Whitney cubes of Ω. Since |Ω| ≤ (1−
γ)|S|, (8.1) immediately follows. Observe that the pair of collections (W,W) satisfies
the separation condition (7.8). Indeed, let Q,Q′ ∈ W such that L(Q′) ≥ L(Q) + 4,

i.e. diam(Q′) ≥ 16 diam(Q). There is x ∈ Ω∁ such that dist(x,Q) ≤ 4 diam(Q) ≤
1
4 diam(Q′) and therefore

dist(Q,Q′) ≥ dist(Q′, x)− 4 diam(Q) ≥ diam(Q′)− 4 diam(Q) ≥ 3
4 diam(Q′),

from which (7.8) holds. Below we will also use that if Q0 is the collection of Q ∈ D0

such that Q contains a cube in W then the pair (Q,Q′) := (Q0,W>0) also satisfies
(7.8). This is shown by a similar argument. Namely if Q′ ∈ W>0, with L(Q′) ≥ 4

and Q ∈ Q0, Q̃ ∈ W with Q̃ ⊆ Q then by the above argument dist(Q̃,Q′) ≥
3
4 diam(Q′) and thus dist(Q,Q′) ≥ 3

4 diam(Q′)− diam(Q) ≥ (34 − 1
16) diam(Q′).

Define gi = fi1Ω∁ and bi,Q = fi1Q, for i = 1, 2. Then

∥gi∥∞ ≲ αi,

∫
Q
|b1,Q|p ≤ αp

1|Q|,
∫
Q
|b2,Q|q ≤ αq

2|Q|.

For j > 0, i = 1, 2, let

Bi,0 =
∑

Q∈W≤0

bi,Q, Bi,j =
∑

Q∈Wj

bi,Q.

Setting again T S =
∑L(S)−n◦

ℓ=0 Tλ∗,ℓ we have

|⟨T Sf1, f2⟩| ≤ I + II + III

where

I =
∣∣⟨T Sg1, f2⟩

∣∣, II =
∣∣∣〈 L(S)−n◦∑

ℓ=0

Tλ∗,ℓ[

ℓ+n◦∑
j=0

B1,j ], f2

〉∣∣∣
and

III =
∣∣∣〈 L(S)−n◦∑

ℓ=0

Tλ∗,ℓ[
∑

j>ℓ+n◦

B1,j ], f2

〉∣∣∣.
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Below it will be advantageous to also use the definitions, for Q ∈ D≥0 and i = 1, 2,

(8.3) BQ
i =


bi,Q if Q ∈ W>0,

0 if Q /∈ W, L(Q) > 0,∑
Q′∈W
Q′⊂Q

bi,Q′ if L(Q) = 0 .

With these definitions we have
∫
|BQ

i (x)|p dx ≲ αp
i |Q|, for i = 1, 2 and any Q ∈ D≥0.

8.1. Estimation of the terms I and III. We get |I| ≲ |S|α1α2 by exactly the same
argument as used in (6.8) (replacing α there by α1).

Regarding III, the estimation is identical to the estimation of III in the proof of
Proposition 6.2. We bound III ≤ IIImain+IIIerr with the definition of these terms
in (6.11); the main term matches the second term on the right-hand side of (8.2)
and the error term is as before estimated by |S|⟨f1⟩S,p⟨f2⟩3S,q using Lemma 3.5.

8.2. Estimation of II, in the case p = 2(d+1)
d+3 . This is very similar to the bound for

the term II in the proof of Proposition 6.2, except that now we use the improved
bound of Lemma 7.1 for q = 2. By Lemma 7.1,∥∥∥ L(S)−n◦∑

ℓ=0

Tλ∗,ℓ

ℓ+n◦∑
j=1

B1,j

∥∥∥
2
≲

(∑
j≥1

∑
Q∈Wj

2
−2jd( 1

p
− 1

2
)∥B1,j∥2p

) 1
2

≲ α
1− p

2
1

( ∑
Q∈W>0

∥BQ
1 ∥

p
p

) 1
2
≲ α

1− p
2

1

(
αp
1

∑
Q∈W>0

|Q|
) 1

2
≲ α1|S|1/2 ≲ |S|1/2⟨f1⟩S,p.

Moreover,∥∥∥ L(S)−n◦∑
ℓ=0

Tλ∗,ℓB1,0

∥∥∥
2
≲

( ∑
Q∈D0

∥BQ
1 ∥

2
p

) 1
2
≲ α

1− p
2

1

( ∑
Q∈D0

∥BQ
1 ∥

p
p

) 1
2

≲ α
1− p

2
1

(
αp
1

∑
Q′∈D0

∑
Q∈W
Q⊂Q′

|Q|
) 1

2
≲ α1|S|1/2 ≲ |S|1/2⟨f1⟩S,p.

Combining these two estimates and applying the Cauchy-Schwarz inequality we
obtain

II ≤
∥∥∥ L(S)−n◦∑

ℓ=0

Tλ∗,ℓ

ℓ+n◦∑
j=0

B1,j

∥∥∥
2

(∫
3S

|f2|2
)1/2

≲ |S|⟨f1⟩S,p⟨f2⟩3S,2.

8.3. Estimation of II, in the case 2(d+1)
d+3 < p ≤ 2(d+1)

d+2 . We now split II further as
II ≤ II1 + II2 + II3 where

II1 =
∣∣∣〈 L(S)−n◦∑

ℓ=0

Tλ∗,ℓ[

ℓ+n◦∑
j=0

B1,j ], g2

〉∣∣∣, II2 =
∣∣∣ L(S)−n◦∑

ℓ=0

〈
Tλ∗,ℓ[

ℓ+n◦∑
j=0

B1,j ],

ℓ+4n◦∑
j′=0

B2,j′

〉∣∣∣,
II3 =

∣∣∣ L(S)−n◦∑
ℓ=0

〈
Tλ∗,ℓ[

ℓ+n◦∑
j=0

B1,j ],
∑

j′>ℓ+4n◦

B2,j′

〉∣∣∣.
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8.3.1. Estimation of II1. Since now in the given range we have ∥Tλ∗,ℓ∥Lp→Lp ≲
2−ℓε(p) we obtain by Hölder’s inequality

II1 ≤
L(S)−n◦∑

ℓ=0

2−ℓε(p)
∥∥∥ ℓ+n◦∑

j=0

B1,j

∥∥∥
p
∥g2∥p′ ≲

(∫
S
|f1|p

)1/p(∫
3S

|g2|p
′
)1/p′

≲ |S|1/p⟨f1⟩S,p|S|
1/p′α2 ≲ |S|⟨f1⟩S,p⟨f2⟩3S,q.

8.3.2. Estimation of II2. Now 1
q = d+2

d+1 − 1
p . We split II2 ≤

∑4
i=1 II2,i where

II2,1 =
∣∣∣ L(S)−n◦∑

ℓ=0

〈
Tλ∗,ℓ[

ℓ+n◦∑
j=1

B1,j ],

ℓ+4n◦∑
j′=1

B2,j′

〉∣∣∣, II2,2 =
∣∣∣ L(S)−n◦∑

ℓ=0

〈
Tλ∗,ℓ[B1,0],

ℓ+4n◦∑
j′=1

B2,j′

〉∣∣∣,
II2,3 =

∣∣∣ L(S)−n◦∑
ℓ=0

〈
Tλ∗,ℓ[

ℓ+n◦∑
j=1

B1,j ], B2,0

〉∣∣∣, II2,4 =
∣∣∣ L(S)−n◦∑

ℓ=0

〈
Tλ∗,ℓ[B1,0], B2,0

〉∣∣∣.
We first consider II2,1 and apply Proposition 7.2, with ν1 = n◦ and ν2 = 4n◦,

letting Q = Q′ be the family of all cubes in W>0 so that the separation condition
(7.8) is satisfied. We then obtain

II2,1 ≲
( ∑

Q∈W
2
−2L(Q)d( 1

p
− 1

2
)∥b1,Q∥2p

)1/2( ∑
Q′∈W

2
−2L(Q′)d( 1

q
− 1

2
)∥b2,Q′∥2q

) 1
2

and write the right-hand side as II2,1(p)II2,1(q). We have

II2,1(p) ≲
( ∑

Q∈W
2
−2L(Q)d( 1

p
− 1

2
)∥b1,Q∥2p

)1/2

≲
( ∑

Q∈W
2
−2L(Q)d( 1

p
− 1

2
)
(αp

1|Q|)2/p
)1/2

≲
( ∑

Q∈W
|Q|

)1/2
α1 ≲ |S|1/2α1.

In exactly the same way we obtain II2,1(q) ≲ |S|1/2α2 and hence II2,1 ≲ |S|α1α2.
The expressions II2,2, II2,3 and II2,4 are bounded similarly. For II2,2 we let Q0

be the family of dyadic unit cubes Q with the property that Q contains a cube in W,
and Q′ = W>0. As observed in our discussion at the beginning of the proof we have
the separation condition (7.8) in this case. Applying Proposition 7.2 to ΓQ0,W>0 we
get

II2,2 ≲
( ∑

Q∈D0

∥∥∥ ∑
W∈W
W⊂Q

b1,W

∥∥∥2
p

) 1
2
( ∑

Q′∈W
2
−2L(Q′)d( 1

q
− 1

2
)∥b2,Q′∥2q

) 1
2
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which we write as ĨI2,2(p)II2,2(q). Note that II2,2(q) = II2,1(q) ≲ |S|1/2α2. More-
over,

ĨI2,2(p) ≲
( ∑

Q∈D0

( ∑
W∈W
W⊂Q

∥b1,W ∥pp
) 2

p
) 1

2

≲ α1

( ∑
Q∈D0

( ∑
W∈W
W⊂Q

|W |
) 2

p
) 1

2
≲ α1

( ∑
Q∈D0

∑
W∈W
W⊂Q

|W |
) 1

2
≲ α1|S|1/2

and hence II2,2 ≲ ĨI2,2(p)II2,2(q) ≲ α1α2|S|. For II2,3 we apply Proposition 7.2
with Q = W>0 and with Q′ being the family of those Q ∈ D0 which contain at least
one cube in W. Likewise for II2,4 we use Proposition 7.2 with the families Q,Q′

both consisting of those Q ∈ D0 which contain at least one cube in W.

8.3.3. Estimation of II3. Here we use Lemma 7.3 and the assumptions on p, q are
irrelevant. We can write II3 ≤ II3,1 + II3,2 with

II3,1 =
∣∣∣ L(S)−n◦∑

ℓ=0

ℓ+n◦∑
j1=1

∑
j2>ℓ+4n◦

Γℓ,j1,j2
Q,Q′ (B1, B2)

∣∣∣
II3,2 =

∣∣∣ L(S)−n◦∑
ℓ=0

∑
j2>ℓ+4n◦

Γℓ,0,j2
Q,Q′ (B1, B2)

∣∣∣
where Γℓ,j1,j2

Q,Q′ is as in (7.6). Then |Γℓ,j1,j2
Q,Q′ (B1, B2)| ≲ 2−j2N∥B1∥Vp,2∥B2∥Vq,2 and

since we trivially have
∑

ℓ≥0

∑ℓ+n◦
j1=0

∑
j2≥ℓ+4n◦

2−j2N = O(1) we see that

II3,1 ≲
( ∑

Q∈W>0

2
−2L(Q)d( 1

p
− 1

2
)∥b1,Q∥2p

)1/2( ∑
Q′∈W>0

2
−2L(Q′)d( 1

q
− 1

2
)∥b2,Q′∥2q

) 1
2
.

Arguing as for the term II2, this immediately leads to |II3,1| ≲ |S|α1α2. Similarly

|II3,2| ≲
( ∑

Q∈D0

∥∥∥ ∑
W∈W
W⊂Q

b1,W

∥∥∥2
p

)1/2( ∑
Q′∈W>0

2
−2L(Q′)d( 1

q
− 1

2
)∥b2,Q′∥2q

) 1
2

and arguing as in the estimation of II2,2 we obtain II3,2 ≲ |S|α1α2. □

An open problem. It remains open whether for any λ ∈ (0, d−1
2 )\{ d−1

2(d+1)} the sharp

Sp(pλ, qλ) bound with pλ = 2d
d+1+2λ and 1

qλ
= d+1

(d−1)pλ
− 2

d−1 holds (and then also the

sparse bounds at the top of the trapezoid d(λ)). If in the analysis for the terms II
above we replace the Cauchy-Schwarz inequality by Hölder’s inequality we see that
we would need a sharp version of Lemma 7.1 with VQ

pλ,q
′
λ
→ Lq′λ-boundedness for

a disjoint family Q of dyadic cubes, where VQ
p,r denotes the closed subspace of Vp,r

consisting of all F = {fQ} ∈ Vp,r such that fQ = 0 forQ /∈ Q. The latter is analogous

to verifying an endpoint version of VBR(p, r) where one allows 1
r = d+1

d−1(1−
1
p) and

assumes that the fj,R are zero if R /∈ Q. We do not know whether such endpoint
inequalities hold for r ̸= 2.
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9. Consequences for weak type inequalities with A1 weights

We record some consequences of our sparse domination results on new weak type
weighted inequalities forRλ

a when λ < d−1
2 . Frey and Nieraeth [16] (extending earlier

results in [5]) formulated general theorems about weak type weighted inequalities
for operators in Sp(p, q), satisfying certain A1 and reverse Hölder conditions. Recall
the definitions of the A1, RHσ characteristics for a nonnegative measurable function,
i.e. a weight w:

(9.1)

[w]A1 = sup
B

(
\
∫

w(x) dx
)(

ess inf
x∈Bw(x)

)−1

[w]RHσ = sup
B

( \
∫
B
w(x)σ dx

) 1
σ
(
\
∫
B
w(x) dx

)−1

if σ ∈ (1,∞). The relevant class here is A1 ∩ RHσ, for which both characteristics
are finite; we recall that w belongs to this class if and only if wσ ∈ A1 [21]. By
[16, Theorem 1.4] operators in Sp(p, q) map Lp(w) to Lp,∞(w) provided that w ∈
A1 ∩ RHσ with σ = (q′/p)′ = q

q+p−pq . More specifically,

(9.2) ∥T∥Lp(w)→Lp,∞(w) ≲ ∥T∥Sp(p,q)[w(q′/p)′ ]
1+ 1

p

A∞
[w]

1
p

A1
[w]

1
p

RH(q′/p)′
,

where [v]A∞ := supB(v(B))−1
∫
B M [v1B](x) dx is Wilson’s A∞-constant [36], in

which the supremum is taken over all balls. For convergence results it is important
to note that the A1, A∞ and RHσ characteristics satisfy translation and dilation
invariance properties, in the sense that the characteristics for w(· − h) and tdw(t·)
are the same as the corresponding characteristics for w. In two dimensions Kesler
and Lacey use (9.2) to obtain the weighted weak type (pλ, pλ) inequalities for Rλ

a

when w ∈ A1 ∩ RHσ and σ > 4
4−3pλ

= 3+2λ
2λ . Using Theorems 1.2 and 1.5 we can

lower the reverse Hölder exponent by a factor of 4.

Corollary 9.1. Let d = 2, a > 0, 0 < λ < 1/2, pλ = 4
3+2λ , σ◦(λ) =

3+2λ
8λ . Assume

that σ > σ◦(λ) if λ ∈ (0, 12) \ {1
6} and σ ≥ σ◦(λ) = 5

2 if λ = 1
6 . Then for all

w ∈ A1 ∩ RHσ,

Rλ
a,t : L

pλ(w,R2) → Lpλ,∞(w,R2)

with operator norms uniform in t.

Note that when λ → 1/2 the reverse Hölder exponent tends to 1 which is to
be expected since no reverse Hölder condition is needed in Vargas’ result [35] for
p = 1, λ = 1/2. Similar results can be formulated in higher dimensions for σ◦(λ) =
(d−1)(d+1+2λ)

4dλ and a partial range of λ, depending on the knowledge of sharp Lp → Lr

for the Bochner–Riesz operator. In particular, in view of Remark 1.4, this currently
holds for d−1

2(d+1) ≤ λ < d−1
2 , which suffices to establish Theorem 1.1.

9.1. Proof of Theorem 1.1. We only prove the case p > 1 since p = 1 is Vargas’

result [35]. Let σ∗ = σ◦(
d−1

2(d+1)) = d+3
2 > 1. It is well known [12] that every A1

weight belongs to RHσ(w) for some σ(w) > 1; without loss of generality we can

assume 1 < σ(w) < σ∗. Let p1(w) := 1 + d−1
d+1(1−

1
σ(w)) and 1 < p < p1(w). By the

preceding discussion, we have that Rλ(p)
a,t maps Lp(w) → Lp,∞(w) provided
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(i) σ(w) > σ◦(λ(p));
(ii) d−1

2(d+1) < λ(p) < d−1
2 .

On the one hand, the condition σ(w) > σ◦(λ(p)) can be quickly seen to be equivalent

to d2−1
4dσ(w)−2(d−1) < λ(p), which in turn is equivalent to the condition p < d−1

d+1(
2d
d−1 −

1
σ(w)) = p1(w), which holds by assumption.

On the other hand, since σ◦(λ(p)) < σ(w) < σ∗ = σ◦(
d−1

2(d+1)) and σ◦(λ) decreases

as a function of λ, we have λ(p) > d−1
2(d+1) . Moreover, since p > 1 we have σ(λ(p)) >

σ(λ(1)) = σ(d−1
2 ), which implies λ(p) < d−1

2 , concluding the proof of (ii).
By the above-mentioned invariance properties and (9.2), the operator norms are

uniform in t. Moreover, since the usual approximation of the identity results with
L1 kernels hold in Lp(w) with A1 weights one can use routine arguments to see that

limt→∞Rλ(p)
a,t f = f in the Lp,∞(w) norm, for all f ∈ Lp(w). □
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[6] Lennart Carleson and Per Sjölin, Oscillatory integrals and a multiplier problem for the disc,

Studia Math. 44 (1972), 287–299.
[7] Yonggeun Cho, Youngcheol Kim, Sanghyuk Lee, and Yongsun Shim, Sharp Lp-Lq estimates

for Bochner-Riesz operators of negative index in Rn, n ≥ 3, J. Funct. Anal. 218 (2005), no. 1,
150–167.

[8] Michael Christ, Weak type endpoint bounds for Bochner-Riesz multipliers, Rev. Mat.
Iberoamericana 3 (1987), no. 1, 25–31.

[9] , Weak type (1, 1) bounds for rough operators, Ann. of Math. (2) 128 (1988), no. 1,
19–42.

[10] Michael Christ and Christopher D. Sogge, On the L1 behavior of eigenfunction expansions
and singular integral operators, Miniconferences on harmonic analysis and operator algebras
(Canberra, 1987), Proc. Centre Math. Anal. Austral. Nat. Univ., vol. 16, Austral. Nat. Univ.,
Canberra, 1988, pp. 29–50.

[11] , The weak type L1 convergence of eigenfunction expansions for pseudodifferential op-
erators, Invent. Math. 94 (1988), no. 2, 421–453.

[12] R. R. Coifman and C. Fefferman, Weighted norm inequalities for maximal functions and sin-
gular integrals, Studia Math. 51 (1974), 241–250.
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[28] José L. Rubio de Francia, Factorization theory and Ap weights, Amer. J. Math. 106 (1984),
no. 3, 533–547.

[29] Andreas Seeger, Endpoint estimates for multiplier transformations on compact manifolds, In-
diana Univ. Math. J. 40 (1991), no. 2, 471–533.

[30] , Endpoint inequalities for Bochner-Riesz multipliers in the plane, Pacific J. Math. 174
(1996), no. 2, 543–553.

[31] Elias M. Stein, Singular integrals and differentiability properties of functions, Princeton Math-
ematical Series, No. 30, Princeton University Press, Princeton, N.J., 1970.

[32] Elias M. Stein and Guido Weiss, Introduction to Fourier analysis on Euclidean spaces, Prince-
ton University Press, Princeton, N.J., 1971, Princeton Mathematical Series, No. 32.

[33] Terence Tao, Weak-type endpoint bounds for Riesz means, Proc. Amer. Math. Soc. 124 (1996),
no. 9, 2797–2805.

[34] , The weak-type endpoint Bochner-Riesz conjecture and related topics, Indiana Univ.
Math. J. 47 (1998), no. 3, 1097–1124.

[35] Ana M. Vargas, Weighted weak type (1, 1) bounds for rough operators, J. London Math. Soc.
(2) 54 (1996), no. 2, 297–310.

[36] J. Michael Wilson, Weighted inequalities for the dyadic square function without dyadic A∞,
Duke Math. J. 55 (1987), no. 1, 19–50.

[37] Shukun Wu, On the Bochner-Riesz operator in R3, arXiv:2008.13043, to appear in Jour.
d’Analyse.
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