BOCHNER-RIESZ MEANS AT THE CRITICAL INDEX:
WEIGHTED AND SPARSE BOUNDS
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ABSTRACT. We consider Bochner-Riesz means on weighted LP spaces, at the

critical index A(p) = d(% —1)— 1. For every A;-weight we obtain an extension of

Vargas’ weak type (1, 1) inequality in some range of p > 1. To prove this result we
establish new endpoint results for sparse domination. These are almost optimal
in dimension d = 2; partial results as well as conditional results are proved in
higher dimensions. For the means of index A\, = 2‘2%12 we prove fully optimal
sparse bounds.

1. INTRODUCTION

Let Q be a convex open subset of R%, d > 2, containing the origin. We assume
that Q has C*°-boundary with nonvanishing Gaussian curvature. Let

p(&) :==inf{t >0:£/t € Q}
be the Minkowski functional of Q2. Then p € C*®°(R%\ {0}), p is homogeneous of
degree 1, p(§) > 0 for £ # 0 and p(§) = 1 on the boundary 9. Let a > 0. Given
A > 0, we define the Riesz means of index A of the inverse Fourier integral by

1 A\~ )
Ré,tf(l‘) = @n)d / (1 — p(ti) >+f(§)el(x:5> de,

where ]?(5) = [ f(y)e~*¥ dy denotes the Fourier transform of a Schwartz function
f on R% and s, := max{s,0}. The case of Q = {¢ : |¢| < 1} yields p(¢) = |¢]; in
this case the means with a = 1 are the classical radial Riesz means of index A while
the case a = 2 corresponds to the Bochner-Riesz means of index .

Given 1 <p < dQ—fl, the value

1 1 1
1.1 Ap)i=d(=—2) —5
(1) 0 =d(;-3) -3
is referred to as the critical index, and it is conjectured that in this range the

A(p)

a,t
A1) = %, was first proved by Christ [9] and later substantially extended by Vargas
[35] who proved an L!(w) — LY*°(w) result for all A; weights w, that is, for all
w € L}OC(Rd) satisfying the pointwise inequality Mw < w, where M denotes the
Hardy-Littlewood maximal operator. Sharp weak type endpoint results for p > 1

operators R are of weak type (p,p). The case p = 1, corresponding to the index
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2d+1) by Tao for p = 2dt) " and

were proved by Christ [§] in the range 1 < p < 3 pal

complete results in two dimensions were obtained by one of the authors in [30].
Later, Tao [34] showed that for 1 < p < % the weak type endpoint estimates
follow from the corresponding strong type results for all A > A(p). For d = 2 these
are well-known and due to Carleson-Sjolin [6], allowing to recover the weak-type
results from [30]. In higher dimensions many sharp partial results for the strong
type estimate have been proved; see [14, 25] 26], 37, [I7] and the references in those

papers.

The goal of this paper is to establish new estimates for the operators Rg(tp ) when-
ever 1 <p< %.

1.1. Weighted estimates. We will be concerned with weights in the Muckenhoupt
A classes and the reverse Holder classes RH,,; see §9] for the precise definitions. By
testing against Schwartz functions it is easy to see that for p < dz—fl the operators

Ri‘(f ) fail to satisfy weighted weak-type (p,p) estimates for the power weights |z|°
for any € > 0. This rules out, in particular, the Muckenhoupt Ay classes for any
s > 1 (which can also be ruled out by the weak-type version of Rubio de Francia’s
extrapolation theorem [28]). However, it is natural to ask whether the L'(w) —
LY (w) estimate for A; weights w has an extension for the critical A\(p) and some
p > 1, and what the p-range of this extension is. We give an affirmative answer to
the first part of this question.

Theorem 1.1. Let a > 0. For every w € Ay there exists an exponent pi(w) > 1
such that the operators R;‘Ftp) are bounded from LP(w) to LP*°(w) for 1 < p < pi(w),

uniformly in t > 0. Moreover, lim;_,o Hijf)f — fllzpoo(wy = 0 for all f € LP(w).

The case p = 1 in Theorem is Vargas’ result [35]; our contribution here
corresponds to p > 1.

In order to prove Theorem (1.1} we establish new sparse domination results for
Bochner-Riesz means at the critical index, which will be presented in §1.2] These
can be combined with a result of Frey and Nieraeth [16] to yield that, under the

assumptions of the Bochner—Riesz conjecture in d dimensions, the operators Ri(f )

map LP(w) to LP*®°(w) for w € Ay NRH, and p < 1+ %(1 — 1), This holds
unconditionally if d = 2 or if d > 3 and ¢ belongs to a suitable range that includes
[1, %]: see Section@ Theoremwill be a consequence of this, using the standard
fact that every A; weight belongs to RH, for some o > 1.

It does not seem to be known whether p < 1 + %(1 — %) is the sharp p-range
in terms of the reverse Holder exponent o in the LP(w) — LP*°(w) estimates. It

would be interesting to investigate relevant examples.

1.2. Sparse bounds. Let ® denote a dyadic lattice in the sense of the monograph by
Lerner and Nazarov [27, §2]. For a locally integrable function f, a cube @ € © and
1 <p<oolet (flg, = (Q|=* fQ |f(y)[P dy)'/P. Given 0 < v < 1, the collection
6 € D is called ~y-sparse if for every () € & there is a measurable subset Fg C @
so that |Eg| > v|Q| and {Eg : Q € G} is a collection of pairwise disjoint sets. Let
1 < p,q < co. For a y-sparse family & of cubes we define a sparse form qu and a
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corresponding maximal form A} . by

(1.2) b1 12) = > QM) gp(f2) g0
QeB

(13) A;;q(fl?fQ) sup A <f17f2)7
&:y-sparse

where the sup is taken over all v-sparse families (which are allowed to be subcol-
lections of different dyadic lattices). These definitions are of interest in the range
p < q < p'. A linear operator T : C°(R?%) — D'(R?) satisfies a (p, q) sparse bound
if for all f1, fo € C° the inequality

(1.4) (T f1, f2)] < CA; ,(f1, f2)

holds with some constant C' independent of fi, fo. In this case, we say that T
belongs to the space Sp, (p, ¢; R%) and we denote by ||T||Sp7(p7q;Rd) the best constant

in (L.4). The space Sp, (P, ¢; R9) does not depend on v (cf. [27]), so we usually keep
~ fixed and drop the subscript . If the dimension is clear from the context we will
also drop the mention of R¢.

Given 0 < A < %, let /2\g(\) denote the trapezoid with corners

_ (22 +d+l d—22—1 22 +d+1 A(d+1)
(1.5) Py = (2575, S5, Py = (2475 S + 3o
’ _ A(d+1) 22+d+1 d—2)2—1 2)\+d+1
P3_(2d+d(d 0 2d ): Pu= (=, )-

One might conjecture that sparse bounds for R + and A > 0 hold for all ( ) €

/\g(A). This would be a strengthening of the Lebesgue mapping properties of Ra 4
thus, one typically aims to only obtain the sparse improvement for values of A > 0 for
which the Bochner-Riesz conjectured has been verified. It was observed in [4], [24]
that for (%, %) in the interior of the trapezoid, (p,q)-sparse bounds for R)‘t can
be obtained via a single-scale analysis, with affirmative results depending on the
partial knowledge on the Bochner-Riesz conjecture. Henceforth we will focus on the
endpoint cases in which (%, %) belongs to the boundary of /2\g(\). Furthermore,
since sparse bounds are scale-invariant we will consider the case ¢ = 1, and write
Ré = R;\,l

The sharpness of the region /\g(\) was first observed in [4], and can also be
deduced from general necessary conditions for sparse domination (cf. [2, Prop.1.9]).
The numerology of at P is related to the conjectured LP — L" bounds for
Fourier multiplier operators with radial bumps on thin annuli (see . 2.4) below),
which have as necessary condrtron = > d+1( ) from Knapp examples. Note that

P, = (,p—2 q—Q) in satisfies 1 — - = %(1 - —) and that the vertical line segment

PP corresponds to the critical case where A = A\(p).

Almost sharp results at the critical line P; P, were obtained in the case A = %
(that is, p = 1) by Conde-Alonso—Culiuc—Di Plinio-Ou [I3]; namely they proved a
(1,q) sparse bound for all ¢ > 1. Partial results on the line P P, were obtained in
two dimensions by Kesler and Lacey [22] whenever 0 < A < 1/2. At the critical
Dy = ﬁ, they showed a Sp(py,q;R?) bound for ¢ > 4, thereby strengthening
the weak type (px,px) inequality in [30]. They posed as an open question whether
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FIGURE 1. Sparse bounds for Riesz means R,)l‘i in R? forany 0 < \ <
1/2 on the left, and for the special case A = 1/6 on the right. The
blue boundary segments correspond to the new content of Theorems
and resp. Similar figures hold for d > 3 for a restricted range
of \; see Remarks after Theorem and Theorem

Sp(px, ¢; R?) bounds hold in the range ﬁ < q < 4. Here we answer this question
affirmatively, so that by duality we obtain a positive result for the full interior of
the sides (P1P2) and (P3Py) in /D9(A). It remains open what happens on the top
side PoP3 of /2\a()), except for the special case A\, = 1/6 covered in Theorem
below.

Theorem 1.2. Letd =2, a>0. For 0 < A< 1/2, let p\ = Then we have

4
3421
A
IRz lsp(ps.ar2) <00,  forq> 1—;16)\‘

In higher dimensions, we obtain similar optimal results but only for a partial range
of A away from 0. This is natural in view of the currently incomplete knowledge
on I — L" bounds for Bochner-Riesz type operators. It will be convenient to
formulate the sparse bounds conditional on off-diagonal Lebesgue space estimates for
the Bochner-Riesz operators R (and unconditional for the Stein-Tomas exponent
and some range beyond).

Theorem 1.3. Let d > 2, a > 0 and Q(dd:gl) < po < %. Assume that for all

Ts € [po, %pg) the operator Ry maps LP°(R?) — L™ (R?) for all A\ > \(ro). Then
A _

R € Sp(p,q) for 1 < p < po and q > qops 1= S
Several remarks are in order.

Remark 1.4. (i) The condition ¢ > gop; is equivalent to saying that for the value
A = A(p), sparse bounds hold on the critical vertical line segment PP, except at
the point P;.

(ii) Theorem is an immediate corollary of Theorem due to the resolution
of the Bochner—Riesz conjecture in 2 dimensions.
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(iii) For d > 3, we are seeking to show that

A _ 2 2(d—1)d
(1.6) R €Sp(pxsq), Pr= Figanr 4> D=1

in a large range of A. Since A(p)) = A this corresponds to bounds on the critical
endpoint segment P; P, and the range of ¢ is optimal up to P». By Theorem
this can be achieved if we have a non-endpoint Bochner-Riesz LP° — L™ bound
for some p, > py and all ro € [po, %pg). Instances for which this Bochner-Riesz

hypothesis is known (and therefore our theorem is unconditional) are:

e The Stein-Tomas [14] exponent p, = 227131). This leads to (1.6)) for % <
)\ < d—1
5 -
e The so-called bilinear Fourier restriction exponent, that is, for p, < 2%1;2)7
proven in [7] for p(§) = |£|. This leads to (1.6) for Q(dde) <A< L
e The exponents obtained through multilinear restriction: p, < %

% for odd d > 5, proven in [23] via the
oscillatory integral estimates in [I8]; these exponents correspond to the dual
exponents to ¢, in |23 (1.15)]. This extends (1.6)) to a range of \’s smaller

d—2
than m .

(iv) Key to Theorernis Theorem 2.3} which replaces the non-endpoint Bochner—
Riesz boundedness assumption by an endpoint variant for certain vector-valued
functions, labelled VBR(p, r) in Definition For further details see

(v) Theorem follows from a more general result that only imposes the LPo —
L™ non-endpoint inequalities for the Bochner-Riesz operator in Theorem for a
specific r, (instead of the almost optimal range of r,). Such a theorem is formulated
as Theorem 2.1] below.

for even d > 4, and p, <

In Theorems and it remains open whether the Sp(py, gopt,x) bound holds
3(d—1)d

with qopt 1= N T (d=T)2" that is, at the endpoint P,. We can prove this when
the Bochner-Riesz index is equal to A, = %; in this instance q,p;,» = 2. This

corresponds to the endpoint in the Stein-Tomas restriction theorem and gives us
added flexibility to use L? methods. We also obtain the corresponding sparse bounds
on the full top side P,Ps3, thereby proving the optimal sparse bounds in the closed
trapezoid /\g(Ay), for this special case.

Theorem 1.5. Let d > 2, a > 0. Let A\, = % and (%,%) € [Ni(A). Then
Ra" € Sp(p, ¢;R).

The main novelty of this paper is the introduction of a refined decomposition
of the Riesz means Ra’\,t which has improved kernel localization properties in the
spirit of Christ [9] but still retains good Fourier support properties. This allows to
combine the two existing sparse endpoint approaches for Ré"t, that is, the p = 1
result of [13], and the partial two-dimensional result for p > 1 of [22]. When ¢ = 2
one can further exploit the Fourier orthogonality properties of the decomposition to
obtain Theorem [1.5]
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Notation. We list some frequently used notation.

o Families of dyadic cubes. We let ® be a dyadic lattice of cubes in the
sense of Lerner and Nazarov [27]. We use Q for general subcollections of
®. We use the notation 27 if such a subcollection is obtained by a Whitney
decomposition of an open set with certain quantitative properties. We use
G for sparse families of dyadic cubes. The sidelength of a dyadic cube Q is
denoted by 24@) with L(Q) € Z. For a collection £ of cubes we denote by
9; the collection of cubes in 9 with sidelength 27. Similarly Q>; denotes
the cubes @ € Q with L(Q) > 27. Analogously we define Q<;, Q~;, Q.

o Normalized bump functions. For M > 1 let YVy; be the class of all oM
functions x supported on (3,2) such that ||x||cm = Zﬂ/[:() X® |l < 1.

o Riesz multipliers. We write hy(0) = x(0)(1—0)} with x € C°((1/2,2)) and
Xx(0) = 1 near p = 1 (see below). The decomposition hy = >, hs
is defined in .

Qutline of the paper. In §2| we formulate refined versions of Theorem involving
Bochner—Riesz type inequalities for certain vector-valued functions and discuss how
Theorems [T.2] and [T.3] follow from them. In 3] we introduce a crucial decomposition
of the Riesz multipliers. In §4] we shall state the main technical estimates used
in the sparse domination argument, with a key result (Theorem [4.2)) proved in
Theorem [2.3] which is the main black-box sparse domination result, is proved
in §6| The endpoint sparse domination results for the Riesz means at the index
A= 4L (Theorem are treated in 1 and &g Some consequences for weak type

2d+2

inequalities with weights, including the proof of Theorem [I.1] are discussed in

Acknowledgements. This research was supported through the program Oberwolfach
Research Fellows by Mathematisches Forschungsinstitut Oberwolfach in 2023. The
authors were supported in part by National Science Foundation grants DMS-1954479
(D.B.), DMS-2154835 (J.R.), DMS-2054220 (A.S.), and by the AEI grants RYC2020-
029151-1 and PID2022-140977NA-100 (D.B.).

2. A REFINED VERSION OF THEOREM AND BOCHNER-RIESZ TYPE BOUNDS
FOR VECTOR-VALUED FUNCTIONS

We next formulate a more refined version of Theorem which only involves

a Bochner-Riesz non-endpoint LP° — L™ assumption for a specific value of r,, as
opposed to all values of r, € [po, %pg).

Let d > 2, 2(5131) < po < %, and p, < ro < %pg. Define the exponent

7+(P, Do, 7o) and its dual g«(p, po, 7o) by
21) 1, d+3 1 1 1
o F@rn T2 hs) o 23+t
. 1 - 1 - o (+d)+3p_ip p if (d++3)§p<p°’
@« (P, Pos70)  Tu(pyposTo) d+1 Q(dfl) e . 2(d+1)

These are motivated by interpolation numerology between the pairs (&, 1) and

(,43 1 2(d+1) (d—1)p AT

1) 5) when 3~ <P < po. Moreover, G« (D, Do, o) = A when p < =75
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and

2.2 1i _d-1 i (d—1)p

( . ) ldn—ll T*(pvpoaro) d+1p ’ H£11 Q*(p,po,ro) d+1—2p
To— gT1Po To— gr1Po

for all p < po. The refinement of Theorem [I.3]is as follows.

Theorem 2.1. Let d > 2, a > 0, 2(dd:31) < po < d27+dl and po < ro < dﬂpo
Assume that the operator Ry maps LP°(R?) to L™ (R?) for all X\ > \(ro). Then

Ra” € Sp(p,q) for all 1 < p < po and q > q.(p, po,7o)-
Note that Theorem [I.3] follows from Theorem [2.1] by using the second limiting

relation in ([2.2)).

2.1. Auziliary inequalities on wvector-valued functions. The proof of Theorem
relies on certain inequalities for families of operators of Bochner-Riesz type acting
on certain vector-valued LP spaces, depending on admissible parameters p and r.
We give a formal statement in the following definition; the set of normalized bump
functions Y, is defined in the notation section above.

Definition 2.2. Let 1 < p <r < oo. Let VBR(p,r) denote the following statement.
There is M > 0 such that for all collections x; of functions in Yy the inequality

. 1/r
23) | X2 6@ 0-oON X Jal|, o < Conal X 1@l el o)
>0 QeD, QeD
holds for all families {fo}gen of LP functions fg with supp (fg) C Q.

Applying (2.3) to a family of cubes of a fixed sidelength 27 shows that VBR(p, )
yields the multiplier bound for a single bump x € Vs

(2.4) Ix(27(1 = p(D) | Lo r = O(27M7))
which is conjectured to hold for 1 <p< d2ﬁ17 p < r < fl+}p’ recall A\(r) =

d(t — %) — 5. The inequalities (2.3]) are a multi-scale version of (2.4] .
The maln techmcal result that is used to prove essentially sharp sparse bounds

for Ré‘(p ) reduces the conclusion of sparse bounds to estimates of VBR-type.
Theorem 2.3. Let d > 2, a > 0, 2(;1:31) < po < (f—fl and po < 1o < %pg
Assume that VBR(p,r) holds for all p € | Eidfgl),po) and r € [p,r«(p,po,70)). Then

A
Ra™ € Sp(p.q) for 1 < p < po, 4> 4u(p, pos 7).

The proof of Theorem [2.3] will be given in §§4H6 The conclusion of Theorem

also holds with p = 2%:'31) and ¢ = 2; this is the statement of Theorem which is

proved in §§7@8
2.2. Instances in which VBR(p,r) holds and relation with Theorem . In order to

fill Theorem with content we first gather known results regarding VBRy(p, ).
The following results are available in the literature.

(i) For d > 2, VBR(p,r) holds for 1 < p < 2?:31), and p <r <2.

(ii) For d =2, VBR(p,r) holds for 1 < p < 4/3, p <r < min{p'/3,2}.
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(iii) Suppose that 1 < p, < de and suppose that Rl is bounded on LP° for all
A > A(po). Then VBR(p, p) holds for 1 < p < po.

Part (i) of this statement for r = 2 is just Lemma and it is a standard
consequence of the L2-restriction theorem. The statement for p < r < 2 is in [29], in
the slightly more general setup for spectral multipliers on compact manifolds. Part
(ii) for p = r is an immediate consequence of a vector-valued inequality in [30], the
general case follows by interpolating with the result in part (i). The conditional
result in part (iii) was proved by Tao in his paper [34] on weak type (p, p) estimates
for Bochner-Riesz means.

The bounds (i)-(iii) can be combined with Theorem [2.3]to deduce endpoint sparse
bounds for R).

(i) The VBR inequalities in two dimensions stated in (ii) yield Theorem[L.2](with-
out passing through Theorem [1.3)).
(ii’) The VBR inequalities in the Stem Tomas-range in (i) yield (1.6 . for d +1) <

A < €L (that is, the conclusion of Theorem [1.3|if one inputs p, = Sl:;) ).
(iii’) The VBR(p, p) bounds by Tao in (iii) for (d 13~ <P < po yield some endpoint

(p, q)-sparse bounds on a portion of the segment P;P,. However, this does
not yet lead to close to optimal bounds for ¢ in the sparse bounds. This phe-
nomenon also occurs in the work by Kesler and Lacey [22] in two dimensions
who essentially work with a VBR(p, p) input bound from [30].

In order to effectively prove sparse bounds in the whole (open) segment Pj P
beyond the Stein-Tomas range one needs to obtain an off-diagonal version of Tao’s
theorem. Tao [34, p. 1111] raises this question on whether there are such LP — L"
versions of his theorem. Away from the critical line r = ﬁll +i p’ such versions can be
obtained by using modifications of his proof which relies on e-removal arguments.
The interested reader can find the details in [3].

Theorem 2.4 (|3, Theorem 1.2]). Let d > 2, (d+3) < po < % and po < 1o <

g—i—ipi) Assume that the operator Ry maps LP> — L™ for all X\ > X(ro). Then

VBR(p,r) holds for 25 < p < po, p < < ru(p, po, o).

It is clear that Theorem [2.1]is now a consequence of Theorems [2.3] and 2.4 which
in turn implies Theorem [T.3]

3. DECOMPOSITIONS OF RIESZ MEANS

We introduce a decomposition of the Riesz multipliers which has strong localiza-
tion properties on both the kernel and the multiplier side and will play a crucial role
in the estimates needed to establish the sparse domination results. We remark that
rudimentary versions of this decomposition already featuring variants of condition
below go back to [§] and [33]. However, these have weaker conclusions that we
found to be insufficient for our arguments in the proof of Theorem

We start with some basic reductions. Let x¥ € C* be supported in (1/2,2)
such that Y(¢0) = 1 in a neighborhood of 1. We note that for all 1 < p < oo,
a standard sparse Sp(p,p) bound holds for the Fourier multiplier operator with
multiplier (1 — X(p(€))(1 — p(£)?)2. Indeed, note that for o € Ng with |a| > 1 we



SHARP SPARSE BOUNDS FOR BOCHNER-RIESZ OPERATORS 9

have

|08 [(1 = X(p())(1 = p(O))}]| S (14 [€]* 1T+ 1)
which together with the support property implies a kernel estimate O((1+ ‘x’),d,E)
with & < min{1,a} for the underlying kernel. We therefore focus on the essential

contribution, corresponding to the multiplier Y(p(€))(1—p(£)*)%. We also note that
we can assume without loss of generality that = 1. This is because

(1— e

(1-0)

is smooth near ¢ = 1 and thus it suffices to just consider the multiplier hy(p(§))
with

(3.1b) ha(o) = Xar(0)(1 = 0)},

where for fixed a, the family {x, : |A\| < d} is a bounded collection of Cg° functions
supported in (%, 2). We shall write x = xq,\ in what follows.
The following lemmas will be useful in further splitting the multiplier h).

(3.1a) Xa(0) = X(0)

Lemma 3.1. Let A > 0, N, € N. There ezists an even C°(R) function ®, such
that ®5(s) =1 for |s| < 1/2 and ®.(s) =0 for |s| > 1 and, in addition,

(3.2) /0 (L) o(0)de=0 for j=0,1,...,No, j#\.

Proof. We consider the interval I = [-7/4,—5/4] and LQ(I ) with the usual scalar
product. Let V be the span of the functions s |5]‘>‘+JIL[,7/4’,5/4] where j =
0,...,N, with j # A\. We pick u € L? supported on I such that

/Iu(s)ds: 1

and such that v € V*; that is, we have I; u(s)|s]P~* ds = 0 for integers 0 < j < N,

with j # A. Note that also fi)oo u(s/t)|s’*ds = 0 for those j and all t > 0.
This suggests that in order to regularize u we should work with a multiplicative
convolution. Let 0 < ¢ < 1/8 and w € Cg° supported in (1 —¢,1 + ¢) with
[ w(z)dz = 1. Define for z < 0

o0 = o= [ oo ()

and set, for x > 0, U(z) = —U(—z), and U(0) = 0. In view of the support properties
of u and w, we see that U is an odd C2° function supported in (-2, —1)U(1,2) and
we have

0 ) 1+e ) )
(3.3) / U(s)|s[’~*ds —/ w(t)tI A dt/u(s)]s]])‘ ds =0

—00 l—¢ 1

for all j € {0,1,..., No}\{A}, since I C [-2/t,—1/t] for t € (1 —¢,1+¢€). Similarly,
for —1<z <1,

/_; U(s)ds = /_: U(s)ds = /:Ew(t) dt/lu(s) ds— 1.
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We now define
xX
O, (z) == / U(s)ds.
—00
From the above calculations, we obtain that @, is an even C° function supported
n (—2,2) such that ®,(x) =1 for |z| <1 and

2
(3.4) / L (z)r’ Adr =0, j€{0,1,...,No}\{\}.

1
We will next show that implies .
Recall that for A > —1 the distributional Fourier transform of ¢} /T'(A+ 1) is the
distribution e~ +1/2(¢ — j0)=A~1; see for example [20, p.167]. This means that
for Schwartz functions <z5 we have

_ —im(A+1)/2 _ A—1
(3.5) / oo )\+ TOT D) do=e y1_1>1%1+/ o(z)(x —iy)~ " da
and the limit exists (¢f. [20, Thm 3.1.11]); moreover the tempered distribution
(r —i0)~*~! is identified with the function 2=*~1 in (0,00). The previous display
gives

o d i F(A+1) VY -
LY i) —\ w2 Ry o A—1
/0 0 (dg) olo)de = Foomys i, [ (Fie) @e(@)(z —iy) " da.

In view of the existence of the boundary value distribution (z —40)~*~1 it is imme-

diate that for j > 1

yg& _OO(—i)j (27 — (z —iy)?) Do (2)(z — iy) " dz = 0;

indeed the integral can be written as Zi:l y* [ ¢r(x)(x — iy)~* ! dz with suitable
test functions ¢. Therefore we get

© o d (=) T(A+1) . o0 i
A el J _ o 7 A—1
/0 0 (dg) Do(0)do = eim(A+1)/2 yh%lJr/ Do (z)(x — iy) dz.
Integrating by parts and using j # X\ we also get for fixed y > 0

/ Do (z)(x —iy)) A de = T P! (z)(x —iy) N dz

= _jl>\</12 O, (z)(z —iy) N da + /21 O (z)(x — iy) dx).

For j # A the boundary value distribution (z — i0)7=* is identified with the function
277 on (0,00) and with the function (e=""|z|)~* on (—o00,0). Also recall that
®! = U is odd. Combining the above observations we obtain after taking the limit,

00 d . i~ I’(A—i—l) (_1)j+1 o 2 a
M) = _ otm(d=X) / A
/0 0 (dg) P(0)do = GO N (1— el )/1 ()2 de

and (3.2)) follows from ([3.4)). O

The condition (3.2)) fails when 7 = A. In this case we have instead
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Lemma 3.2. For all even Schwartz functions ¢, and j =0,1,2,3,...

(36) |2 (5) 0o = (-1imito)

Proof. A j-fold integration by parts yields that

[ e (Y derae= vt [ dore= T [ o

where the second identity follows since 5 is even. The claim now follows from the
Fourier inversion formula. g

As an immediate consequence of Lemma 3.1, and in the case of integer A also
Lemma |3.2] we obtain

Corollary 3.3. Let A >0, N, € N. Let ®, be as in Lemma[3.1] and let
(3.7) U(x) = Do(x/2) — o(x).

Then VU is an even C°(R) function such that W(s) =0 for |s| <1/2 and ¥(s) =0
for |s| > 2 and such that

CN(dNIT _ c_
(38) /0 0 (CTQ) \IJ(Q)dQ—O, .7_0>17'-'7No-

We now decompose F '[(1 — 0)] dyadically, using the functions @, and dilates
of ¥ as in (3.7)). In the following definition (and then throughout the paper) we will
assume that N, in (3.2) satisfies N, > d. We get

(3.9a) hy = i hxe with
£=0
B el =52 [ a— @i wau,
(3.9¢) he(o) = X2(7€) /_OO (1-— u)iQe_l\ff@Z_l(g —u))du, £>0.

Lemma 3.4. For all Ny € N and for all a € Ng with |af < Ny
(3.10) 10¢ (a0 pIE)] < Cvy 027D (14 21 — p(g))) ™™,
Let £ >0, N, as in Corollary and |a| < No. Then

(311) 98 [hae 0 p)(€)] S 27 AP0 (1 — p(€)) NI i 1 — ()] < 27
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Proof. Repeated integration by parts yields (3.10). We use Corollary and Tay-
lor’s theorem to compute for ¢ > 1

1 —~
hae(o) = x(g)% / (1 —u)*2'0 (240 — u)) du
1 R No rof( 1\
= X;f(_)) /_00(1 — w2 [(2 (0 — u)) — jz_:o W@(g)(Qe(l ~ )] du

= @0 -1V NY

11 _ s \No p1 ~
/ (1NJ')/ (1 —u)2TNFV QA1 —u+ 0(0 - 1)) dudo
0 O- —00

which in turn gives |hy (o) S 27|2°(1 — g)|Me*! for |1 — o < 27%. Thus, setting
0= p(&), follows for oz = 0. A similar calculation follows for d3hy ¢ and then
for higher derivatives follows by applications of the multivariate Leibniz rule
and the Faa di Bruno’s formula. O

Since Vp is homogeneous of order zero and since Vp does not vanish on 052 there
are two positive constants cg, Cy such that Cy > 1 and

(3.12a) co < |Vp(&)| < Cp for all £ # 0.
Later in the paper it will also be useful to fix a positive integer n, such that
(3.12b) 20y < 2me.

We next study the properties of the convolution kernels
Kyy(z) = F Yhaoopl(z), £>0.

The next lemma shows that for £ > 0, the kernels K, are essentially supported in
{x: 272 < |x| < Cp2*?}. No curvature assumption is necessary here.

Lemma 3.5. For all N € N,
Koo s {0 =2
’ MU 27 for |x) < 262

Proof. The statement for ¢ = 0 follows from integration by parts. We thus assume
¢ > 1 in what follows. We use the definition h) ¢ o p to write

h/\ 2(p(€)) = mixg1(8) + mae2(€)
where m) ¢1(§) = Yo [ xa(u)(1 — w2 T(274s)e(PE)~%) ds du. We have

(3.13) F~ [mul
- | 4 g
7T

Analyzing the gradient of the phase function in the inner £ integral we get for
22—1 <5< 25-}—1

|z|/2 for |z| > 2442
\Y + x| >
[sVP(E) +al 2 {25200 for || < 26 2¢g
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and an integration by parts in & shows that for 271 < s < 2¢+1

—N-1 042
(3.14) ‘/ isP(€)+i(x.€) d{’ N |z for |z| > 220

which after a trivial integration in s and u implies the desired bounds on F~[my ¢ 1](z).
We now examine F~[my ¢.2] where my 2(&) = hyo(p(€)) —mpe1(€). The defini-
tion of of m) ¢ 2 involves a one-dimensional Fourier transform of u +— (1 —x1(u))(1—
u)f‘r, where the latter is supported in (—00,4/5). We perform a dyadic decomposition
in the negative u variables. Let g € CS°(R) such that 7 is supported in (—5/6,5/6)
and ng(u) = 1 for u € (—4/5,4/5) and let, for k > 1, ng(u) = 1o(27%u) — no(2' ~Fu).
We then have m) ¢ = Z,;“;O my¢,2,x Where by integration by parts for all N1 > 0,

meas(6) = - D[] )@ = xa ()@ - wphwz-4s)e e s du
U(2ts) |
= 27r / 8N1 )(1 — x1(u))(1 — u)ﬂ (ES)NI)GZS(”(S)“) dsdu

and the sum in k converges rapidly in view of the estimate

HOWETACIIDS 9k(A=N1)9t(1-N1)_

Note that because of the cutoff x(p(§)) the same bound immediately holds for
| F = mae2.k]llco. We will apply this with Ny > N+\. After summing in k we get a
satisfactory bound for |z| < Co2¢+3. For |x| > Cy2¢+? we again integrate by parts in
¢ (cf. (3-14)) and obtain the bound |F~1[my r24](z)] S 2KA-N)20A=N) (2 |z|) =N 1
which again can be summed in k. Altogether we get

(3.15) I fma o] (@) Snv 27N (14 27 )N
for all z € R?, which completes the proof. ]

We get sharp estimates for the region |z| &~ 2¢ since 92 has nonvanishing Gaussian
curvature everywhere.

Lemma 3.6. ||K) ¢[/cc S 9~ L0+

Proof. By Lemma it suffices to prove the bound for |z| ~ 2¢. We write the Fourier
integral in p-polar coordinates £ = p&’ with &’ € 9, du(¢') = (n(¢'), & )do ('), where
n is the outer normal at & € 99Q. We obtain

r) o) = [ [ (- up et / / 0" X (@) ) dp(e') dg ds du

:c/\I/(QKs)s)‘l/g eisle= 1)/ (&) dods.

Since 92 has nonvanishing Gaussian curvature, the inner integral can be writ-
ten, by the method of stationary phase, as a sum of two expressions of the form
ciew@’fi(x»ai(g, x) where ay are smooth and, together with their derivatives,

satisfy the bound O((1 + ]a:\)f%) The points & (z) are the two unique points
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on Jf) where z is normal to 9. Subsequent integration by parts in p yields for

|s| ~ |z| ~ 2¢
‘ / o x(o)e’le™ / eleteEh du(&’)de‘ S o iR/
o0

and after integrating in s obtain the asserted bound. O

Stein—Tomas type estimates. For the proof of Theorem we need the following
consequences of the Stein—Tomas restriction theorem. Note that (3.18) corresponds
to the VBR(p, 2) condition mentioned in (i), §2.2i

Lemma 3.7. Let 1 <p < Q%d:?)l) and let M be an integer with M > d(% —3). Let
s — Yj(s) satisfy, forv=0,1,..., M,

(3.16) ‘(%)V(ﬁj(s))’ < (1))~

Let m;(&) = 9;(27(1 — p(£)). Then for each j >0

3.17) | S 2 moetal], < (X 1@lfel)’.

QEeD; QED;
If, in addition, the functions ¥; are supported in (1/4,4) then

(3.18) |> 3 2% m0)lreta], s (X @llfal2)’

720 QeD; QeED

We omit the proof; it relies on a standard argument by Fefferman and Stein [15],
with a refinement in [29].

4. THE MAIN ESTIMATES

At the heart of the matter of the proof of Theorem [2.3] lie certain estimates
in Proposition [£.4] below in terms of collections of functions stemming from the
Calderon—Zygmund decomposition. To prove these estimates it is convenient to
introduce a family of bilinear operators which allow an abstract formulation that is
a priori unrelated to the Calderén—Zygmund decomposition.

In the following let Q C ©>p. On the set Q we will consider the atomic measure
given by u({Q}) = |Q|; i.e. for each subset & C 9 we have

(4.1) p(€) =" 2%e,

Jj=0
where again €; is the subset of € consisting of cubes of sidelength 27. This choice of
measure is natural since in the special case where € is a disjoint collection of dyadic
cubes p(€) is just the Lebesgue measure of the union of the @ in €. Fix A\ and let
hye be defined as in (3.9). Set

d+1
(4.2) Anef =205y o(p(D))f.

For 9 C © and functions 8 : Q — C we denote by ¢"(Q, ) the space of all
B such that |8y = O gea 1B(Q)"|QNY and by ¢1(Q, 1) the corresponding

Lorentz space. We also consider families of LP(R?) functions F = {Fg}geq and set
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[ F'[|go(zry = SUPgeq [[FQllp- For any integer s > 0, define the bilinear operators
Ze.q acting on £2°(LP(RY)) x £ (u) by

(4.3) EaalF 8= > BQ)A\[Folq).

L>s QEQZ s

The definition of =5 5 depends on A via A in but the operators A , satisfy
bounds that are uniform in A when A\ varies over a compact set, and this will also
hold for the Z5 5. In analogy with the setup in [19], the normalization chosen in
is advantageous for standard interpolation arguments. To shorten the notation
we use the following.

Definition 4.1. Let Hyp(po, 7o) denote the statement that VBR(p,r) holds for all

d+1
peE| (d:g),po) and r € [p, (P, Do, To).

Note that these correspond exactly to the hypothesis in Theorem

Theorem 4.2. Let d > 2, 221:“31) < po < d%fl, Po < 16 < Zﬁpg and assume

that Hyp(po, 7o) holds. Then for 1 < p < p, and p < r < 1«(p,po, 7o) there is
e =¢e(p,r) > 0 such that for all s > 0 and collections of disjoint cubes Q C D>,
d_
IEsalf. Bl £ 2 Bllers 1 e 20)-

We will prove Theorem [£.2]in §5 It will be convenient to also state a straightfor-
ward variant with larger cubes in Qg ,, which is implied by Theorem

Corollary 4.3. Assume the assumptions of Theorem and let forn > 0,
EnalBBl=2, ), BQAwFele)
ZZO Q€Q€+n

Then for all n > 0, and collections of disjoint cubes Q C D>,

1Z—nalF Bl S NBllert ) 1F g (-

Proof. We apply Theorem for s = 0. Indeed let for each cube @ € D denote by
R™(@Q) the unique cube in D), which contains Q. Let Q be the collection of all
cubes () € ©>¢ such that R"(Q) € Q. If the cubes in Q are disjoint then the cubes

in Q are also disjoint For Q € Q we set 3(Q) = B(R*(Q)) and Fo= Fpn(@)- Then
E_na(F,B) = g 5(F, ), 1l pe(@ 1) = IFlle( vy and

1Bl =2 D2 1RQUB@QIT =22 > > 1QUB@N = 18ll(us)-

020 0eq, >0 Q'€ QED,
Qce’
The corollary now follows applying Theorem to =, ﬁ[ﬁ , B] O

The main motivation for Theorem [£.2]is its applications to the action of Bochner-
Riesz type operators on the collection of functions in a Calderén—Zygmund decom-
position.
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Proposition 4.4. Let d > 2, QS?_L;) < po < %, Po <1 < Z—Hpg and assume that

Hyp(po, 7o) holds. Let 1 < p < po and p < 1 < ri(p,po,70). Let Q C Do be a
collection of disjoint cubes, o > 0 and {fg}gea functions with supp (fg) C @ and

(4.4) /Q\fQW <o?|Q|  forallQeq.

Then there exists an € = e(p,r) > 0 such that for all s > 0, the inequality

(45) || D whaee o@D Y fol| S lullim275 707 3 ol

T

{>s QENy_& QeN

holds for all sequences of complex numbers u = {us}32,. Moreover, for all n >0,

(46) || D whage e[ S ol S Il 0 ST Sl

r

€20 Q€Qein Qe

Proof (assuming Theorem[4.3). Note hyg,) o(p(D)) = Z_Ed/pA/\(p)’g. For Q € 9 set

fa/llfellp, if lfqll, # 0 —L(Q)d/
Fo(z) = d = 2 P .
o(7) {0 otherwise and  B(Q) = urQ)+s | follp

Then we get, with Z; o as in (4.3)),
> by (DN D fo] =27°YPE, o|F, 8]

{>s QGQZ—S
where we have of course used that ¢ = L(Q) + s for Q € Qy_s. Applying Theorem
and the normalization ||F||sc(r»y < 1 the left-hand side of (4.5)) is dominated

by [C27=%(| B][gr1()]" For p < 7 < oo the space ¢! is the real interpolation space
[0°°,£P]y 1 with ¥ = p/r and therefore

iy
(

1 P
18l a0 S 1817 1Bl

ol (o (i [ 10) ™) ™ (32 1)

QeN
< _p » 1/r
S oo @'~ (D Il fel)
QeQ
using the assumption (4.4)). This establishes (4.5)) and (4.6]) is obtained in the same
way, using Corollary O

5. PROOF OF THEOREM
5.1. Reduction to a linear operator. With Q,Q; as above and A), defined as in

, let
(5.1) AcaF =) > AxlFqlgl.

ZZS QGQefs

We will show that Theorem is a consequence of the following.
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Theorem 5.1. Let d > 2, (d+31) < po < %, Po < 1o < %pg and assume that
Hyp(po,7s) holds. Then for 1 <p < po, p <1 < 1«(p,po, 7o) there is e =e(p,r) >0

such that for all s > 0, and all collections of disjoint cubes Q C D>
(5.2) [MsaFll S 276 u() | Pl aa).

Proof of Theorem [[.3 assuming Theorem [5.1]. For completeness we include the stan-
dard argument (c¢f. [32, Ch. V.3]). Let 5* be the nonincreasing rearrangement of 3.
We may decompose 3 =, BF where £%(Q) = B(Q)1e:(Q) and ¢* = {Q € Q :
B*(2M1) < 1B(Q)] < B*(2F)}. Observe that u(€*) < 251 which also shows that
the &* are finite sets. We have ||Z5 o[F, B]|l» < 34 |Zs.alF, 8¥]|» which is written

as
* = Al k k
> B @Y)EsalF, 5] IIT—ZB (2) Ay e F* |l
k

where the function G* is defined by F5($) = FQ( )Lk (Q)g (( )) Note that ]Fk( )| <
|Fq(z)]. Applying Theorem [5.1to A, gx F* we get

28 @Ml 5 2 LSRR L B2
and since ,u(QEk)l/’” < 2F/7 and ||FkH£oo(Lp) < |IF|[geo(zpy we see that the right-hand

d
side is < 28(;75)”5”67‘,1HFH[OO(L()), as desired. O
The key to prove Theorem are the following propositions.

Proposition 5.2. Let d > 2, 2d+1) < po < %, Po <1 < deO and assume that

d+3
Hyp(po, 7o) holds. Then for 285[_:_;) <P < Po, p <1 <1e(pypo,7o) and all s > 0, and
collections of disjoint cubes Q C D>,
1
(5.3) A Fllr S 27 () [ [l¢oe (Lr)-

Proposition 5.3. Let d > 2. For all 1 <1 < oo there exists (r) > 0 such that for
all s > 0, and collections of disjoint cubes Q C D>q,

—e(r 1
(5.4) lAsaFllr < 270D u(Q) 7| F |l (11)-

We note that Proposition is essentially a re-statement of Hyp(po, 7o), and
Proposition is an improvement over the trivial

(5.5) [AsaF 1 S 25 u(Q)|| F || (11

which follows since the L' — L! operator norm of 2E(A+%)hu(p(D)) is O(24).
They will be proven in and respectively.
Theorem now follows by a standard complex interpolation argument based on
the interpolation formula
[ (L"), €(L™")]9 = £7°(L")
with (1 —9)/ug + Y¥/u1 = 1/u which holds if the > norms are taken on a finite

set (as in our applications)|’| We first interpolate (5.3) for p = ddjgl nd (5.4) to

LOne has to use the second [, ~]t9 method by Calderén in the general case.
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obtain

1
(5.6) [ AsaFlly < 225D Q)0 || Fl g ), for 1< u < 28D o <o < by

for some e(u,v) > 0. Now fix p and r with 2(dd:31) <p<poand p<r <ryp,po,To).

We can then find pairs (u,v) such that 1 < u < 2%:31), u<v< g—ﬂu’ and (p1,71)

such that Q(jj;) < p1 < Poy, P1 <711 < 14(P1, Doy To), With (f ;) in the open line

segment connecting (1, 1) with (pl, r1>’ ie. (; i) =(1- ﬁ)(pl, m) —|— 19(u, 1) for
some ¥ € (0, )ﬁ Now interpolate (5.3)) for ( p1’ m ) with (5.6) for (1,1). We then
obtain ([5.2)) for the pair (p7 1) with E(p, r) == de(u,v) > 0.

5.2. Proof of Proposition . As mentioned above, this is essentially a reformulation
of Hyp(po, 75) in which one replaced the normalized bumps x(2¢(1—g)) by 2*hs (o).
The technical lemma that takes care of it is the following.

Lemma 5.4. Let d > 2, 1 < p <r < oo and assume that VBR(p,r) holds. Then
for all s > 0,
1
B

sd
(5.7) HZA)“@[ Z fg&)]lQ]H 52 P(
>s QeD,_, " ¢

If fro = Fg for Q € Q5 (and 0 otherwise) then the right-hand side in (5.7) is
clearly bounded by ZS%M(Q)% | F'[| g (zr), implying thus Proposition

Proof. We first examine the case s = 0. Let n € C2° be supported in (1/2,2) such
that >,y n(2ku) = 1 for w > 0. In view of the support of h,e, decompose the
convolution kernel of Ay, using

d 1 ~
(5.8a) !+ Vhye = Z Oxemy + Z Ox.0,mo
0<mi<t ma>0
where
—+1
(5.8b) 0,0, (0) = 2/0F ER Thae(o)n(27™ (1 — o)),
(5.8¢) O30, (0) = 260+ ER )hu( (2™ (1 - g)).

This decomposition is done to exploit the hypothesis VBR(p, ), since the 0 ¢,
and 0y ¢, are now compactly supported. Our goal is to show the inequalities

(5.9)

H Z Z Oxemy (P [feQ]lQ]H Sy 27 VAl (Z Z 2 fooll )

I>m1 QEDy L QeDy
MMEZWW MWVW (323 2paly)
>0 QEDy { QeEDy

Combining the estimates ) and - and recalling that N, > A(p)) yields (/5.7))
for s = 0.

2Here (p1,71) should be thought of being sufficiently close to (po, 7o ); note that 7« (po, po, 7o) = ro.
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Using Lemma [3.4] we can write

_ d+1 _
(5.11a) Oxemi (0) = enn27 ™ N2 ) o, (26711 — o)),
(5.11b) Or s (0) = TN 227202505 4, (26972 (1 — ),

for suitable X ¢.mis Xaeme € Y-
For each R' € Dy_,,,, we let Q(R’) be the unique Q € D, that contains R’
Writing 1g = >/ 1r we then have

| 5 3 rrm oD frgal], = exa2 ™=

£>m1 QED,

[ 3 o @0 oD oo V]

>m1 QED, R’E@g,ml
and we can use the hypothesis VBR(p, r) to bound the expression on the right-hand
side by a constant times

Y
2 (S S R giel))

I>m1 QED, R'eDy_ m1

R'CQ
1
< 2—m1(N+%—%)(Z Z [2Ed/er€,QﬂQ”p]r) /r
? QEDy

where we have used v > p, > picn, feQlrlly, < [[fegll, for all @ € D, This
oy

finishes the proof of (5.9).
We now turn to the proof of (5.10). To apply Lemma we label j = £+ mo,
and set, for R’ € ©;,

m2

9 = Y. firmale

QE@j,WQ :QCR/

Then

HZ > O ama (0 [fteQ]H

>0 QE®Dy
_ d+1 A1 .
= 27N S ST N R (2 (1= p(D))g8 |

j>ma RIED,

S 2—mg(No+d+l ( Z Z 2]ng‘7 2,

j>mg R'e®;

1

)?
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where we applied the hypothesis VBR(p, r) to get the bound in the third line. Now
for j > ma,

(> 297

1 r 1

V(S X Imald)?)

R/E/D R/g@]. QE@jme
QCR
1
§2m2d/p<2(j*m2)d Z Hfj—mz,QH;)r’
QEDj—my

by Holder’s inequality in the inner @-sum. Combining the above we get ([5.10]).
Finally we consider the case s > 0. Define for R’ € ©y, Fyp = ZQcR/ fo—s,0
where the sum is taken over the cubes in ®,_, which are subcubes of R’. Note that

1

1 1
Ferlo=( 3 esell)” <272 ( X Ifisely)

Qegf—s Qegé—s
QCR/ QCR/

Applying the result for s = 0 proved above to the family of functions {Fy r} we get
that the left-hand side of ([5.7)) is dominated by a constant times

1/r _ 1/r
(>3 2 IEwly) <2 (3 > 2 s salh)
{>s R'eDy {>s QEDy_¢
and we get (5.7)) for all s > 0. O
5.3. Proof of Proposition . It follows from the inequalities
(5.12) MeaF 2 S 25D W) 2| Pl oo 1)
(5.13) MsaFllry S 2 p( Q)Y [ Fllpe(rr), 1< 71 < oo,

Indeed, if 2 < r < oo we choose 71 > r large in and obtain by taking
a mean of and . Similarly (but less interesting for our purpose) one
gets for 1 < r < 2 by taking a mean of and . We note that our
argument for does not use the disjointness property of the family of cubes 9,
but the argument for strongly relies on it.

5.8.1. The case p = 1, r = 2: proof of (5.12). We will first formulate a version
of (5.12) for linear combinations of radial bump multipliers x(2¢(1 — p)), and then
subsequently replace the radial bumps by the multipliers 2¢*hy 4 o p to get (5.12).

Lemma 5.5. Let d > 2 and {x;}; C Ym for large M > 10d. For all s > 0,
d+1 gdtl 1
(5.14) || 32— DN Y Folal||, 527 wQ)* 1Flleeury
j>2s QED; s
holds for all finite Q C ®>¢. Moreover, for j >0,0< L < j/2
(5.15) H?J 7 (2 (1= p(D))] Y Falg) H < 2P ()3 | F oo 1)
Qe
An immediate corollary (unifying and slightly weakening (5.14)), (5.15))) is
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Corollary 5.6. For k > 0 we have

(5.16) || S oD Y Folo]|, 27 w@)FIFlle ),
J>k Qe

Proof. The term -, is handled using (5.14) which gives the better L?-bound

d+1

285 u(Q)Y2. For > w<j<on We apply (b.13) with L = j —x € [0,5/2]. By

Minkowski’s inequality the resulting L? bound is D r<i<2m 2”d_j%,u(ﬂ)% [ Elgoe 1) S
3d+1

255 14(Q) 7 || F || oe1)- This gives (516). 0
Proof of Lemmal[5.5 Assume, without loss of generality, that [|F|[pe(z1) < 1. We
use arguments by Christ—Sogge [10} [I1]; these do not require a curvature assumption
on 0f2. One can decompose

(5.17) X (271~ Zx] o

where the sum in v is extended over an index set Z; of cardinality O(2 (@=1)/2) Each
multiplier x;, is supported in a (277,279/2, ... ,279/2) box essentially tangential
to 0f). Moreover, the supports of x;, have bounded overlap in the sense that
>iw Xiw(§)] < 1, and we have the kernel estimates

(5.18) |F gl (@) + 1FHIxgwl?) (@)
S Kjw(@) = 27702 (1 4 27| (, e5,)) M (1 + 2792 Py () )

here e;,, is a unit vector orthogonal to the surface J€2 on a point in supp (x;,,) and

Pj{;, is the orthogonal projection to the hyperplane orthogonal to e;, and N1, Ny <

M (and by choosing M large enough we may assume that Ny > 1, Ny > d —1).
By orthogonality (due to the bounded overlap condition) we have

(19) | X 2@ - oo Y Fol

7>2s QeQ;_s 2
J(dt1) 2\ 1/2
< (X243 o[ Y Rl
Jj>2s VGI]‘ QGD]'_S

and, similarly for every j, L < j/2,

(5.20) H2j%><j(2j(1—f)(D>))[ > FQ}HE

Qe
<22 (Y o) Y FQ]HE)UQ.
veL; Qe
We claim that for fixed j > 0, v € Z;
21 D] Y R, s 27 T w08, s < /2,
Qe;_s
(522 |u(D] Y Fol|, s 27 Muan)t, L<j/2

Qer
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and then the inequality (5.14) follows from (5.19) and (5.21)), together with the
bound #Z; < 2/71/2 and 3, u(Q;-s) < u(Q). Likewise (5.15) follows from
(5.20) and (5.22).

It remains to prove (5.21)) and (5.22)). For (5.21)) we use ||F'[|soo(z1y < 1 and write
[l 3 ol = [[ 7l ulie -0 3 Fo dy 3 Folw do

QEDJ s QEDj—s QGQ]'—S
S# s [ Kipla—y) Y Fol)]dy
v Qe s

with K, as in (5.18]). For « € R? and ni,ns > 0, define the regions

0,0 . -
Rjvs(@) = {y €RT: [z —y,e50)| <2, [Py (x —y)| <2777},

’ d j — . n .
RILA() = {y € B 2 < (o —yye)| < 2L (P (e - y) <2777,
0 d . . _ 1 .

RO (@) = {y € RY: (@ — y,e5,) < 2, 27717 < P (2 — )| < 277572},
Ry () = {y € R : 27071 < (z —ye5,) < 27H,

= m < Pl (0 — )| < 27,

Observe that #0,_, < 267)9,(9Q;_). Moreover, for s < j/2 we have for all
ni,ng 20

(5.23) sup sup |Kj7V(x — y)‘ < CNhNQ2*j%2*n1N17(n2+%78)N2 7
T oyeR; P (@)
(5.24) sup#{Q € Qj—s : QN R} (x) # 0} < gs+ni+na(d-1)

Combining these observations and summing in nq,ng > 0 yields (5.21).
In order to prove (5.22)) we argue similarly. For L < j/2 we get as above

HX;‘,V(D)[ > FQ]HE S #Q1 Sl;p/Kj,u(w—y) > 1Fo(y)l dy.

Qe Qe
Now use #97 < 2754u(9Qy), (5.23) with s = j/2 and the estimate

sup #{Q € QL QNRY)y(x) #0} S 27 Ldgj Lt gs+ny+na(d—1)

This leads to ((5.22)). O

We next show how to replace the normalized bumps in Corollary by 20‘h4, A(p)
to obtain ([5.12). The argument is very similar to that in Lemma

Proof of (5.12)). Assume, without loss of generality, that |[F[|geo(z1) < 1. We de-
compose as in (5.8]) and write 2€(A+%)h)\75(9) as

a+1 _ _ _ ~
Cy2' [ > 2 N e 27T = )+ D 27N i, (22 (1 - 9))}

m1 </ mo>0
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with X ¢my, XALme € Y and M > 100d. We then bound ||A; o F||2 by a constant
times

(5.25) Y 27mOV=ESOL, 4 Z oM=L+ Y 2N,
mi1>s m1=0 mo>0
where

L= 3 2 2 (27— (D)) Falanel|

£>m1 RED,_ my QEQZ s

Iy = || 32275 e (271

ZZS Q69575
mo) 4t ~ m
I, = || 3202505 G s 272 (1 = oD Y- Folgl||.
{>s Qe

Let m; > s and Q™ ~*(R) be the unique dyadic cube with sidelength oL(R)+mi—s
containing R. Let SR ~%(Q) be the family of all R € © such that L(R) > 0 and
such that Q"™ ~*(R) belongs to Q. Parametrizing j = ¢ — m; the term I,,,, can be
rewritten as

M - .
1> >0 2% o tmm (1= p(D))[fr1R] 2, With fr := Fgm-s(g)-

720 Rem % (9)

We now apply Corollary [5.6) with £ = 0 and note that u(R7"°(Q)) = p(Qj4m,)-
Since HfR||1 < 1, we obtain Im1 < u(Q)'? and thus the first term on the right-hand
side of (| is bounded by C'u(Q)/2, which is a better bound.
For the terms 11I,,, we have s > m;. Changing the summation variable to j =
3d+1
¢—my one can apply Corollaryvvlth k= s—mjy to get I1,,, <2075 1 (Q)1/2
Similarly for I11,,,, changing the summation variable to j = ¢ + my we see that

Corollary [5.6) with # = s + my yields the bound I11,,, < 26+m2*5 Q)12 After
summing we bound the second and third terms on the right-hand side of ([5.25)) both

by 023(3d+1)/4,u,(53)1/2. 0

5.8.2. The case p = 1, r > 2: proof of . Since the inequality has already
been proved (in fact improved) for r < 2 we focus on the case for large r, and by
interpolation it suffices to assume that r > 2 is an integer. We now rely on the
kernel estimates in §3] We prove straightforward size estimates which are close to
an argument used by Conde-Alonso, Culiuc, Di Plinio, and Ou [I3] in the analysis
of rough singular integral operators.

We let Ky = f_l[Zf(%'F)‘)h,\,g o p], the convolution kernel of the operator Ay ;.
From Lemmas and we have the kernel estimates |K;(z)| < 1 for |z| =~ 2¢,
27 Ky(z)] < en27 for |z| < 2%, and 27| Ky(2)| < enlz|™N for |z| > C.2°
We shall only use the slightly weaker bound

(5.26) 27| Ky(z)| > 2N Hy(2)  with Hyp(z) =27 00 oriny,
n>0

where N > d. These favorable L* bounds are crucial for our argument; if we were
to replace 2%hy (o) with x(2°(1 — p)) for generic x € Vs they would no longer
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hold. Assume, without loss of generality, that ||F||so 1) < 1. By (5.26)

o
MoaFllr 327N 0| S8 Hy Y [Follg)) -
n=0 I>s

QEles
Setting G := 204 > -0eq, [Follg the inequality [[AsoF(|lr < 250 ()" follows

from the bound

(5.27) H > HppxGos

I>s

. Sr(Q).
Since r is an integer we have that the left-hand side in (5.27)) is bounded by

(5.28) oY / /H Hen(e — ) Grmsy)] ded(y..o7).

(20>2 1
G(Rd
Observe that if there is an z such that [[i_; Hy, n(x — y) # 0 then we have
|yt — it < bttt for i = 1,...,7 — 1. In this situation we also have the identity
Hy, n(z —y') = Hy, n(y —y' ) for 1 <i<r—1;in addition, [ Hy, ,(z —y")dz < 1.

We use these pointwise estlmates and integrate in x first to bound (5.28]) by a
constant times

r—1 i
(5.29) /(Rd)TZGel_s(yUH[ Z Hyyn(“4) Gty sy g
01 =1

7,+1 =0

For fixed ¢, with 1 <i < r — 1 we have

Z Hyyn(C42) Gy sy ) dy' ™!
; £i11=0
yz+leRd i+1=
£;
< 9—(litn)d / Z 9(lit1—s)d Z |FQ(yz+1)ﬂQ(yz+1)|dyz+1
|yitl—yi|<2bitntl tiy1=0 QEQe,; 4y —s

L;

< 9—(titn)d Z Z Q) / |FQ(yi+1)| dyi—H <1
£i+1=0 QEQy; | —s
dist(Q,y*) <2 Tt

where we used that the cubes in 9 are disjoint and the Fg have normalized L!
norm. Thus integrating in (5.29)) first in y", then in y"~!, and so on, we obtain

HZHM*G@ s / > Gosl

{>s 1€Rd 01

Sy Y QI < w9)

gl Qeﬁllfs
and ([5.27)) is proved. This finishes the proof of (5.13)). O
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6. SPARSE DOMINATION, PART I

Here we prove Theorem Without loss of generality, we will assume that
q < p'; the less interesting sparse bound (p,q;) with ¢; > p’ would be implied by
Holder’s inequality from any (p, ¢) with ¢ < p’. In what follows we assume that n,
is a fixed positive integer as in ; in particular, this implies n, > 5. Implicit
constants are allowed to depend on m,. Define the modified functionals (allowing
averages over triple cubes for the functions |f2|?)

(6.1) MG (frs f2) = D 1RIUM) g f2)s0.00
Qe6

(6.2) Ay (f1, f2) = SUP A o (f1, fa)-
G'ysparse

We use, for a cube S € D, the notation Apj[;*(fl,fg) if we require that all the
sparse families featuring in the sup consist of cubes contained in S. Recall the
definition of ¢.(p, po, 7o) in (2.1). Fix p and let

(6.3) Ty = haye(p(D)).

Definition 6.1. Let d > 2, (d+3) < po < ﬁd’l, Po <16 < gﬁpg and assume that
Hyp(po, o) holds. Let 1 < p < po and q«(p,po,r0) < q¢ < p'. Forn =0,1,2,...
let Un) = Uy 4(n) be the smallest constant U such that for all bounded measurable

functions f1, fo with compact support and for all S € © with no < L(S) < no +n,
1Y Tulfils], folss)| < UASE(f1, f2)-

L<L(S)—no

The convolution kernels of Ty are Schwartz functions and therefore it is immediate
that Uy 4(n) are finite for all ¢ < p/. Our main task will be to prove for that
sup, Up 4(n) < oo for p and g as above. This will be done by induction, by proving
that there is a constant C such that for n > 1

(6.4) U(n) < max{U(n —1),C}.
The main iteration step in the sparse domination argument has the same form as
n [22].

Proposition 6.2. Let QST?)I) < po < d%‘jl, Po < 1o < gﬁpg and assume that

Hyp(po, o) holds. Let 1 < p < po and q«(p,po,r0) < q < p'. Then there is a
constant C' > 0 such that for every S € D<o and every bounded f; : S — C,
fo : 35 — C, there is a collection W of disjoint dyadic subcubes of S with the
properties

(6.5) U el=a-v1si

QeW

(6.6)
L(S)—no L(Q)—no
| (Tefi, 12 < CISK syl hodasy + . | D (Tilfilal folse)|

=0 QEWs,, (=0
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Proof of Theorem[2.3, given Proposition[6.9 In order to prove we fix n > 1
and let S € ©, 44. Let € > 0. Let 20 be the family of dyadic subcubes guaranteed
by Proposition such that holds. Note that n, < L(Q) < no + n for all
Q € W>,,,. Therefore, by the induction hypothesis, for each ) € 2>,,, there is a
v-sparse family &¢ of dyadic subcubes of @) such that

L(Q)—no
16
| > (WALl fls)| < U - DAZF (1, f2) +e.
£=0
Setting Eg := S\ Ugeqy @, the collection & = {S} UUgeqr S is a y-sparse family
of dyadic subcubes of S and we have

IS1(f1)sp(f2)asq + D Apg (f1, f2) < AP (fis f).

QeW

Since € > 0 was arbitrary we deduce .

Finally, if f;, fo are compactly supported L°°-functions we choose N so that
27+ 05upp (f1), 2" O%upp (fo) € [N, N]% By the properties of the Lerner—
Nazarov [27] dyadic lattice ® and by Lemma there is a cube § € © which
contains [—N, N|? such that [(Tyf1, fo)| = (Te[f1ls], fol3s)| < €27¢ for sufficiently
large ¢. Since € > 0 is arbitrary, this together with the main estimate , noting
from that hy = > y2 hae, yields the bound

[(hag) (p(D)) f1, fa)| S A (f1, f2)-

A well-known argument relying on the three lattice theorem in [27] allows to replace
A** by the more standard maximal sparse form A* (see e.g. [I, Ch.4.2] for details).

Since Ro® — ha@p) (p(D)) satisfies a standard Sp(p,p) bound for all p > 1 (see the
beginning of we obtain the desired Sp(p, ¢) bound for Ré‘(p ), O
Proof of Proposition[6.2, Let a = (f1)g, and Q@ = {z : Myr(|f1]?) > 110?0?&73},

where My denotes the Hardy—Littlewood maximal function. Let 20 be the collec-
tion of Whitney cubes of € satisfying that Q2 = UQGQUQ and

(6.7) diam(Q) < dist(Q, ) < 4 diam(Q)

for all @ € 20; see [31, Ch. VI.1]. Since |©| < (1 —~)|S], condition (6.5] follows.
Define next ¢ = filge and by = filg for each ) € 20. By the standard
Calderén—Zygmund properties,

lgloe Sa  and /Q bol? < a?|Q).

Let

By= Y b, Bj= Y by j>0

QeW<o QeW;

With these definitions we have fQ |B;P < oP|Q| whenever @ is a dyadic cube with
L(Q) = j = 0; note that we also have [, |B;| < a|Q|.
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Let 75 = SSH97" T, Then (TS f1, fo)| < I+ IT + ITI, where
L(S)—

= (TS )1, 11=|( Z Tl Y BLR)
0<j<l+no
L(S)—no
HI:K Sy Bj],f2>‘.
/=0 j>l+no

FEstimation of I. Hyp(po, o) implies VBR(p, p) and together with Lemma this

implies || T¢||Lr—rr = O(1). Since [|hyp)ellc = O(2=*®)) and |%D — 3> \% — 3| we

get | Tyl pasre < 275¢ for some e > 0, by interpolation. We can also apply this for
the adjoint operators; indeed T (hy, (p(D))* = hy«(p(D)) where p is the Minkowski
functional of —§2. Hence || T} ||ra—ra < 274, Therefore

~

I = llgls, (T5)" f2|<a/|TS Y fal S alSPYS T fall

/=0
(6.8) <alsVa( [ 1510)" <1810, Fo)ss
35

Estimation of I1. We estimate IT <} - Il where (with s A 0 := max{s,0})

L(S)—no

‘< > TB. saf2>‘

£=sN0
First assume s > 0. We use Proposition with r = ¢’ and Q = W>1. Then
L(S)—no

| S w2t 3 ool
l=s+1 QEW
<27%4 " P Z a?|Q| < 2_55qlaq/|5\.
QEW
For the term with ¢ = s we use Proposition with r = ¢’ and Q = Dg; note that

for R € Do and fr := Y gcamgcrbe we have [, |fr[P < oP|R|. In ([A.5) we set
ugzliffzsandug:()foré#sandobtain

Iolly 5 277 52 | 32 vl 527 3 el
Re®y QW
QCR
S22l Ny " aP|Ql S 277 al| ).
QEeW

Finally, the terms with —n, < s < 0 are treated by part (ii) of Proposition With
n < ne (so that the polynomial growth of the constant in n is irrelevant). We get

L(S)—no q
H Z Tng s /Nno Oéq ‘S|
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Combining these estimates we get for all s > —n,

L(S)—no L 1/q
o< Y T Ll S minz el ([ 1n0)
£=sN0 1 35
(6.9) S 278K f1) s (f2)35
by the definition o = (fy) sp- After summing in s > —n, we obtain
(6.10) 1T S 1SK{f1)sp(f2)35,4-
Estimation of ITT. Write 11T = |35, > 4" <T€[ZQemj bgl, f2)| and estimate
IIT < ITlpain + 11y where
L(Q)—no
IImain = Z ‘< Z Tﬁ[fl]lQ]af2]13Q> )
(6.11) b
IIIerr - Z ‘ TE flllQ] f21l 3Q)C>‘
QeW =0

Note that I11 4, is the last term in . By the estimations for I and I1 we are
done if we prove the stronger estimate

(612) —[IIerrN |S|<f1>5’p<f2>351

since by Holder’s inequality (f2)5¢; S ( f2)357 7
To see (6.12)) we use Lemma [3.5| and estimate I11e, by

/ AW / o=l o) ey
QEQB

$3 3wy [

1
m=no QEW,, e

<a22 (m+n)(N—d) Z /|f2|<a/ 1 fol

REDman
which gives (6.12)). O

7. AUXILIARY ESTIMATES FOR THE PROOF OF THEOREM

We consider multiplier transformations acting on families of functions F' = {fg},
with fq : R? — C in LP, indexed by cubes @ € D>g. These functions are assumed
to belong to weighted ¢"(L”) spaces V,, of vector-valued functions, with norm

> (i1 /T
(7.) 11, = (3 32 26 Pl

7=0 QE@j
In the present paper we take r = 2. The following result is equivalent with

VBR(QST;), 2). Fix Ay = as in Theorem and let

2(d+1)

(7.2) T, of =l o(p(D)) .
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Lemma 7.1. Let p = QST;). Then for 0 < v < 4n,,

é-i-

14
(73) qum, > fal||, S Nl Fllv, .

Jj=0 QeD;

for any bounded sequence u = {ug}32,. Moreover,

(7.4) (ZHTA*, Z Z fall)" £ 1F I,

Proof. The inequality ([7.4) is a formal consequence of (7.3)); this can be seen by
taking uy = r¢(t) where the r; are the Rademacher functions, and then averaging in
t. Following an idea in [33] we may split, for any choice of j,

Th.0 = 27wy ;(p(D))Y;(p(D)),
where

9(i—0)As 2% hy. 4(0)

we,j(0) = T 0,00) with (o) = (1 +2%(1 — 9)*)~%.

We change variables ¢ = j +n. Using the estimates in Lemma with large N1 we
obtain for each n > —v and for ¢ = p(§) € supp (x),

o, in{ (201 — g[)Net, (1 4 2771 — o)~ N1}
(1+2%]1 — o)~

|wjtn,i(0)] S 27

and from this

SUP Z |wjnj(p(€))] < C27"
72>0A—n

with C' independent of n (only dependent of |v| < n, which is fixed). Hence with
g] = ZQE@j fQ

l+no
H ZUETA*,K Z QJH H > 2_]/\*uj+nwj+n,j(p(D))ﬁj@(D))gjH2
n=—-no j>0A—n
< —nAx 2lo—7F A« 2 1/2

(75) S (S Pl o 0)g )

n=—neo §>0A—n
For j > 0 we have by (3.17))

—j jd( 7—1
2 0,pDNgille 5 (3 276V s0l2)
QeD;

and ((7.3) follows by combining the two previous displays. O

In order to prove Theorem for (%, %) on the open edge connecting (2(d+1)’ %)

with (3, 2&131)) we need a refined bilinear variant of Lemma
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Let u € £*(No), Fi = {figlenso: @ = 1,2, Lijijo 2 0, A = gy and
0,9" C D>¢. Define

(7.6) TEs (L Fo) = (Tl Y fialels Y. hela):

Qe Q'eqj,

Next define a family of bilinear forms, depending on parameters 0 < vy, 19 < 4n, by

(7.7) I o (F1, Fo,u ZW Z Z Fg{g?(Fl,Fg).

>0 0<jy<b+v1 0<ja<lt1

Proposition 7.2. Let Q C D>, Q' C D> each be disjoint families of cubes such
that

(7.8) dist(Q, Q") > 3 diam(Q’)

for all (Q, Q") € Q x Q' satisfying L(Q') > L(Q) + 4. Then for (l %) on the closed

edge connecting (%, 3) with (3, g(ddfl))

(7.9) | L0 (F1, By u)| S llullscl Py, | F2llv, -

We need an auxiliary lemma that states that under the separation condition (|7.8|)
(which is common in Whitney type decompositions) the terms I' ;, ;, are negligible
when j; < ¢ < jo. Here we have essentially no restrictions on p, q,r.

Lemma 7.3. Let Q C D>, Q' C D>¢ for which the separation condition ([7.8) is
satisfied. Let 1 <r < oo, 1 < p,q <oo. Then for any N >0, 0 < j1 < £+ 2n,,
j2 >0+ 3no,

(7.10) ITE52 (R, Fy)| S 272N || By, [ Pally,

Proof. Note that if j; < £+ 2n, jo > £+ 3n,, Q € Q;,, Q' € Q;-z then jo >
4 4+ j1 and thus holds by assumption. This separation condition implies
dist(2047Q, Q') > V/d(272~1 — 20tmetl) > 972=2 > 904210 5o that the first esti-
mate in Lemma applies. That is, if Ky-y = F '[hy,s0p] and 2 € Q', y € Q
then |Ky« ¢(z — y)| Sny |z — y|™™, and |z — y| ~ dist(Q, Q). This yields for fixed
71, j2 the bound

o
Z ).
(711) [PEP(FLFo)| S ) 270 37 1 o
m=0 Q’Gﬂ;2

with 77" . o = /Q, |fo,0r ()] / |f1.0(y)| dy da.

QEQ] 2]2+m 2<
dist(Q,Q’)<272+m+2
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Now,

N T S27 Y el > 27| frollp
ref’

Q’GQ;Z QEDjlzdist(Q Q’)zgjg-‘rm

d d
< 2727 Z ‘|f27Q,||q< Z o1 57 Lol ) "oliz+m—j1) %

Q/ED;2 Qe dist(Q,Q)~272+™m

Q

1 1
4 o jpd(2— 1~ 1)jpd(l-1 "\ ’
< g g )+ird(: ( 3 HfZQ/H;) ( > Hfl,Q”;>
Qe @€9;,,Q"eR;,
dist(Q,Q")~272+m
1

S 2t (S G gl,)) (X 2Pl elld”)

QGle QEQ;Q

U

where in the last inequality we have used that for any @ € Q;, we have
#{Q' € Q) : dist(Q, Q') ~ 221} & 24,
The claimed bound now follows immediately from (7.11)) with N; > N +d. O

Proof of Proposition[7.9. First consider the case p = p; = 2(67_’—_?); q=q = 2. We
0 _
let G* =3 0<jy<tiom ZQ’GD;Z f2.0' 1y, and observe that

(7.12) FQ,Q,(Fl,FQ,u):Zu@<TM[ 3 f17Q]1Q]7Gﬁ>.

>0 0<g1 <+,
Qeﬁjl

Split

(7.13) G'=G - My —Ey, with G = Z fo.or gy,

Q/GDIZO
{+4n,
M, = Z Z fo.olg, E¢i= Z Ja,olg.
Jo=l+1o+1 Q’@J;-2 Q’EQ;“_MO

We then have
FDD/—Fﬂug/ FS]S,_FSI"E/
where Fgub,(Fl, Fy,u), I'Y 4 (F1, Fo,u) and I'§a (F1, F,u) are defined as in (7.12)

but with Gf replaced by G, M, and Ey, respectively. By Lemmal7.1{and the Cauchy-
Schwarz inequality we see that

o
Ff)ubf(FbF%u):‘ZW<TA*,£[ > fl,Q]lQ]vG>‘
£=0 0<j1<l+v1,
QEle

S lulloollErllv,, 2l1Gll2 S lullooll Erllv,, 2 1F2 (V2 2
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where the last inequality uses the disjointness of the cubes in . Next we apply
the Cauchy-Schwarz inequality with respect to x and ¢ and get

0
‘ Sng’ F17F2’U)‘ = ‘ZUZ<TA*,£[ Z fl’QﬂQ],Mg>‘
=0

0<j1<l+v1,
QEle
> 2y1/2 , 2 1/2
S(ZWPHTAM[ > fLQ]lQ]HQ) (ZHMZH%>
/=0 0<j1 <l+v1, /=0
QeQ;,

S ulloo1F1 v, o 1 F2lvs

where in the last inequality we have used Lemma and the square-function esti-
mate (3202, [|Mq]|2)/? < | F2[[y, .. For the terms involving the Ey we use Lemma
[.3] and obtain

IS (F1, Fo,u)| = ‘ZW<TAM[ Z fLQILQ]’EZM

/=0 0<7J1 <£+V1,
QEQ;,

o0
—ioN
SO > D 2 ullecl Filly,, ol Falives S lullooll Fllv, o [ F2llv,.,-

=0 0<j1 <l+v1 joa>l+4ne

Combining the estimates for S‘g,, I S“S, and I Q a we get

(7.14) | Ta,0 (F1, Foyu)| S Hlullscll Erllv,, 1 F2 ]l vss-
Next observe that
Tao (Fy, Fa,u) = Ty o(Fy, Fy,w),
where I is the bilinear form associated with the domain —. Hence we get

(7.15) |Fa.0 (F1, Fo,u)| S lullooll Frllvy s | Fallv,, -

It is straightforward to show the interpolation formula [V, 2, Vg, 2]l = V, 2 for the
Calderén complex interpolation spaces with (1—60)/q1+60/q2 =1/¢, 1 < q1,q2 < 0.
Thus the assertion ([7.9) follows by complex interpolation of (7.14)) and (7.15). O

8. SPARSE DOMINATION, PART II

We now prove Theorem |1.5, We have A,

and it only remains to prove

(d+1)
the Sp(p, q) bound for (%, %) on the closed line segment connecting ( &jl), 3) and
(%, 72&131) ); note that the points on this segment satisfy % + % = %- As the point

d+2 d+2
(3 2(d+1)’ 2(d+1)

bounds, assume that 1 (ﬁﬁ) As before TA* ¢ =hx, ¢(p(D)) as in (7.2).

Setting up an 1nduct10n argument as in §6| one reduces the proof of the sparse
bound to the following proposition which contains the main iteration step.

) is the center of this line segment we may, by symmetry of sparse

. Then there is a constant

S —C, fo:35 = C, there is

P 2(d+1 2(d+1
Proposition 8.1. Let (d+3) <p< (d+2)’ }1 %
Ji:

C > 0 such that for every S € D<o and bounded

*B\H
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a collection 20 of disjoint dyadic subcubes of S with the properties

(8.1) U elsa-ms.
Qcw
(8.2)
L(S)—no L(Q)—no
‘ > <T,\*,zf1,f2>‘ < OIS sp(f2)ssat D ‘ > (Tadlfilgl, f2150)]-
=0 QEW>,, (=0

Proof. Let a1 = <f1>S,p7 g = <f2>357q and let Q = Q7 U Qo where
0 = {z: Mur(|fil") > 1220k}, Q= {2 €35 : MyL(|f2|") > 1™%ad}.

Let 20 consist of the subcubes of S which are Whitney cubes of 2. Since |Q| <(1-

S|, (8.1) immediately follows Observe that the pair of collections (20, 20) satisfies
the separatlon condition . Indeed, let @, Q" € 2 such that L(Q') > L(Q) + 4,
ie. diam(Q') > 16 d1am(Q) There is z € OF such that dist(z, Q) < 4diam(Q) <
1 diam(Q’) and therefore

dist(Q, Q') > dist(Q', ) — 4 diam(Q) > diam(Q’) — 4diam(Q) > 2 diam(Q’),

from which holds. Below we will also use that if Qg is the collection of ) € D

such that @ contains a cube in 20 then the pair (Q, Q) := (Qp, Wso) also satisfies

(7.8)). This is shown by a similar argument. Namely if Q' € 2, with L(Q ) >4

and Q € Qp, Q € W with Q C Q then by the above argument dlst(Q Q) >

3 diam(Q’) and thus dist(Q, Q') > 3 diam(Q’) — diam(Q) > (3 — &) diam(Q’).
Define g; = filge and b; g = fillQ, for : = 1,2. Then

ol Sai [ ol <atiQl [ ol <ol
Q Q
For j >0,:=1,2, let
QeW<o QeW;

L(5)

Setting again 7° = 3,0/ "° T}, ¢, we have

TS f, )| < T+ 11+ 111

where
L(S)_ E'i‘no

IT = ‘< Z”O TA*,E[Z Bl,j]7f2>’
=0 =0

I = ‘<7-5917f2> )

and
L(S)-

1 = |( S n Y B f2)|
=0

j>l+ne
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Below it will be advantageous to also use the definitions, for Q € ®>¢ andi =1, 2,

bi,Q if Q € W,
(8.3) B9 ={0 if Q €2, L(Q) >0,
Q'cq

With these definitions we have [ \BQ )P dz < af|Q), for i = 1,2 and any Q € D>o.

8.1. Estimation of the terms I and I1I. We get |I| < |S|aiag by exactly the same
argument as used in (replacing « there by «y).

Regarding 111, the estimation is identical to the estimation of I11 in the proof of
Proposition [6.2l We bound IT1 < IT1yain + 11 Ie, with the definition of these terms
in ; the main term matches the second term on the right-hand side o

and the error term is as before estimated by [S|(f1)g,(f2)35, using Lemma

8.2. Estimation of 11, in the case p = 2(d+31). This is very similar to the bound for

the term 11 in the proof of Proposition except that now we use the improved
bound of Lemma [7.I] for ¢ = 2. By Lemma

_no £+’I’Lo 1
_94id(1_1 2
H Z TA,JZBLJH S (32X G By )
721 Qe;
1-2 % 1—2 %
Say 2( X 1BRIE) s (od XD 1Q1)T S alsI SIS s,
QEW=o QeW~o
Moreover,
L(S)—no . - .
2 — 5 2
| X memuol, = ( 30 18715) s ( 3 1871)
QeDo Q€eDo
1
1-2
Sop H(of Y S Q1) Sl <181,
Q'EDy QEW

QCcQ’

Combining these two estimates and applying the Cauchy-Schwarz inequality we
obtain

g-‘r'flo

II < H Z Ty, Z Bl,jH (/ | f2| )1 S ISI(f1)sp(f2)35.0-

8.3. Estimation of I1, in the case Sl:;) <p< 2((;1121)' We now split I1 further as
11 <11y + Il + II3 where

(S) No l+no L(S)—’I’Lo l4+no l4+4ne
=Y T Bule)|, k=] Y (DY Bl Y Bl
(=0 7=0 =0 7=0 7'=0
L(S)—no l+no

Z (Tr.. ZBLJ > Buy)|

3/ >04+4no
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lLror S

8.3.1. Estimation of II;. Since now in the given range we have ||T), ¢
27t=(P) we obtain by Hélder’s inequality

Ih < Z e HZBlJH loathr 5 ([ 157)"( [ 1P)""

< |S|1/p<f1>5,p|8\1/p ar SISHF) sp(f2)s54

8.3.2. Estimation of I15. Now l a+2 1 e split 11, < ZZ 1 I12; where

= a1
L(S)—no £+no l+4n, L(S)—no {+4dn,
I, :‘ Z <T,\*,e[z By ], Z BQ,j’> , 1129 :‘ Z <T)\*,€[B1,O]7 Z B2,j'> ;
=0 j=1 =1 =0 j=1
L(S)=no l4no L(S)—n
I3 = ‘ > <T/\*,e[z Bl,j],B2,o> o Ila= ‘ > <T)\*,€[Bl,0]732,0>‘-

=0 j=1 =0

We first consider IT5; and apply Proposition [7.2} with 11 = n, and vo = 4n,,
letting Q = Q' be the family of all cubes in 2~ so that the separation condition
(7.8]) is satisfied. We then obtain

1y 5 (30 22 HOG D g2) (30 2 2HOU Dy 0 2)

QeW QeW

D=

and write the right-hand side as I51(p)II21(q). We have

1(p) S (3 272H @Gy ,QII)
QeW

S (X 2O Diagiar) < (X 1)) S I8z

QeWw QeW

In exactly the same way we obtain I11(q) S |S|1/2a2 and hence Il 1 < |S|aqas.

The expressions Il 2, 1153 and Il 4 are bounded similarly. For 1155 we let Qg
be the family of dyadic unit cubes @ with the property that ) contains a cube in 20,
and Q' = W~ (. As observed in our discussion at the beginning of the proof we have
the separation condition in this case. Applying Proposition to I'ny ., We
get

5 (3| 3 o) (X 2O Diagi2)’
Q'eW

QEeDy WGQB
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which we write as ﬁgg(p)[]gg(q). Note that ITz2(q) = IT21(q) < |S|Y2aq. More-

over,

o s (X (X Iouwl)’)’

QeDy WeW
WwcaQ

ca( T (X)) sa( XX W) sals

QEDy Wew QEDy Weﬂn
wcQ cQ

and hence IIzo < ﬁgg(p)]]gg(q) S ajas|S|. For 1153 we apply Proposition

~

with Q = 2~ and with Q being the family of those Q € Dy which contain at least
one cube in 2. Likewise for I, 4 we use Proposition with the families 9,9’
both consisting of those QQ € D¢ which contain at least one cube in 20.

8.8.8. Estimation of 11s3. Here we use Lemma and the assumptions on p, g are
irrelevant. We can write I3 < I3 + I35 with

L(S —MNo Z+no

]]371:‘ Z Z Z Fﬂoggz Bl,Bg)‘

— J1=1 jo>l+4n,
L(S)—no

1132—’ Z Z Fg)g/z Bl;BQ)’

=0 jo>l+4ne

where T¢/57 is as in (7.6). Then [Tg/5”(By, By)| < 272V Billy,, || Bally,, and

since we trivially have »_,. Zﬁr:"g D ia>ttane 272N = O(1) we see that

113,1,§< > 2—2L(Q>d(%—%>HbLQHg)m( Y o @G- %Hbqu)

QeEW~o Q' eWso

Arguing as for the term I/, this immediately leads to |I13:] < |S|aiog. Similarly

el 5 (3 | Z b )”2( S o G Dy 002)

Q'eWo

I

and arguing as in the estimation of 15 we obtain I3 < | S|t ca. O

An open problem. It remains open whether for any A € (0 4=l \{2 d+1 } the sharp
Sp(pa, ¢n) bound with py = d+1+2)\ and - = (dﬁ)lm _1 holds (and then also the

sparse bounds at the top of the trapezoid /2\g(A)). If in the analysis for the terms 17
above we replace the Cauchy-Schwarz inequality by Holder’s inequality we see that

we would need a sharp version of Lemma with Vlfi 4 L%-boundedness for
N

a disjoint family Q of dyadic cubes, where V. denotes the closed subspace of V,,
consisting of all F' = {fg} € V,,» such that fo = 0for Q ¢ Q. The latter is analogous
to verifying an endpoint version of VBR(p, r) where one allows 1 = £ (1 — 7) and
assumes that the f; p are zero if R ¢ Q. We do not know Whether such endpoint
inequalities hold for r # 2.
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9. CONSEQUENCES FOR WEAK TYPE INEQUALITIES WITH A; WEIGHTS

We record some consequences of our Sparse domination results on new weak type
weighted inequalities for R when A < 951, Frey and Nieraeth [16] (extending earlier
results in [5]) formulated general theorems about weak type weighted inequalities
for operators in Sp(p, q), satisfying certain A; and reverse Holder conditions. Recall
the definitions of the Ay, RH, characteristics for a nonnegative measurable function,

i.e. a weight w:
: -1
(0.1) (w]a, = Slép ()[w(x) d:z:) (less mfIEBw(x))

[wrn, = s%p( ){B w(x)? da:) 7 ( )[B w(x) dx) o

if o € (1,00). The relevant class here is A; N RH,, for which both characteristics
are finite; we recall that w belongs to this class if and only if w” € A; [2I]. By
[16] Theorem 1.4] operators in Sp(p, q) map LP(w) to LP*°(w) provided that w €
Ay NRH, with o = (¢'/p)' = More specifically,

P
) 141 1 1
92) ||Tr|m<w)w,oo(w) < I ot /P L P ol oy,
where [v]4,, = supg(v ~! [3 Mvlg](x)dz is Wilson’s As-constant [36], in

which the supremum is taken over all balis For convergence results it is important
to note that the A;, A, and RH, characteristics satisfy translation and dilation
invariance properties, in the sense that the characteristics for w(- — h) and t%w(t-)
are the same as the corresponding characteristics for w. In two dimensions Kesler
and Lacey use to obtain the weighted weak type (pA,pA) inequalities for R)
when w € A1 "RH, and o > 47%% = 3+2/\ Using Theorems |1.2| and [1.5( we can

lower the reverse Holder exponent by a factor of 4.

Corollary 9.1. Letd=2,a>0,0< A< 1/2, p) = ﬁ, oo(N\) = %. Assume
that o > oo(A) if A € (0,3)\ {3} and 0 > 0o(A) = 5 if X = . Then for all
we AN RH,,

Ry IP (w,R?) — LPV(w, R?)
with operator norms uniform in t.

Note that when A — 1/2 the reverse Holder exponent tends to 1 which is to
be expected since no reverse Holder condition is needed in Vargas’ result [35] for

p =1, A\ =1/2. Similar results can be formulated in higher dimensions for o,(\) =

w and a partial range of A\, depending on the knowledge of sharp LP — L”"

for the Bochner—Riesz operator. In particular, in view of Remark this currently
holds for m <A< d L which suffices to establish Theorem
9.1. Proof of Theorem H We only prove the case p > 1 since p = 1 is Vargas’

result [35]. Let o, = ao(%) = 453 > 1. Tt is well known [I2] that every A;

weight belongs to RH,(, for some o(w) > 1; without loss of generality we can
assume 1 < o(w) < ox. Let p1(w) :==1+ gﬁ(l - Tw)) and 1 < p < p1(w). By the

preceding discussion, we have that Ri‘(tp ) maps LP(w) — LP*°(w) provided
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(i) o(w) > ao(A(p));
(it) 5 < Alp) < 3

On the one hand, the condition o(w) > 0,(A(p)) can be quickly seen to be equivalent
-1 d—1/ 2d
4do(w)—2(d—1) Eli(“"'_

d—1
—=—) = p1(w), which holds by assumption.

o(w)

On the other hand, since o,(A(p)) < o(w) < oy = ao(%) and o,(\) decreases
d—1

as a function of A, we have \(p) > 551y Moreover, since p > 1 we have a(A(p)) >

o(A(1)) = o(%51), which implies A(p) < 452, concluding the proof of (ii).

By the above-mentioned invariance properties and (9.2)), the operator norms are
uniform in ¢. Moreover, since the usual approximation of the identity results with
L' kernels hold in LP(w) with A; weights one can use routine arguments to see that

limy oo Riff)f = f in the LP*°(w) norm, for all f € LP(w). O

to < A(p), which in turn is equivalent to the condition p <
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