DIMENSION INDEPENDENT BOUNDS FOR THE SPHERICAL MAXIMAL FUNCTION ON PRODUCTS OF FINITE GROUPS

BEN KRAUSE

1. Abstract

The Hardy-Littlewood maximal operators (ball and cube) are perhaps the most fundamental in Euclidean Harmonic Analysis; celebrated results of Stein and Strömberg and Bourgain establish the following dimension-independent bounds:

Theorem 1. For each p > 1 there exists an absolute constant A_p independent of dimension so that

$$\|\mathcal{M}\|_{L^p(\mathbb{R}^N) \to L^p(\mathbb{R}^N)} \le A_p.$$

Here, \mathcal{M} is either Hardy-Littlewood maximal operator.

In this talk, we will extend these results to *spherical* maximal functions acting on cartesian products of cyclic groups equipped with the Hamming metric:

For $m \ge 2$, let $(\mathbb{Z}_m^N, |\cdot|)$ denote the group equipped with the l^0 (aka Hamming) metric,

$$|y| = |(y(1), \dots, y(N))| := |\{1 \le i \le N : y(i) \ne 0\}|,$$

define the L^1 -normalized indicator of the *r*-sphere,

$$\sigma_r := \frac{1}{|\{|x|=r\}|} \mathbf{1}_{\{|x|=r\}}.$$

and the maximal function

$$M^N f(x) := \sup_{r \le N} |\sigma_r * f|$$

acting on functions defined on \mathbb{Z}_m^N . Here, convolution is defined

$$\sum_{y \in \mathbb{Z}_m^N} f(x-y)\sigma_k(y)$$

with subtraction occuring bitwise $\mod m$.

Each maximal function is bounded by the operator $\Sigma^N f := \sum_{r \leq N} |\sigma_r * f|$, which has

$$\left\|\boldsymbol{\Sigma}^{N}\right\|_{L^{p}(\mathbb{Z}_{m}^{N})\to L^{p}(\mathbb{Z}_{m}^{N})} \leq N+1$$

in particular, bounding M^N with the dimension of the group is not hard to do at all; we will use semi-group techniques and Fourier analysis to prove the following dimension-independent estimates:

Theorem 2. For all $m \ge 2$ and p > 1, there exist absolute constants $C_{m,p}$ so that for each N

$$\left\|M^{N}\right\|_{L^{p}(\mathbb{Z}_{m}^{N})\to L^{p}(\mathbb{Z}_{m}^{N})} \leq C_{m,p}.$$

UCLA MATH SCIENCES BUILDING, LOS ANGELES, CA 90095-1555, USA *E-mail address*: benkrause23@math.ucla.edu

Date: November 13, 2014.