New Improvement to Falconer's Distance Set Problem

Yumeng On University of Pennsylvania

Madison Lectures in Harmonic Analysis ⁵ 14 2024

INTRODUCTION

· Phenomena: the larger a set is, the richer geometric Structure it should have. Size of a set: cardinality measure dimension. Geometric configurations: distances graphs areas directions · Our focus: fractal sets in 1R^d. distances. Compact $E\subset \mathbb{R}^d$. Distance set $\Delta(E) = \frac{1}{2}|x-y|$: $x \cdot y \in E$ I Pinned distance set $\Delta_{x}(E) = \{1x-y1: yE\in Y: xF\}$ Falconer Distance Set Conjecture. Cpt $E\subset \mathbb{R}^d$. $1 \geqslant 2$. If dim $H(E) \geqslant \frac{d}{2}$. then its distance s et satisfies $|\Delta(E)| > 0$. (i.e. positive 10 Lebesgue measure) · "1 is sharp. (lattice like construction) · "d>2" is necessary. (positive result impossible in ID.)

BRIEF HISTORY

\n- \n**Partial progress** has been model over the droodes:\n
	\n- \n "If
	$$
	\lim(E) > \frac{d}{2} + \beta
	$$
	, then $|\Delta(E)| > 0$ \n . (Conj : $\beta = 0$)\n
	\n- \n Thelower (1915): $\dim(E) > \frac{d}{2} + \frac{1}{2}$ (The gap is merely $\frac{1}{2}$.)\n
	\n- \n By $\text{bound}(1919) : d = 2$, $\lim(E) > 1 + \frac{d}{2}$ \n
	\n- \n By $\text{bound}(2^{o_0}S) : d \ge 2$, $\lim(E) > 1 + \frac{d}{2}$ \n
	\n- \n By $\text{bound}(2^{o_0}S) : d \ge 3$. $\lim(E) > \frac{d}{2} + \frac{1}{3}$ \n
	\n- \n By $\text{bound}(E) > \frac{d}{2} + \frac{1}{3}$.\n
	\n- \n By $\text{bound}(E) > \frac{d}{2} + \frac{1}{4}$.\n
	\n- \n (But $\text{Count} \cdot \text{Deschild} \cdot 0$, $\text{Wang} \cdot \text{Wilson} \cdot \text{Blang} \cdot 0$)\n
	\n- \n (But $\text{Count} \cdot \text{Deschild} \cdot 0$, $\text{Wang} \cdot \text{Wilson} \cdot 0$)\n
	\n- \n (But $\text{Count} \cdot \text{Deschild} \cdot 0$, $\text{Brown} \cdot 0$)\n
	\n- \n (But $\text{Count} \cdot \text{S} > \text{check} \cdot 0$)\n
	\n- \n (But $\text{Count} \cdot \text{S} > \text{check} \cdot 0$)\n
	\n- \n (But $\text{Count} \cdot \text{S} > \text{check} \cdot 0$)\n
	\n- \n (But $\text{Count} \cdot \text{S} > \text{check} \cdot 0$)\n
	\n- \n (But $\text{Count} \cdot \text{$

BRIEF HISTORY

. The recent distance results actually hold in a strong form: If dimes $\frac{d}{2} + \beta$. then $\exists x \in E$ s.r. $|\triangle_x(\Xi)| > 0$. $t(Pccou: \Delta_{\mathbf{x}}(\epsilon) := \begin{cases} 1\mathbf{x} - \mathbf{y} & 1: 9 \in \epsilon\end{cases}$ is the pinned distance set.) \rightarrow The pinned problem was long considered significantly harder. Peres-Schlag (2000): dim $(E) > \frac{d}{2} + \frac{1}{2}$ Lin (2018): an L identity that implies that the key utermediate estimate (Weighted Fourier restriction) leads to not only the fun, but also pinned distance result. \Rightarrow Following Lin. all the previous records hold for pinned distance. Also of interest - How does dim $\Delta(E)$ or dim $\Delta_{\kappa}(E)$ depend on dim E ? s structure of \triangle (E) or \triangle x(E)?

MAIN RESULT

Theorem (Du-O-Ren-Zhang. 2023) $E\subset \mathbb{R}^d$, cpt , $d>3$. If $dim_H(E) > \frac{a}{2} + \frac{1}{4} - \frac{1}{8d+4}$ Then 1×65 S.t. $1 \Delta_{\kappa}(5)$ | > 0 . Where $\triangle_{\kappa}(\epsilon) = \{ |x-y| : y \in \epsilon\}$ denotes the pinned distance set. Finally more than half way there! (The gap is now $\leq \frac{1}{4}$.) $-3D + 9$ ot alread of 2D. (unusual even in discrete case) Our strategy also leads to improved lower bound of dim_H ($\Delta_X(E)$). For example a special case dim $E = \frac{d}{2}$. $\frac{1000 \text{e} m}{x}$ = $x \in E$ s.t. dim_p (Δx (E)) <u>d +2</u> 2(d+1) Recovers previously best known in 3D Shuerkin Wang New in 4D $+$ (Previous best: $\frac{1}{2}$, falconer . A key new ingredient: Ren's Radial projection theorem. . We found 2 proofs : GMT v.s. Fractal decoupling.

GETTING (A BIT MORE) TECHNICAL.

\n- Convert to L'estimate:
\n- Take E: E. E. S.1, dist(E: E,) 21. If (E) > 0. (x < d in E)
\n- Build **Frostrman measure**
$$
\mu_i
$$
 on E: μ_i i.e. **Supp** $(\mu_i) \in E_i$. μ_i i.s. **Problem 1** μ_i on E: μ_i i.e. **Supp** $(\mu_i) \in E_i$. μ_i i.s. **Problem 1** μ_i in the μ_i **1** μ_i

THE Coob-BAD DECovPOSITION
\n• New Gael:
$$
|| d_{+}^{x}(\mu_{1})(x)||_{L^{2}} < \infty
$$
 for some $x \in E_{2}$.
\n• An idea: Remove "hemy" part of M. that generates redundancy.
\nDecompose M₁ = M₁ g + M₁b.
\nNower Gons: ① || $d_{+}^{x}(\mu_{1},\mu_{2})||_{L^{1}(E)} < \frac{1}{100}$ for mot $x \in E_{2}$.
\n Θ $\int_{E_{2}} || d_{+}^{x}(\mu_{1},\mu_{2})||_{L^{1}(E)} < \frac{1}{100}$ for not $x \in E_{2}$.
\n• Such a duomposition is necessary if our wants to get below
\ndin = $\frac{4}{3}$ in 2D and Similarly in 3D+.
\n• Vorions, ways to shift with M₁₁ g, M₁₁h have been used.
\n $\mu_{11}g = Sun of, work products, tholise, \mu_{2} measured.\n π_{2} is usually shown using radial projection distribution estimate$

SOME PREF WORD:
$$
d=3, \frac{3}{2} < \alpha < 2
$$

\n\nwhere $3, \frac{3}{2} < \alpha < 2$
\n\nwhere $3, \frac{3}{2} < \alpha < 2$
\n\nii R , R , $long$, R _j = $2^j R_0$
\n\nii R , M , $constant$ for l , l ,

BAD TUBE & HEAVY PLATE.

-
$$
\forall r > 0
$$
. $\mathcal{E}_r = \mathcal{E} \mathbf{S} \mathbf{S} \mathbf{m} \mathbf{S} \mathbf{r} \mathbf{S} \mathbf{r}$ (d) $\mathcal{E} \mathbf{S} \mathbf{r} \mathbf{r} \mathbf{r}$
\n $\mathbf{r} \cdot \mathbf{r} \$

BAD TUBE & HEAVY PLATE.

· After Mi.6 is removed in weighted restriction step. only $\mu_2(\sqrt[4]{7})$ < $R_j - \frac{3}{2} + 2$ is used. \Rightarrow Compare to good threshold in earlier works: $M_2(\psi_1^+) < \frac{1}{2}$ d even \mathbb{F} $(\frac{2}{4} - \frac{1}{4}) + \epsilon$ odd Since $\alpha > \frac{d}{2}$. is a better (lower) threshold. $I_{\mathcal{N}}$ 2D such an λ threshold is impossible π Rj. $\left(\sqrt{1/2}\right)$ # parallel \sim R R If M2 evenly distributed then each $M_{2}(\overline{1}) \sim R_{j}^{-\frac{1}{2}}$. is in some sense sharp If E_2 = union of P_j \overline{z} many $R_j^2 = b \alpha l/s$. each measuring R_j then nonempty T needs to contain at least one ball

REMOVAL OF BAD TUBES $-\frac{1}{\sqrt{1000}}$ $\frac{1}{\sqrt{1000}}$ for most $x \in E_2$. $\Rightarrow \alpha^*_{\ast}(\mu_{1},\mu_{2})$ (t) $\sim \mu_{1,L} \ast \tau_{t}$ (x). (pushforward of μ_1 , b under the pinned distance map.) $M_1 \cdot b = 2$ 2 $M_{\tau} \cdot b$, $1 \leq 1000$ plate thicker than 1 or $M_2(4T) \ge \mu_1 - \frac{1}{2} + \epsilon$. Simplified scenario: Single scale R. Tubes: $R^{-1/2} \times R^{-1/2} \times 1$. Plates: $R^{-1/2}$ - which of hyperplane. Ustep 1 If NICP) > 0 for some hyperplane p: then we are trivially done. I directly apply 20 Falconer result to set E , where dim $E > \frac{3}{2} > \frac{5}{4}$.) Otherwise $M_1(p) = 0$. $\forall p$. Hence for sufficiently large R μ_1 ($R^{-\beta}$ - plate) < $\frac{1}{1000}$.

REMOVAL OF BAD TUBES

2) Step 2. Fix x EE, (TBD). PEMOVE T that are contained in. any heavy plate through x. by removing such heavy plates directly. (adapted from a result of Shnellin) $i.e.$ find large E_2' $\subset E_2$ s.t. $\forall x \in E_2'$ (1) Keep $C(x) \subset E_1$, where $C(x) = \{y : y \notin F(x,H)$, it heavy H Q). $E_1\setminus G(x)$ \subset Some $R^{-\beta}$ -plate

REMOVAL OF BAD TUBES $OS5683. \mu I_{G(x)} \sim M_0(\mu I_{G(x)}) + \sum_{T} M_T(\mu I_{G(x)})$ Obs $M_{U(x)}$ doesn't see non-acceptable tubes: $||M_T(\mu_1|_{G(x)})||_1 \leq$ RapDec(R) $(|M_T(\cdots)|^2)$ concentrates on $2T$) => Redna to acceptable tubes T. 4 Step 4. Further remove borderline tubes. by introducing a G(x) de Borderline $\frac{1}{x}$ non-acceptable E_2 $\overline{E_1}$ E_2 $\overline{E_3}$ E_4 Sep ⁵ We are left with tubes ^T that are away from any heavy plate. and $M_{2}(\frac{1}{4}T) \geq R^{-\frac{1}{2}+\epsilon}$ Apply Ren's Radial projection than in Rd.

REMOUAL OF BAD TUBES

· $\frac{1}{2} m \cdot \frac{1}{2} m$ In dependence on x is very scary. Could be detrimental in the weighted restriction step. But we can replace $H_T(\mu_1|_{G(x)})$ by $M_T(\mu_1)$! $||M_{T}(\mu_{1}|_{G(x)})-M_{T}(\mu_{1})||_{L^{1}}=||M_{T}(\mu_{1}|_{G(x)^{c}})||_{L^{1}}\leq RepDec \; CR).$ (T good & not borderline => TNE, C G(x).) $\Rightarrow \mu_{\cdot} g = M_{o}(\mu_{\cdot}|_{G(\kappa)}) + \sum_{j=1}^{\infty} \sum_{T \in T_{j}.g \circ d} M_{T} \mu_{\cdot}.$ (Dependence on x in the M. tern is ok only need L'62 of Mil (12). no restriction esti. involved.)

REMOVAL OF BAD TUBES

\n- In reality, we need to consider a multi-scale problem:
\n- $$
R_{j} = 2^{j} R_{o}
$$
. $j \geq 0$. This is a main technical difficulty.
\n- Construct $(J_{o}(x)) \supseteq G_{1}(x) \supseteq \cdots \supseteq G_{j}(x) \supseteq G_{j+1}(x) \supseteq \cdots$
\n- reduced to $G_{j}(x)$ on j th likelihood-Palay piece of M_{1} .
\n- Show $M_{1}(G_{j}(x) \setminus G_{j+1}(x)) \lesssim R_{j}^{-1}$
\n- Back to Step S: remove T S.t. T is away from all heavy plates. and $\mu_{2}(4T) \geq R^{-\frac{\alpha}{2}+\epsilon}$.
\n

(d=2. k=1 case was proved recently by Orponen-Shuerkin-Wang)

Cor: Mi, Ei as before. 2-din: Fix q. K >0. 38>0 S.t. $\forall j \ge 0.$ \exists $B \subset E_1 \times E_2$ s.t. \textcircled{D} $\mu_1 \times \mu_2 (B) < P_j^{-\gamma}$. and
 \textcircled{D} $\forall y \in E_1$ and $P_j^{-\frac{1}{2}}$ tube $T \ni y$. $\mu_1(T) (\text{Alg}_y) \le P_j^{-\frac{\alpha}{2} + O(k) + \frac{\beta}{2}}$ $\gamma = \{x \in E_2: x, y \text{ in some } P_j^{-1} \text{ heavy } \frac{P_j^{-k}}{C} \text{ place.}\}$ -> If T is away from heavy plates. A can be ignard. $(x \in T$. $T \subset L(x) \implies \forall y \in T \cap F_1$. $T \cap A y = \varphi$.) $- x, y \in T$ - T away from all heavy plates through x. ヒ、 B helps us find a large subset of good pin points x. -> It M2CT) is large. fixing y GEI. # f Such T thru. g 4 is Small. Combined with , one gets a decay for μ_1 of union of Such T.

Mank you for Listening!

المحادث والمستعين والمستعين والمستعين والمستعين والمستعين والمستعين والمستعين والمستعين والمستعين والمستعين

 $\label{eq:2.1} \frac{1}{\sqrt{2\pi}}\int_{0}^{\pi} \frac{1}{\sqrt{2\pi}}\left(\frac{1}{\sqrt{2\pi}}\right)^{2\pi} \frac{1}{\sqrt{2\pi}}\int_{0}^{\pi}\frac{1}{\sqrt{2\pi}}\left(\frac{1}{\sqrt{2\pi}}\right)^{2\pi} \frac{1}{\sqrt{2\pi}}\frac{1}{\sqrt{2\pi}}\int_{0}^{\pi}\frac{1}{\sqrt{2\pi}}\frac{1}{\sqrt{2\pi}}\frac{1}{\sqrt{2\pi}}\frac{1}{\sqrt{2\pi}}\frac{1}{\sqrt{2\pi}}\frac{1}{\sqrt{2\$

 $\mathcal{L}^{\text{max}}_{\text{max}}$ $\mathcal{L}^{\text{max}}_{\text{max}}$ and $\mathcal{L}^{\text{max}}_{\text{max}}$ and $\mathcal{L}^{\text{max}}_{\text{max}}$ $\sim 10^{11}$