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I. Motivation
1 A version of the sharp `p inequality for the discrete Hilbert transform in

higher dimesnions.
2 A lot of interest in last ∼ 20/25 years in studying “Discrete Analogues in

Harmonic Analysis” With many works by many authors: J. Bourgain,
E.M. Stein S. Wainger, A. Magyar, S. Wainger, Ionescu, Pierce, Mirek, and
many others. Vast literature now.

L. Pierce, 2009 Ph.D. “Discrete analogues in harmonic analysis,” Princeton
University. Beautifully written!

II. Motivation for techniques used
Probabilistic ideas and tools have been quite successful in obtain (a) sharp
inequalities or (b) dimension free inequalities for various singular integrals and
Fourier multipliers on Rd, and extensions to other geometric settings–Lie groups,
manifolds, vector bundles, infinite dimensions, . . . Vast literature now!





“Proof” (Littlewood-Paley)

‖Rf‖p ¬ ap‖gv(Rf)‖p = ap‖gh(f)‖p ¬ apbp‖f‖p

Behaviour in p? ap ∼ p, bp ∼
√
p ⇒ Ap ∼ p3/2, p→∞.

Open: What is the sharp constant Ap?

Stein concludes:

“The above results raise the following question. Can one find an appropriate infinite
dimensional formulation of (that part of) harmonic analysis in Rn, which displays, in a
natural way the above uniformity in n? A related question is to study the “limit as
n→∞” of the above results, insofar as such limits may have a meaning. “One might
guess that a further understanding of these questions would involve, among other things,
notions from probability theory: i.e. Brownian motion and possibly variants of the central
limit theorem.”



py(x) =
cd y

(|x|2 + y2)
d+1
2

, x ∈ Rd, y > 0, uf (x, y) = (py ∗ f)(x)

R(k)f(x) =
∫ ∞
0

∂uf (x, y)
∂xk

dy = cd

∫
Rd

zk
|z|d+1

f(x− z) dz

Gundy-Varopoulos (1978)

R(k)f(x) = 2E
(∫ 0
−∞

∂uf (Ws)
∂xk

dYs

∣∣∣W0 = x

)
Wt = (X1t , . . . X

d
t , Yt),−∞ < t ¬ 0 “background radiation” in Rd+1+ ,

Bt = (X1
t , . . . X

d
t , Yt), (d+ 1)-Brownian motion, τ exit time from Rd+1

+

R(k)f(x) = 2 lim
y→∞

E(0,y)

(∫ τ

0

∂uf (Bs)
∂xk

dYs|Bτ = x

)
= lim
y→∞

(
E(0,y)

∫ τ

0

[
∂uf (Bs)
∂xk

dYs −
∂uf (Bs)
∂y

dXk
s

] ∣∣∣Bτ = x

)



S(x, y) = {Aj(x, y)}mj=1, Aj(x, y) ∈M(d+1) = (d+ 1)× (d+ 1) matrices, x ∈ Rd, y  0

‖S(x, y)‖ =

(
sup

v∈Rd+1,|v|¬1

m∑
j=1

|Aj(x, y)v|2
)1/2

, ‖S‖ = ‖|S(x, y)‖|L∞(Rd×[0,∞))

∇uf =

(
∂uf
∂x1

, · · · , ∂uf
∂xd

,
∂uf
∂y

)
TAjf(x) = lim

y→∞
E(0,y)

(∫ τ

0

[Aj(Bs)∇uf (Bs)] · dBs
∣∣∣Bτ = x

)

The TAj
′s are bounded on Lp(Rd), 1 < p <∞: For a universal constant C (C = 7

works) ∥∥∥∥∥
(

m∑
j=1

|TAjf(x)|2
)1/2 ∥∥∥∥∥

p

¬ C(p∗ − 1)‖S‖‖f‖p, (R.B. 1984, 1986)

p∗ − 1 =

{
1
p−1 , 1 < p ¬ 2

p− 1, 2 ¬ p <∞

Stein’s inequality follows with Ap ¬ C(p∗ − 1)



The T ′As are bounded on Lp(Rd), 1 < p <∞. With p∗ = max{p, q}, 1
p

+ 1
q

= 1,∥∥∥∥∥
(
∞∑
j=1

|TAjf(x)|2
)1/2 ∥∥∥∥∥

p

¬ (p∗ − 1)‖S‖‖f‖p =

{
(p− 1)‖S‖‖f‖p, 2 ¬ p <∞

1
(p−1)‖S‖‖f‖p, 1 < p ¬ 2

(G. Wang & R.B. 1995)

If A(x, y)v · v = 0, all v ∈ Rd+1, all (x, y) ∈ Rd+1
+ (orthogonality property)

‖TA‖Lp→Lp ¬ cot
(
π

2p∗

)
=

{
tan
(
π
2p

)
, 1 < p ¬ 2

cot
(
π
2p

)
, 2 ¬ p <∞

(G. Wang & R.B. 1995)

(M. Perlmutter 2015) The TA′s are C-Z (|K(x, x̃)| ¬ κ
|x−x̃|d , |∇K(x, x̃)| ¬ κ

|x−x̃|d+1 )

TAf(x) = p.v.

∫
K(x, x̃)f(x̃)dx̃

KA(x, x̃) =

∫
Rd+1+

2y [A(z, y)∇py(z − x̃)] · ∇py(z − x)dz dy

For A constant (or function of y only) K(x, x̃) = K(x− x̃).



For k = 1, 2, . . . , d,

H(k) = (a(k)ij ) =


−1, i = k, j = d+ 1
1, i = d+ 1, j = k

0, otherwise,

d = 2 :

H(1) =

0 0 −1
0 0 0
1 0 0

 , H(2) =

0 0 0
0 0 −1
0 1 0

 , R(1) = TH(1) , R
(2) = TH(2) ,

H(1)0 =

0 0 0
0 0 0
1 0 0

 , H(2)0 =

0 0 0
0 0 0
0 1 0

 , TH(1)0
=

1
2
R(1), TH(2)0

=
1
2
R(2)

‖H(k)‖ ¬ 1

H(k)v ⊥ v = 0, all v ∈ R+d+1 (orthogonality property)

The sequence S = {H(k)0 }dk=1 has ‖S‖ ¬ 1



1 T. Iwaniec & G. Martin (1996) (method of rotations)/G. Wang & R.B. (1995)
(martingales as above)

‖R(k)‖Lp→Lp = ‖H‖Lp→Lp = cot
(
π

2p∗

)
=

{
tan
(
π
2p

)
, 1 < p ¬ 2

cot
(
π
2p

)
, 2 ¬ p <∞.

Hf(x) =
1
π

∫
R

f(x− y)
y

dy

Second = S. Pichorides (1972) and B. Cole (Published in 1978 by T. Gamelin)

2 For the vector:

‖Rf‖p ¬
√

2cot
(
π

2p∗

)
, p  2, Iwaniec–Martin (1996)

‖Rf‖p ¬ 2(p∗ − 1), 1 < p <∞ Wang–B. (1995)

Where do the inequalities for the T ′As come from?
From inequalities on “subordination” of martingales/stochastic integrals. They can be
applied in a wide variety of settings where a “method of rotations” is not available.



Sharp martingale/stochastic inegrals inequalities

Nt =
∫ t

0
Ks · dBs, Mt =

∫ t

0
Hs · dBs,

1 N is subordinate to M (N �M) if |Ks| ¬ |Hs| a.s. for all s, and

2 N is orthogonal to M (N ⊥M) if Ks ·Hs = 0 a.s. for all s.

‖Nt‖p ¬


(p∗ − 1)‖Mt‖p, if N �M (Burkholder 1984),

cot
(

π
2p∗

)
‖Mt‖p, if N �M,N ⊥M (G. Wang & R.B. 1995).

These are are sharp



The discrete Hilbert transform

M. Riesz–Proved 1923, Published 1927: 1 < p <∞,

‖Hf‖Lp(R) ¬ Cp‖f‖Lp(R)
Same paper: Lp boundedness of H implies lp boundedness for Hdis.

‖Hdisf‖`p(Z) ¬ Cp′‖f‖`p(Z)

Hdisf(n) =
1
π

∑
m∈Z\{0}

f(n−m)
m

(Hilbert 1907)

Further he showed: ‖H‖Lp(R)→Lp(R) ¬ ‖Hdis‖`p(Z)→`p(Z) ¬ C‖H‖Lp(R)→Lp(R)

E. C. Titchmarsh (Proved 1924, Published 1926)

1 ‖Hdisf‖Lp(R)→Lp(R) ¬ Cp‖f‖`p(Z)→`p(Z)
2 ‖Hdis‖`p(Z)→`p(Z) = ‖H‖Lp(R)→Lp(R)

Nice read of History: Mary Cartwright: “Manuscripts of Hardy, Littlewood, Marcel Riesz
and Titchmarsh,” Bull London. Math. Soc, 14 (1982), 472-532



Unfortunately there was an error in Titchmarsh’s proof of ‖Hdis‖p ¬ ‖H‖p.

CorrecUoa. 

Von 

E. C. Titchmarsh. 

I. I n  paragraph 4 of my paper on 'Reciprocal formulae involving 
series and integrals' (Math. Zeitschr. 25 (1926), pp. 321--347), the proof 
that N~ ~ N~ is incorrect, and should be deleted. This does not affect 
a~ything else in the paper. 

II. In obtaining the inequality .which follows formula: (2. 32), we 
have assumed that (4a) as well as (3a)holds for the particular value 
O~ ~ .taken. This merely involves a slight rearrangement of the proof, 

III. The following references to the work of M. Riesz should have 
been given: 

Comptes Rendus 178 (Apr. 28, 1924), pp. 1464--1467 and Proc. 
London Matl~. Soc. (2) 23 (1925), pp. Y~IV,XXTI  (Records for Jan. 17, 
1924). I should have said that I was already familiar with Riesz's methods, 
and not merely h~s results, wl~en I wrote my paper. 

(Eingegangen am 10. November 1926.) 

The “tantalizing” problem: Prove the two operators have the same norm



Many proofs of the `p boundedness of Hdis exists

Hardy, Littlewood and Pólya (1934), S. Kak (1977), E. Laeng (2007), O. Ciaurri,
T. A. Gillespie, L. Roncal, J. L. Torrea, and J. L. Varona (2017), Arcozzi, K.
Domelevo and S. Petermichl (2022)

For p = 2m,m ∈ N (or its conjugate)

Equality of norms: I. Gohberg y N.Y. Krupnik (1968). Using variant of M. Cotlar’s
identity in his: “A unified theory of Hilbert transforms and ergodic theorems”
Revista matemática Cuyana (1955): |Hf |2 = 2H(f ·Hf) + |f |2

‖Hf‖22p = ‖(Hf)2‖p ¬ 2‖H(f ·Hf)‖p + ‖f2‖p . . .

. . . leads to
‖H‖2p ¬ ‖H‖p +

√
1 + ‖H‖2p

Use
cot(α) +

√
1 + cot2(α) = cot(α2 ), α =

π

2n

|Hdisf |2 = 2Hdis(f ·Hdisf) + J(f2) + 2f · Jf, Jf =
1

π2k2
∗ f



M. Kwaśnicki & R.B. (2019)

‖Hdisf‖`p ¬ cot
(

π
2p∗

)
‖f‖`p , 1 < p <∞,

In particular,
‖Hdis‖`p→`p ¬ ‖H‖Lp→Lp .

Together with Riesz
‖Hdis‖`p→`p = ‖H‖Lp→Lp

Another “tantalizing” question: Does this extend to Riesz transforms?

R
(k)
disf(n) = cd

∑
m∈Zd\{0}

mk

|m|d+1
f(n−m), k = 1, 2, . . . , d

That is,

‖R(k)dis‖`p→`p = ‖R(k)‖Lp→Lp = ‖Hdis‖`p→`p = ‖H‖Lp→Lp?



Calderón-Zygmund (1952)–Added in Proof, p. 138

Tf(x) = p.v.

∫
Rd
K(y)f(x− y)dy, Tdisf(n) =

∑
m∈Zd\{0}

K(m)f(n−m)

T : Lp → Lp =⇒ Tdis : `p → `p

“For n = 1 this remark is due to M. Riesz, and the proof in the case of general n follows
a similar pattern.”

In fact, following Riesz one gets:

‖Tdis‖`p→`p ¬ ‖T1‖Lp→Lp + C(d, κ)

⇒ ‖R(k)
dis‖`p→`p ¬ ‖R

(k)‖Lp→p + Cd = cot
(
π

2p∗

)
+ Cd,

Cd depending only on d.

Following Riesz again: if K(x) = Ω(x)
|x|d , Ω(x) : Sd−1 → R, Ω(x) = Ω(−x), mean zero,

‖T‖Lp→Lp ¬ ‖Tdis‖`p→`p



Above gives

‖R(k)‖Lp→Lp ¬ ‖R(k)dis‖`p→`p ¬ ‖R
(k)‖Lp→Lp + Cd

New “Tantalizing” question. d  2

‖R(k)dis‖p→p ¬ ‖R
(k)‖p→p = cot

(
π

2p∗

)
?

Weaker and also interesting:

‖Rkdis‖`p→`p ¬ Ap,

Ap is independent of d?



M. Kwaśnicki, D. Kim & R.B. (2023/2024): A ∈M(d+1), A→ TA : `p(Zd)→ `p(Zd)

TA(f)(n) =
∑

m∈Zd,m 6=n

KA(n,m)f(m)

KA(n,m) =
∫
Rd

∫ ∞
0

2yh(x, y)
[
A(x, y)∇

(
py(x−m)
h(x, y)

)]
· ∇
(
py(x− n)
h(x, y)

)
dydx

h(x, y) =
∑
n∈Zd

py(x− n) =
∑
n∈Zd

e−2π|n|ye2πin·x (periodic Poisson kernel)

=
(

sinh(2πy)
cosh(2πy)− cos(2πx)

, d = 1
)

1

‖TAf‖`p ¬ (p∗ − 1)‖A‖‖f‖`p
2 If A has the orthogonality property

‖TAf‖`p ¬ cot
(
π

2p∗

)
‖A‖‖f‖`p



With the matrices Hk,

TH(k)f(n) =
∑
m∈Zd

KH(k)(m)f(n−m) = KH(k) ∗ f(n),

KH(k)(n) =
(
−4
∫
Rd

∫ ∞
0

1
h(x, y)

∂py(x)
∂xk

∂

∂y
(ypy(x− n)) dydx

)
1Zd\{0}(n)

Kwasniki-B (2019) d=1 & Kim-Kwaśnicki-B (2023/2024), d > 1

‖TH(k)‖`p→`p = cot

(
π

2p∗

)
i.e.

‖TH(k)‖`p→`p) = ‖R(k)‖Lp→Lp

The TH(k) ’s are not the same as the Rkdis’s, unlike in the
Gundy-Varopoulos classical case.



M.Kwaśnicki & R.B.for d = 1, there exist a probability kernel K such that

Hdisf(n) = K ∗ TH(f)(n), n ∈ Z

=⇒ ‖Hdis‖`p(Z)→`p(Z) ¬ ‖TH‖`p(Z)→`p(Z) ¬ cot(
π

2p∗
) = ‖H‖Lp→Lp

Question: for d > 1, does there exist a probability kernel K(k) such
that

R
(k)
disf(n) = K(k) ∗ TH(k)(f)(n), n ∈ Zd?

If so, this will resolve the “tantalizing” problem in several dimensions.



How to construct the T ′As? Build them as conditional expectations of stochastic
integrals on a BM in Rd+1+ that exit only on the lattice Zd. “Doob h-process”

d = 1 picture



For f : Zd → R (can take with compact support, i.e., finite sequence)

uf (x, y) =
∑
n∈Zd

f(n)
py(x− n)
h(x, y)

,

∑
n∈Zd

(
py(x− n)
h(x, y)

)
= 1


uf is h-harmonic in Rd+1+ : ∆(huf ) = 0. Equivalent

1
2

∆uf (x, y) +
∇h(x, y) · ∇uf (x, y)

h(x, y)
= 0,

Boundary values of uf :

lim
y↓0

uf (x, y) = fext(x) =
∑
m∈Zd

f(m)Ψ(x−m))

fext(n) = f(n), n ∈ Zd and ‖fext‖Lp ¬ ‖f‖`p



dZt = dBt +
∇h(Zt)
h(Zt)

dt, (Doob h-process)

τ exist time of Zt from Rd+1
+ . τ <∞ a,s. & Zτ takes values only on Zd:

P(0,y){Zτ = n} =
py(n)
h(0, y)

Two Martingales/stochastic integrals: Mt = uf (Zt∧τ )

Mt = M0 +

∫ t∧τ

0

∇uf (Zs) · dZs +
1
2

∫ t∧τ

0

∆uf (Zs)ds

= M0 +

∫ t∧τ

0

∇uf (Zs) · dZs −
∫ t∧τ

0

∇h(Zs) · ∇uf (Zs)
h(Zs)

ds

= M0 +

∫ t∧τ

0

∇uf (Zs) · dBs.

Nt =

∫ t∧τ

0

A∇uf (Zs) · dBs, A ∈M(d+1)

1
(
E(0,y)|A ∗ f |p

)1/p ¬ (p∗ − 1)‖A‖
(
E(0,y)|f(Zτ )|p

)1/p
, (any A)

2
(
E(0,y)|A ∗ f |p

)1/p ¬ cot ( π
2p∗

)
‖A‖

(
E(0,y)|f(Zτ )|p

)1/p
(ortho A)



For y > 0, define

T yA(f)(n) = E(0,y)

[
Nτ
∣∣Zτ = n

]
1 For any A: E(0,y)|T yAf(Zτ )|p ¬ E(0,y)|Nτ |p ¬ (p∗ − 1)p‖A‖pE(0,y)|f(Zτ )|p.
2 A ortho: E(0,y)|T yAf(Zτ )|p ¬ E(0,y)|Nτ |p ¬

(
cot
(
π

2p∗

))p ‖A‖pE(0,y)|f(Zτ )|p.

1 ∑
n∈Zd

|T yA(f)(n)|p py(n)
h(0, y)

¬ (p∗ − 1)p‖A‖p
∑
n∈Zd

|f(n)|p py(n)
h(0, y)

2 ∑
n∈Zd

|T yA(f)(n)|p py(n)
h(0, y)

¬
(
cot
(
π

2p∗

))p ‖A‖p ∑
n∈Zd

|f(n)|p py(n)
h(0, y)

Want to let y →∞ in T y and py(0)
h(0,y) . Second is trivial.

lim
y→∞

1
cd
ydpy(n) = 1



For first:

Theorem (D. Kim, M.Kwaśnicki & R.B.)

lim
y→∞

T yAf(n) = TA(f)(n) =
∑

m∈Zd,m6=n

KA(n,m)f(m)

KA(n,m) =
∫
Rd

∫ ∞
0

2yh(x, y)
[
A(x, y)∇

(
py(x−m)
h(x, y)

)]
· ∇
(
py(x− n)
h(x, y)

)
dydx

KH(k)(n) =
(
−4
∫
Rd

∫ ∞
0

1
h(x, y)

∂py(x)
∂xk

∂

∂y
(ypy(x− n)) dydx

)
1Zd\{0}(n)



Remarks

Stein’s vector version for the discrete operators∥∥∥∥∥∥
(

d∑
k=1

|TH(k)f |
2

)1/2
∥∥∥∥∥∥
`p

¬ 2(p∗ − 1)‖f‖`p .

Are the TH(k) discretization of C-Z-O operators? Yes
The following Kernels are C-Z kernels.

d = 1 : KH(z)

=
1
πz

(
1 +

∫ ∞
0

2y3

(y2 + π2z2) sinh2(y)
dy

)
1{|z|1}(z) +

1
πz
1{|z|<1}(z)

d  2 : KH(k)(z)

=

(
−4

∫
Rd

∫ ∞
0

1
h(x, y)

∂p0

∂xk

∂

∂y
(ypy(x− z)) dydx

)
1{|z|1}(z) + cd

zk
|z|d+1 1{|z|<1}(z)



What are their Lp norms? Open but...

Case d = 1: let T = convolution w/kernel KH. Case d > 1: let T k

convolution w/kernel KH(k)

cot(π/(2p∗)) ¬ ‖T‖Lp→Lp ¬ 0.09956 + cot(π/(2p∗))

and

cot(π/(2p∗)) ¬ ‖T k‖Lp→Lp ¬ Cd + cot(π/(2p∗)),

where Cd depends on the dimension d.
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Thank You!


