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|. Motivation

@ A version of the sharp /2 inequality for the discrete Hilbert transform in
higher dimesnions.

@ A lot of interest in last ~ 20/25 years in studying “Discrete Analogues in
Harmonic Analysis” With many works by many authors: J. Bourgain,
E.M. Stein S. Wainger, A. Magyar, S. Wainger, lonescu, Pierce, Mirek, and
many others. Vast literature now.

L. Pierce, 2009 Ph.D. "Discrete analogues in harmonic analysis,” Princeton
University. Beautifully written!

[l. Motivation for techniques used

Probabilistic ideas and tools have been quite successful in obtain (a) sharp
inequalities or (b) dimension free inequalities for various singular integrals and
Fourier multipliers on R?, and extensions to other geometric settings—Lie groups,
manifolds, vector bundles, infinite dimensions, ... Vast literature now!
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SOME RESULTS IN HARMONIC ANALYSIS
IN R*, FOR n — o0

BY E. M. STEIN

1. Introduction. The purpose of this note is to bring to light some fur-
ther results whose thrust is that certain fundamental estimates in harmonic
analysis in R™ have formulations with bounds independent of n, as n — oco.

2. The theorem. In R™ we define the familiar Riesz transforms by (R, f) )

(€) = i(&;/|€DF(€): 5 = 1,....,n, and write R = (Ry,-.., Bn); also [R(f)@)
will stand for (Z?:l IR (£)(2)|*)/2.

THEOREM.

IR lle < Apllfllpy  1<p<eo,
with A, independent of n.



“Proof” (Littlewood-Paley)

17 llp < apllge(RF)lp = apllgn(Hllp < apbpl fllp

Behaviour in p? a, ~ p, b, ~ \/p = A, ~ P2 p— .

Open: What is the sharp constant A,7

Stein concludes:

“The above results raise the following question. Can one find an appropriate infinite
dimensional formulation of (that part of) harmonic analysis in R™, which displays, in a
natural way the above uniformity in n? A related question is to study the “limit as

n — oo" of the above results, insofar as such limits may have a meaning. “One might
guess that a further understanding of these questions would involve, among other things,
notions from probability theory: i.e. Brownian motion and possibly variants of the central
limit theorem.”
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S, y) = {A; (@, 9)r, A5(2,y) € Mayn) = (d+1) x (d+ 1) matrices, = € R%,y > 0
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The Ta,’s are bounded on LP(R%), 1 < p < oc: For a universal constant C (C' =7

works)
m 1/2
” (Z |TAjf<x>|2>

Stein’s inequality follows with 4, < C(p* — 1)

< C" = DISIIf N, (RB. 1984, 1986)

P




The T/ s are bounded on LP(R%), 1 < p < co. With p* = max{p, ¢}, % + % =

I 1/2
H (Z |TAjf<x>|2>

(G. Wang & R.B. 1995)

DS, 2 <
<(p*—1)|8|||f||p={(p e B

P (pil)HS”HfHIN 1<p<2

If A(z,y)v-v=0,allveR¥™! all (z,y) € Ri+1 (orthogonality property)

HTA”LP*;LP < cot(

%), 2<p<oo

. tan (=), 1<p<2
2p*) = {cot ((217) (G. Wang & R.B. 1995)

(M. Perlmutter 2015) The Ta's are C-Z (|K(z,%)| < —= ok VK (z,z)| < m)

Taf(zx) = po. /me f(@)dz

Ka(z, )

[0, 204G T = 2] T~ )iy

For A constant (or function of y only) K(z,z) = K(z — ).




Fork=1,2,....d,

1, i=kj=d+1
HO = @) =31, i=d+1,j=k

0, otherwise,
d=2
00 —1 00 0
HY=(0 o o |, H®=|0 0 -1 RW = Ty, R® = Ty,
10 0 01 0
0 000 ) )
HY =0 0 o), HP={0 0 0], Tyw = 5RO, Tye = SR
1 00 010 ’ 0
o [H®| <1

o H®)y L v =0, all v € R+4+1 (orthogonality property)
o The sequence S = {H{”}¢_, has ||S|| < 1



@ T. lwaniec & G. Martin (1996) (method of rotations)/G. Wang & R.B. (1995)

(martingales as above)

IR™ || oo rr = |H||lzr—rr =

1 ® =
Hf(z) = = / flz—y) dy
Tl oy
Second = S. Pichorides (1972) and B. Cole (Published in 1978 by T. Gamelin)

@ For the vector:

IRfllp < V2cot(55), p>2, Iwaniec-Martin (1996)

IRfll, <2(p"—1), 1<p<oo Wang-B. (1995)

Where do the inequalities for the 77 s come from?

From inequalities on “subordination” of martingales/stochastic integrals. They can be
applied in a wide variety of settings where a “method of rotations” is not available.




Sharp martingale/stochastic inegrals inequalities

t t
Nt:/ K,-dB, Mt:/ H,-dB,,
0 0

@ N is subordinate to M (N <« M) if |K| < |Hg| a.s. for all s, and

@ N is orthogonal to M (N L M) if K, - H; =0 a.s. for all s.

(p* — )| My|l,, if N < M (Burkholder 1984),
[Nl <
cot (%) | M|lp, if N < M,N LM (G. Wang & R.B. 1995).

These are are sharp



The discrete Hilbert transform
M. Riesz—Proved 1923, Published 1927: 1 < p < oo,
IH fllze®) < CpllfllLew)
Same paper: LP boundedness of H implies [’ boundedness for H ;.
||Hdisf||€P(Z < G| fller )
Husf(n) =~ > Fm=m)  Hibert 1907)

T mez\{o}

Further he showed: ||H||zr®)—rr®) < [Haisllerz)—erz) < CllH || e ®)—Lr (R) )

E. C. Titchmarsh (Proved 1924, Published 1926)

Q || Hais fllor@—re®) < Cpllfller@y—er@)
Q [|Huisllerzy—erz) = | H || Lr(r)—Lr (R)

Nice read of History: Mary Cartwright: “Manuscripts of Hardy, Littlewood, Marcel Riesz
and Titchmarsh,” Bull London. Math. Soc, 14 (1982), 472-532



Unfortunately there was an error in Titchmarsh's proof of |Hgis|lp < || H]|p-

Correction.

Von
E. C. Titchmarsh.

L In paragraph 4 of my paper on ‘Reciprocal formulae invelving
series and integrals’ (Math. Zeitschr. 25 (1926), pp. 321—347), the proof
that N, < N, is incorrect, and should be deleted. This does not affect
apything else in the paper.

IL. In obtaining the inequality which follows formula (2.32), we
have assumed that (4a) as well as (3a) holds for the particular value
of p taken. This merely involves & slight rearrangement of the proof.

III. The following references to the work of M. Riesz should have
been given:-

Comptes Rendus 178 (Apr. 28, 1924), pp. 1464 —1467 and Proc.
London Math. Soc.(2) 23 (1925), pp. XXIV—XXVI (Records for Jan. 17,
1924). I shotild have said that I was already familiar with Riesz’s methods,
and not merely his results, when I wrote my paper.

(Ei

am 10, N ber 1926.)

gegang

The “tantalizing” problem: Prove the two operators have the same norm



Many proofs of the /P boundedness of H;s exists

Hardy, Littlewood and Pélya (1934), S. Kak (1977), E. Laeng (2007), O. Ciaurri,
T. A. Gillespie, L. Roncal, J. L. Torrea, and J. L. Varona (2017), Arcozzi, K.
Domelevo and S. Petermichl (2022)

For p=2",m € N (or its conjugate)

Equality of norms: |. Gohberg y N.Y. Krupnik (1968). Using variant of M. Cotlar's
identity in his: “A unified theory of Hilbert transforms and ergodic theorems”
Revista matemdtica Cuyana (1955): |H f|? = 2H(f - Hf) + | f|?

IHf113, = 1Ml < 2H(F - H)llp + 121 ---

1 ll2p < [1Hllp +4/1 + 13

cot(a) + /1 + cot?(a) = cot(§), oz:2ln

... leads to

Use

|Hdzsf|2:2Hdzs(fHdzsf)+J(f2)+2fJf7 Jf: *f

m2k2




M. Kwasnicki & R.B. (2019)

| Hais Fllr < cot(52) I fller, 1<p< o0,

In particular,
||Hdis||€P—>€P g ||H||Lp—>Lp.

Together with Riesz
||Hdis||£1’—>lp = ||H||Lp"Lp

Another “tantalizing” question: Does this extend to Riesz transforms?

m
Rgfif(n)=0d Z |Tn|—dk+1f(n—m), k=1,2,...,d
meZA\{0}

That is,

k
IR v —er = |RP || oo = | Hais |levmser = | H || o107




Calderén-Zygmund (1952)—-Added in Proof, p. 138

Ti@) =po. [ KO-y Tuf)= 3 Km)fa-m)
L mezd\{0}
T:ILP - LP = Tgs: 4’ =0
“For n = 1 this remark is due to M. Riesz, and the proof in the case of general n follows

a similar pattern.”
v

In fact, following Riesz one gets:
|Tass|ler—er < || T1||Lp—zr + C(d, k)

= ||R1(12||ep*>ep < ||R(k)||LP—>IJ +Cq = cot(%%) + C4,
Cq depending only on d.

Following Riesz again: if K(z) = %) Q(z) : 7! - R, Q(z) = Q(—z), mean zero,

T

IT|r—rr < ||Tass|ler—er




Above gives

IB® 1o —1v < [RG w0 < IRP|o 10 + Ca

New “Tantalizing” question. d > 2

RO <IIR®|, . = cot [ —— )|?
125 p < ROl = cot (-

Weaker and also interesting:

||Rldcis||ep—>£” < Apa

A, is independent of d?




M. Kwasnicki, D. Kim & R.B. (2023/2024): A € M(411y, A — Ta : LP(Z4) — £7(Z%)

Ta(f)n)= > Ka(n,m)f(m)

meZ4 m#n

x,y) = Z Byl =m) = Z e 2minlye2mine  (heriodic Poisson kernel)
nezd nezd
. sinh(27y) de1
~ \ cosh(2my) — cos(27mz)’ B

o
[Tafller < (0" = DIIA[[f]ler

@ If A has the orthogonality property

\Tafller < (of( )IIAIIIIfIIep




With the matrices HF,

Ty f(n) = Y Kaoo(m m) = Ky * f(n),
meza
1 Opy(z) 0
Ky (n < /Rd/ 2y) Ocx 8y(ypy(33 ”))dydCU) 174\ (03 (1)

Kwasniki-B (2019) d=1 & Kim-Kwasnicki-B (2023/2024), d > 1

[l P— ( 2;)

||TH(k) ||ep_>ep) = ||R(k) ||Lp_>Lp

The Tyx's are not the same as the R, 's, unlike in the
Gundy-Varopoulos classical case.




M.Kwasnicki & R.B.for d = 1, there exist a probability kernel K such that
Hyisf(n) =X «Tu(f)(n), nez

37 = I1Hllzrrs

= ||Haisllerzy—er(zy < 1 Thaller(z)—trz) < cot(

Question: for d > 1, does there exist a probability kernel X*) such
that

B®) £(n) = XK®) & T (f)(n), n € 2%

If so, this will resolve the “tantalizing” problem in several dimensions.




How to construct the 7% s? Build them as conditional expectations of stochastic
integrals on a BM in R‘fl that exit only on the lattice Z?. “Doob h-process”

0.5

d =1 picture



For f : Z% — R (can take with compact support, i.e., finite sequence)
) py(z —n)
fn PATZ ) g
e Z iy

uy is h-harmonic in Riﬂ: A(huy) = 0. Equivalent

Boundary values of u:
(]
lime(:IZ Y) = fext(z Z f(m m))
yl0
mezd
(]

fext(n) = f(n)7 ne Zd and ||fext||LP < ||f||li’




Vh(Z:)
h(Z:)

T exist time of Z; from Ri“. T < 00 a,s. & Z, takes values only on Z<:

dZ; = dBy + dt, (Doob h-process)

IP7(044){ZT =n}= }I;(yo(j;))

Two Martingales/stochastic integrals: My = uy(Ziar)

N =

tAT tAT
M; = M, +/ Vus(Zs) - dZs + 7/ Aug(Zs)ds
0 0

AT AT
_ _ Vh(Zs) - Vus(Zs)
= My Jr/(; VUf(ZS) dZs /0 h(Zs) ds

AT
:M0+/ Vuyg(Zs) - dBs.
0

tAT
Nt = / Av'LLf(ZS) . dBS, A € m<d+1)
0

1/ o 1/

0 (Eoyldx )" < (0" = DIAl (Boy|f(Z-)P)",  (any A)
1/ o 1/

0 (Eyld* fIP)"? < cot (5%) Al (B |f(Z:)F)""  (ortho A)




For y > 0, define
TAH0) = Eeo [Nr | 2 = ]

@ Forany A: B, |T4f(Z-)1" < E(o,)IN-I” < (" = VPN AIIPEo,) 1 f (Z7)I7.
Q@ A ortho: Eo )| T4 f(Z0)P < Eo)IN- P < (cot ()" IAIPEp) | f (Z7)P-

(1)
> P2 < o~ apjap 3 sep 2
° () ()
> TN @I 75 < (ot(55))" 4IP3 1P 8s

PU( )

Want to let y — oo in TY and . Second is trivial.

1
lim —ypy(n) =1

y—oo Cd



For first:

Theorem (D. Kim, M.Kwasnicki & R.B.)
Jim T3 f(n) = Ta(f)(n) = > Ka(n,m)f(m)

meZa m#n

= [, [ e ()] ()

1 Opy(x
Ko = (=4 [ [ 5 22 (o ) ) 1m0




Remarks

Stein's vector version for the discrete operators

d 1/2
(Z |TH<k>f|2> < 200" = DIl lev-
k=1

P

Are the Ty discretization of C-Z-O operators? Yes

The following Kernels are C-Z kernels.

d=1: Ku(z)
1 o 23 1
- — (1 dy ) 1. 1.
s ( T QPP E)mal) y) (1=1213 (2) + —1qpz1<13 ()

_ oo 1 apo 8 Zk
a ( 4/1Rd /0 h(CLE y) oz 8y (ypy(m Z)) dydx) 1{|Z‘>1}(Z) e |Z|d+1 1{‘Z|<1}(Z)

vV




What are their L” norms? Open but...

Case d = 1: let T = convolution w/kernel K. Case d > 1: let T*
convolution w/kernel Ky

cot(m/(2p")) < |T||er—rr < 0.09956 + cot(m/(2p™))

and

cot(m/(2p")) < IT*|[zr—rr < Ca + cot(m/(2p")),

where Cy depends on the dimension d.
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Thank You!




