Generalized Sublevel Set Inequalities for Differential Forms

Philip T. Gressman

Madison Lectures in Harmonic Analysis 16 May 2024

Context: *L ^p***-Improving Inequalities**

- **•** Let $\Omega \subset \mathbb{R}^n \times \mathbb{R}^n$ be an open set and let Σ be a submanifold (algebraic variety) in Ω.
- Let $\pi(x, y)$ be a defining function associated to Σ : $(x, y) \in \Sigma$ if and only if $\pi(x, y) = 0$.
- **•** For each *x*, let ^{*x*} Σ ⊂ ℝ^{*n*} consist of points *y* for which $\pi(x, y) = 0.$
- Consider the operator

$$
Tf(x):=\int_{x_{\Sigma}}f(y)w(x,y)d\sigma(y).
$$

What are the $L^p - L^q$ mapping properties of *T*?

Example: Spherical Averages

•
$$
\Sigma \subset \mathbb{R}^n \times \mathbb{R}^n := \{(x, y) \mid |x - y|^2 = 1\}
$$

• $\pi(x, y) := |x - y|^2 - 1$

•
$$
Tf(x) := \int_{x+\mathbb{S}^{n-1}} f(y) d\mathcal{H}^{n-1}(y)
$$

- *T* maps *L*^{(*n*+1)/*n*} to *Lⁿ⁺¹* (Strichartz 1970, Littman 1973)
- $\ddot{}$ Proof is roughly analytic interpolation between $L^2 \rightarrow H^{(n-1)/2}$ and an $L^1 \rightarrow L^\infty$ bound for fractional integral of order 1 applied to *T*.

Local Geometry of Σ

• Let
$$
\pi(x, y) := (\pi_1(x, y), \ldots, \pi_k(x, y)).
$$

- **a** $d_x\pi_1, \ldots, d_x\pi_k$ are 1-forms which annihilate vectors tangent to $\Sigma^\mathsf{y} := \{ \mathsf{x} \mid \pi(\mathsf{x}, \mathsf{y}) = 0 \}$. They depend on the choice of π .
- The wedge product $d_x \pi := d_x \pi_1 \wedge \cdots \wedge d_x \pi_k$ is determined by Σ up to a nonvanishing scalar factor.
- $\ddot{}$ There is no canonical norm for $d_x\pi$, but we can say

$$
d_{\sf x} \pi({\sf x},{\sf y}) = \sum_{i_1 < \cdots < i_k} c_{i_1 \cdots i_k} e_{i_1} \wedge \cdots \wedge e_{i_k}
$$

and take norm of coeff. vector for given e_1, \ldots, e_n .

Enemies of *L ^p***-Improving**

- \bullet For a given *x*, there are many y's such that $x \in \Sigma^{\gamma}$ (namely, $y \in {}^x\Sigma$). The quantity $d_x\pi(x, y)$ indirectly encodes tangent space of Σ *^y* at *x*.
- **For** *L***^p-improving to happen, one needs the tangent** space of Σ *^y* at *x* to vary robustly as *y* varies in *^x*Σ.
- No L^p -improving occurs when $d_x \pi(x, y)$ is constant (up to scalar factor) for each *x* as *y* varies over *^x*Σ.
- $\ddot{}$ In this bad case, there is a choice of basis $\boldsymbol{e} := \{\boldsymbol{e}_1, \dots, \boldsymbol{e}_n\}$ with fixed volume such that $||\boldsymbol{d}\pi_{\mathsf{x}}||_{\boldsymbol{e}}$ is uniformly as small as desired.

Theorem: Testing Condition (G 2022)

If π is polynomial and $p \in (1,\infty)$, the operator *T* maps L^p to $L^{np/k}$ iff $\overline{1}$

$$
\int_{\mathsf{x}\Sigma} \frac{|w(x,y)|^{p'}d\sigma(y)}{||d_{\mathsf{x}}\pi(x,y)||_e^{p'-1}}
$$

is uniformly bounded for all *x* and all $e := \{e_1, \ldots, e_n\}$ of fixed volume.

NB: In bad case, some choice of *e* **makes denominator uniformly small for any given** *p* > 1**.**

The Abstract "Sublevel" Problem

Suppose that $u^{\text{l}}(t)$, \dots , $u^k(t)$ are smooth \mathbb{R}^n -valued functions on some domain $\Omega \subset \mathbb{R}^\ell$. Let $\bm{\omega} := \bm{\omega}^{\text{l}} \wedge \cdots \wedge \bm{\omega}^{\text{k}}.$ For what (nontrivial) weights \bm{w} and exponents τ is it the case that

> Z Ω *w*(*t*)*dt* $\overline{{[||u(t)||_e]}^\tau}$

is uniformly bounded for all *e* of normalized volume?

We will assume that the *u ⁱ* are algebraic or Nash.

- $\ddot{}$ Uniform estimation is challenging because *k* < *n*: This means that at any point $t \in \Omega$, there is always *some* basis *e* at which $||u(t)||_e$ is as small as desired.
- \bullet Take $\epsilon^{-1}u^{\text{I}}(t), \ldots, \epsilon^{-1}u^{\text{k}}(t)$ to be the first *k* elements of the basis, then attach additional elements rescaled to make volume 1.
- \bullet In this basis, $u^1(t) \wedge \cdots \wedge u^k(t)$ looks small.

Example: $u(t) = dx_0 + tdx_1 + \cdots + t^3 dx_3$

Smooth Row and Column Reduction

- \bullet Think of $u^1(t), \ldots, u^k(t)$ as rows of a $k \times n$ matrix. Left multiplication by any $A(t) \in \mathbb{R}^{k \times k}$ of determinant 1 preserves wedge product.
- $\ddot{}$ Right multiplication by constant matrix $B \in \mathbb{R}^{n \times n}$ of determinant 1 has effect of changing the basis *e*.
- $\ddot{}$ It turns out to be useful to consider right multiplication which depends on some other parameter *s*.
- $\ddot{}$ **Objective:** Given *M*(*t*), find *A*(*t*) and *B*(*s*) such that *A*(*t*)*M*(*t*)*B*(*s*) has canonical structure. **Reduce to force higher order terms in** $(t - s)$ **to appear.** \mathbf{r}

$$
\begin{bmatrix}\n1 & 0 & 0 & 0 & 0 & t_1 & 0 \\
0 & 1 & 0 & 0 & 0 & 0 & t_1 \\
0 & 0 & 1 & 0 & 0 & t_2 & 0 \\
0 & 0 & 0 & 1 & 0 & 0 & t_2 \\
0 & 0 & 0 & 0 & 1 & t_1^2 & t_2^2\n\end{bmatrix}\n\rightarrow\n\begin{bmatrix}\n1 & 0 & 0 & 0 & 0 & t_1 - s_1 & 0 \\
0 & 1 & 0 & 0 & 0 & 0 & t_1 - s_1 \\
0 & 0 & 0 & 1 & 0 & 0 & t_2 - s_2 & 0 \\
0 & 0 & 0 & 1 & 0 & 0 & 0 & t_2 - s_2 \\
0 & 0 & 0 & 0 & 0 & 1 & t_1^2 - s_1^2 & t_2^2 - s_2^2\n\end{bmatrix}
$$
\n
$$
\rightarrow\n\begin{bmatrix}\n1 & 0 & 0 & 0 & 0 & t_1 - s_1 & 0 \\
0 & 1 & 0 & 0 & 0 & 0 & t_1 - s_1 \\
0 & 0 & 0 & 1 & 0 & 0 & t_2 - s_2 & 0 \\
0 & 0 & 0 & 1 & 0 & 0 & t_2 - s_2 & 0 \\
-2t_1 & 0 & 0 & -2t_2 & 1 & -(t_1 - s_1)^2 & -(t_2 - s_2)^2\n\end{bmatrix}
$$
\n
$$
p(t, s)(t - s)^{\alpha} - p(s, s)(t - s)^{\alpha} = \sum \frac{(\partial_t^{\beta} p)(s, s)}{\alpha!}(t - s)^{\alpha + \beta}
$$

$$
p(t,s)(t-s)^{\alpha} - p(s,s)(t-s)^{\alpha} = \sum_{|\beta|>0} \frac{(\partial_t^{\beta} p)(s,s)}{\beta!} (t-s)^{\alpha+\beta}
$$

$$
p(t,s)(t-s)^{\alpha} - p(s,s)(t-s)^{\alpha} = \sum_{|\beta|>0} \frac{(\partial_t^{\beta} p)(s,s)}{\beta!} (t-s)^{\alpha+\beta}
$$

Greedy Decompositions are Generic

Hypothesis Setup

 $\overline{}$ Row/col reduction and block structure yields a family of $k\times n$ matrices with homogeneous poly entries in the variable $z := t - s$.

$$
\begin{bmatrix} 1 & 0 & 0 & 0 & 0 & z_1 & 0 \ 0 & 1 & 0 & 0 & 0 & 0 & z_1 \ 0 & 0 & 1 & 0 & 0 & z_2 & 0 \ 0 & 0 & 0 & 1 & 0 & 0 & z_2 \ -2t_1 & 0 & 0 & -2t_2 & 1 & -z_1^2 & -z_2^2 \end{bmatrix}
$$
 (THEMATRIX)

- \overline{a} Act on these matrices by multiplication on left and right by $SL_k(\mathbb{R})$ and $SL_n(\mathbb{R})$, respectively.
- $\overline{}$ Act on *z* by $z \mapsto Pz$ for arbitrary $P \in GL_d(\mathbb{R})$.

Hypothesis Setup

There is an action of $(A, B, P) \in SL_k(\mathbb{R}) \times SL_n(\mathbb{R}) \times GL_d(\mathbb{R})$

- **•** Take the norm of $|\det P|^{-\sigma}(A, B, P)$ THEMATRIX. Compute the infimum over *A*; *B*; *P* and call it THEINF.
- $\ddot{}$ This family of matrices is "good" when THEINF > 0 .
- There are various criteria (e.g., Newton-diagram type) which characterize when such a lower bound exists.

THEINF **Generalizes Affine Curvature**

$$
\begin{bmatrix}\n1 & 0 & 0 & f_1(t) \\
0 & \ddots & 0 & \vdots \\
0 & 0 & 1 & f_k(t)\n\end{bmatrix}\n\rightsquigarrow\n\begin{bmatrix}\n1 & 0 & 0 & f_1(t) - f_1(s) \\
0 & \ddots & 0 & \vdots \\
0 & 0 & 1 & f_k(t) - f_k(s)\n\end{bmatrix}
$$
\n
$$
f(t) - f(s) = -\sum_{|\alpha|>0} \frac{(s-t)^{\alpha}}{\alpha!} f^{(\alpha)}(t)
$$
\n
$$
\rightsquigarrow\n\begin{bmatrix}\nm_{11}(t) & \cdots & m_{1k}(t) & -(s-t) \\
\vdots & \ddots & \vdots & \vdots \\
m_{k1}(t) & \cdots & m_{kk}(t) & -\sum_{|\alpha|=N} \frac{(s-t)^{N-1}}{\alpha!} f^{(\alpha)}(t)\n\end{bmatrix}
$$

 \sim

16

Theorem (Setup)

 \mathcal{L} et $\Omega \subset \mathbb{R}^d$ be open and $u^{\text{l}}(t), \ldots$, $u^k(t)$ on Ω be *smooth* R *ⁿ-valued functions such that* $u(t) := u^{\text{I}}(t) \wedge \cdots \wedge u^k(t)$ is nonvanishing and is Nash *of complexity at most K. Let U*(*t*) *be the matrix whose rows are u*¹ (*t*); : : : ; *u k* (*t*)*. Suppose that* $M(t, s) := A(t)U(t)B(s)$ *admits block decomposition with formal degree Dij for block ij.*

Theorem (Conclusion)

Suppose there exists nonnegative w(*t*) *on* Ω *and some* $\sigma > 0$ *such that at every t* $\in \Omega$,

 $(w(t))^{\sigma} \leq$ THEINF(*t*).

Then there exists C depending only on n; *k*; *d, and the Dij such that*

$$
\int_{\Omega}\frac{w(t)dt}{[||u(t)||_e]^{1/(k\sigma)}}\leq CK^C
$$

uniformly for all volume 1 bases e of \mathbb{R}^n .

Key Lemma: Differential Inequalities

For any polynomial $g(\textsf{x}_1, \ldots, \textsf{x}_k)$ of fixed degree, any set $E \subset \mathbb{R}^n$ and any weighted measure *Wdx*, there are vector fields *X j* $_{i}^{\prime}$ on an open set Ω

$$
\sup_{x_1 \in \Omega} \dots \sup_{x_k \in \Omega} |X_1^{\alpha_1} \dots X_k^{\alpha_k} g(x_1, \dots, x_k)|
$$

$$
\leq \sup_{x_1 \in E} \dots \sup_{x_k \in E} |g(x_1, \dots, x_k)|
$$

such that $W(E \cap \Omega) \geq W(E)$ and

$$
W(x) | \det(X_1^j, \dots, X_n^j)| \geq W(E)
$$

on a subset of *E* with *W*-measure \geq *W*(*E*).

Proof Sketch of the Estimation Theorem

- Fix basis *e* 1 ; : : : ; *e n* . Key quantities are pairings $\big\langle u^{\textrm{I}}(t) \wedge \cdots \wedge u^{\textrm{k}}(t)$, $e^{\textrm{j}_{\textrm{I}}} \wedge \cdots \wedge e^{\textrm{j}_{\textrm{k}}}\big\rangle$. At all points t, 1 $||u(t)||_e$ $\overline{}$ $\begin{array}{c} \hline \end{array}$ $\left|\langle u^{\prime}(t) \wedge \cdots \wedge u^{k}(t), e^{j_{1}} \wedge \cdots \wedge e^{j_{k}}\rangle\right| \leq 1.$
- **We can pretend that** *e* 1 ; : : : ; *e ⁿ* **are not constant:** 1 $||u(t)||_e$ $\overline{}$ $\frac{1}{2}$ $\left|\langle u^{\prime}(t) \wedge \cdots \wedge u^{k}(t), e^{j_{1}}(s_{1}) \wedge \cdots \wedge e^{j_{k}}(s_{k})\rangle\right| \leq 1.$
- \overline{a} **Replace** e^j by \overline{v}^j aligned with block decomposition:

$$
\frac{1}{||u(t)||_e}|\langle u^{l}(t)\wedge\cdots\wedge u^{k}(t),\overline{v}^{j_1}(s_1)\wedge\cdots\wedge\overline{v}^{j_k}(s_k)\rangle|\lesssim 1.
$$

Apply the differential inequalities in *s* **variables:** $\overline{}$ \overline{a} $\left\langle u^{\textrm{l}}(t) \wedge \cdots \wedge u^{\textrm{k}}(t), X^{\alpha_{\textrm{i}}}\overline{v}^{\textrm{j}_{\textrm{l}}}(s_{\textrm{i}}) \wedge \cdots \wedge X^{\alpha_{\textrm{k}}}\overline{v}^{\textrm{j}_{\textrm{k}}}(s_{\textrm{k}}) \right\rangle \right|$ $\overline{}$ $||u(t)||_e$ \lesssim 1.

e Restrict to diagonal $s_1 = \cdots = s_k = t$ and produce *u* 1 ; : : : ; *u ^k* **adapted to block decomposition so**

$$
\frac{1}{||u(t)||_e} |\overline{u}^i(t) \cdot X^{\alpha} \overline{v}^j(t)|^k \lesssim 1.
$$

- **Theorem's hypotheses imply** $|\overline{u}^i(t)\cdot X^{\alpha}\overline{v}^j(t)|^k\gtrsim |\det(X_1,\ldots,X_n)|^{\sigma k}(w(t))^{\sigma k}.$
- Differential Inequality Lemma with $W := w/||u||_e^{1/(\sigma k)}$

$$
\left(\int \frac{w(t)}{||u(t)||_e^{1/(\sigma k)}}dt\right)^{\sigma k} \lesssim 1.
$$

Corollary

*Suppose T is an algebraic (or Nash) Radon-like transform. Let X*¹ ; : : : ; *X^d^X and Y*¹ ; : : : ; *Y^d^Y be usual annihilated vector fields associated to the double fibration formulation. Consider the bilinear map*

$$
\left(\sum_i u_i X_i, \sum_j v_j Y_j\right) \mapsto
$$

$$
\sum_{ij} u_i v_j [X_i, Y_j]/(span\{X_1, \ldots, Y_1, \ldots\}).
$$

T is a model operator if and only if this bilinear map is semistable. ²²

Proposition (SVD-Like Condition)

Suppose P(*z*) *is a k* - *n matrix whose entries are* polys of degree at most D in z $\in \mathbb{R}^d$. If P satisfies

$$
\sum_{j=1}^n\sum_{|\alpha|\leq D}\frac{1}{\alpha!}\left[\partial^\alpha P_{ij}(z)\partial^\alpha P_{i'j}(z)|_{z=0}\right]=\frac{C}{k}\delta_{ii'},\\\sum_{i=1}^k\sum_{|\alpha|\leq D}\frac{1}{\alpha!}\left[\partial^\alpha P_{ij}(z)\partial^\alpha P_{ij'}(z)|_{z=0}\right]=\frac{C}{n}\delta_{jj'},\\\sum_{i=1}^k\sum_{j=1}^q\sum_{|\alpha|,|\alpha'|\leq D}\sqrt{\frac{\alpha_\ell\alpha'_{\ell'}}{\alpha!\alpha'!}}\left[\partial^\alpha P_{ij}(z)\partial^{\alpha'} P_{ij}(z)|_{z=0}\right]=\sigma C\delta_{\ell\ell'},
$$

then THEINF *is attained at the identity.*

k

i=1

Corollary (Resolved: Nothing Sinister Happens)

- $\ddot{}$ *Model (quadratic) operators exist for dimension* $d \geq 1$ averages iff codimension $1 \leq k \leq d^2.$
- *Translation-invariant model operators exist iff codimension* 1 \leq k \leq $\frac{d(d+1)}{2}$ $\frac{1}{2}$.

Proof: Any nontrivial trilinear form *Tijk* satisfying

$$
\sum_{ij} T_{ijk} T_{ijk'} = \lambda_1 \delta_{kk'}, \sum_{ik} T_{ijk} T_{ij'k} = \lambda_2 \delta_{jj'}, \sum_{jk} T_{ijk} T_{ijk} = \lambda_3 \delta_{ji'}
$$

is semistable. If semistable *T* exists, then eqns have nontrivial solns. Construct explicit solns for all $\mathbb{R}^{d\times d\times k}.$

BUT...Sinister things do happen in overdetermined cases: no good 8d families of 2d averages in R 7 . 24

- \bullet When THEINF $=$ 0, can higher-order behavior have an impact?
- Can weighted inequalities resolve (more) general behavior in low codimensions?
- $\ddot{}$ Moving beyond from the outermost edges of the Riesz diagram

Thank You