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Introduction & Results
Two-point inequalities

Computer-assisted verification

1 Introduction & Results
Analysis on the Hamming cube
Isoperimetric problems
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Hamming cube {0, 1}n

Space of length-n bitstrings x = (x1, . . . , xn) ∈ {0, 1}n

Equivalent multiplicative notation: z ∈ {−1, 1}n, zi = (−1)xi

Boolean-valued functions f : {0, 1}n → {0, 1} important in
many applications:

Social choice theory (2-candidate-election, n voters)

Computer Science: circuits, decision trees, error-correction

Boolean-valued function models subset f = 1A for A ⊂ {0, 1}n

We only care about inequalities independent of dimension n
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Poincaré inequalities

Hamming cube {0, 1}n

Space of length-n bitstrings x = (x1, . . . , xn) ∈ {0, 1}n

Equivalent multiplicative notation: z ∈ {−1, 1}n, zi = (−1)xi

Boolean-valued functions f : {0, 1}n → {0, 1} important in
many applications:

Social choice theory (2-candidate-election, n voters)

Computer Science: circuits, decision trees, error-correction

Boolean-valued function models subset f = 1A for A ⊂ {0, 1}n

We only care about inequalities independent of dimension n

Joris Roos Isoperimetric and Poincaré inequalities on the Hamming cube
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Boolean functions

For f : {±1}n → R let

Ef = 2−n
∑

z∈{±1}n
f (z)

|A| = E1A normalized counting measure

Every f : {±1}n → R is a multilinear polynomial:

f (z) =
∑

S⊂{±1}n
f̂ (S)zS (Fourier expansion)

zS =
∏
i∈S

zi , f̂ (S) = Ez(f (z)z
S)

“Majority” f (z) = sgn(z1 + · · ·+ zn) (→ Hamming ball)

“Dictator” f (z) = zi (→ half-cube)
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Isoperimetric problem

Question

With |A| fixed, how “small” can the “boundary” of A possibly be?

Given A ⊂ {0, 1}n need a notion of boundary size.
“Interior” vs “exterior” boundary2

∂intA = {x ∈ A : ∃ i s.t. x ⊕ ei ̸∈ A}

∂extA = {x ̸∈ A : ∃ i s.t. x ⊕ ei ∈ A} = ∂int(A
c)

With |A| fixed what is minimal size of |∂intA| ?

2ei is ith unit vector
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Hamming ball example

Consider Hamming ball of radius n/2:

A = {x ∈ {0, 1}n : x1 + · · ·+ xn ≤ n/2}

As n → ∞:
|A| → 1/2

|∂intA| ∼
√

2

π
· n−1/2 −→ 0

=⇒ No non-trivial isoperimetric inequality

Just counting boundary vertices is not the ‘right’ boundary measure
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Poincaré inequalities

Hamming ball example

Consider Hamming ball of radius n/2:

A = {x ∈ {0, 1}n : x1 + · · ·+ xn ≤ n/2}

As n → ∞:
|A| → 1/2

|∂intA| ∼
√

2

π
· n−1/2 −→ 0

=⇒ No non-trivial isoperimetric inequality

Just counting boundary vertices is not the ‘right’ boundary measure

Joris Roos Isoperimetric and Poincaré inequalities on the Hamming cube
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Taking into account number of boundary edges

Definition

hA(x) = 1A(x) ·#{i s.t. x ⊕ ei ̸∈ A}

= number of edges from x ∈ A connecting to outside of A

hAc (x) = 1Ac (x) ·#{i s.t. x ⊕ ei ∈ A}

= number of edges from x ∈ Ac connecting to inside of A

Edge boundary measure:

EhA = EhAc = normalized count of total boundary edges

No longer minimized by Hamming balls.
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Codimension k cube example

A = {x ∈ {0, 1}n : x1 = · · · = xk = 0}

|A| = 2−k

EhA = EhAc = 2−kk = |A| log2( 1
|A|)

Classical isoperimetric inequality for the Hamming cube3:

EhA ≥ |A|∗ log2(1/|A|∗) for all A ⊂ {0, 1}n

Can one do better if A is not (complement of) codim. k-cube?
Edge isoperimetric profile:

B1(x) = inf
n≥1

inf
A⊂{0,1}n,

|A|=x

EhA

3x∗ = min(x , 1− x).
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Edge isoperimetric profile

Hart ’76:4

B1

(
k
2n

)
= nk2−n − 2−n+1

k−1∑
j=1

(binary digit sum of j)

4This is well-defined
Joris Roos Isoperimetric and Poincaré inequalities on the Hamming cube
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Interlude: Gaussian isoperimetric inequality

Gaussian space: Rn with

dµ(t) = (2π)−n/2e−|t|2/2dt = φ(t) dt.

A boundary measure:

µ+(A) = lim inf
h→0

h−1(µ(Ah)− µ(A))

(Ah is the h-neighborhood of A)
For ‘nice’ A, µ+(A) is “E|∇1A|” (def. by smooth approx.)
Sudakov-Tsirelson ’75, Borell ’78, Bobkov ’97:

µ+(A) ≥ µ+(H)

where H a half-space with µ(A) = µ(H).
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Gaussian isoperimetric profile

Consider Gaussian cdf for n = 1:

Φ(t) =

∫ t

−∞
φ(s) ds

Define I (x) = φ(Φ−1(x)) for x ∈ [0, 1]. Then

inf
A⊂R,µ(A)=x

µ+(A) = I (x).

I is also defined by I ′′ · I = −1, I (0) = I (1) = 1.
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Poincaré inequalities

Gaussian isoperimetric profile

Consider Gaussian cdf for n = 1:

Φ(t) =

∫ t

−∞
φ(s) ds

Define I (x) = φ(Φ−1(x)) for x ∈ [0, 1]. Then

inf
A⊂R,µ(A)=x

µ+(A) = I (x).

I is also defined by I ′′ · I = −1, I (0) = I (1) = 1.

Joris Roos Isoperimetric and Poincaré inequalities on the Hamming cube
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Bobkov ’97: Proof via Boolean functions

Theorem (Bobkov’s inequality)

For all f : {0, 1}n → [0, 1]:

I (Ef ) ≤ E
√
I (f )2 + |∇f |2

where |∇f |2 =
∑n

i=1 |
1
2(f (x ⊕ ei )− f (x))|2.

Proof by induction on n, case n = 1 only uses I ′′ · I = −1

Approx. argument gives Gaussian isoperimetric inequality

When f = 1A:
E|∇1A| ≥ I (|A|)

1
2(Eh

1/2
A + Eh

1/2
Ac ) ≥ I (|A|)

Not sharp!
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For β ≥ 0 consider
EhβA

β = 0: vertex boundary measure (“boring”)

β = 1/2: comes up in Bobkov’s inequality

β = 1: edge boundary measure (well-known)

Hamming ball example:

EhβA ≈ |bdry vertices| · (n/2)β ≈ n−1/2+β

Question
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Poincaré inequalities

Isoperimetric problem on the Hamming cube

For β ≥ 0 consider
EhβA

β = 0: vertex boundary measure (“boring”)

β = 1/2: comes up in Bobkov’s inequality

β = 1: edge boundary measure (well-known)

Hamming ball example:

EhβA ≈ |bdry vertices| · (n/2)β ≈ n−1/2+β

Question

Joris Roos Isoperimetric and Poincaré inequalities on the Hamming cube
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For β ≥ 0 consider
EhβA

β = 0: vertex boundary measure (“boring”)

β = 1/2: comes up in Bobkov’s inequality

β = 1: edge boundary measure (well-known)

Hamming ball example:

EhβA ≈ |bdry vertices| · (n/2)β ≈ n−1/2+β

Question

Given β ∈ [1/2, 1], what is the best (largest) value Bβ(|A|) such
that

EhβA ≥ Bβ(|A|) ?

Joris Roos Isoperimetric and Poincaré inequalities on the Hamming cube
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For β ≥ 0 consider
EhβA

β = 0: vertex boundary measure (“boring”)
β = 1/2: comes up in Bobkov’s inequality
β = 1: edge boundary measure (well-known)
Hamming ball example:

EhβA ≈ |bdry vertices| · (n/2)β ≈ n−1/2+β

Question

Given β ≥ 1
2 and x ∈ [0, 1] what is the value of

Bβ(x) = inf
n≥1

inf
A⊂{0,1}n,|A|=x

EhβA

Joris Roos Isoperimetric and Poincaré inequalities on the Hamming cube
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Codimension k cube example

A = {x ∈ {0, 1}n : x1 = · · · = xk = 0}

|A| = 2−k = x

EhβA = 2−kkβ = x · (log2 1
x )

β
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Codimension k cube example

A = {x ∈ {0, 1}n : x1 = · · · = xk = 0}

|A| = 2−k = x

EhβA = 2−kkβ = x · (log2 1
x )

β

Conjecture

For all β ≥ 0.5 and k ≥ 1:

Bβ(2
−k) = 2−kkβ
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Codimension k cube example

A = {x ∈ {0, 1}n : x1 = · · · = xk = 0}

|A| = 2−k = x

EhβA = 2−kkβ = x · (log2 1
x )

β

Conjecture

For all β ≥ 0.5 and x = 2−k :

Bβ(x) = x(log2
1
x )

β

(What about other x?)
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Codimension k cube example

A = {x ∈ {0, 1}n : x1 = · · · = xk = 0}

|A| = 2−k = x

EhβA = 2−kkβ = x · (log2 1
x )

β

Theorem (DIR ’24)

For all β ≥ 0.50057 and all x :

Bβ(x) ≥ x∗(log2
1
x

∗
)β

with equality for x = 2−k .
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State of the art for β > 1/2 (sharp bounds)

β Bβ(x) ≥ Sharp for x =

Classical ’60s 1 x∗ log2(1/x
∗) 2−k

Hart ’76 1 (exact value) (all x)

KP ’20 0.58.. 2x(1− x) 1
2 ,

1
4

BIM ’23 0.58.. x∗(log2(1/x
∗))β 2−k

BIM ’23 0.53 8x(1 − x)((1 − 2
√

2
3

)x +
√

2
3

− 1
4
)

1
2

DIR ’24 0.50057 bβ(x) ≥ x∗(log2(1/x
∗))β 2−k
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Poincaré inequalities

State of the art for β > 1/2 (sharp bounds)

β Bβ(x) ≥ Sharp for x =

Classical ’60s 1 x∗ log2(1/x
∗) 2−k

Hart ’76 1 (exact value) (all x)
KP ’20 0.58.. 2x(1− x) 1

2 ,
1
4

BIM ’23 0.58.. x∗(log2(1/x
∗))β 2−k

BIM ’23 0.53 8x(1 − x)((1 − 2
√

2
3

)x +
√

2
3

− 1
4
)

1
2

DIR ’24 0.50057 bβ(x) ≥ x∗(log2(1/x
∗))β 2−k

Joris Roos Isoperimetric and Poincaré inequalities on the Hamming cube
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Poincaré inequalities

New bound for β near 1/2

For β = 0.50057:

Bβ(x) ≥ bβ(x) =


x(log2(1/x))

β for x ∈ [0, 14 ],
2
3x(1− x)(22+β − 3 + 4x(3− 21+β)) for x ∈ [14 ,

1
2 ],√

2 · w · I (1−x
w ) for x ∈ [12 , 1]

with w > 0 s.t. continuous at x = 1/2.
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State of the art for β = 1/2 (no sharp bounds known)

B 1
2
(x) ≥ B 1

2
(12) ≥

Talagrand ’93
√
2 x(1− x) 0.35. . .

Bobkov–Götze ’99
√
3 x(1− x) 0.43. . .

BIM ’23 2
√
23/2 − 2 x(1− x) 0.45. . .

hypothetical best bound of form Cx(1 − x)
4
√
2

3 x(1− x) 0.47. . .
DIR ’24 0.997 · b1/2(x) 0.4985

Conjectured ? 0.5
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Known bounds for β = 1/2
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Introduction & Results
Two-point inequalities

Computer-assisted verification

Analysis on the Hamming cube
Isoperimetric problems
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Poincaré inequalities

Recall |∇f | =
(∑n

j=1 |
1
2(f (x ⊕ ej)− f (x))|2

)1/2

Question

Let p ≥ 1. What is the best Cp so that

E|∇f |p ≥ CpE|f − Ef |p ?

p = 2: C2 = 1 by Plancherel

p = 1: Open. Conjectured C1 =
√
2/π. Ivanisvili-van

Handel-Volberg ’18: C1 ≥ 2/π

BIM ’23: Improvement when restricted to Boolean-valued f

C1,B.v. >
√

2/π
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E|∇f |p ≥ CpE|f − Ef |p

Say f : {0, 1}n → {0, 1}. Then f = 1A.

|∇f | = 1
2(h

1/2
A + h

1/2
AC

)

E|∇f |p = 1
2p (Eh

β
A + EhβAC

) (β = p/2)

E|f − Ef |p = |A|(1− |A|)p + (1− |A|)|A|p

Poincaré inequality is a ‘two-sided’ isoperimetric inequality
Half-cube example shows Cp,B.v. ≤ 1.
Conjecture: Cp,B.v. = 1 holds for all p ≥ 1.

Theorem (DIR ’24)

Conjecture holds for p ≥ 1.00114.
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Introduction & Results
Two-point inequalities

Computer-assisted verification

Analysis on the Hamming cube
Isoperimetric problems
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Introduction & Results
Two-point inequalities

Computer-assisted verification

Analysis on the Hamming cube
Isoperimetric problems
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Poincaré inequality is a ‘two-sided’ isoperimetric inequality
Half-cube example shows Cp,B.v. ≤ 1.
Conjecture: Cp,B.v. = 1 holds for all p ≥ 1.

Theorem (DIR ’24)

Conjecture holds for p ≥ 1.00114.

Joris Roos Isoperimetric and Poincaré inequalities on the Hamming cube
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Proposition (Bobkov)

B : [0, 1] → [0,∞) a given function. If

B(Ef ) ≤ E
√
B(f )2 + |∇f |2

for all f : {0, 1} → [0, 1], then it holds for all f : {0, 1}n → [0, 1].

Case n = 1 is Bobkov’s two-point inequality: for all 0 ≤ x , y ≤ 1:

B((x+y)/2) ≤ 1
2

√
B(x)2 + (12(y − x))2+ 1

2

√
B(y)2 + (12(y − x))2

Bobkov proved this for B = I .
Alternate proof by Barthe-Maurey (2000) using Itô calculus
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Joris Roos Isoperimetric and Poincaré inequalities on the Hamming cube
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Generalization of Bobkov’s inequality

I interval, ∥ · ∥ ‘suitable’ norm, D ‘nice’ sublinear operator,
B : I → [0,∞) a function. If

B(Ef ) ≤ E∥(B(f ),Df )∥

holds for all f : {0, 1} → I, then it holds for all f : {0, 1}n → I.

Df = ((f (x)− f (x ⊕ ei ))+)i

(Talagrand ’93, Bobkov–Götze ’98)
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Generalization of Bobkov’s inequality

I interval, ∥ · ∥ ‘suitable’ norm, D ‘nice’ sublinear operator,
B : I → [0,∞) a function. If

B(Ef ) ≤ E∥(B(f ),Df )∥

holds for all f : {0, 1} → I, then it holds for all f : {0, 1}n → I.

Df = ((f (x)− f (x ⊕ ei ))+)i

(Talagrand ’93, Bobkov–Götze ’98)

B((x+y)/2) ≤ 1
2

√
B(x)2 + 1

2((y − x))2+ 1
2

√
B(y)2 + 1

2((y − x))2
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I interval, ∥ · ∥ ‘suitable’ norm, D ‘nice’ sublinear operator,
B : I → [0,∞) a function. If

B(Ef ) ≤ E∥(B(f ),Df )∥

holds for all f : {0, 1} → I, then it holds for all f : {0, 1}n → I.

Df = ((f (x)− f (x ⊕ ei ))+)i

(Talagrand ’93, Bobkov–Götze ’98)

B((x + y)/2) ≤ 1
2(B(y)

1/β + (y − x)1/β)β + 1
2B(x)

If I = [0, 1], plugging in f = 1A gives

EhβA ≥ B(|A|)
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Variant of Bobkov’s two-point inequality

Proposition (Bobkov ’97)

Suppose B ′′B = −2 holds on [0, 1]. Then

B((x+y)/2) ≤ 1
2

√
B(x)2 + 1

2((y − x))2+ 1
2

√
B(y)2 + 1

2((y − x))2

for all 0 ≤ x , y ≤ 1

Example. B(x) = J(x) =
√
2 · w · I ((1− x)/w) with w > 0 s.t.

J(12) =
1
2 .

Then J ′′ · J = −2 and J ′ ≤ 0 on I = [x0, 1] with x0 = 1− w
2 .

Inequality fails for 0.5 ≤ x < x0.
Idea: Increase β slightly (β = 0.5 + 19 · 2−15 is just enough) so
that it holds on [0.5, 1]
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Asymptotic behavior near 1

Recall J(x) =
√
2 · w · I ((1− x)/w), x0 = 1− w/2.

Corollary

For all A ⊂ {0, 1}n we have

E
√
hA ≥ (1− x0)

−1(J((1− x0)|A|+ x0)− ∥J∥∞(1− |A|))

Terrible estimate if |A| away from 1.

Beats all other known bounds as |A| → 1−.

Asymptotically equivalent to
J(x) ∼

√
2(1− x)

√
log(1/(1− x)) (as x → 1). Is this sharp?
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Asymptotic behavior at |A| → 0+

Using B(x) = x
√

log2(1/x) (and I = [0, 1/2]) gives:

Corollary (DIR ’24)

Eh
1/2
A ≥ |A|

√
log2(2/|A|)− |A| for all A ⊂ {0, 1}n

Asymptotically sharp as |A| → 0+.

Sharp inequality for |A| = 1/2 when β at or near 1/2 requires
a new ingredient
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Improved two-point inequality (Kahn–Park ’20)

Suppose B : [0, 1] → [0,∞) satisfies B(0) = B(1) = 0. Set
cβ = 2β − 1 and assume

(KP) max(((y − x)
1
β + B(y)

1
β )β, y − x + cβB(y)) + B(x) ≥ 2B( x+y

2 )

for all 0 ≤ x ≤ y ≤ 1.

Then Bβ ≥ B, i.e. for all A ⊂ {0, 1}n:

EhβA ≥ B(|A|).
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Suppose B : [0, 1] → [0,∞) satisfies B(0) = B(1) = 0. Set
cβ = 2β − 1 and assume

(KP) max(((y − x)
1
β + B(y)

1
β )β, y − x + cβB(y)) + B(x) ≥ 2B( x+y

2 )

for all 0 ≤ x ≤ y ≤ 1.
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Proof idea: Induction on n. For A ⊂ {0, 1}n+1 set

Ai = {x : (x1, . . . , xn, i) ∈ A} ⊂ {0, 1}n.

Optimize carefully and use Jensen correctly.

(KP) holds for B(x) = 2x(1− x) and β = log2(3/2)

(KP) holds for B(x) = bβ(x) and β = 0.50057 (DIR ’24)

How can one find ‘good’ (large) functions that satisfy (KP)?

Useful observation: If B1,B2 satisfy inequality, then so does
max(B1,B2)

So there is a largest function. Can we compute it?
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Envelope function

Definition

Let Bβ : Q → [0,∞) be the largest function satisfying (KP) for all
0 ≤ x ≤ y ≤ 1 in Q = {k2−n : n ≥ 1, 0 ≤ k ≤ 2n}.

We know: Bβ ≥ Bβ. (What about the reverse?)

Bβ(x) is hard to compute. What about Bβ?

Easy to see: Bβ(x) = lim supn→∞Bβ,n(x)

Bβ,n can be computed by a ‘greedy’ approach improving
guesses iteratively, for n small, say n < 20
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Known bounds vs. computed envelope for β = 1/2
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How to prove the two-point inequality?

Define

GB,β(x , y) = max(((y−x)
1
β+B(y)

1
β )β, y−x+cβB(y))+B(x)−2B( x+y

2 )

where cβ = 2β − 1 and

bβ(x) =


Lβ(x) = x(log2(1/x))

β for x ∈ [0, 14 ],
Qβ(x) =

2
3x(1− x)(22+β − 3 + 4x(3− 21+β)) for x ∈ [14 ,

1
2 ],

J(x) =
√
2 · w0 · I (1−x

w0
) for x ∈ [12 , 1]

and 0 ≤ x ≤ y ≤ 1 where I = φ ◦ Φ−1 and w0 is such that bβ is
continuous at x = 1/2.

“Exercise”

For β = 0.50057 and all 0 ≤ x ≤ y ≤ 1 show that

Gbβ ,β(x , y) ≥ 0.
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GB,β(x , y) = max(((y−x)
1
β+B(y)

1
β )β, y−x+cβB(y))+B(x)−2B( x+y

2 )

where cβ = 2β − 1 and

bβ(x) =


Lβ(x) = x(log2(1/x))

β for x ∈ [0, 14 ],
Qβ(x) =

2
3x(1− x)(22+β − 3 + 4x(3− 21+β)) for x ∈ [14 ,

1
2 ],

J(x) =
√
2 · w0 · I (1−x

w0
) for x ∈ [12 , 1]

and 0 ≤ x ≤ y ≤ 1 where I = φ ◦ Φ−1 and w0 is such that bβ is
continuous at x = 1/2.

“Exercise”

For β = 0.50057 and all 0 ≤ x ≤ y ≤ 1 show that

Gbβ ,β(x , y) ≥ 0.
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((y − x)2 + J(y)2)
1
2 + J(x)− 2J(x+y

2 ) ≥ 0
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1
β + J(y)

1
β )β , y − x + cβJ(y)) + Lβ(x)− 2Qβ(

x+y
2 ) ≥ 0
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y 7→ Gbβ ,β(x , y) for x = 1
2 , β = 0.5 + 19 · 2−15

0.52 0.54 0.56 0.58

1×10-6

2×10-6

3×10-6
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y 7→ Gbβ ,β(x , y) for x = 1
2 , β = 0.5 + 18 · 2−15

0.52 0.54 0.56 0.58

-5.0×10-7

5.0×10-7

1.0×10-6

1.5×10-6

2.0×10-6

2.5×10-6
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Toy example

Exercise

Show that f (x) = 2x
√
log 1

x + 3x8 − 2
√
x3 − x6 > 0 for

x ∈ [0.1, 0.9].

0.2 0.4 0.6 0.8

0.2

0.4

0.6

0.8

1.0
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I set of closed subintervals of [a, b].

Definition

v : I → R is called a tight lower bound of f if

f (x) ≥ v([x , x ]) for all x ∈ [x , x ]

and v([x , x ]) → f (x) as x − x → 0.

Idea: reduce proof of f > 0 to finding finite partition P of I so
that v(I ′) > 0 for all I ′ ∈ P.

Is v([a, b]) > 0? If yes, done.

If no, split [a, b] into [a, (a+ b)/2], [(a+ b)/2, b], repeat.
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Toy example

f (x) = 2x
√

log 1
x + 3x8 − 2

√
x3 − x6 > 0

v([x , x ]) = 2x
√
log 1

x + 3x8 − 2

√
x3 − x6

Recursive bisection yields partition of [0.1, 0.9] into 29 intervals:

{0.1, 0.2, 0.3, 0.4, 0.45, 0.5, 0.55, 0.575, 0.6, 0.6125, 0.625, 0.6375,

0.65, 0.6625, 0.66875, 0.675, 0.68125, 0.6875, 0.69375, 0.7, 0.7125,

0.725, 0.7375, 0.75, 0.7625, 0.775, 0.8, 0.825, 0.85, 0.9}
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Introduction & Results
Two-point inequalities

Computer-assisted verification

Automating lower bounds: Toy example
Rigorous numerics

Toy example

f (x) = 2x
√

log 1
x + 3x8 − 2

√
x3 − x6 > 0

v([x , x ]) = 2x
√
log 1

x + 3x8 − 2

√
x3 − x6

Recursive bisection yields partition of [0.1, 0.9] into 29 intervals:

{0.1, 0.2, 0.3, 0.4, 0.45, 0.5, 0.55, 0.575, 0.6, 0.6125, 0.625, 0.6375,

0.65, 0.6625, 0.66875, 0.675, 0.68125, 0.6875, 0.69375, 0.7, 0.7125,

0.725, 0.7375, 0.75, 0.7625, 0.775, 0.8, 0.825, 0.85, 0.9}

Joris Roos Isoperimetric and Poincaré inequalities on the Hamming cube
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Issues

Need strict inequality f > 0

Need tight lower bound

Partition size may get too large / intervals too small

Can we trust computer evaluations using, say,
Mathematica? No!

Rounding (floating point) errors and numerical approximation
errors propagate
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Rump’s example (80s)

Rump(a, b) = 333.75b6+a2(11a2b2−b6−121b4−2)+5.5b8+ a
2b

What is Rump(77617, 33096)?

Mathematica:5 −1.18059 · 1021
Correct value: −0.8274(±10−4)

5Double-precision floating point arithmetic
Joris Roos Isoperimetric and Poincaré inequalities on the Hamming cube
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Rigorous numerics

IEEE-754 standard prescribes rounding of floating point
numbers

Track error in each step: interval arithmetic / ball arithmetic

Computation proves that output lies in the interval (must
trust implementation)

Tucker (2002): existence of Lorenz attractor

flint/arb: open source library for rigorous numerics, relevant
parts easy to verify
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Thank you!
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