Isoperimetric and Poincaré inequalities on the Hamming cube

Joris Roos

University of Massachusetts Lowell

Madison, May 13, 2024¹

Joint work with Polona Durcik and Paata Ivanisvili

¹Updated July 2024

Introduction & Results

- Analysis on the Hamming cube
- Isoperimetric problems
- Poincaré inequalities
- 2 Two-point inequalities
 - Bobkov's inequality
 - Kahn–Park inequality
 - Computed envelopes
- 3 Computer-assisted verification
 - Automating lower bounds: Toy example
 - Rigorous numerics

Analysis on the Hamming cube Isoperimetric problems Poincaré inequalities

Hamming cube $\{0,1\}^n$

- Space of length-*n* bitstrings $x = (x_1, \dots, x_n) \in \{0, 1\}^n$
- Equivalent multiplicative notation: $z \in \{-1,1\}^n$, $z_i = (-1)^{x_i}$

- 4 同 ト 4 ヨ ト 4 ヨ ト

Analysis on the Hamming cube Isoperimetric problems Poincaré inequalities

Hamming cube $\{0,1\}^n$

- Space of length-*n* bitstrings $x = (x_1, \dots, x_n) \in \{0, 1\}^n$
- Equivalent multiplicative notation: $z \in \{-1,1\}^n$, $z_i = (-1)^{x_i}$
- Boolean-valued functions f : {0,1}ⁿ → {0,1} important in many applications:
- Social choice theory (2-candidate-election, n voters)

< ロ > < 同 > < 回 > < 回 > .

Analysis on the Hamming cube Isoperimetric problems Poincaré inequalities

Hamming cube $\{0,1\}^n$

- Space of length-*n* bitstrings $x = (x_1, \dots, x_n) \in \{0, 1\}^n$
- Equivalent multiplicative notation: $z \in \{-1,1\}^n$, $z_i = (-1)^{x_i}$
- Boolean-valued functions f : {0,1}ⁿ → {0,1} important in many applications:
- Social choice theory (2-candidate-election, *n* voters)
- Computer Science: circuits, decision trees, error-correction

Analysis on the Hamming cube Isoperimetric problems Poincaré inequalities

Hamming cube $\{0,1\}^n$

- Space of length-*n* bitstrings $x = (x_1, \dots, x_n) \in \{0, 1\}^n$
- Equivalent multiplicative notation: $z \in \{-1,1\}^n$, $z_i = (-1)^{x_i}$
- Boolean-valued functions f : {0,1}ⁿ → {0,1} important in many applications:
- Social choice theory (2-candidate-election, *n* voters)
- Computer Science: circuits, decision trees, error-correction
- Boolean-valued function models subset $f = \mathbf{1}_A$ for $A \subset \{0,1\}^n$

くロ と く 同 と く ヨ と 一

Analysis on the Hamming cube Isoperimetric problems Poincaré inequalities

Hamming cube $\{0,1\}^n$

- Space of length-*n* bitstrings $x = (x_1, \dots, x_n) \in \{0, 1\}^n$
- Equivalent multiplicative notation: $z \in \{-1,1\}^n$, $z_i = (-1)^{x_i}$
- Boolean-valued functions f : {0,1}ⁿ → {0,1} important in many applications:
- Social choice theory (2-candidate-election, *n* voters)
- Computer Science: circuits, decision trees, error-correction
- Boolean-valued function models subset $f = \mathbf{1}_A$ for $A \subset \{0,1\}^n$
- We only care about inequalities independent of dimension *n*

くロ と く 同 と く ヨ と 一

Analysis on the Hamming cube Isoperimetric problems Poincaré inequalities

Boolean functions

• For $f: \{\pm 1\}^n \to \mathbb{R}$ let

$$\mathsf{E}f = 2^{-n} \sum_{z \in \{\pm 1\}^n} f(z)$$

• $|A| = \mathbf{E} \mathbf{1}_A$ normalized counting measure

イロト イボト イヨト イヨト

Analysis on the Hamming cube Isoperimetric problems Poincaré inequalities

Boolean functions

• For $f: \{\pm 1\}^n \to \mathbb{R}$ let

$$\mathbf{E}f = 2^{-n} \sum_{z \in \{\pm 1\}^n} f(z)$$

• $|A| = \mathbf{E} \mathbf{1}_A$ normalized counting measure

• Every $f : \{\pm 1\}^n \to \mathbb{R}$ is a multilinear polynomial:

 $f(z) = \sum_{S \subset \{\pm 1\}^n} \widehat{f}(S) z^S \quad \text{(Fourier expansion)}$ $z^S = \prod z; \quad \widehat{f}(S) = \mathbf{E} \ (f(z) z^S)$

$$z^{5} = \prod_{i \in S} z_{i}, \quad f(S) = \mathbf{E}_{z}(f(z)z^{5})$$

3

Analysis on the Hamming cube Isoperimetric problems Poincaré inequalities

Boolean functions

• For
$$f: \{\pm 1\}^n \to \mathbb{R}$$
 let

$$\mathbf{E}f = 2^{-n} \sum_{z \in \{\pm 1\}^n} f(z)$$

• $|A| = \mathbf{E} \mathbf{1}_A$ normalized counting measure

• Every $f: \{\pm 1\}^n \to \mathbb{R}$ is a multilinear polynomial:

 $f(z) = \sum_{S \subset \{\pm 1\}^n} \widehat{f}(S) z^S$ (Fourier expansion)

$$z^{S} = \prod_{i \in S} z_{i}, \quad \widehat{f}(S) = \mathbf{E}_{z}(f(z)z^{S})$$

- "Majority" $f(z) = \operatorname{sgn}(z_1 + \cdots + z_n) (\rightarrow \text{Hamming ball})$
- "Dictator" $f(z) = z_i (\rightarrow \text{half-cube})$

Analysis on the Hamming cube Isoperimetric problems Poincaré inequalities

Isoperimetric problem

Question

With |A| fixed, how "small" can the "boundary" of A possibly be?

²*e_i* is *i*th unit vector

(日)

Analysis on the Hamming cube Isoperimetric problems Poincaré inequalities

Isoperimetric problem

Question

With |A| fixed, how "small" can the "boundary" of A possibly be?

Given $A \subset \{0,1\}^n$ need a notion of boundary size.

²*e_i* is *i*th unit vector

Analysis on the Hamming cube Isoperimetric problems Poincaré inequalities

Isoperimetric problem

Question

With |A| fixed, how "small" can the "boundary" of A possibly be?

Given $A \subset \{0,1\}^n$ need a notion of boundary size. "Interior" vs "exterior" boundary²

$$\partial_{\mathrm{int}} A = \{ x \in A : \exists i \text{ s.t. } x \oplus e_i \notin A \}$$

$$\partial_{\text{ext}} A = \{ x \notin A : \exists i \text{ s.t. } x \oplus e_i \in A \} = \partial_{\text{int}}(A^c)$$

With |A| fixed what is minimal size of $|\partial_{int}A|$?

| 4 同 ト 4 ヨ ト 4 ヨ ト

²*e_i* is *i*th unit vector

Analysis on the Hamming cube Isoperimetric problems Poincaré inequalities

Hamming ball example

Consider Hamming ball of radius n/2:

$$A = \{x \in \{0,1\}^n : x_1 + \dots + x_n \le n/2\}$$

- 4 同 1 4 三 1 4 三 1

Analysis on the Hamming cube Isoperimetric problems Poincaré inequalities

Hamming ball example

Consider Hamming ball of radius n/2:

$$A = \{x \in \{0, 1\}^n : x_1 + \dots + x_n \le n/2\}$$

As $n \to \infty$:

 $|A| \rightarrow 1/2$

(日)

Analysis on the Hamming cube Isoperimetric problems Poincaré inequalities

Hamming ball example

Consider Hamming ball of radius n/2:

$$A = \{x \in \{0,1\}^n : x_1 + \dots + x_n \le n/2\}$$

As $n \to \infty$:

$$|A| \rightarrow 1/2$$

$$|\partial_{\rm int}A| \sim \sqrt{\frac{2}{\pi}} \cdot n^{-1/2} \longrightarrow 0$$

- 4 同 ト 4 ヨ ト 4 ヨ ト

Analysis on the Hamming cube Isoperimetric problems Poincaré inequalities

Hamming ball example

Consider Hamming ball of radius n/2:

$$A = \{x \in \{0,1\}^n : x_1 + \dots + x_n \le n/2\}$$

As $n \to \infty$:

$$|A| \rightarrow 1/2$$

$$|\partial_{\rm int} A| \sim \sqrt{\frac{2}{\pi}} \cdot n^{-1/2} \longrightarrow 0$$

 \implies No non-trivial isoperimetric inequality

(日)

Analysis on the Hamming cube Isoperimetric problems Poincaré inequalities

Hamming ball example

Consider Hamming ball of radius n/2:

$$A = \{x \in \{0,1\}^n : x_1 + \dots + x_n \le n/2\}$$

As $n o \infty$: $|A| o 1/2$

$$|\partial_{\rm int} A| \sim \sqrt{\frac{2}{\pi}} \cdot n^{-1/2} \longrightarrow 0$$

 \implies No non-trivial isoperimetric inequality

Just counting boundary vertices is not the 'right' boundary measure

Analysis on the Hamming cube Isoperimetric problems Poincaré inequalities

Taking into account number of boundary edges

Definition

$$h_A(x) = \mathbf{1}_A(x) \cdot \#\{i \text{ s.t. } x \oplus e_i \notin A\}$$

= number of edges from $x \in A$ connecting to outside of A

Analysis on the Hamming cube Isoperimetric problems Poincaré inequalities

Taking into account number of boundary edges

Definition

$$h_A(x) = \mathbf{1}_A(x) \cdot \#\{i \text{ s.t. } x \oplus e_i \notin A\}$$

= number of edges from $x \in A$ connecting to outside of A

$$h_{A^c}(x) = \mathbf{1}_{A^c}(x) \cdot \#\{i \text{ s.t. } x \oplus e_i \in A\}$$

= number of edges from $x \in A^c$ connecting to inside of A

Analysis on the Hamming cube Isoperimetric problems Poincaré inequalities

Taking into account number of boundary edges

Definition

$$h_A(x) = \mathbf{1}_A(x) \cdot \#\{i \text{ s.t. } x \oplus e_i \notin A\}$$

= number of edges from $x \in A$ connecting to outside of A

$$h_{A^c}(x) = \mathbf{1}_{A^c}(x) \cdot \#\{i \text{ s.t. } x \oplus e_i \in A\}$$

= number of edges from $x \in A^c$ connecting to inside of AEdge boundary measure:

 $\mathbf{E}h_A = \mathbf{E}h_{A^c}$ = normalized count of total boundary edges

No longer minimized by Hamming balls.

Analysis on the Hamming cube Isoperimetric problems Poincaré inequalities

Codimension k cube example

$$A = \{x \in \{0,1\}^n : x_1 = \cdots = x_k = 0\}$$

 $|A| = 2^{-k}$

$$^{3}x^{*} = \min(x, 1-x).$$

Joris Roos Isoperimetric and Poincaré inequalities on the Hamming cube

(日)

Analysis on the Hamming cube Isoperimetric problems Poincaré inequalities

Codimension k cube example

$$A = \{x \in \{0,1\}^n : x_1 = \cdots = x_k = 0\}$$

$$|A| = 2^{-k}$$

 $\mathbf{E}h_A = \mathbf{E}h_{A^c} = 2^{-k}k = |A|\log_2(\frac{1}{|A|})$

$$^{3}x^{*} = \min(x, 1-x).$$

(日)

Analysis on the Hamming cube Isoperimetric problems Poincaré inequalities

Codimension k cube example

$$A = \{x \in \{0,1\}^n : x_1 = \dots = x_k = 0\}$$

$$|A| = 2^{-k}$$

 $\mathbf{E}h_A = \mathbf{E}h_{A^c} = 2^{-k}k = |A|\log_2(\frac{1}{|A|})$

Classical isoperimetric inequality for the Hamming cube³:

$$\mathsf{E}h_A \geq |A|^* \log_2(1/|A|^*)$$
 for all $A \subset \{0,1\}^n$

$$^{3}x^{*} = \min(x, 1-x).$$

▲ □ ▶ ▲ □ ▶ ▲

Analysis on the Hamming cube Isoperimetric problems Poincaré inequalities

ming cube

Codimension k cube example

$$A = \{x \in \{0, 1\}^n : x_1 = \dots = x_k = 0\}$$

 $|A| = 2^{-k}$ $\mathbf{E}h_A = \mathbf{E}h_{A^c} = 2^{-k}k = |A|\log_2(\frac{1}{|A|})$

Classical isoperimetric inequality for the Hamming cube³:

$$\mathsf{E}h_A \geq |A|^* \log_2(1/|A|^*)$$
 for all $A \subset \{0,1\}^n$

Can one do better if A is not (complement of) codim. k-cube?

$$^{3}x^{*} = \min(x, 1-x).$$

Analysis on the Hamming cube Isoperimetric problems Poincaré inequalities

Codimension k cube example

$$A = \{x \in \{0,1\}^n : x_1 = \cdots = x_k = 0\}$$

 $|A| = 2^{-k}$ $\mathbf{E}h_A = \mathbf{E}h_{A^c} = 2^{-k}k = |A|\log_2(\frac{1}{|A|})$

Classical isoperimetric inequality for the Hamming cube³:

$$\mathsf{E}h_A \geq |A|^* \log_2(1/|A|^*)$$
 for all $A \subset \{0,1\}^n$

Can one do better if A is not (complement of) codim. k-cube? Edge isoperimetric profile:

$$\mathcal{B}_1(x) = \inf_{\substack{n \ge 1 \ A \subset \{0,1\}^n, \\ |A| = x}} \mathsf{E}_{h_A}$$

 $^{3}x^{*} = \min(x, 1-x).$ Joris Roos Isoperimetric and Poincaré inequalities on the Hamming cube

Analysis on the Hamming cube Isoperimetric problems Poincaré inequalities

Edge isoperimetric profile

Hart '76:⁴

$$\mathcal{B}_1\left(\frac{k}{2^n}\right) = nk2^{-n} - 2^{-n+1}\sum_{j=1}^{k-1} (\text{binary digit sum of } j)$$

・ 同 ト ・ ヨ ト ・ ヨ

Analysis on the Hamming cube Isoperimetric problems Poincaré inequalities

Edge isoperimetric profile

Hart '76:4

$$\mathcal{B}_1\left(\frac{k}{2^n}\right) = nk2^{-n} - 2^{-n+1}\sum_{j=1}^{k-1} (\text{binary digit sum of } j)$$

Analysis on the Hamming cube Isoperimetric problems Poincaré inequalities

Interlude: Gaussian isoperimetric inequality

Gaussian space: \mathbb{R}^n with

$$d\mu(t) = (2\pi)^{-n/2} e^{-|t|^2/2} dt = \varphi(t) dt.$$

・ 同 ト ・ ヨ ト ・ ヨ ト

Analysis on the Hamming cube Isoperimetric problems Poincaré inequalities

Interlude: Gaussian isoperimetric inequality

Gaussian space: \mathbb{R}^n with

$$d\mu(t) = (2\pi)^{-n/2} e^{-|t|^2/2} dt = \varphi(t) dt.$$

A boundary measure:

$$\mu^+(A) = \liminf_{h \to 0} h^{-1}(\mu(A_h) - \mu(A))$$

 $(A_h \text{ is the } h \text{-neighborhood of } A)$

伺 ト イヨト イヨ

Analysis on the Hamming cube Isoperimetric problems Poincaré inequalities

Interlude: Gaussian isoperimetric inequality

Gaussian space: \mathbb{R}^n with

$$d\mu(t) = (2\pi)^{-n/2} e^{-|t|^2/2} dt = \varphi(t) dt.$$

A boundary measure:

$$\mu^+(A) = \liminf_{h \to 0} h^{-1}(\mu(A_h) - \mu(A))$$

 $(A_h \text{ is the } h\text{-neighborhood of } A)$ For 'nice' A, $\mu^+(A)$ is " $\mathbf{E}|\nabla \mathbf{1}_A|$ " (def. by smooth approx.)

Interlude: Gaussian isoperimetric inequality

Gaussian space: \mathbb{R}^n with

$$d\mu(t) = (2\pi)^{-n/2} e^{-|t|^2/2} dt = \varphi(t) dt.$$

A boundary measure:

$$\mu^+(A) = \liminf_{h \to 0} h^{-1}(\mu(A_h) - \mu(A))$$

(A_h is the *h*-neighborhood of A) For 'nice' A, $\mu^+(A)$ is " $\mathbf{E}|\nabla \mathbf{1}_A|$ " (def. by smooth approx.) Sudakov-Tsirelson '75, Borell '78, Bobkov '97:

$$\mu^+(A) \ge \mu^+(H)$$

where H a half-space with $\mu(A) = \mu(H)$.

Analysis on the Hamming cube Isoperimetric problems Poincaré inequalities

Gaussian isoperimetric profile

Consider Gaussian cdf for n = 1:

$$\Phi(t) = \int_{-\infty}^t \varphi(s) \, ds$$

・ 同 ト ・ ヨ ト ・ ヨ ト

Analysis on the Hamming cube Isoperimetric problems Poincaré inequalities

Gaussian isoperimetric profile

Consider Gaussian cdf for n = 1:

$$\Phi(t) = \int_{-\infty}^t \varphi(s) \, ds$$

Define $I(x) = \varphi(\Phi^{-1}(x))$ for $x \in [0, 1]$. Then

$$\inf_{A\subset\mathbb{R},\mu(A)=x}\mu^+(A)=I(x).$$

・ 同 ト ・ ヨ ト ・ ヨ ト

Analysis on the Hamming cube Isoperimetric problems Poincaré inequalities

Gaussian isoperimetric profile

Consider Gaussian cdf for n = 1:

$$\Phi(t) = \int_{-\infty}^t \varphi(s) \, ds$$

Define $I(x) = \varphi(\Phi^{-1}(x))$ for $x \in [0, 1]$. Then

$$\inf_{A\subset\mathbb{R},\mu(A)=x}\mu^+(A)=I(x).$$

I is also defined by $I'' \cdot I = -1$, I(0) = I(1) = 1.

- 4 同 6 4 日 6 4 日 6

Analysis on the Hamming cube Isoperimetric problems Poincaré inequalities

Gaussian isoperimetric profile

$$I(x) = \varphi(\Phi^{-1}(x))$$

Analysis on the Hamming cube Isoperimetric problems Poincaré inequalities

Bobkov '97: Proof via Boolean functions

Theorem (Bobkov's inequality)

For all $f : \{0,1\}^n \to [0,1]$:

$$I(\mathbf{E}f) \leq \mathbf{E}\sqrt{I(f)^2 + |\nabla f|^2}$$

where $|\nabla f|^2 = \sum_{i=1}^n |\frac{1}{2}(f(x \oplus e_i) - f(x))|^2$.

くロ と く 同 と く ヨ と 一

э

Analysis on the Hamming cube Isoperimetric problems Poincaré inequalities

Bobkov '97: Proof via Boolean functions

Theorem (Bobkov's inequality)

For all $f : \{0,1\}^n \to [0,1]$:

$$I(\mathbf{E}f) \leq \mathbf{E}\sqrt{I(f)^2 + |\nabla f|^2}$$

where $|\nabla f|^2 = \sum_{i=1}^n |\frac{1}{2}(f(x \oplus e_i) - f(x))|^2$.

• Proof by induction on *n*, case n = 1 only uses $I'' \cdot I = -1$

・ 何 ト ・ ヨ ト ・ ヨ ト

3

Analysis on the Hamming cube Isoperimetric problems Poincaré inequalities

Bobkov '97: Proof via Boolean functions

Theorem (Bobkov's inequality)

For all $f : \{0,1\}^n \to [0,1]$:

$$I(\mathbf{E}f) \leq \mathbf{E}\sqrt{I(f)^2 + |\nabla f|^2}$$

where $|\nabla f|^2 = \sum_{i=1}^n |\frac{1}{2}(f(x \oplus e_i) - f(x))|^2$.

- Proof by induction on *n*, case n = 1 only uses $I'' \cdot I = -1$
- Approx. argument gives Gaussian isoperimetric inequality

・ 何 ト ・ ヨ ト ・ ヨ ト

Analysis on the Hamming cube Isoperimetric problems Poincaré inequalities

Bobkov '97: Proof via Boolean functions

Theorem (Bobkov's inequality)

For all $f : \{0,1\}^n \to [0,1]$:

$$I(\mathbf{E}f) \leq \mathbf{E}\sqrt{I(f)^2 + |\nabla f|^2}$$

where $|\nabla f|^2 = \sum_{i=1}^n |\frac{1}{2}(f(x \oplus e_i) - f(x))|^2$.

- Proof by induction on *n*, case n = 1 only uses $I'' \cdot I = -1$
- Approx. argument gives Gaussian isoperimetric inequality

• When
$$f = \mathbf{1}_A$$

$$\begin{split} \mathbf{\mathsf{E}} |\nabla \mathbf{1}_{\mathcal{A}}| &\geq \mathit{I}(|\mathcal{A}|) \\ \frac{1}{2} (\mathbf{\mathsf{E}} h_{\mathcal{A}}^{1/2} + \mathbf{\mathsf{E}} h_{\mathcal{A}^c}^{1/2}) &\geq \mathit{I}(|\mathcal{A}|) \end{split}$$

Not sharp!

・ 同 ト ・ ヨ ト ・ ヨ ト

Analysis on the Hamming cube Isoperimetric problems Poincaré inequalities

Isoperimetric problem on the Hamming cube

For $\beta \geq 0$ consider

$\mathbf{E} h_{\!A}^{\beta}$

- $\beta = 0$: vertex boundary measure ("boring")
- $\beta = 1/2$: comes up in Bobkov's inequality

・ 同 ト ・ ヨ ト ・ ヨ ト

Analysis on the Hamming cube Isoperimetric problems Poincaré inequalities

Isoperimetric problem on the Hamming cube

For $\beta \geq 0$ consider

$\mathbf{E} h_{\!A}^\beta$

- $\beta = 0$: vertex boundary measure ("boring")
- $\beta = 1/2$: comes up in Bobkov's inequality
- $\beta = 1$: edge boundary measure (well-known)

- 4 目 ト 4 日 ト

Analysis on the Hamming cube Isoperimetric problems Poincaré inequalities

Isoperimetric problem on the Hamming cube

For $\beta \geq 0$ consider

$\mathbf{E} h_{\!A}^{\beta}$

- $\beta = 0$: vertex boundary measure ("boring")
- $\beta = 1/2$: comes up in Bobkov's inequality
- $\beta = 1$: edge boundary measure (well-known)
- Hamming ball example:

$$\mathsf{E}h^{eta}_{A}pprox |\mathsf{bdry vertices}|\cdot (n/2)^{eta}pprox n^{-1/2+eta}$$

- 4 同 6 4 日 6 4 日 6

Isoperimetric problems

Isoperimetric problem on the Hamming cube

For $\beta > 0$ consider

$\mathbf{E} h^{\beta}_{\Lambda}$

- $\beta = 0$: vertex boundary measure ("boring")
- $\beta = 1/2$: comes up in Bobkov's inequality
- $\beta = 1$: edge boundary measure (well-known)
- Hamming ball example:

$$\mathsf{E} h^eta_{\mathcal{A}} pprox | \mathsf{bdry vertices} | \cdot (n/2)^eta pprox n^{-1/2+eta}$$

Question

Given $\beta \in [1/2, 1]$, what is the best (largest) value $\mathcal{B}_{\beta}(|A|)$ such that

$$\mathsf{E}h^{eta}_{A} \geq \mathcal{B}_{eta}(|A|)$$
 ?

Analysis on the Hamming cube Isoperimetric problems Poincaré inequalities

Isoperimetric problem on the Hamming cube

For $\beta \geq 0$ consider

$\mathbf{E} h_A^\beta$

- $\beta = 0$: vertex boundary measure ("boring")
- $\beta = 1/2$: comes up in Bobkov's inequality
- $\beta = 1$: edge boundary measure (well-known)
- Hamming ball example:

$$\mathsf{E}h^eta_{\mathcal{A}}pprox |\mathsf{bdry vertices}|\cdot (n/2)^etapprox n^{-1/2+eta}$$

Question

Given $\beta \geq \frac{1}{2}$ and $x \in [0,1]$ what is the value of

$$\mathcal{B}_{eta}(x) = \inf_{n \geq 1} \inf_{A \subset \{0,1\}^n, |A| = x} \mathsf{E} h_A^{eta}$$

Analysis on the Hamming cube Isoperimetric problems Poincaré inequalities

Codimension k cube example

$$A = \{x \in \{0,1\}^n : x_1 = \cdots = x_k = 0\}$$

$$|A| = 2^{-k} = x$$

イロト イヨト イヨト

Analysis on the Hamming cube Isoperimetric problems Poincaré inequalities

Codimension k cube example

$$A = \{x \in \{0,1\}^n : x_1 = \cdots = x_k = 0\}$$

$$|A| = 2^{-k} = x$$

 $\mathbf{E}h_A^\beta = 2^{-k}k^\beta = x \cdot (\log_2 \frac{1}{x})^\beta$

イロト イヨト イヨト

Analysis on the Hamming cube Isoperimetric problems Poincaré inequalities

Codimension k cube example

$$A = \{x \in \{0, 1\}^n : x_1 = \dots = x_k = 0\}$$
$$|A| = 2^{-k} = x$$
$$\mathbf{E} h_A^\beta = 2^{-k} k^\beta = x \cdot (\log_2 \frac{1}{x})^\beta$$

Conjecture

For all $\beta \ge 0.5$ and $k \ge 1$:

$$\mathcal{B}_{\beta}(2^{-k}) = 2^{-k}k^{\beta}$$

Joris Roos Isoperimetric and Poincaré inequalities on the Hamming cube

Analysis on the Hamming cube Isoperimetric problems Poincaré inequalities

Codimension k cube example

$$A = \{x \in \{0, 1\}^n : x_1 = \dots = x_k = 0\}$$
$$|A| = 2^{-k} = x$$
$$\mathbf{E} h_A^\beta = 2^{-k} k^\beta = x \cdot (\log_2 \frac{1}{x})^\beta$$

Conjecture

For all $\beta \ge 0.5$ and $\mathbf{x} = 2^{-k}$:

$$\mathcal{B}_{\beta}(x) = x(\log_2 \frac{1}{x})^{\beta}$$

(What about other x?)

< ロ > < 同 > < 三 > < 三 >

Analysis on the Hamming cube Isoperimetric problems Poincaré inequalities

Codimension k cube example

$$A = \{x \in \{0, 1\}^n : x_1 = \dots = x_k = 0\}$$
$$|A| = 2^{-k} = x$$
$$\mathbf{E} h_A^\beta = 2^{-k} k^\beta = x \cdot (\log_2 \frac{1}{x})^\beta$$

Theorem (DIR '24)

For all $\beta \ge 0.50057$ and all x:

$$\mathcal{B}_{eta}(x) \geq x^* (\log_2 \frac{1}{x}^*)^{eta}$$

with equality for $x = 2^{-k}$.

< ロ > < 同 > < 三 > < 三 >

Analysis on the Hamming cube Isoperimetric problems Poincaré inequalities

State of the art for $\beta > 1/2$ (sharp bounds)

	β	$\mathcal{B}_\beta(x) \geq$	Sharp for $x =$
Classical '60s Hart '76	1	$x^* \log_2(1/x^*)$ (exact value)	2^{-k} (all x)

Analysis on the Hamming cube Isoperimetric problems Poincaré inequalities

State of the art for $\beta > 1/2$ (sharp bounds)

	β	$\mathcal{B}_\beta(x) \geq$	Sharp for $x =$
Classical '60s Hart '76	1 1	$x^*\log_2(1/x^*)$ (exact value)	2 ^{-k} (all x)
KP '20	0.58	2x(1-x)	$\frac{1}{2}, \frac{1}{4}$

Analysis on the Hamming cube Isoperimetric problems Poincaré inequalities

State of the art for $\beta > 1/2$ (sharp bounds)

	β	$\mathcal{B}_\beta(x) \geq$	Sharp for $x =$
Classical '60s	1	$x^*\log_2(1/x^*)$	2 ^{-k}
Hart '76	1	(exact value)	(all x)
KP '20	0.58	2x(1-x)	$\frac{1}{2}, \frac{1}{4}$
BIM '23	0.58	$x^*(\log_2(1/x^*))^eta$	$\tilde{2}^{-k}$

Analysis on the Hamming cube Isoperimetric problems Poincaré inequalities

State of the art for $\beta > 1/2$ (sharp bounds)

	eta	$\mathcal{B}_\beta(x) \geq$	Sharp for $x =$
Classical '60s Hart '76 KP '20 BIM '23 BIM '23	1 1 0.58 0.58 0.53	$\begin{array}{c} x^* \log_2(1/x^*) \\ (\text{exact value}) \\ 2x(1-x) \\ x^* (\log_2(1/x^*))^{\beta} \\ {}^{8x(1-x)((1-\frac{2\sqrt{2}}{3})x+\frac{\sqrt{2}}{3}-\frac{1}{4})} \end{array}$	2^{-k} (all x) $\frac{1}{2}, \frac{1}{4}$ 2^{-k} $\frac{1}{2}$

Analysis on the Hamming cube Isoperimetric problems Poincaré inequalities

State of the art for $\beta > 1/2$ (sharp bounds)

	eta	$\mathcal{B}_\beta(x) \geq$	Sharp for $x =$
Classical '60s Hart '76 KP '20 BIM '23 BIM '23 DIR '24	1 0.58 0.58 0.53 0.50057	$\begin{array}{c} x^* \log_2(1/x^*) \\ (\text{exact value}) \\ 2x(1-x) \\ x^* (\log_2(1/x^*))^{\beta} \\ {}^{8x(1-x)((1-\frac{2\sqrt{2}}{3})x+\frac{\sqrt{2}}{3}-\frac{1}{4})} \\ b_{\beta}(x) \geq x^* (\log_2(1/x^*))^{\beta} \end{array}$	2^{-k} (all x) $\frac{\frac{1}{2}, \frac{1}{4}}{2^{-k}}$ $\frac{\frac{1}{2}}{2^{-k}}$

Analysis on the Hamming cube Isoperimetric problems Poincaré inequalities

New bound for β near 1/2

For $\beta = 0.50057$:

$$\mathcal{B}_{\beta}(x) \ge b_{\beta}(x) = \begin{cases} x(\log_2(1/x))^{\beta} & \text{for } x \in [0, \frac{1}{4}] \\ \frac{2}{3}x(1-x)(2^{2+\beta}-3+4x(3-2^{1+\beta})) & \text{for } x \in [\frac{1}{4}, \frac{1}{2}] \\ \sqrt{2} \cdot w \cdot I(\frac{1-x}{w}) & \text{for } x \in [\frac{1}{2}, 1] \end{cases}$$

with w > 0 s.t. continuous at x = 1/2.

・ 同 ト ・ ヨ ト ・ ヨ ト

Analysis on the Hamming cube Isoperimetric problems Poincaré inequalities

State of the art for $\beta = 1/2$ (no sharp bounds known)

< ロ > < 同 > < 三 > < 三 >

Analysis on the Hamming cube Isoperimetric problems Poincaré inequalities

State of the art for $\beta = 1/2$ (no sharp bounds known)

	${\mathcal B}_{rac{1}{2}}(x) \geq$	${\mathcal B}_{rac{1}{2}}(rac{1}{2}) \geq$
Talagrand '93 Bobkov–Götze '99	$\frac{\sqrt{2}}{\sqrt{3}}\frac{x(1-x)}{x(1-x)}$	0.35 0.43
Conjectured	?	0.5

- 4 同 ト 4 ヨ ト 4 ヨ ト

Analysis on the Hamming cube Isoperimetric problems Poincaré inequalities

State of the art for $\beta = 1/2$ (no sharp bounds known)

	${\mathcal B}_{rac{1}{2}}(x) \geq$	${\mathcal B}_{rac{1}{2}}(rac{1}{2}) \geq$
Talagrand '93 Bobkov–Götze '99 BIM '23	$\frac{\sqrt{2} x(1-x)}{\sqrt{3} x(1-x)}$ $2\sqrt{2^{3/2}-2} x(1-x)$	0.35 0.43 0.45

Conjectured	?	0.5
-------------	---	-----

Joris Roos Isoperimetric and Poincaré inequalities on the Hamming cube

- 4 同 ト 4 ヨ ト 4 ヨ ト

Analysis on the Hamming cube Isoperimetric problems Poincaré inequalities

State of the art for $\beta = 1/2$ (no sharp bounds known)

	${\cal B}_{\frac{1}{2}}(x)\geq$	$\mathcal{B}_{rac{1}{2}}(rac{1}{2}) \geq$
Talagrand '93 Bobkov–Götze '99	$\sqrt{2} x(1-x) \ \sqrt{3} x(1-x)$	0.35
BIM '23	$2\sqrt{2^{3/2}-2} x(1-x)$	0.45
hypothetical best bound of form $Cx(1-x)$	$\frac{4\sqrt{2}}{3}x(1-x)$	0.47
Conjectured	?	0.5

Analysis on the Hamming cube Isoperimetric problems Poincaré inequalities

State of the art for $\beta = 1/2$ (no sharp bounds known)

	${\cal B}_{\frac{1}{2}}(x) \geq$	$\mathcal{B}_{\frac{1}{2}}(\frac{1}{2}) \geq$
Talagrand '93	$\sqrt{2} x(1-x)$	0.35
Bobkov–Götze '99	$\sqrt{3} x(1-x)$	0.43
BIM '23	$2\sqrt{2^{3/2}-2} x(1-x)$	0.45
hypothetical best bound of form $Cx(1-x)$	$\frac{4\sqrt{2}}{3}x(1-x)$	0.47
DIR '24	$0.997 \cdot b_{1/2}(x)$	0.4985
Conjectured	?	0.5

- 4 同 ト 4 ヨ ト 4 ヨ ト

Analysis on the Hamming cube Isoperimetric problems Poincaré inequalities

Known bounds for $\beta = 1/2$

Joris Roos Isoperimetric and Poincaré inequalities on the Hamming cube

< ロ > < 回 > < 回 > < 回 > < 回 >

э

Analysis on the Hamming cube Isoperimetric problems Poincaré inequalities

Poincaré inequalities

Recall
$$|
abla f| = \left(\sum_{j=1}^n |rac{1}{2}(f(x\oplus e_j) - f(x))|^2
ight)^{1/2}$$

Question

Let $p \ge 1$. What is the best C_p so that

$$\mathbf{E}|\nabla f|^{p} \geq C_{p}\mathbf{E}|f - \mathbf{E}f|^{p} \quad ?$$

•
$$p = 2$$
: $C_2 = 1$ by Plancherel

Analysis on the Hamming cube Isoperimetric problems Poincaré inequalities

Poincaré inequalities

Recall
$$|\nabla f| = \left(\sum_{j=1}^n |\frac{1}{2}(f(x \oplus e_j) - f(x))|^2\right)^{1/2}$$

Question

Let $p \ge 1$. What is the best C_p so that

$$\mathbf{E}|\nabla f|^p \ge C_p \mathbf{E}|f - \mathbf{E}f|^p \quad ?$$

- p = 2: $C_2 = 1$ by Plancherel
- p = 1: Open. Conjectured $C_1 = \sqrt{2/\pi}$. Ivanisvili-van Handel-Volberg '18: $C_1 \ge 2/\pi$

- 4 同 ト 4 ヨ ト

Analysis on the Hamming cube Isoperimetric problems Poincaré inequalities

Poincaré inequalities

Recall
$$|\nabla f| = \left(\sum_{j=1}^n |\frac{1}{2}(f(x \oplus e_j) - f(x))|^2\right)^{1/2}$$

Question

Let $p \ge 1$. What is the best C_p so that

$$\mathbf{E}|\nabla f|^{p} \geq C_{p}\mathbf{E}|f - \mathbf{E}f|^{p} \quad ?$$

- p = 2: $C_2 = 1$ by Plancherel
- p = 1: Open. Conjectured $C_1 = \sqrt{2/\pi}$. Ivanisvili-van Handel-Volberg '18: $C_1 \ge 2/\pi$
- BIM '23: Improvement when restricted to Boolean-valued f

$$C_{1,\text{B.v.}} > \sqrt{2/\pi}$$

イロト イポト イヨト イヨト

Analysis on the Hamming cube Isoperimetric problems Poincaré inequalities

$\mathbf{E}|\nabla f|^{p} \geq C_{p}\mathbf{E}|f-\mathbf{E}f|^{p}$

Say $f: \{0,1\}^n \rightarrow \{0,1\}$. Then $f = \mathbf{1}_A$.

$$|\nabla f| = \frac{1}{2}(h_A^{1/2} + h_{A_C}^{1/2})$$

イロト イボト イヨト イヨト

э

Analysis on the Hamming cube Isoperimetric problems Poincaré inequalities

$|\mathbf{E}| \nabla f|^p \ge C_p \mathbf{E} |f - \mathbf{E}f|^p$

Say
$$f: \{0,1\}^n \rightarrow \{0,1\}$$
. Then $f = \mathbf{1}_A$.

$$|\nabla f| = \frac{1}{2}(h_A^{1/2} + h_{A_C}^{1/2})$$

$$\mathbf{E}|
abla f|^p = rac{1}{2^p} (\mathbf{E} h_A^\beta + \mathbf{E} h_{A_C}^\beta) \quad (eta = p/2)$$

・ロト ・四ト ・ヨト ・ヨト

3

Analysis on the Hamming cube Isoperimetric problems Poincaré inequalities

$|\nabla f|^p \ge C_p \mathbf{E} |f - \mathbf{E} f|^p$

Say
$$f : \{0,1\}^n \to \{0,1\}$$
. Then $f = \mathbf{1}_A$.

$$|\nabla f| = \frac{1}{2}(h_A^{1/2} + h_{A_C}^{1/2})$$

$$\mathbf{E}|\nabla f|^{p} = \frac{1}{2^{p}}(\mathbf{E}h_{A}^{\beta} + \mathbf{E}h_{A_{C}}^{\beta}) \quad (\beta = p/2)$$

$${\sf E}|f-{\sf E}f|^{
ho}=|A|(1-|A|)^{
ho}+(1-|A|)|A|^{
ho}$$

Poincaré inequality is a 'two-sided' isoperimetric inequality

Analysis on the Hamming cube Isoperimetric problems Poincaré inequalities

 $\mathbf{E}|\nabla f|^p \geq C_p \mathbf{E}|f - \mathbf{E}f|^p$

Say $f: \{0,1\}^n \rightarrow \{0,1\}$. Then $f = \mathbf{1}_A$.

$$|\nabla f| = \frac{1}{2}(h_A^{1/2} + h_{A_C}^{1/2})$$

$$\mathsf{E}|
abla f|^p = rac{1}{2^p} (\mathsf{E} h_A^eta + \mathsf{E} h_{A_C}^eta) \quad (eta = p/2)$$

$$\mathsf{E}|f-\mathsf{E}f|^p = |A|(1-|A|)^p + (1-|A|)|A|^p$$

Poincaré inequality is a 'two-sided' isoperimetric inequality Half-cube example shows $C_{\rho,\mathrm{B.v.}} \leq 1$. Conjecture: $C_{\rho,\mathrm{B.v.}} = 1$ holds for all $\rho \geq 1$.

▲ □ ▶ ▲ □ ▶ ▲ □ ▶

Analysis on the Hamming cube Isoperimetric problems Poincaré inequalities

$\mathbf{E}| abla f|^p \geq C_p \mathbf{E}|f - \mathbf{E}f|^p$

Say
$$f: \{0,1\}^n \rightarrow \{0,1\}$$
. Then $f = \mathbf{1}_A$.

$$|\nabla f| = \frac{1}{2}(h_A^{1/2} + h_{A_C}^{1/2})$$

$$\mathsf{E}|\nabla f|^{p} = \frac{1}{2^{p}}(\mathsf{E}h^{\beta}_{A} + \mathsf{E}h^{\beta}_{A_{C}}) \quad (\beta = p/2)$$

$$\mathsf{E}|f-\mathsf{E}f|^p = |A|(1-|A|)^p + (1-|A|)|A|^p$$

Poincaré inequality is a 'two-sided' isoperimetric inequality Half-cube example shows $C_{\rho,\mathrm{B.v.}} \leq 1$. Conjecture: $C_{\rho,\mathrm{B.v.}} = 1$ holds for all $\rho \geq 1$.

Theorem (DIR '24)

Conjecture holds for $p \ge 1.00114$.

▲ (1) ▶ ● (1) ▶

Bobkov's inequality Kahn–Park inequality Computed envelopes

Introduction & Results

- Analysis on the Hamming cube
- Isoperimetric problems
- Poincaré inequalities
- 2 Two-point inequalities
 - Bobkov's inequality
 - Kahn–Park inequality
 - Computed envelopes
 - 3 Computer-assisted verification
 - Automating lower bounds: Toy example
 - Rigorous numerics

(b) (4) (3) (4)

Bobkov's inequality Kahn–Park inequality Computed envelopes

Proposition (Bobkov)

 $B:[0,1]\to [0,\infty)$ a given function. If

$$B(\mathbf{E}f) \leq \mathbf{E}\sqrt{B(f)^2 + |\nabla f|^2}$$

for all $f : \{0,1\} \rightarrow [0,1]$, then it holds for all $f : \{0,1\}^n \rightarrow [0,1]$.

イロト イポト イヨト イヨト

э

Bobkov's inequality Kahn–Park inequality Computed envelopes

Proposition (Bobkov)

 $B:[0,1]\to [0,\infty)$ a given function. If

$$B(\mathbf{E}f) \leq \mathbf{E}\sqrt{B(f)^2 + |
abla f|^2}$$

for all $f : \{0,1\} \rightarrow [0,1]$, then it holds for all $f : \{0,1\}^n \rightarrow [0,1]$.

Case n = 1 is Bobkov's two-point inequality: for all $0 \le x, y \le 1$:

$$B((x+y)/2) \le \frac{1}{2}\sqrt{B(x)^2 + (\frac{1}{2}(y-x))^2} + \frac{1}{2}\sqrt{B(y)^2 + (\frac{1}{2}(y-x))^2}$$

Bobkov proved this for $B = I$.

イロト イヨト イヨト

Bobkov's inequality Kahn–Park inequality Computed envelopes

Proposition (Bobkov)

 $B:[0,1]\to [0,\infty)$ a given function. If

$$B(\mathbf{E}f) \leq \mathbf{E}\sqrt{B(f)^2 + |
abla f|^2}$$

for all $f : \{0,1\} \rightarrow [0,1]$, then it holds for all $f : \{0,1\}^n \rightarrow [0,1]$.

Case n = 1 is Bobkov's two-point inequality: for all $0 \le x, y \le 1$:

$$B((x+y)/2) \leq \frac{1}{2}\sqrt{B(x)^2 + (\frac{1}{2}(y-x))^2} + \frac{1}{2}\sqrt{B(y)^2 + (\frac{1}{2}(y-x))^2}$$

Bobkov proved this for B = I. Alternate proof by Barthe-Maurey (2000) using Itô calculus

くロ と く 同 と く ヨ と 一

Bobkov's inequality Kahn–Park inequality Computed envelopes

Proposition (Bobkov)

 $B:[0,1]\to [0,\infty)$ a given function. If

$$B(\mathbf{E}f) \leq \mathbf{E}\sqrt{B(f)^2 + |
abla f|^2}$$

for all $f : \{0,1\} \rightarrow [0,1]$, then it holds for all $f : \{0,1\}^n \rightarrow [0,1]$.

Case n = 1 is Bobkov's two-point inequality: for all $0 \le x, y \le 1$:

$$B((x+y)/2) \leq \frac{1}{2}\sqrt{B(x)^2 + (\frac{1}{2}(y-x))^2} + \frac{1}{2}\sqrt{B(y)^2 + (\frac{1}{2}(y-x))^2}$$

Bobkov proved this for B = I. Alternate proof by Barthe-Maurey (2000) using Itô calculus

くロ と く 同 と く ヨ と 一

 \mathcal{I} interval, $\|\cdot\|$ 'suitable' norm, D 'nice' sublinear operator, $B: \mathcal{I} \to [0, \infty)$ a function. If

 $B(\mathbf{E}f) \leq \mathbf{E} \| (B(f), Df) \|$

holds for all $f : \{0,1\} \to \mathcal{I}$, then it holds for all $f : \{0,1\}^n \to \mathcal{I}$.

 \mathcal{I} interval, $\|\cdot\|$ 'suitable' norm, D 'nice' sublinear operator, $B: \mathcal{I} \to [0, \infty)$ a function. If

 $B(\mathbf{E}f) \leq \mathbf{E} \| (B(f), Df) \|$

holds for all $f : \{0,1\} \to \mathcal{I}$, then it holds for all $f : \{0,1\}^n \to \mathcal{I}$.

$$Df = ((f(x) - f(x \oplus e_i))_+)_i$$

(Talagrand '93, Bobkov-Götze '98)

 \mathcal{I} interval, $\|\cdot\|$ 'suitable' norm, D 'nice' sublinear operator, $B: \mathcal{I} \to [0, \infty)$ a function. If

$$B(\mathbf{E}f) \leq \mathbf{E} \| (B(f), Df) \|$$

holds for all $f : \{0,1\} \to \mathcal{I}$, then it holds for all $f : \{0,1\}^n \to \mathcal{I}$.

$$Df = ((f(x) - f(x \oplus e_i))_+)_i$$

(Talagrand '93, Bobkov–Götze '98)

$$B((x+y)/2) \leq \frac{1}{2}\sqrt{B(x)^2 + \frac{1}{2}((y-x))^2} + \frac{1}{2}\sqrt{B(y)^2 + \frac{1}{2}((y-x))^2}$$

 \mathcal{I} interval, $\|\cdot\|$ 'suitable' norm, D 'nice' sublinear operator, $B: \mathcal{I} \to [0, \infty)$ a function. If

$$B(\mathbf{E}f) \leq \mathbf{E} \| (B(f), Df) \|$$

holds for all $f : \{0,1\} \to \mathcal{I}$, then it holds for all $f : \{0,1\}^n \to \mathcal{I}$.

$$Df = ((f(x) - f(x \oplus e_i))_+)_i$$

(Talagrand '93, Bobkov–Götze '98)

$$B((x+y)/2) \le \frac{1}{2}\sqrt{B(y)^2 + (y-x)^2} + \frac{1}{2}B(x)$$

 \mathcal{I} interval, $\|\cdot\|$ 'suitable' norm, D 'nice' sublinear operator, $B: \mathcal{I} \to [0, \infty)$ a function. If

$B(\mathbf{E}f) \leq \mathbf{E} \| (B(f), Df) \|$

holds for all $f : \{0,1\} \to \mathcal{I}$, then it holds for all $f : \{0,1\}^n \to \mathcal{I}$.

$$Df = ((f(x) - f(x \oplus e_i))_+)_i$$

(Talagrand '93, Bobkov–Götze '98)

$$B((x+y)/2) \leq rac{1}{2}(B(y)^{1/eta} + (y-x)^{1/eta})^eta + rac{1}{2}B(x)$$

Bobkov's inequality Kahn–Park inequality Computed envelopes

Generalization of Bobkov's inequality

 \mathcal{I} interval, $\|\cdot\|$ 'suitable' norm, D 'nice' sublinear operator, $B: \mathcal{I} \to [0, \infty)$ a function. If

 $B(\mathbf{E}f) \leq \mathbf{E} \| (B(f), Df) \|$

holds for all $f : \{0,1\} \to \mathcal{I}$, then it holds for all $f : \{0,1\}^n \to \mathcal{I}$.

$$Df = ((f(x) - f(x \oplus e_i))_+)_i$$

(Talagrand '93, Bobkov-Götze '98)

$$B((x+y)/2) \le \frac{1}{2}(B(y)^{1/\beta} + (y-x)^{1/\beta})^{\beta} + \frac{1}{2}B(x)$$

If $\mathcal{I} = [0, 1]$, plugging in $f = \mathbf{1}_A$ gives

$$\mathsf{E}h^eta_A \geq B(|A|)$$

Bobkov's inequality Kahn–Park inequality Computed envelopes

Variant of Bobkov's two-point inequality

Proposition (Bobkov '97)

Suppose B''B = -2 holds on [0, 1]. Then

$$B((x+y)/2) \leq \frac{1}{2}\sqrt{B(x)^2 + \frac{1}{2}((y-x))^2 + \frac{1}{2}\sqrt{B(y)^2 + \frac{1}{2}((y-x))^2}}$$

for all $0 \le x, y \le 1$

< ロ > < 同 > < 三 > < 三 >

Bobkov's inequality Kahn–Park inequality Computed envelopes

Variant of Bobkov's two-point inequality

Proposition (DIR '24)

Suppose B''B = -2 and $B' \leq 0$ hold on an interval \mathcal{I} . Then

$$B((x+y)/2) \le \frac{1}{2}\sqrt{B(y)^2 + (y-x)^2 + \frac{1}{2}B(x)}$$

for all $x \leq y$ in \mathcal{I} .

Example. $B(x) = J(x) = \sqrt{2} \cdot w \cdot I((1-x)/w)$ with w > 0 s.t. $J(\frac{1}{2}) = \frac{1}{2}$.

- 4 同 ト 4 目 ト

э

Bobkov's inequality Kahn–Park inequality Computed envelopes

Variant of Bobkov's two-point inequality

Proposition (DIR '24)

Suppose B''B = -2 and $B' \leq 0$ hold on an interval \mathcal{I} . Then

$$B((x+y)/2) \leq \frac{1}{2}\sqrt{B(y)^2 + (y-x)^2 + \frac{1}{2}B(x)}$$

for all $x \leq y$ in \mathcal{I} .

Example. $B(x) = J(x) = \sqrt{2} \cdot w \cdot I((1-x)/w)$ with w > 0 s.t. $J(\frac{1}{2}) = \frac{1}{2}$. Then $J'' \cdot J = -2$ and $J' \le 0$ on $\mathcal{I} = [x_0, 1]$ with $x_0 = 1 - \frac{w}{2}$.

-

Bobkov's inequality Kahn–Park inequality Computed envelopes

Variant of Bobkov's two-point inequality

Proposition (DIR '24)

Suppose B''B = -2 and $B' \leq 0$ hold on an interval \mathcal{I} . Then

$$B((x+y)/2) \leq \frac{1}{2}\sqrt{B(y)^2 + (y-x)^2 + \frac{1}{2}B(x)}$$

for all $x \leq y$ in \mathcal{I} .

Example. $B(x) = J(x) = \sqrt{2} \cdot w \cdot I((1-x)/w)$ with w > 0 s.t. $J(\frac{1}{2}) = \frac{1}{2}$. Then $J'' \cdot J = -2$ and $J' \leq 0$ on $\mathcal{I} = [x_0, 1]$ with $x_0 = 1 - \frac{w}{2}$. Inequality fails for $0.5 \leq x < x_0$.

Bobkov's inequality Kahn–Park inequality Computed envelopes

Variant of Bobkov's two-point inequality

Proposition (DIR '24)

Suppose B''B = -2 and $B' \leq 0$ hold on an interval I. Then

$$B((x+y)/2) \le \frac{1}{2}(B(y)^{1/\beta} + (y-x)^{1/\beta})^{\beta} + \frac{1}{2}B(x)$$

for all $x \leq y$ in \mathcal{I} .

Example. $B(x) = J(x) = \sqrt{2} \cdot w \cdot I((1-x)/w)$ with w > 0 s.t. $J(\frac{1}{2}) = \frac{1}{2}$. Then $J'' \cdot J = -2$ and $J' \leq 0$ on $\mathcal{I} = [x_0, 1]$ with $x_0 = 1 - \frac{w}{2}$. Inequality fails for $0.5 \leq x < x_0$. Idea: Increase β slightly ($\beta = 0.5 + 19 \cdot 2^{-15}$ is just enough) so that it holds on [0.5, 1]

Bobkov's inequality Kahn–Park inequality Computed envelopes

Asymptotic behavior near 1

Recall
$$J(x) = \sqrt{2} \cdot w \cdot I((1-x)/w)$$
, $x_0 = 1 - w/2$.

Corollary

For all $A \subset \{0,1\}^n$ we have

$$\mathsf{E}\sqrt{h_A} \ge (1-x_0)^{-1}(J((1-x_0)|A|+x_0) - \|J\|_{\infty}(1-|A|))$$

イロト イヨト イヨト

Bobkov's inequality Kahn–Park inequality Computed envelopes

Asymptotic behavior near 1

Recall
$$J(x) = \sqrt{2} \cdot w \cdot I((1-x)/w)$$
, $x_0 = 1 - w/2$.

Corollary

For all $A \subset \{0,1\}^n$ we have

$$\mathbf{E}\sqrt{h_A} \ge (1-x_0)^{-1}(J((1-x_0)|A|+x_0) - \|J\|_{\infty}(1-|A|))$$

• Terrible estimate if |A| away from 1.

< ロ > < 同 > < 三 > < 三 >

Bobkov's inequality Kahn–Park inequality Computed envelopes

Asymptotic behavior near 1

Recall
$$J(x) = \sqrt{2} \cdot w \cdot I((1-x)/w)$$
, $x_0 = 1 - w/2$.

Corollary

For all $A \subset \{0,1\}^n$ we have

$$\mathbf{E}\sqrt{h_A} \ge (1-x_0)^{-1}(J((1-x_0)|A|+x_0) - \|J\|_{\infty}(1-|A|))$$

- Terrible estimate if |A| away from 1.
- Beats all other known bounds as $|A| \rightarrow 1-$.

< ロ > < 同 > < 三 > < 三 >

э

Bobkov's inequality Kahn–Park inequality Computed envelopes

Asymptotic behavior near 1

Recall
$$J(x) = \sqrt{2} \cdot w \cdot I((1-x)/w)$$
, $x_0 = 1 - w/2$.

Corollary

For all $A \subset \{0,1\}^n$ we have

$$\mathbf{E}\sqrt{h_A} \ge (1-x_0)^{-1}(J((1-x_0)|A|+x_0) - \|J\|_{\infty}(1-|A|))$$

- Terrible estimate if |A| away from 1.
- Beats all other known bounds as |A|
 ightarrow 1-.
- Asymptotically equivalent to $J(x) \sim \sqrt{2}(1-x)\sqrt{\log(1/(1-x))}$ (as $x \to 1$). Is this sharp?

イロト イボト イヨト イヨト

Bobkov's inequality Kahn–Park inequality Computed envelopes

Asymptotic behavior near 1

Recall
$$J(x) = \sqrt{2} \cdot w \cdot I((1-x)/w)$$
, $x_0 = 1 - w/2$.

Corollary

For all $A \subset \{0,1\}^n$ we have

$$\mathbf{E}\sqrt{h_A} \ge (1-x_0)^{-1}(J((1-x_0)|A|+x_0) - \|J\|_{\infty}(1-|A|))$$

- Terrible estimate if |A| away from 1.
- Beats all other known bounds as |A|
 ightarrow 1-.
- Asymptotically equivalent to $J(x) \sim \sqrt{2}(1-x)\sqrt{\log(1/(1-x))}$ (as $x \to 1$). Is this sharp?

イロト イボト イヨト イヨト

Bobkov's inequality Kahn–Park inequality Computed envelopes

Asymptotic behavior at $|A| \rightarrow 0+$

Using
$$B(x) = x\sqrt{\log_2(1/x)}$$
 (and $\mathcal{I} = [0, 1/2]$) gives:

Corollary (DIR '24)

$$\mathsf{E}h_A^{1/2} \geq |A|\sqrt{\log_2(2/|A|)} - |A|$$
 for all $A \subset \{0,1\}^n$

• Asymptotically sharp as $|A| \rightarrow 0+$.

Bobkov's inequality Kahn–Park inequality Computed envelopes

Asymptotic behavior at $|A| \rightarrow 0+$

Using
$$B(x) = x\sqrt{\log_2(1/x)}$$
 (and $\mathcal{I} = [0, 1/2]$) gives:

Corollary (DIR '24)

$$\mathsf{E}h_A^{1/2} \ge |A|\sqrt{\log_2(2/|A|)} - |A|$$
 for all $A \subset \{0,1\}^n$

- Asymptotically sharp as $|A| \rightarrow 0+$.
- Sharp inequality for |A|=1/2 when β at or near 1/2 requires a new ingredient

イロト イポト イヨト イヨト 三日

Improved two-point inequality (Kahn–Park '20)

Suppose $B:[0,1] \to [0,\infty)$ satisfies B(0)=B(1)=0. Set $c_{\beta}=2^{\beta}-1$ and assume

(KP)
$$\max(((y-x)^{\frac{1}{\beta}} + B(y)^{\frac{1}{\beta}})^{\beta}, y-x+c_{\beta}B(y)) + B(x) \ge 2B(\frac{x+y}{2})$$

for all $0 \le x \le y \le 1$.

Improved two-point inequality (Kahn–Park '20)

Suppose $B:[0,1] \to [0,\infty)$ satisfies B(0)=B(1)=0. Set $c_{eta}=2^{eta}-1$ and assume

(KP)
$$\max(((y-x)^{\frac{1}{\beta}}+B(y)^{\frac{1}{\beta}})^{\beta}, y-x+c_{\beta}B(y))+B(x) \geq 2B(\frac{x+y}{2})$$

for all $0 \le x \le y \le 1$. Then $\mathcal{B}_{\beta} \ge B$, i.e. for all $A \subset \{0,1\}^n$:

 $\mathsf{E}h_A^\beta \geq B(|A|).$

Bobkov's inequality Kahn–Park inequality Computed envelopes

• Proof idea: Induction on *n*. For $A \subset \{0,1\}^{n+1}$ set

$$A_i = \{x : (x_1, \ldots, x_n, i) \in A\} \subset \{0, 1\}^n.$$

Optimize carefully and use Jensen correctly.

イロト イヨト イヨト

Bobkov's inequality Kahn–Park inequality Computed envelopes

• Proof idea: Induction on *n*. For $A \subset \{0,1\}^{n+1}$ set

$$A_i = \{x : (x_1, \ldots, x_n, i) \in A\} \subset \{0, 1\}^n.$$

Optimize carefully and use Jensen correctly.

• (KP) holds for B(x) = 2x(1-x) and $\beta = \log_2(3/2)$

< ロ > < 同 > < 三 > < 三 >

Bobkov's inequality Kahn–Park inequality Computed envelopes

• Proof idea: Induction on *n*. For $A \subset \{0,1\}^{n+1}$ set

$$A_i = \{x : (x_1, \ldots, x_n, i) \in A\} \subset \{0, 1\}^n.$$

Optimize carefully and use Jensen correctly.

- (KP) holds for B(x) = 2x(1-x) and $\beta = \log_2(3/2)$
- (KP) holds for $B(x) = b_{\beta}(x)$ and $\beta = 0.50057$ (DIR '24)

Bobkov's inequality Kahn–Park inequality Computed envelopes

• Proof idea: Induction on *n*. For $A \subset \{0,1\}^{n+1}$ set

$$A_i = \{x : (x_1, \ldots, x_n, i) \in A\} \subset \{0, 1\}^n.$$

Optimize carefully and use Jensen correctly.

- (KP) holds for B(x) = 2x(1-x) and $\beta = \log_2(3/2)$
- (KP) holds for $B(x) = b_{\beta}(x)$ and $\beta = 0.50057$ (DIR '24)
- How can one find 'good' (large) functions that satisfy (KP)?

Bobkov's inequality Kahn–Park inequality Computed envelopes

• Proof idea: Induction on *n*. For $A \subset \{0,1\}^{n+1}$ set

$$A_i = \{x : (x_1, \ldots, x_n, i) \in A\} \subset \{0, 1\}^n.$$

Optimize carefully and use Jensen correctly.

- (KP) holds for B(x) = 2x(1-x) and $\beta = \log_2(3/2)$
- (KP) holds for $B(x) = b_{\beta}(x)$ and $\beta = 0.50057$ (DIR '24)
- How can one find 'good' (large) functions that satisfy (KP)?
- Useful observation: If B_1, B_2 satisfy inequality, then so does $\max(B_1, B_2)$

Bobkov's inequality Kahn–Park inequality Computed envelopes

• Proof idea: Induction on *n*. For $A \subset \{0,1\}^{n+1}$ set

$$A_i = \{x : (x_1, \ldots, x_n, i) \in A\} \subset \{0, 1\}^n.$$

Optimize carefully and use Jensen correctly.

- (KP) holds for B(x) = 2x(1-x) and $\beta = \log_2(3/2)$
- (KP) holds for $B(x) = b_{\beta}(x)$ and $\beta = 0.50057$ (DIR '24)
- How can one find 'good' (large) functions that satisfy (KP)?
- Useful observation: If B₁, B₂ satisfy inequality, then so does max(B₁, B₂)
- So there is a largest function. Can we compute it?

イロト イポト イラト イラト

Bobkov's inequality Kahn–Park inequality Computed envelopes

Envelope function

Definition

Let $\mathfrak{B}_{\beta} : \mathcal{Q} \to [0, \infty)$ be the largest function satisfying (KP) for all $0 \le x \le y \le 1$ in $\mathcal{Q} = \{k2^{-n} : n \ge 1, 0 \le k \le 2^n\}.$

< ロ > < 同 > < 三 > < 三 >

Bobkov's inequality Kahn–Park inequality Computed envelopes

Envelope function

Definition

Let $\mathfrak{B}_{\beta} : \mathcal{Q} \to [0, \infty)$ be the largest function satisfying (KP) for all $0 \le x \le y \le 1$ in $\mathcal{Q} = \{k2^{-n} : n \ge 1, 0 \le k \le 2^n\}.$

• We know: $\mathcal{B}_{\beta} \geq \mathfrak{B}_{\beta}$. (What about the reverse?)

- 4 同 ト 4 ヨ ト

Bobkov's inequality Kahn–Park inequality Computed envelopes

Envelope function

Definition

Let $\mathfrak{B}_{\beta} : \mathcal{Q} \to [0, \infty)$ be the largest function satisfying (KP) for all $0 \le x \le y \le 1$ in $\mathcal{Q} = \{k2^{-n} : n \ge 1, 0 \le k \le 2^n\}.$

- We know: $\mathcal{B}_{\beta} \geq \mathfrak{B}_{\beta}$. (What about the reverse?)
- $\mathcal{B}_{\beta}(x)$ is hard to compute. What about \mathfrak{B}_{β} ?

Bobkov's inequality Kahn–Park inequality Computed envelopes

Envelope function

Definition

Let $\mathfrak{B}_{\beta,n} : \mathcal{Q}_n \to [0,\infty)$ be the largest function satisfying (KP) for all $0 \le x \le y \le 1$ with $x, y, \frac{x+y}{2} \in \mathcal{Q}_n = \{k2^{-n} : 0 \le k \le 2^n\}.$

- We know: $\mathcal{B}_{eta} \geq \mathfrak{B}_{eta}$. (What about the reverse?)
- $\mathcal{B}_{\beta}(x)$ is hard to compute. What about \mathfrak{B}_{β} ?
- Easy to see: $\mathfrak{B}_{\beta}(x) = \limsup_{n \to \infty} \mathfrak{B}_{\beta,n}(x)$

Bobkov's inequality Kahn–Park inequality Computed envelopes

Envelope function

Definition

Let $\mathfrak{B}_{\beta,n} : \mathcal{Q}_n \to [0,\infty)$ be the largest function satisfying (KP) for all $0 \le x \le y \le 1$ with $x, y, \frac{x+y}{2} \in \mathcal{Q}_n = \{k2^{-n} : 0 \le k \le 2^n\}.$

- We know: $\mathcal{B}_{eta} \geq \mathfrak{B}_{eta}$. (What about the reverse?)
- $\mathcal{B}_{\beta}(x)$ is hard to compute. What about \mathfrak{B}_{β} ?
- Easy to see: $\mathfrak{B}_{\beta}(x) = \limsup_{n \to \infty} \mathfrak{B}_{\beta,n}(x)$
- B_{β,n} can be computed by a 'greedy' approach improving guesses iteratively, for n small, say n < 20

くロ と く 同 と く ヨ と 一

Bobkov's inequality Kahn–Park inequality Computed envelopes

Computed envelopes for different β

Joris Roos Isoperimetric and Poincaré inequalities on the Hamming cube

< 同 × I = >

Bobkov's inequality Kahn–Park inequality Computed envelopes

Computed envelopes for different β

Joris Roos Isoperimetric and Poincaré inequalities on the Hamming cube

Introduction & Results Bobkov's inequality Two-point inequalities Kahn–Park inequality Computer-assisted verification Computed envelopes

Known bounds vs. computed envelope for $\beta = 1/2$

Joris Roos Isoperimetric and Poincaré inequalities on the Hamming cube

・ 同 ト ・ ヨ ト ・ ヨ ト

Introduction & Results Bobkov's inequality
Two-point inequalities Kahn–Park inequality
Computer-assisted verification Computed envelopes

Known bounds vs. computed envelope for $\beta = 1/2$

Joris Roos Isoperimetric and Poincaré inequalities on the Hamming cube

Introduction & Results Bobkov's inequality
Two-point inequalities Kahn–Park inequality
Computer-assisted verification Computed envelopes

Known bounds vs. computed envelope for $\beta = 1/2$

Joris Roos Isoperimetric and Poincaré inequalities on the Hamming cube

Automating lower bounds: Toy example Rigorous numerics

Introduction & Results

- Analysis on the Hamming cube
- Isoperimetric problems
- Poincaré inequalities
- 2 Two-point inequalities
 - Bobkov's inequality
 - Kahn–Park inequality
 - Computed envelopes
- 3 Computer-assisted verification
 - Automating lower bounds: Toy example
 - Rigorous numerics

4 3 b

Automating lower bounds: Toy example Rigorous numerics

How to prove the two-point inequality?

Define

$$G_{B,\beta}(x,y) = \max(((y-x)^{\frac{1}{\beta}} + B(y)^{\frac{1}{\beta}})^{\beta}, y-x+c_{\beta}B(y)) + B(x) - 2B(\frac{x+y}{2})$$

< 同 > < 国 > < 国 >

Automating lower bounds: Toy example Rigorous numerics

How to prove the two-point inequality?

Define

$$G_{B,\beta}(x,y) = \max(((y-x)^{\frac{1}{\beta}} + B(y)^{\frac{1}{\beta}})^{\beta}, y-x+c_{\beta}B(y)) + B(x) - 2B(\frac{x+y}{2})$$

where $c_eta=2^eta-1$ and

$$b_{\beta}(x) = \begin{cases} L_{\beta}(x) = x(\log_{2}(1/x))^{\beta} & \text{for } x \in [0, \frac{1}{4}] \\ Q_{\beta}(x) = \frac{2}{3}x(1-x)(2^{2+\beta}-3+4x(3-2^{1+\beta})) & \text{for } x \in [\frac{1}{4}, \frac{1}{2}] \\ J(x) = \sqrt{2} \cdot w_{0} \cdot I(\frac{1-x}{w_{0}}) & \text{for } x \in [\frac{1}{2}, 1] \end{cases}$$

and $0 \le x \le y \le 1$ where $I = \varphi \circ \Phi^{-1}$ and w_0 is such that b_β is continuous at x = 1/2.

< 同 ト < 三 ト < 三 ト

Automating lower bounds: Toy example Rigorous numerics

How to prove the two-point inequality?

Define

$$G_{B,\beta}(x,y) = \max(((y-x)^{\frac{1}{\beta}} + B(y)^{\frac{1}{\beta}})^{\beta}, y-x+c_{\beta}B(y)) + B(x) - 2B(\frac{x+y}{2})$$

where $c_eta=2^eta-1$ and

$$b_{\beta}(x) = \begin{cases} L_{\beta}(x) = x(\log_{2}(1/x))^{\beta} & \text{for } x \in [0, \frac{1}{4}] \\ Q_{\beta}(x) = \frac{2}{3}x(1-x)(2^{2+\beta}-3+4x(3-2^{1+\beta})) & \text{for } x \in [\frac{1}{4}, \frac{1}{2}] \\ J(x) = \sqrt{2} \cdot w_{0} \cdot I(\frac{1-x}{w_{0}}) & \text{for } x \in [\frac{1}{2}, 1] \end{cases}$$

and $0 \le x \le y \le 1$ where $I = \varphi \circ \Phi^{-1}$ and w_0 is such that b_β is continuous at x = 1/2.

"Exercise"

For $\beta = 0.50057$ and all $0 \le x \le y \le 1$ show that

$$G_{b_{\beta},\beta}(x,y) \geq 0.$$

Joris Roos Isoperimetric and Poincaré inequalities on the Hamming cube

Automating lower bounds: Toy example Rigorous numerics

Case distinction

Joris Roos

Isoperimetric and Poincaré inequalities on the Hamming cube

Automating lower bounds: Toy example Rigorous numerics

Case distinction

Joris Roos

Isoperimetric and Poincaré inequalities on the Hamming cube

Automating lower bounds: Toy example Rigorous numerics

$$((y-x)^2 + J(y)^2)^{\frac{1}{2}} + J(x) - 2J(\frac{x+y}{2}) \ge 0$$

Joris Roos

Isoperimetric and Poincaré inequalities on the Hamming cube

Automating lower bounds: Toy example Rigorous numerics

$$\max(((y-x)^{\frac{1}{\beta}}+J(y)^{\frac{1}{\beta}})^{\beta},y-x+c_{\beta}J(y))+L_{\beta}(x)-2Q_{\beta}(\frac{x+y}{2})\geq 0$$

Joris Roos

Isoperimetric and Poincaré inequalities on the Hamming cube

Automating lower bounds: Toy example Rigorous numerics

 $y\mapsto G_{b_{eta},eta}(x,y)$ for $x=rac{1}{2},\ eta=0.5+19\cdot2^{-15}$

Joris Roos Isoperimetric and Poincaré inequalities on the Hamming cube

イロト イポト イヨト イヨト

э

Automating lower bounds: Toy example Rigorous numerics

 $y \mapsto G_{b_{\beta},\beta}(x,y)$ for $x = \frac{1}{2}$, $\beta = 0.5 + 18 \cdot 2^{-15}$

イロト イヨト イヨト

3

Automating lower bounds: Toy example Rigorous numerics

Toy example

Exercise

Show that
$$f(x) = 2x\sqrt{\log \frac{1}{x}} + 3x^8 - 2\sqrt{x^3 - x^6} > 0$$
 for $x \in [0.1, 0.9]$.

Automating lower bounds: Toy example Rigorous numerics

\Im set of closed subintervals of [a, b].

Definition $v : \Im \to \mathbb{R}$ is called a tight lower bound of f if $f(x) \ge v([\underline{x}, \overline{x}])$ for all $x \in [\underline{x}, \overline{x}]$ and $v([\underline{x}, \overline{x}]) \to f(x)$ as $\overline{x} - \underline{x} \to 0$.

・ 何 ト ・ ヨ ト ・ ヨ ト

3

Automating lower bounds: Toy example Rigorous numerics

\Im set of closed subintervals of [a, b].

Definition

 $v: \mathfrak{I} \rightarrow \mathbb{R}$ is called a tight lower bound of f if

 $f(x) \ge v([\underline{x}, \overline{x}])$ for all $x \in [\underline{x}, \overline{x}]$

and
$$v([\underline{x},\overline{x}]) \rightarrow f(x)$$
 as $\overline{x} - \underline{x} \rightarrow 0$.

Idea: reduce proof of f > 0 to finding finite partition \mathcal{P} of \mathcal{I} so that $v(\mathcal{I}') > 0$ for all $\mathcal{I}' \in \mathcal{P}$.

(日本) (日本) (日本)

э

Automating lower bounds: Toy example Rigorous numerics

\Im set of closed subintervals of [a, b].

Definition

 $v: \mathfrak{I} \rightarrow \mathbb{R}$ is called a tight lower bound of f if

 $f(x) \ge v([\underline{x}, \overline{x}])$ for all $x \in [\underline{x}, \overline{x}]$

and
$$v([\underline{x},\overline{x}]) \rightarrow f(x)$$
 as $\overline{x} - \underline{x} \rightarrow 0$.

Idea: reduce proof of f > 0 to finding finite partition \mathcal{P} of \mathcal{I} so that $v(\mathcal{I}') > 0$ for all $\mathcal{I}' \in \mathcal{P}$.

(日本) (日本) (日本)

э

Automating lower bounds: Toy example Rigorous numerics

\mathfrak{I} set of closed subintervals of [a, b].

Definition

 $v: \mathfrak{I} \rightarrow \mathbb{R}$ is called a tight lower bound of f if

 $f(x) \ge v([\underline{x},\overline{x}])$ for all $x \in [\underline{x},\overline{x}]$

and
$$v([\underline{x},\overline{x}]) \rightarrow f(x)$$
 as $\overline{x} - \underline{x} \rightarrow 0$.

Idea: reduce proof of f > 0 to finding finite partition \mathcal{P} of \mathcal{I} so that $v(\mathcal{I}') > 0$ for all $\mathcal{I}' \in \mathcal{P}$.

- Is v([a, b]) > 0? If yes, done.
- If no, split [a, b] into [a, (a + b)/2], [(a + b)/2, b], repeat.

3

Automating lower bounds: Toy example Rigorous numerics

\mathfrak{I} set of closed subintervals of [a, b].

Definition

 $v: \mathfrak{I} \rightarrow \mathbb{R}$ is called a tight lower bound of f if

 $f(x) \ge v([\underline{x},\overline{x}])$ for all $x \in [\underline{x},\overline{x}]$

and
$$v([\underline{x},\overline{x}]) \rightarrow f(x)$$
 as $\overline{x} - \underline{x} \rightarrow 0$.

Idea: reduce proof of f > 0 to finding finite partition \mathcal{P} of \mathcal{I} so that $v(\mathcal{I}') > 0$ for all $\mathcal{I}' \in \mathcal{P}$.

- Is v([a, b]) > 0? If yes, done.
- If no, split [a, b] into [a, (a + b)/2], [(a + b)/2, b], repeat.

3

Automating lower bounds: Toy example Rigorous numerics

Toy example

$$f(x) = 2x \sqrt{\log \frac{1}{x} + 3x^8 - 2\sqrt{x^3 - x^6}} > 0$$

イロト イヨト イヨト

э

Automating lower bounds: Toy example Rigorous numerics

Toy example

$$f(x) = 2x\sqrt{\log\frac{1}{x} + 3x^8 - 2\sqrt{x^3 - x^6}} > 0$$
$$v([\underline{x}, \overline{x}]) = 2\underline{x}\sqrt{\log\frac{1}{\overline{x}}} + 3\underline{x}^8 - 2\sqrt{\overline{x}^3 - \underline{x}^6}$$

イロト イヨト イヨト

э

Automating lower bounds: Toy example Rigorous numerics

Toy example

$$f(x) = 2x\sqrt{\log\frac{1}{x} + 3x^8 - 2\sqrt{x^3 - x^6}} > 0$$

$$\nu([\underline{x},\overline{x}]) = 2\underline{x}\sqrt{\log\frac{1}{\overline{x}}} + 3\underline{x}^8 - 2\sqrt{\overline{x}^3 - \underline{x}^6}$$

Recursive bisection yields partition of [0.1, 0.9] into 29 intervals:

(日)

Automating lower bounds: Toy example Rigorous numerics

Toy example

$$f(x) = 2x\sqrt{\log\frac{1}{x} + 3x^8 - 2\sqrt{x^3 - x^6}} > 0$$

$$v([\underline{x},\overline{x}]) = 2\underline{x}\sqrt{\log\frac{1}{\overline{x}}} + 3\underline{x}^8 - 2\sqrt{\overline{x}^3 - \underline{x}^6}$$

Recursive bisection yields partition of [0.1, 0.9] into 29 intervals:

 $\{0.1, 0.2, 0.3, 0.4, 0.45, 0.5, 0.55, 0.575, 0.6, 0.6125, 0.625, 0.6375,$

0.65, 0.6625, 0.66875, 0.675, 0.68125, 0.6875, 0.69375, 0.7, 0.7125,

 $0.725, 0.7375, 0.75, 0.7625, 0.775, 0.8, 0.825, 0.85, 0.9\}$

< ロ > < 同 > < 三 > < 三 > <

Automating lower bounds: Toy example Rigorous numerics

Toy example

$$f(x) = 2x\sqrt{\log\frac{1}{x}} + 3x^8 - 2\sqrt{x^3 - x^6} > 0$$

$$\nu([\underline{x},\overline{x}]) = 2\underline{x}\sqrt{\log\frac{1}{\overline{x}}} + 3\underline{x}^8 - 2\sqrt{\overline{x}^3 - \underline{x}^6}$$

Recursive bisection yields partition of [0.1, 0.9] into 29 intervals:

 $\{0.1, 0.2, 0.3, 0.4, 0.45, 0.5, 0.55, 0.575, 0.6, 0.6125, 0.625, 0.6375,$

 $0.65, 0.6625, 0.66875, 0.675, 0.68125, 0.6875, 0.69375, 0.7, \ 0.7125,$

0.725, 0.7375, 0.75, 0.7625, 0.775, 0.8, 0.825, 0.85, 0.9

< ロ > < 同 > < 三 > < 三 >

Automating lower bounds: Toy example Rigorous numerics

Issues

• Need strict inequality f > 0

イロト イヨト イヨト

Automating lower bounds: Toy example Rigorous numerics

Issues

- Need strict inequality f > 0
- Need tight lower bound

- (同) - (目) - (目)

Issues

- Need strict inequality f > 0
- Need tight lower bound
- Partition size may get too large / intervals too small

イロト イヨト イヨト

Issues

- Need strict inequality f > 0
- Need tight lower bound
- Partition size may get too large / intervals too small
- Can we trust computer evaluations using, say, Mathematica?

< ロ > < 同 > < 三 > < 三 >

Issues

- Need strict inequality f > 0
- Need tight lower bound
- Partition size may get too large / intervals too small
- Can we trust computer evaluations using, say, Mathematica? No!
- Rounding (floating point) errors and numerical approximation errors propagate

< ロ > < 同 > < 三 > < 三 >

Automating lower bounds: Toy example Rigorous numerics

Rump's example (80s)

 $\operatorname{Rump}(a, b) = 333.75b^6 + a^2(11a^2b^2 - b^6 - 121b^4 - 2) + 5.5b^8 + \frac{a}{2b}$

What is Rump(77617, 33096)?

⁵Double-precision floating point arithmetic

Automating lower bounds: Toy example Rigorous numerics

Rump's example (80s)

 $\operatorname{Rump}(a, b) = 333.75b^6 + a^2(11a^2b^2 - b^6 - 121b^4 - 2) + 5.5b^8 + \frac{a}{2b}$

What is Rump(77617, 33096)?

Mathematica: 5 -1.18059 \cdot 10²¹

⁵Double-precision floating point arithmetic

Automating lower bounds: Toy example Rigorous numerics

Rump's example (80s)

 $\operatorname{Rump}(a,b) = 333.75b^6 + a^2(11a^2b^2 - b^6 - 121b^4 - 2) + 5.5b^8 + \frac{a}{2b}$

What is Rump(77617, 33096)?

Mathematica: 5 -1.18059 \cdot 10²¹ Correct value: -0.8274(±10⁻⁴)

⁵Double-precision floating point arithmetic

Automating lower bounds: Toy example Rigorous numerics

Rigorous numerics

• IEEE-754 standard prescribes rounding of floating point numbers

< ロ > < 同 > < 三 > < 三 >

Automating lower bounds: Toy example Rigorous numerics

Rigorous numerics

- IEEE-754 standard prescribes rounding of floating point numbers
- Track error in each step: interval arithmetic / ball arithmetic

< ロ > < 同 > < 三 > < 三 >

Rigorous numerics

- IEEE-754 standard prescribes rounding of floating point numbers
- Track error in each step: interval arithmetic / ball arithmetic
- Computation proves that output lies in the interval (must trust implementation)

| 4 同 ト 4 ヨ ト 4 ヨ ト

Rigorous numerics

- IEEE-754 standard prescribes rounding of floating point numbers
- Track error in each step: interval arithmetic / ball arithmetic
- Computation proves that output lies in the interval (must trust implementation)
- Tucker (2002): existence of Lorenz attractor

- 4 目 ト 4 日 ト

Rigorous numerics

- IEEE-754 standard prescribes rounding of floating point numbers
- Track error in each step: interval arithmetic / ball arithmetic
- Computation proves that output lies in the interval (must trust implementation)
- Tucker (2002): existence of Lorenz attractor
- flint/arb: open source library for rigorous numerics, relevant parts easy to verify

- 4 同 6 4 日 6 4 日 6

Automating lower bounds: Toy example Rigorous numerics

Joris Roos Isoperimetric and Poincaré inequalities on the Hamming cube