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Brascamp–Lieb inequalities in (very) short...

Brascamp–Lieb inequalities are Lebesgue space bounds on multilinear forms –
inequalities of the form

Λ(f1, . . . , fk) ≤ C∥f1∥Lp1 (X1) · · · ∥fk∥Lpk (Xk ).

Here Λ is a multilinear form acting on suitable functions f1, . . . , fk .

Rather “generally” Λ has an integral representation of the form

Λ(f1, . . . , fk) =

∫
X1×···×Xk

f1(x1) · · · fk(xk)dµ(x)

for some measure µ.

Brascamp–Lieb inequalities concern singular µ, usually supported on some
subvariety of X1 × · · · × Xk .
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The plan

1 A brief introduction to the classical Brascamp–Lieb inequalities

2 Adjoint Brascamp–Lieb inequalities

3 Applications to tomographic transforms

The Brascamp–Lieb inequalities are best introduced through examples...
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Hölder’s inequality

Theorem (Hölder’s inequality on Rd)∫
Rd

f1(x) · · · fk(x)dx ≤ ∥f1∥p1 · · · ∥fk∥pk ,

whenever 1
p1

+ · · ·+ 1
pk

= 1.

Equivalently, ∫
f1(x)

c1 · · · fk(x)ckdx ≤
(∫

f1

)c1

· · ·
(∫

fk

)ck

where c1 + · · ·+ ck = 1; here and throughout functions are assumed to be
nonnegative.
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The Loomis–Whitney inequality

Theorem (Loomis–Whitney 1948)

For d ≥ 2, ∫
Rd

d∏
i=1

fi (x1, . . . , x̂i , . . . , xd)dx ≤
d∏

i=1

∥fi∥Ld−1(Rd−1)

for all f1, . . . , fd : Rd−1 → R+. Here ̂ denotes omission.

Equivalently, ∫
Rd

d∏
i=1

fi (x1, . . . , x̂i , . . . , xd)
1

d−1 dx ≤
d∏

i=1

(∫
Rd−1

fi

) 1
d−1

.

Note the presence of the linear maps

Rd ∋ x 7→ (x1, . . . , x̂i , . . . , xd) ∈ Rd−1

that pull back the fi to functions on Rd .
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The affine-invariant Loomis–Whitney inequality

The Loomis–Whitney inequality∫
Rd

d∏
i=1

fi (x1, . . . , x̂i , . . . , xd)
1

d−1 dx ≤
d∏

i=1

(∫
Rd−1

fi

) 1
d−1

,

reformulated as ∫
Rd

d∏
i=1

fi (P⟨ei ⟩⊥x)
1

d−1 dx ≤
d∏

i=1

(∫
⟨ei ⟩⊥

fi

) 1
d−1

,

implies the affine-invariant Loomis–Whitney inequality,

∫
Rd

d∏
i=1

fi (P⟨ωi ⟩⊥x)
1

d−1 dx ≤ |ω1 ∧ · · · ∧ ωd |−
1

d−1

d∏
i=1

(∫
⟨ωi ⟩⊥

fi

) 1
d−1

,

which holds for any basis of unit vectors ω1, . . . , ωd ∈ Sd−1.
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Brascamp–Lieb inequalities

A natural common generalisation of the Hölder and Loomis–Whitney inequalities:∫
Rd

k∏
i=1

fi (Bix)
cidx ≤ BL(B, c)

k∏
i=1

(∫
Rdi

fi

)ci

Here:

Bi : Rd → Rdi are linear maps, and the exponents 0 ≤ ci ≤ 1;

0 < BL(B, c) ≤ ∞ is called the Brascamp–Lieb constant, and (B, c) the
Brascamp–Lieb datum.

Geometrically, BL(B, c) captures “information” about how the kernels (or fibres)
of the Bi interact with each other – something manifest in the affine invariant
Loomis–Whitney inequality

∫
Rd

d∏
i=1

fi (P⟨ωi ⟩⊥x)
1

d−1 dx ≤ |ω1 ∧ · · · ∧ ωd |−
1

d−1

d∏
i=1

(∫
⟨ωi ⟩⊥

fi

) 1
d−1

for example.
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Behaviour of the Brascamp–Lieb constant

Theorem (Lieb 1990)

BL(B, c) = BLg(B, c), the gaussian Brascamp–Lieb constant (obtained by testing
on centred gaussian inputs fi ).

Theorem (B–Carbery–Christ–Tao 2007)

BL(B, c) < ∞ if and only if
∑k

i=1 cidi = d and
∑k

i=1 ci dim(BiV ) ≥ dim(V ) for
all subspaces V of Rd .

Recent applications in harmonic analysis begin with “perturbations” of the
Brascamp–Lieb inequalities, notably Brascamp–Lieb inequalities of Kakeya type:∫

Rd

k∏
i=1

(∑
Ti∈Ti

χTi

)ci

≲
k∏

i=1

(#Ti )
ci

where the Ti are families of (neighbourhoods) of subspaces/varieties of Rd ;
B–Carbery–Tao 2006, Guth 2010/15, Bourgain–Guth 2011, Carbery–Valdimarsson 2013,

B–Bez–Flock–Lee 2018, Zhang 2018, Zorin–Kranich 2020, Tao 2020, Maldague 2022,...

Uses further properties of BL(B, c), e.g. continuity (B–Bez–Cowling–Flock 2017).
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Adjoint Brascamp–Lieb inequalities

The Brascamp–Lieb inequality∫
Rd

k∏
i=1

fi (Bix)
cidx ≤ BL(B, c)

k∏
i=1

(∫
Rdi

fi

)ci

involves the pullback operation fi 7→ fi ◦ Bi , taking a function on Rdi to a
function on Rd .
The adjoint of this is the pushforward operation (Bi )∗, taking a function on Rd

to a function on Rdi :

(Bi )∗f (y) =
1√

det(BiB∗
i )

∫
B−1
i ({y})

f (x)dx ; y ∈ Rdi .

E.g. In the case of the first Loomis–Whitney map π1(x) = (x2, . . . , xd),

(π1)∗f (x2, . . . , xd) =

∫
R
f (x1, x2, . . . , xd)dx1,

the first marginal of f .

Loose idea: A Brascamp–Lieb inequality involves pullbacks of low dimensional
functions, so it ought to have an “adjoint” that involves pushforwards of
high-dimensional functions.
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An adjoint Loomis–Whitney inequality

Theorem (B–Tao 2023)

For all 0 < p ≤ 1 and f : Rd → R+,

∥f ∥p ≤
d∏

i=1

∥fi∥
1
d
p(d−1)
d−p

where

fi (x1, . . . , x̂i , . . . , xd) :=

∫
R
f (x1, . . . , xi , . . . , xd)dxi .

Proof. If q = p(d−1)
d−p then

∥f ∥p
Lp(Rd )

=

∫
Rd

(
d∏

i=1

(
f (x)fi (πix)

q−1
) 1

d

)p ( d∏
i=1

f qi (πix)
1

d−1

)1−p

dx ,

and the theorem follows by Hölder, Loomis–Whitney and the duality identity∫
Rd

f (x)fi (πix)
q−1dx =

∫
Rd−1

fi (y)fi (y)
q−1dy = ∥fi∥qLq(Rd−1)

.
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Adjoint Brascamp–Lieb inequalities

Definition (Adjoint Brascamp–Lieb inequality/constant)

Let (B, c) be a Brascamp–Lieb datum, 0 < p ≤ 1 and suppose θ1, . . . , θk are
positive real numbers that sum to 1. For 1 ≤ i ≤ k define 0 < pi ≤ 1 by the
formula

ci

(
1− 1

p

)
= θi

(
1− 1

pi

)
.

Let ABL(B, c, θ, p) denote the best constant such that

∥f ∥Lp(Rd ) ≤ ABL(B, c, θ, p)
k∏

i=1

∥(Bi )∗f ∥θiLpi (Rdi )

holds for any f : Rd → R+. Define ABLg(B, c, θ, p) similarly, but with f restricted
to be gaussians.

Inequality an identity when p = 1 with ABL(B, c, θ, p) = 1 (Fubini).

p ≤ 1 is necessary for an inequality of this type to hold (control of a function
by its marginals).
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The main theorem

Recall the adjoint Brascamp–Lieb inequality

∥f ∥Lp(Rd ) ≤ ABL(B, c, θ, p)
k∏

i=1

∥(Bi )∗f ∥θiLpi (Rdi )

Theorem (B–Tao 2023)

(
p−

d
2p

k∏
i=1

p
θi di
2pi

i

)
BL(B, c)

1
p−1 = ABLg(B, c, θ, p) ≤ ABL(B, c, θ, p) ≤ BL(B, c)

1
p−1

To prove the upper bound write fi = (Bi )∗f and

∥f ∥p
Lp(Rd )

=

∫
Rd

(
k∏

i=1

(
f (x)fi (Bix)

pi−1
)θi)p ( k∏

i=1

f pii (Bix)
ci

)1−p

dx .

Then apply Hölder’s inequality followed by the Brascamp–Lieb inequality and∫
Rd

f (x)fi (Bix)
pi−1dx =

∫
Rdi

fi (y)fi (y)
pi−1dy = ∥fi∥piLpi (Rdi )

.
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Relation to entropy subadditivity

Theorem (Carlen–Cordero–Erausquin 2009)

If f : Rd → R+ is a probability density and h(f ) := −
∫
f log f then

h(f ) ≤
k∑

i=1

cih((Bi )∗f ) + log BL(B, c).

In the Loomis–Whitney case this is Shearer’s inequality

h(f ) ≤ 1

d − 1

d∑
i=1

h(fi ),

where fi is the ith marginal of the probability density f : Rd → R+.

These entropy inequalities follow by differentiating

p 7−→
BL(B, c)

1
p−1∏k

i=1 ∥(Bi )∗f ∥θiLpi (Rdi )

∥f ∥Lp(Rd )

and using d
dp∥f ∥p

∣∣∣
p=1

= −h(f ). [Remark: this implication is effectively reversible.]
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Applications

Two types at least:

1 To structured functions whose marginals are interesting for some reason (an
application to Gowers uniformity norms - not today).

2 To general functions, interpreting marginals in terms of tomographic
transforms...
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Lower bounds on the X-ray transform

For f : Rd → R+ its X-ray transform Xf : M1,d → R+ is given by the formula

Xf (ω, v) :=

∫
R
f (v + tω)dt,

where ω ∈ Sd−1 and v ∈ ⟨ω⟩⊥ form the natural parametrisation of the
Grassmannian manifold M1,d of lines in Rd , endowed with the obvious measure∫

M1,d

F (ω, v) :=

∫
Sd−1

(∫
⟨ω⟩⊥

F (ω, v) dv

)
dσ(ω)

Theorem (Christ 1984)

Suppose that p, q ≥ 1 and d ≥ 2. Then there exists a positive constant
C = Cp,q,d such that

∥Xf ∥Lq(M1,d ) ≤ C∥f ∥Lp(Rd )

for all functions f : Rd → R if and only if

1

d

(
1− 1

q

)
=

1

d − 1

(
1− 1

p

)
, q ≤ d + 1.
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Lower bounds on the X-ray transform

For f : Rd → R+ its X-ray transform Xf : M1,d → R+ is given by the formula

Xf (ω, v) :=

∫
R
f (v + tω)dt,

where ω ∈ Sd−1 and v ∈ ⟨ω⟩⊥ form the natural parametrisation of the
Grassmannian manifold M1,d of lines in Rd , endowed with the obvious measure∫

M1,d

F (ω, v) :=

∫
Sd−1

(∫
⟨ω⟩⊥

F (ω, v) dv

)
dσ(ω)

Theorem (B–Tao 2023)

Suppose that p, q ≤ 1 and d ≥ 2. Then there exists a positive constant
C = Cp,q,d such that

∥Xf ∥Lq(M1,d ) ≥ C∥f ∥Lp(Rd )

for all functions f : Rd → R+ if and only if

1

d

(
1− 1

q

)
=

1

d − 1

(
1− 1

p

)
.

Moreover, in all such cases we may take C = 1.
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Lower bounds on the X-ray transform

For f : Rd → R+ its X-ray transform Xf : M1,d → R+ is given by the formula

Xf (ω, v) :=

∫
R
f (v + tω)dt,

where ω ∈ Sd−1 and v ∈ ⟨ω⟩⊥ form the natural parametrisation of the
Grassmannian manifold M1,d of lines in Rd , endowed with the obvious measure∫

M1,d

F (ω, v) :=

∫
Sd−1

(∫
⟨ω⟩⊥

F (ω, v) dv

)
dσ(ω)

Theorem (B–Tao 2023)

Suppose that p, q ≤ 1 and d ≥ 2. Then there exists a positive constant
C = Cp,q,d such that

∥Xf ∥Lq(M1,d ) ≥ C∥f ∥Lp(Rd )

for all functions f : Rd → R+ if and only if

1

d

(
1− 1

q

)
=

1

d − 1

(
1− 1

p

)
.

Moreover, in all such cases we may take C = 1.
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Proof. If {ω1, . . . , ωd} is an orthonormal basis of Rd then by Loomis–Whitney,

∫
Rd

d∏
i=1

fi (P⟨ωi ⟩⊥x)
1

d−1 dx ≤
d∏

i=1

(∫
⟨ωi ⟩⊥

fi

) 1
d−1

for any fi : ⟨ωi ⟩⊥ → R+. This has as an adjoint

∥f ∥Lp(Rd ) ≤
d∏

i=1

∥(P⟨ωi ⟩⊥)∗f ∥
1
d

Lq(⟨ωi ⟩⊥)
.

However, ∥(P⟨ωi ⟩⊥)∗f ∥Lq(⟨ωi ⟩⊥) = ∥Xf (ωi , ·)∥Lq(⟨ωi ⟩⊥),
and thus

∥f ∥q
Lp(Rd )

≤
d∏

i=1

∥Xf (ωi , ·)∥
q
d

Lq(⟨ωi ⟩⊥)
.

which by the AM-GM inequality implies

∥f ∥q
Lp(Rd )

≤ 1

d

d∑
i=1

∥Xf (ωi , ·)∥qLq(⟨ωi ⟩⊥)
.

The theorem now follows on averaging over all such bases {ω1, . . . , ωd}.
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Restricted X-ray transforms

Let’s replace the uniform measure on Sd−1 with a more general positive finite
measure µ, and pull this back to a measure ν on M1,d by∫

M1,d

Fdν :=

∫
Sd−1

(∫
⟨ω⟩⊥

F (ω, v) dv

)
dµ(ω).

Theorem (Lower bounds for restricted X-ray transforms)

Suppose d ≥ 2 and that 0 < p, q ≤ 1 satisfy

1

d

(
1− 1

q

)
=

1

d − 1

(
1− 1

p

)
.

Then
∥Xf ∥Lq(dν) ≥ C (µ)∥f ∥Lp(Rd )

for all nonnegative f : Rd → R+, where

C (µ) :=

(∫
(Sd−1)d

|ω1 ∧ · · · ∧ ωd |
dq

d−1 (
1
p−1)dµ(ω1) · · · dµ(ωd)

) 1
dq

.
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Proof. Recall the affine-invariant Loomis–Whitney inequality

∫
Rd−1

d∏
j=1

fi (Pωi x)
1

d−1 dx ≤ |ω1 ∧ · · · ∧ ωd |−
1

d−1

d∏
i=1

(∫
⟨ωi ⟩⊥

fi

) 1
d−1

,

where ω1, . . . , ωd ∈ Sd−1. Taking an adjoint we have

∥f ∥Lp(Rd ) ≤ |ω1 ∧ · · · ∧ ωd |−
1

d−1 (
1
p−1)

d∏
i=1

∥(P⟨ωi ⟩⊥)∗f ∥
1
d

Lq(⟨ωi ⟩⊥)
.

Since
∥(P⟨ωi ⟩⊥)∗f ∥Lq(⟨ωi ⟩⊥) = ∥Xf (ωi , ·)∥Lq(⟨ωi ⟩⊥),

this becomes

|ω1 ∧ · · · ∧ ωd |
dq

d−1 (
1
p−1)∥f ∥dq

Lp(Rd )
≤

d∏
i=1

∥Xf (ωi , ·)∥qLq(⟨ωi ⟩⊥)
.

It just remains to integrate with respect to µ in all variables.

Note the role played by the Brascamp–Lieb constant.
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k-plane transform results

The k-plane transform is given by

Tk,d f (π, y) :=

∫
π

f (x + y)dλπ(x),

where the Grassmannian manifold Mk,d of affine k-planes is parametrised by a
k-dimensional subspace π and an element y ∈ π⊥.

Theorem (B–Tao 2023)

Suppose d ≥ 2, 0 < p ≤ 1 and that the exponent pk is given by

1

d

(
1− 1

pk

)
=

1

d − k

(
1− 1

p

)
for each 1 ≤ k ≤ d − 1. Then ∥Tk,d f ∥Lpk (Mk,d ) is nondecreasing in k . In
particular,

∥Tk,d f ∥Lpk (Mk,d ) ≥ ∥f ∥Lp(Rd ).

The upper bounds on Tk,n (where p, q ≥ 1) are also due to Christ 1984.
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Theorem (B–Tao 2023)

Suppose d ≥ 2, 0 < p ≤ 1 and that the exponent pk is given by

1

d

(
1− 1

pk

)
=

1

d − k

(
1− 1

p

)
for each 1 ≤ k ≤ d − 1. Then ∥Tk,d f ∥Lpk (Mk,d ) is nondecreasing in k . In
particular,

∥Tk,d f ∥Lpk (Mk,d ) ≥ ∥f ∥Lp(Rd ).

Differentiating with respect to p at p = 1 we obtain:

Corollary

For a probability density f : Rd → R+, the sequence of normalised entropies

1

d − k
h(Tk,d f )

is nondecreasing, and in particular,

h(Tk,d f ) ≥
(
d − k

d

)
h(f )

for all 1 ≤ k ≤ d − 1.
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Reverse inequalities and p ≥ 1

When p ≥ 1 our adjoint Brascamp–Lieb inequalities take the reverse form

∥f ∥Lp(Rd ) ≥ BL(B, c)
1
p−1

k∏
i=1

∥(Bi )∗f ∥θiLpi (Rdi )

(provided all but one of the θj are negative).

These also have applications to tomographic transforms...

Theorem
Suppose d ≥ 2, 1 < p < ∞ and 0 < q < 1. If 1 < r < ∞ satisfies(

1

q
− 1

p

)(
1− 1

r

)
=

1

d − 1

(
1− 1

p

)(
1

q
− 1

)
, (1)

then there exists a constant C > 0 such that

C∥Xf ∥
1
q−

1
p

L∞
ω Lr

v
≤ ∥f ∥

1
q−1
p ∥Xf ∥1−

1
p

Lq
ω,v

(2)

for all nonnegative functions f : Rd → R+. Morever, if the condition (1) is not
satisfied then (2) fails for all positive C .
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Further results

Adjoint discrete Brascamp–Lieb inequalities. There are discrete
Brascamp–Lieb inequalities

∑
G

k∏
i=1

f cii ◦ Bi ≤ BL(B, c)
k∏

i=1

(∑
Gi

fi
)ci

that also admit adjoint versions. Here ABL(B, c, p, θ) ≤ BL(B, c)
1
p−1 holds

with equality.

Nonlinear adjoint Brascamp–Lieb inequalities. The process of taking adjoints
doesn’t care about linear/algebraic structure. For example, one can take an
adjoint of the “spherical Brascamp–Lieb inequality”∫

S2
f1(x1)

1
2 f2(x2)

1
2 f3(x3)

1
2 dσ(x) ≤

(∫ 1

−1

f1

) 1
2
(∫ 1

−1

f2

) 1
2
(∫ 1

−1

f3

) 1
2

of Carlen–Lieb–Loss (2004). These have applications to spherical Radon
transforms...
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Thank you for listening!
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