# Adjoint Brascamp-Lieb inequalities

Jonathan Bennett
(Joint work with Terence Tao)

Madison Lectures in Harmonic Analysis 2024

### Brascamp-Lieb inequalities in (very) short...

Brascamp–Lieb inequalities are *Lebesgue space bounds on multilinear forms* – inequalities of the form

$$\Lambda(f_1,\ldots,f_k) \leq C \|f_1\|_{L^{p_1}(X_1)} \cdots \|f_k\|_{L^{p_k}(X_k)}.$$

Here  $\Lambda$  is a multilinear form acting on suitable functions  $f_1, \ldots, f_k$ .

Rather "generally"  $\Lambda$  has an integral representation of the form

$$\Lambda(f_1,\ldots,f_k)=\int_{X_1\times\cdots\times X_k}f_1(x_1)\cdots f_k(x_k)d\mu(x)$$

for some measure  $\mu$ .

Brascamp–Lieb inequalities concern singular  $\mu$ , usually supported on some subvariety of  $X_1 \times \cdots \times X_k$ .

Jonathan Bennett Brascamp-Lieb 2 / 25

### The plan

- A brief introduction to the classical Brascamp-Lieb inequalities
- Adjoint Brascamp-Lieb inequalities
- Applications to tomographic transforms

The Brascamp-Lieb inequalities are best introduced through examples...

Jonathan Bennett Brascamp-Lieb 3 / 25

### Hölder's inequality

### Theorem (Hölder's inequality on $\mathbb{R}^d$ )

$$\int_{\mathbb{R}^d} f_1(x) \cdots f_k(x) dx \leq \|f_1\|_{\rho_1} \cdots \|f_k\|_{\rho_k},$$

whenever  $\frac{1}{p_1} + \cdots + \frac{1}{p_k} = 1$ .

Equivalently,

$$\int f_1(x)^{c_1}\cdots f_k(x)^{c_k}dx \leq \left(\int f_1\right)^{c_1}\cdots \left(\int f_k\right)^{c_k}$$

where  $c_1 + \cdots + c_k = 1$ ; here and throughout functions are assumed to be nonnegative.

Jonathan Bennett

# The Loomis–Whitney inequality

#### Theorem (Loomis-Whitney 1948)

For  $d \geq 2$ ,

$$\int_{\mathbb{R}^d} \prod_{i=1}^d f_i(x_1, \dots, \widehat{x}_i, \dots, x_d) dx \leq \prod_{i=1}^d \|f_i\|_{L^{d-1}(\mathbb{R}^{d-1})}$$

for all  $f_1, \ldots, f_d : \mathbb{R}^{d-1} \to \mathbb{R}_+$ . Here  $\hat{}$  denotes omission.

Equivalently,

$$\int_{\mathbb{R}^d} \prod_{i=1}^d f_i(x_1, \dots, \widehat{x}_i, \dots, x_d)^{\frac{1}{d-1}} dx \leq \prod_{i=1}^d \left( \int_{\mathbb{R}^{d-1}} f_i \right)^{\frac{1}{d-1}}.$$

Note the presence of the linear maps

$$\mathbb{R}^d \ni x \mapsto (x_1, \dots, \widehat{x_i}, \dots, x_d) \in \mathbb{R}^{d-1}$$

that *pull back* the  $f_i$  to functions on  $\mathbb{R}^d$ .

# The affine-invariant Loomis–Whitney inequality

The Loomis–Whitney inequality

$$\int_{\mathbb{R}^d} \prod_{i=1}^d f_i(x_1, \dots, \widehat{x}_i, \dots, x_d)^{\frac{1}{d-1}} dx \leq \prod_{i=1}^d \left( \int_{\mathbb{R}^{d-1}} f_i \right)^{\frac{1}{d-1}},$$

reformulated as

$$\int_{\mathbb{R}^d} \prod_{i=1}^d f_i (P_{\langle e_i \rangle^{\perp}} x)^{\frac{1}{d-1}} dx \leq \prod_{i=1}^d \left( \int_{\langle e_i \rangle^{\perp}} f_i \right)^{\frac{1}{d-1}},$$

implies the affine-invariant Loomis-Whitney inequality,

$$\int_{\mathbb{R}^d} \prod_{i=1}^d f_i (P_{\langle \omega_i \rangle^{\perp}} x)^{\frac{1}{d-1}} dx \leq |\omega_1 \wedge \cdots \wedge \omega_d|^{-\frac{1}{d-1}} \prod_{i=1}^d \left( \int_{\langle \omega_i \rangle^{\perp}} f_i \right)^{\frac{1}{d-1}},$$

which holds for *any basis* of unit vectors  $\omega_1, \ldots, \omega_d \in \mathbb{S}^{d-1}$ .

### Brascamp-Lieb inequalities

A natural common generalisation of the Hölder and Loomis-Whitney inequalities:

$$\int_{\mathbb{R}^d} \prod_{i=1}^k f_i(B_i x)^{c_i} dx \leq \mathsf{BL}(\mathbf{B}, \mathbf{c}) \prod_{i=1}^k \left( \int_{\mathbb{R}^{d_i}} f_i \right)^{c_i}$$

Here:

- $B_i : \mathbb{R}^d \to \mathbb{R}^{d_i}$  are linear maps, and the exponents  $0 \le c_i \le 1$ ;
- $0 < BL(\mathbf{B}, \mathbf{c}) \le \infty$  is called the *Brascamp-Lieb constant*, and  $(\mathbf{B}, \mathbf{c})$  the *Brascamp-Lieb datum*.

Geometrically,  $BL(\mathbf{B}, \mathbf{c})$  captures "information" about how the **kernels** (or **fibres**) of the  $B_i$  interact with each other – something manifest in the affine invariant Loomis–Whitney inequality

$$\int_{\mathbb{R}^d} \prod_{i=1}^d f_i (P_{\langle \omega_i \rangle^{\perp}} x)^{\frac{1}{d-1}} dx \leq |\omega_1 \wedge \dots \wedge \omega_d|^{-\frac{1}{d-1}} \prod_{i=1}^d \left( \int_{\langle \omega_i \rangle^{\perp}} f_i \right)^{\frac{1}{d-1}}$$

for example.

### Behaviour of the Brascamp-Lieb constant

### Theorem (Lieb 1990)

 $BL(\mathbf{B}, \mathbf{c}) = BL_g(\mathbf{B}, \mathbf{c})$ , the gaussian Brascamp–Lieb constant (obtained by testing on centred gaussian inputs  $f_i$ ).

### Theorem (B–Carbery–Christ–Tao 2007)

 $\mathsf{BL}(\mathbf{B},\mathbf{c})<\infty$  if and only if  $\sum_{i=1}^k c_i d_i=d$  and  $\sum_{i=1}^k c_i \dim(B_i V)\geq \dim(V)$  for all subspaces V of  $\mathbb{R}^d$ .

Recent applications in harmonic analysis begin with "perturbations" of the Brascamp–Lieb inequalities, notably *Brascamp–Lieb inequalities of Kakeya type*:

$$\int_{\mathbb{R}^d} \prod_{i=1}^k \left( \sum_{T_i \in \mathbb{T}_i} \chi_{T_i} \right)^{c_i} \lesssim \prod_{i=1}^k (\# \mathbb{T}_i)^{c_i}$$

where the  $\mathbb{T}_i$  are families of (neighbourhoods) of subspaces/varieties of  $\mathbb{R}^d$ ; B–Carbery–Tao 2006, Guth 2010/15, Bourgain–Guth 2011, Carbery–Valdimarsson 2013, B–Bez–Flock–Lee 2018, Zhang 2018, Zorin–Kranich 2020, Tao 2020, Maldague 2022,...

Uses further properties of BL(B,c), e.g. continuity (B–Bez--Cowling–Flock 2017).

# Adjoint Brascamp-Lieb inequalities

The Brascamp-Lieb inequality

$$\int_{\mathbb{R}^d} \prod_{i=1}^k f_i(B_i x)^{c_i} dx \leq \mathsf{BL}(\mathbf{B}, \mathbf{c}) \prod_{i=1}^k \left( \int_{\mathbb{R}^{d_i}} f_i \right)^{c_i}$$

involves the **pullback** operation  $f_i \mapsto f_i \circ B_i$ , taking a function on  $\mathbb{R}^{d_i}$  to a function on  $\mathbb{R}^d$ .

The adjoint of this is the **pushforward** operation  $(B_i)_*$ , taking a function on  $\mathbb{R}^d$  to a function on  $\mathbb{R}^{d_i}$ :

$$(B_i)_* f(y) = \frac{1}{\sqrt{\det(B_i B_i^*)}} \int_{B_i^{-1}(\{y\})} f(x) dx; \quad y \in \mathbb{R}^{d_i}.$$

E.g. In the case of the first Loomis–Whitney map  $\pi_1(x)=(x_2,\ldots,x_d)$ ,

$$(\pi_1)_* f(x_2,\ldots,x_d) = \int_{\mathbb{R}} f(x_1,x_2,\ldots,x_d) dx_1,$$

the first marginal of f.

**Loose idea:** A Brascamp–Lieb inequality involves pullbacks of low dimensional functions, so it ought to have an "adjoint" that involves pushforwards of high-dimensional functions.

# An adjoint Loomis-Whitney inequality

### Theorem (B–Tao 2023)

For all  $0 and <math>f : \mathbb{R}^d \to \mathbb{R}_+$ ,

$$||f||_p \le \prod_{i=1}^d ||f_i||_{\frac{p(d-1)}{d-p}}^{\frac{1}{d}}$$

where

$$f_i(x_1,\ldots,\widehat{x}_i,\ldots,x_d):=\int_{\mathbb{R}}f(x_1,\ldots,x_i,\ldots,x_d)dx_i.$$

*Proof.* If  $q = \frac{p(d-1)}{d-p}$  then

$$||f||_{L^{p}(\mathbb{R}^{d})}^{p} = \int_{\mathbb{R}^{d}} \left( \prod_{i=1}^{d} \left( f(x) f_{i}(\pi_{i} x)^{q-1} \right)^{\frac{1}{d}} \right)^{p} \left( \prod_{i=1}^{d} f_{i}^{q}(\pi_{i} x)^{\frac{1}{d-1}} \right)^{1-p} dx,$$

and the theorem follows by Hölder, Loomis-Whitney and the duality identity

$$\int_{\mathbb{R}^d} f(x) f_i(\pi_i x)^{q-1} dx = \int_{\mathbb{R}^{d-1}} f_i(y) f_i(y)^{q-1} dy = \|f_i\|_{L^q(\mathbb{R}^{d-1})}^q.$$

Jonathan Bennett Brascamp-Lieb 10 / 25

# Adjoint Brascamp—Lieb inequalities

### Definition (Adjoint Brascamp-Lieb inequality/constant)

Let  $(\mathbf{B}, \mathbf{c})$  be a Brascamp–Lieb datum,  $0 and suppose <math>\theta_1, \ldots, \theta_k$  are positive real numbers that sum to 1. For  $1 \le i \le k$  define  $0 < p_i \le 1$  by the formula

$$c_i\left(1-\frac{1}{p}\right)=\theta_i\left(1-\frac{1}{p_i}\right).$$

Let  $ABL(\mathbf{B}, \mathbf{c}, \theta, p)$  denote the best constant such that

$$\|f\|_{L^p(\mathbb{R}^d)} \leq \mathsf{ABL}(\mathbf{B}, \mathbf{c}, \theta, p) \prod_{i=1}^k \|(B_i)_* f\|_{L^{p_i}(\mathbb{R}^{d_i})}^{\theta_i}$$

holds for any  $f: \mathbb{R}^d \to \mathbb{R}_+$ . Define  $\mathsf{ABL_g}(\mathbf{B}, \mathbf{c}, \theta, p)$  similarly, but with f restricted to be gaussians.

- Inequality an identity when p = 1 with ABL( $\mathbf{B}, \mathbf{c}, \theta, p$ ) = 1 (Fubini).
- $p \le 1$  is necessary for an inequality of this type to hold (control of a function by its marginals).

Jonathan Bennett Brascamp-Lieb 11/25

#### The main theorem

Recall the adjoint Brascamp-Lieb inequality

$$||f||_{L^p(\mathbb{R}^d)} \leq \mathsf{ABL}(\mathbf{B}, \mathbf{c}, \theta, \rho) \prod_{i=1}^k ||(B_i)_* f||_{L^{p_i}(\mathbb{R}^{d_i})}^{\theta_i}$$

#### Theorem (B-Tao 2023)

$$\left(p^{-\frac{d}{2p}}\prod_{i=1}^{k}p_{i}^{\frac{\theta_{i}d_{i}}{2p_{i}}}\right)\mathsf{BL}(\mathbf{B},\mathbf{c})^{\frac{1}{p}-1}=\mathsf{ABL}_{\mathsf{g}}(\mathbf{B},\mathbf{c},\theta,p)\leq\mathsf{ABL}(\mathbf{B},\mathbf{c},\theta,p)\leq\mathsf{BL}(\mathbf{B},\mathbf{c})^{\frac{1}{p}-1}$$

To prove the upper bound write  $f_i = (B_i)_* f$  and

$$||f||_{L^{p}(\mathbb{R}^{d})}^{p} = \int_{\mathbb{R}^{d}} \left( \prod_{i=1}^{k} \left( f(x) f_{i}(B_{i}x)^{p_{i}-1} \right)^{\theta_{i}} \right)^{p} \left( \prod_{i=1}^{k} f_{i}^{p_{i}}(B_{i}x)^{c_{i}} \right)^{1-p} dx.$$

Then apply Hölder's inequality followed by the Brascamp-Lieb inequality and

$$\int_{\mathbb{R}^d} f(x) f_i(B_i x)^{p_i - 1} dx = \int_{\mathbb{R}^{d_i}} f_i(y) f_i(y)^{p_i - 1} dy = \|f_i\|_{L^{p_i}(\mathbb{R}^{d_i})}^{p_i}.$$

Jonathan Bennett Brascamp-Lieb 12 / 25

### Relation to entropy subadditivity

### Theorem (Carlen–Cordero–Erausquin 2009)

If  $f: \mathbb{R}^d \to \mathbb{R}_+$  is a probability density and  $h(f) := -\int f \log f$  then

$$h(f) \leq \sum_{i=1}^{\kappa} c_i h((B_i)_* f) + \log \mathsf{BL}(\mathbf{B}, \mathbf{c}).$$

In the Loomis-Whitney case this is Shearer's inequality

$$h(f) \leq \frac{1}{d-1} \sum_{i=1}^d h(f_i),$$

where  $f_i$  is the *i*th marginal of the probability density  $f: \mathbb{R}^d \to \mathbb{R}_+$ .

These entropy inequalities follow by differentiating

$$p \longmapsto \frac{\mathsf{BL}(\mathbf{B},\mathbf{c})^{\frac{1}{p}-1}\prod_{i=1}^k \|(B_i)_*f\|_{L^{p_i}(\mathbb{R}^{d_i})}^{\theta_i}}{\|f\|_{L^p(\mathbb{R}^d)}}$$

and using  $\frac{d}{dp} \|f\|_p \Big|_{p=1} = -h(f)$ . [Remark: this implication is effectively reversible.]

Ionathan Rennett Brascamn-Lieh 13/25

### **Applications**

#### Two types at least:

- To structured functions whose marginals are interesting for some reason (an application to Gowers uniformity norms not today).
- To general functions, interpreting marginals in terms of tomographic transforms...

### Lower bounds on the X-ray transform

For  $f: \mathbb{R}^d \to \mathbb{R}^+$  its X-ray transform  $Xf: \mathcal{M}_{1,d} \to \mathbb{R}^+$  is given by the formula

$$Xf(\omega, v) := \int_{\mathbb{R}} f(v + t\omega) dt,$$

where  $\omega \in \mathbb{S}^{d-1}$  and  $v \in \langle \omega \rangle^{\perp}$  form the natural parametrisation of the Grassmannian manifold  $\mathcal{M}_{1,d}$  of lines in  $\mathbb{R}^d$ , endowed with the obvious measure

$$\int_{\mathcal{M}_{1,d}} \mathsf{F}(\omega,\mathsf{v}) := \int_{\mathbb{S}^{d-1}} \left( \int_{\langle \omega 
angle^{\perp}} \mathsf{F}(\omega,\mathsf{v}) \; d\mathsf{v} 
ight) d\sigma(\omega)$$

#### Theorem (Christ 1984)

Suppose that  $p, q \ge 1$  and  $d \ge 2$ . Then there exists a positive constant  $C = C_{p,q,d}$  such that

$$||Xf||_{L^{q}(\mathcal{M}_{1,d})} \leq C||f||_{L^{p}(\mathbb{R}^{d})}$$

for all functions  $f: \mathbb{R}^d \to \mathbb{R}$  if and only if

$$\frac{1}{d}\left(1-\frac{1}{q}\right) = \frac{1}{d-1}\left(1-\frac{1}{p}\right), \quad q \leq d+1.$$

Jonathan Bennett Brascamp-Lieb 15 / 25

### Lower bounds on the X-ray transform

For  $f: \mathbb{R}^d \to \mathbb{R}^+$  its X-ray transform  $Xf: \mathcal{M}_{1,d} \to \mathbb{R}^+$  is given by the formula

$$Xf(\omega, v) := \int_{\mathbb{R}} f(v + t\omega) dt,$$

where  $\omega \in \mathbb{S}^{d-1}$  and  $v \in \langle \omega \rangle^{\perp}$  form the natural parametrisation of the Grassmannian manifold  $\mathcal{M}_{1,d}$  of lines in  $\mathbb{R}^d$ , endowed with the obvious measure

$$\int_{\mathcal{M}_{1,d}} \mathsf{F}(\omega,\mathsf{v}) := \int_{\mathbb{S}^{d-1}} \left( \int_{\langle \omega 
angle^{\perp}} \mathsf{F}(\omega,\mathsf{v}) \; d\mathsf{v} 
ight) d\sigma(\omega)$$

### Theorem (B-Tao 2023)

Suppose that  $p, q \le 1$  and  $d \ge 2$ . Then there exists a positive constant  $C = C_{p,q,d}$  such that

$$||Xf||_{L^q(\mathcal{M}_{1,d})} \geq C||f||_{L^p(\mathbb{R}^d)}$$

for all functions  $f: \mathbb{R}^d \to \mathbb{R}_+$  if and only if

$$\frac{1}{d}\left(1-\frac{1}{q}\right) = \frac{1}{d-1}\left(1-\frac{1}{p}\right).$$

Jonathan Bennett Brascamp-Lieb 16 / 25

### Lower bounds on the X-ray transform

For  $f: \mathbb{R}^d \to \mathbb{R}^+$  its X-ray transform  $Xf: \mathcal{M}_{1,d} \to \mathbb{R}^+$  is given by the formula

$$Xf(\omega, v) := \int_{\mathbb{R}} f(v + t\omega) dt,$$

where  $\omega \in \mathbb{S}^{d-1}$  and  $v \in \langle \omega \rangle^{\perp}$  form the natural parametrisation of the Grassmannian manifold  $\mathcal{M}_{1,d}$  of lines in  $\mathbb{R}^d$ , endowed with the obvious measure

$$\int_{\mathcal{M}_{1,d}} \mathsf{F}(\omega,\mathsf{v}) := \int_{\mathbb{S}^{d-1}} \left( \int_{\langle \omega 
angle^{\perp}} \mathsf{F}(\omega,\mathsf{v}) \; d\mathsf{v} 
ight) d\sigma(\omega)$$

### Theorem (B-Tao 2023)

Suppose that  $p, q \le 1$  and  $d \ge 2$ . Then there exists a positive constant  $C = C_{p,q,d}$  such that

$$||Xf||_{L^q(\mathcal{M}_{1,d})} \geq C||f||_{L^p(\mathbb{R}^d)}$$

for all functions  $f: \mathbb{R}^d \to \mathbb{R}_+$  if and only if

$$\frac{1}{d}\left(1-\frac{1}{q}\right) = \frac{1}{d-1}\left(1-\frac{1}{p}\right).$$

Jonathan Bennett Brascamp-Lieb 17/25

*Proof.* If  $\{\omega_1,\ldots,\omega_d\}$  is an orthonormal basis of  $\mathbb{R}^d$  then by Loomis–Whitney,

$$\int_{\mathbb{R}^d} \prod_{i=1}^d f_i (P_{\langle \omega_i \rangle^{\perp}} x)^{\frac{1}{d-1}} dx \leq \prod_{i=1}^d \left( \int_{\langle \omega_i \rangle^{\perp}} f_i \right)^{\frac{1}{d-1}}$$

for any  $f_i: \langle \omega_i \rangle^{\perp} \to \mathbb{R}_+$ . This has as an adjoint

$$\|f\|_{L^p(\mathbb{R}^d)} \leq \prod_{i=1}^d \|(P_{\langle \omega_i 
angle^\perp})_* f\|_{L^q(\langle \omega_i 
angle^\perp)}^{rac{1}{d}}.$$

However,  $\|(P_{\langle \omega_i \rangle^{\perp}})_* f\|_{L^q(\langle \omega_i \rangle^{\perp})} = \|Xf(\omega_i, \cdot)\|_{L^q(\langle \omega_i \rangle^{\perp})}$ , and thus

$$\|f\|_{L^p(\mathbb{R}^d)}^q \leq \prod_{i=1}^d \|Xf(\omega_i,\cdot)\|_{L^q(\langle\omega_i\rangle^{\perp})}^{\frac{q}{d}}.$$

which by the AM-GM inequality implies

$$||f||_{L^p(\mathbb{R}^d)}^q \leq \frac{1}{d} \sum_{i=1}^d ||Xf(\omega_i,\cdot)||_{L^q(\langle \omega_i \rangle^{\perp})}^q.$$

The theorem now follows on averaging over all such bases  $\{\omega_1,\ldots,\omega_d\}$ 

Jonathan Bennett Brascamp-Lieb 18 / 25

### Restricted X-ray transforms

Let's replace the uniform measure on  $\mathbb{S}^{d-1}$  with a more general positive finite measure  $\mu$ , and pull this back to a measure  $\nu$  on  $\mathcal{M}_{1,d}$  by

$$\int_{\mathcal{M}_{1,d}} \mathsf{F} \mathsf{d} \nu := \int_{\mathbb{S}^{d-1}} \left( \int_{\langle \omega \rangle^{\perp}} \mathsf{F}(\omega, \mathsf{v}) \ \mathsf{d} \mathsf{v} \right) \mathsf{d} \mu(\omega).$$

### Theorem (Lower bounds for restricted X-ray transforms)

Suppose  $d \ge 2$  and that  $0 < p, q \le 1$  satisfy

$$\frac{1}{d}\left(1-\frac{1}{q}\right) = \frac{1}{d-1}\left(1-\frac{1}{p}\right).$$

Then

$$\|Xf\|_{L^q(d\nu)} \geq C(\mu)\|f\|_{L^p(\mathbb{R}^d)}$$

for all nonnegative  $f: \mathbb{R}^d \to \mathbb{R}^+$ , where

$$C(\mu) := \left( \int_{(\mathbb{S}^{d-1})^d} |\omega_1 \wedge \cdots \wedge \omega_d|^{\frac{dq}{d-1}\left(\frac{1}{\rho}-1\right)} d\mu(\omega_1) \cdots d\mu(\omega_d) \right)^{\frac{1}{dq}}.$$

Jonathan Bennett Brascamp-Lieb 19 / 25

Proof. Recall the affine-invariant Loomis-Whitney inequality

$$\int_{\mathbb{R}^{d-1}} \prod_{j=1}^d f_i(P_{\omega_i}x)^{\frac{1}{d-1}} dx \leq |\omega_1 \wedge \cdots \wedge \omega_d|^{-\frac{1}{d-1}} \prod_{i=1}^d \left( \int_{\langle \omega_i \rangle^{\perp}} f_i \right)^{\frac{1}{d-1}},$$

where  $\omega_1, \ldots, \omega_d \in \mathbb{S}^{d-1}$ . Taking an adjoint we have

$$||f||_{L^p(\mathbb{R}^d)} \leq |\omega_1 \wedge \cdots \wedge \omega_d|^{-\frac{1}{d-1}\left(\frac{1}{p}-1\right)} \prod_{i=1}^d ||(P_{\langle \omega_i \rangle^{\perp}})_* f||_{L^q(\langle \omega_i \rangle^{\perp})}^{\frac{1}{d}}.$$

Since

$$\|(P_{\langle \omega_i \rangle^{\perp}})_* f\|_{L^q(\langle \omega_i \rangle^{\perp})} = \|Xf(\omega_i, \cdot)\|_{L^q(\langle \omega_i \rangle^{\perp})},$$

this becomes

$$|\omega_1 \wedge \dots \wedge \omega_d|^{\frac{dq}{d-1}\left(\frac{1}{p}-1\right)} ||f||_{L^p(\mathbb{R}^d)}^{dq} \leq \prod_{i=1}^d ||Xf(\omega_i,\cdot)||_{L^q(\langle \omega_i \rangle^{\perp})}^q.$$

It just remains to integrate with respect to  $\mu$  in all variables.

Note the role played by the Brascamp-Lieb constant.

4 □ ▶ 4 □ ▶ 4 □ ▶ 4 □ ▶ 3 □ \*) 4 (\*)

### k-plane transform results

The k-plane transform is given by

$$T_{k,d}f(\pi,y) := \int_{\pi} f(x+y)d\lambda_{\pi}(x),$$

where the Grassmannian manifold  $\mathcal{M}_{k,d}$  of affine k-planes is parametrised by a k-dimensional subspace  $\pi$  and an element  $y \in \pi^{\perp}$ .

#### Theorem (B-Tao 2023)

Suppose  $d \ge 2$ ,  $0 and that the exponent <math>p_k$  is given by

$$\frac{1}{d}\left(1-\frac{1}{p_k}\right) = \frac{1}{d-k}\left(1-\frac{1}{p}\right)$$

for each  $1 \le k \le d-1$ . Then  $\|T_{k,d}f\|_{L^{p_k}(\mathcal{M}_{k,d})}$  is nondecreasing in k. In particular,

$$||T_{k,d}f||_{L^{p_k}(\mathcal{M}_{k,d})} \geq ||f||_{L^p(\mathbb{R}^d)}.$$

The upper bounds on  $T_{k,n}$  (where  $p, q \ge 1$ ) are also due to Christ 1984.

Jonathan Bennett Brascamp—Lieb 21/25

◆□▶ ◆圖▶ ◆圖▶ ◆團▶ · 團

### Theorem (B–Tao 2023)

Suppose  $d \ge 2$ ,  $0 and that the exponent <math>p_k$  is given by

$$\frac{1}{d}\left(1 - \frac{1}{p_k}\right) = \frac{1}{d - k}\left(1 - \frac{1}{p}\right)$$

for each  $1 \le k \le d-1$ . Then  $\|T_{k,d}f\|_{L^{p_k}(\mathcal{M}_{k,d})}$  is nondecreasing in k. In particular,

$$||T_{k,d}f||_{L^{p_k}(\mathcal{M}_{k,d})} \ge ||f||_{L^p(\mathbb{R}^d)}.$$

Differentiating with respect to p at p = 1 we obtain:

#### Corollary

For a probability density  $f: \mathbb{R}^d \to \mathbb{R}_+$ , the sequence of normalised entropies

$$\frac{1}{d-k}h(T_{k,d}f)$$

is nondecreasing, and in particular,

$$h(T_{k,d}f) \ge \left(\frac{d-k}{d}\right)h(f)$$

Jonathan Bennett Brascamp-Lieb 22 / 25

# Reverse inequalities and $p \ge 1$

When  $p \geq 1$  our adjoint Brascamp–Lieb inequalities take the *reverse form* 

$$||f||_{L^p(\mathbb{R}^d)} \ge \mathsf{BL}(\mathbf{B}, \mathbf{c})^{\frac{1}{p}-1} \prod_{i=1}^{\kappa} ||(B_i)_* f||_{L^{p_i}(\mathbb{R}^{d_i})}^{\theta_i}$$

(provided all but one of the  $\theta_i$  are negative).

These also have applications to tomographic transforms...

#### **Theorem**

Suppose  $d \ge 2$ , 1 and <math>0 < q < 1. If  $1 < r < \infty$  satisfies

$$\left(\frac{1}{q} - \frac{1}{p}\right)\left(1 - \frac{1}{r}\right) = \frac{1}{d-1}\left(1 - \frac{1}{p}\right)\left(\frac{1}{q} - 1\right),\tag{1}$$

then there exists a constant C > 0 such that

$$C\|Xf\|_{L^{\infty}_{\omega,L'_{r}}}^{\frac{1}{q}-\frac{1}{p}} \le \|f\|_{p}^{\frac{1}{q}-1}\|Xf\|_{L^{q}_{\omega,v}}^{1-\frac{1}{p}} \tag{2}$$

for all nonnegative functions  $f: \mathbb{R}^d \to \mathbb{R}^+$ . Morever, if the condition (1) is not satisfied then (2) fails for all positive C.

Jonathan Bennett Brascamp-Lieb 23 / 25

#### Further results

• Adjoint discrete Brascamp–Lieb inequalities. There are discrete Brascamp–Lieb inequalities

$$\sum_{G} \prod_{i=1}^{k} f_{i}^{c_{i}} \circ B_{i} \leq \mathsf{BL}(\mathbf{B}, \mathbf{c}) \prod_{i=1}^{k} \left( \sum_{G_{i}} f_{i} \right)^{c_{i}}$$

that also admit adjoint versions. Here  $ABL(\mathbf{B}, \mathbf{c}, p, \theta) \leq BL(\mathbf{B}, \mathbf{c})^{\frac{1}{p}-1}$  holds with equality.

• Nonlinear adjoint Brascamp—Lieb inequalities. The process of taking adjoints doesn't care about linear/algebraic structure. For example, one can take an adjoint of the "spherical Brascamp—Lieb inequality"

$$\int_{\mathbb{S}^2} f_1(x_1)^{\frac{1}{2}} f_2(x_2)^{\frac{1}{2}} f_3(x_3)^{\frac{1}{2}} d\sigma(x) \leq \left(\int_{-1}^1 f_1\right)^{\frac{1}{2}} \left(\int_{-1}^1 f_2\right)^{\frac{1}{2}} \left(\int_{-1}^1 f_3\right)^{\frac{1}{2}}$$

of Carlen–Lieb–Loss (2004). These have applications to *spherical Radon transforms*...

(ロト(ラト(ミト(ミト) ま ぐ)Q ○

Jonathan Bennett Brascamp-Lieb 24/25

Thank you for listening!