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Brascamp—-Lieb inequalities in (very) shor

Brascamp—Lieb inequalities are Lebesgue space bounds on multilinear forms —
inequalities of the form

Ay fi) < Cllfllmx) - Il eex,)-
Here A is a multilinear form acting on suitable functions f, ..., f.

Rather “generally” A has an integral representation of the form
A :/ A(x1)- - fi () dpa(x)
X1 X+ X Xk

for some measure .

Brascamp—Lieb inequalities concern singular u, usually supported on some
subvariety of X; x -+ x Xk.
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@ A brief introduction to the classical Brascamp-Lieb inequalities
@ Adjoint Brascamp—Lieb inequalities

© Applications to tomographic transforms
The Brascamp—Lieb inequalities are best introduced through examples...
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Holder's inequality

Theorem (Holder's inequality on RY)

/ 00+ 00)x < il el

Wheneveri dbosode L =1,

frer s (Jo) ()

where ¢; + - - - 4+ ¢k = 1; here and throughout functions are assumed to be
nonnegative.

Equivalently,
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The Loomis—Whitney inequality

Theorem (Loomis—Whitney 1948)

Ford > 2,
d d
/ TG %o xa)elx < T Iillirmsqees
Rd g
i=1 i=1
for all fi,...,fy : R — R, . Here™ denotes omission.
Equivalently,

1
d—1

d
fi( ey Xg) T Tdx < fi
il ()

Note the presence of the linear maps
R 3 x = (x1,...,Xi,...,xq) € RIT
that pull back the f; to functions on R,
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The affine-invariant Loomis—Whitney inequality

The Loomis—Whitney inequality
L

d d—1
(X1, oy Xiye ey Tid ,
| (V)

reformulated as

1

/ Hf P(e>LXdldX<H</ >dla
&)t

implies the affine-invariant Loomis—Whitney inequality,

1

d d 71
/ Hf,-(PWHx)ﬁde |w1/\-~/\wd|_ﬁH / f; )
BRI wiyt

i=1

which holds for any basis of unit vectors wr, ... ,wg € S971.
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Brascamp—Lieb inequalities

A natural common generalisation of the Holder and Loomis—Whitney inequalities:

k k o
fi(Bix)“dx < BL(B,c / f,->
/H (B:x) ( )H(

Here:
@ B;:RY — R% are linear maps, and the exponents 0 < ¢; < 1;

e 0 < BL(B,c) < oo is called the Brascamp—Lieb constant, and (B, c) the
Brascamp—-Lieb datum.

Geometrically, BL(B, c) captures “information” about how the kernels (or fibres)
of the B; interact with each other — something manifest in the affine invariant
Loomis—Whitney inequality

d . o d T
/ Hﬁ(P(wi>LX)ﬁdX§ |w1/\~-~/\wd|7ﬁH / f;
RY g (wi)*

i=1

for example.
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Behaviour of the Brascamp—Lieb constant

Theorem (Lieb 1990)

BL(B, c) = BL¢(B,c), the gaussian Brascamp—Lieb constant (obtained by testing

on centred gaussian inputs f;).
v

Theorem (B—Carbery—Christ-Tao 2007)

BL(B,c) < oo if and only ifzf.;l cidi = d and Zf;l ¢idim(B;V) > dim(V) for
all subspaces V' of RY.

Recent applications in harmonic analysis begin with “perturbations” of the
Brascamp-Lieb inequalities, notably Brascamp-Lieb inequalities of Kakeya type:

K I
LT3 ) =Ty
i=1 i=1

T:eT;

where the T; are families of (neighbourhoods) of subspaces/varieties of R;
B-Carbery—Tao 2006, Guth 2010/15, Bourgain—Guth 2011, Carbery—Valdimarsson 2013,
B—Bez—Flock—Lee 2018, Zhang 2018, Zorin—Kranich 2020, Tao 2020, Maldague 2022,...

Uses further properties of BL(B, c), e.g. continuity (B—Bez-<Cowling—Flock 2017}
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Adjoint Brascamp—Lieb inequalities

The Brascamp—Lieb inequality

k k Ci
£(B;x)%dx < BL(B, c /f)
/[[( ) ( )H(

involves the pullback operation f; — f; o B;, taking a function on R% to a
function on RY.

The adjoint of this is the pushforward operation (B;)., taking a function on R¢
to a function on R%:

(Bi)«f(y) dx; yeRY.

S N e
Vdet(BiB;) Ja ' ({y})

E.g. In the case of the first Loomis—Whitney map m1(x) = (x2, ..., Xd),

(Wl)*f(X27...,Xd):/f(Xl,Xg,...,Xd)dxl,
R

the first marginal of f.

Loose idea: A Brascamp-Lieb inequality involves pullbacks of low dimensional
functions, so it ought to have an “adjoint” that involves pushforwards of
high-dimensional functions.
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An adjoint Loomis—Whitney inequality

Theorem (B-Tao 2023)
Forall0<p<1 andf:Rd—>R+,

Ifllp < Hllflldd )

i=1

where

(X1, oy Xy e v ey Xg) 1= / F(X1y ey Xiy e ooy Xg)dX;
R

Proof. If g = 2 (d 1) then

d L d 1-p
HfHLP]Rd :Ad (H (f(X) (7TX q 1 d) (Hf;q 7TX ) dx,

i=1
and the theorem follows by Holder, Loomis—Whitney and the duality identity

[ 0ottt = [ R0y = 6]
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Adjoint Brascamp—Lieb inequalities

Definition (Adjoint Brascamp-Lieb inequality/constant)

Let (B, c) be a Brascamp-Lieb datum, 0 < p < 1 and suppose 6, ..., 0 are
positive real numbers that sum to 1. For 1 </ < k define 0 < p; < 1 by the

formula . .
C,'(].——) 29; <1——).
P Pi

Let ABL(B,c, 6, p) denote the best constant such that

k

1]l orey < ABL(B, <, 6, p) [ T 1I(B))-fII{:
i=1

LPi (R%)

holds for any f : RY — R . Define ABL,(B, c,, p) similarly, but with f restricted
to be gaussians.

v

@ Inequality an identity when p = 1 with ABL(B, c, 6, p) = 1 (Fubini).
@ p <1 is necessary for an inequality of this type to hold (control of a function
by its marginals).
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The main theorem

Recall the adjoint Brascamp—Lieb inequality

sy < ABL(B.c.0.) [T 1B o

i=1

Theorem (B-Tao 2023)

( 2p HpZP’

To prove the upper bound write f; = (B;).f and

k A 1-p
”fHIZp(Rd) = /]Rr’ <H (f(X)f;(B’-X)Pifl) '> <H ﬂpi(BiX)Ci> dx.

i=1 i=1

> BL(B,c)? ' = ABL,(B,c, 6, p) < ABL(B,c, 6, p) < BL(B,c)»

Then apply Holder's inequality followed by the Brascamp—Lieb inequality and

[ 0Bk = [ R0y = 161
R4 R
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Relation to entropy subadditivity

Theorem (Carlen—Cordero—Erausquin 2009)

If f :RY — R, is a probability density and h(f) := — [ flog f then

x

h(f) < cih((Bi)«f) + log BL(B, c).

In the Loomis—Whitney case this is Shearer’s inequality

d
1
< .
)< g1 20

where f; is the ith marginal of the probability density f : RY — R, .
These entropy inequalities follow by differentiating

1_
BL(B, c)» * [Ty (B}, gy

pr—
(1110 (e

and using dip||f||p = —h(f). [Remark: this implication is effectively reversible.]
p=
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Applications

Two types at least:

@ To structured functions whose marginals are interesting for some reason (an
application to Gowers uniformity norms - not today).

@ To general functions, interpreting marginals in terms of tomographic
transforms...
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Lower bounds on the X-ray transform

For f : R? — R* its X-ray transform Xf : M1 4 — R* is given by the formula
Xf(w,v) = / f(v + tw)dt,
R

where w € S971 and v € (w)* form the natural parametrisation of the
Grassmannian manifold M 4 of lines in R9, endowed with the obvious measure

/Mw F(w,v) = /Sd_1 </<w>¢ F(w,v) dv> do(w)

Theorem (Christ 1984)

Suppose that p,q > 1 and d > 2. Then there exists a positive constant
C = Cp,q,q Such that

[ X[l Larty g) < ClF Nl o rey
for all functions f : RY — R if and only if

1 1 1 1
“(1-2)=—(1-2= <d+1.
d( q) d—l( p)’ JEesF
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Lower bounds on the X-ray transform

For f : R? — R* its X-ray transform Xf : M1 4 — R* is given by the formula
Xf(w,v) = / f(v + tw)dt,
R

where w € S971 and v € (w)* form the natural parametrisation of the
Grassmannian manifold M 4 of lines in R9, endowed with the obvious measure

/Mw F(w,v) = /Sd_1 </<w>¢ F(w,v) dv> do(w)

Theorem (B-Tao 2023)

Suppose that p,q <1 and d > 2. Then there exists a positive constant
C = Cp,q,q Such that

[ Xl Loty g) = ClIF Nl o rey

for all functions f : RY — R if and only if

}(-2)--)
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Lower bounds on the X-ray transform

For f : R? — R* its X-ray transform Xf : M1 4 — R* is given by the formula
Xf(w,v) = / f(v + tw)dt,
R

where w € S971 and v € (w)* form the natural parametrisation of the
Grassmannian manifold M 4 of lines in R9, endowed with the obvious measure

/Mw F(w,v) = /Sd_1 </<w>¢ F(w,v) dv> do(w)

Theorem (B-Tao 2023)

Suppose that p,q <1 and d > 2. Then there exists a positive constant
C = Cp,q,q Such that

[ Xl Loty g) = ClIF Nl o rey

for all functions f : RY — R, if and only if

{(-2)--)
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Proof. If {wy,...,wq} is an orthonormal basis of R? then by Loomis—Whitney,

/Rd,_lfw o H(/ )

for any f; : (w;)* — R,. This has as an adjoint

_1_
d—1

T <Hu Dl

However, [[(Puy+ )« flla(wn) = IXF(wis MlLagwn )
and thus

d
1y < TLIXFCr )y
i=1

which by the AM-GM inequality implies

d
1
|f||Lp(]Rd) = g Z ||Xf Wi, * HLq(<wl_>J_)c

The theorem now follows on averaging over all such bases {ws, ..., w4}

Jonathan Bennett Brascamp-Lieb 18/25



Restricted X-ray transforms

Let's replace the uniform measure on S?—! with a more general positive finite
measure 4, and pull this back to a measure v on My 4 by

[ ( [ Fe dv) o).

Theorem (Lower bounds for restricted X-ray transforms)
Suppose d > 2 and that 0 < p,q < 1 satisfy

{2

[ XFllo(avy = C()lIFlloqray

for all nonnegative f: RY — R*, where

Then

= </(sd1)d w1 A+ Awgl TG dpfn) - dN(Wd)> E
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Proof. Recall the affine-invariant Loomis—Whitney inequality

1

d d -1
/ Hf,-(Pw,.x)ﬁdxg |w1/\-~-/\wd|_ﬁH / fi )
RI-15 (wi)+

i=1
where wy, ..., wg € SY71. Taking an adjoint we have
_ 1 (1
[ llouey < lwt A= Awgl =710 H 1Py )Pl gy
Since

1Py ) Fll Loy 1y = IXF(wis Lo+

this becomes
d 1 d
dg_
lwi /\~-~/\wd|d*1(" \f||Lp R9) H||Xf Wi, )|| Ly

It just remains to integrate with respect to p in all variables.
Note the role played by the Brascamp—Lieb constant.
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k-plane transform results

The k-plane transform is given by

Tkaf (m,y) = / f(x + y)dA:(x),

T

where the Grassmannian manifold M 4 of affine k-planes is parametrised by a
k-dimensional subspace 7 and an element y € 7.

Theorem (B-Tao 2023)
Suppose d > 2, 0 < p <1 and that the exponent py is given by

1 1 1 1
(1o)== (12
d(l pk> d—k( ,,)

for each 1 < k < d — 1. Then || Ty df || s (1, ) i nondecreasing in k. In
particular,

[ T, fllre (i) 2 IFlo(re)-

The upper bounds on Ty , (where p, g > 1) are also due to Christ 1984.
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Theorem (B-Tao 2023)
Suppose d > 2, 0 < p < 1 and that the exponent py is given by

1 1 1 1
(1o)== (1_=
d Pk d—k p
foreach 1 < k < d—1. Then | Tk7df\|ka(Mk7d) is nondecreasing in k. In
particular,

[ T fllreria) 2 IFlle(ra)-

Differentiating with respect to p at p = 1 we obtain:

For a probability density f : RY — R, the sequence of normalised entropies

1

mh( Tkaf)

is nondecreasing, and in particular,

h(Ti.qf) > (d ; k) h(f)
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Reverse inequalities and p > 1

When p > 1 our adjoint Brascamp—Lieb inequalities take the reverse form

k
1_ .
IFlligrey > BL(BL ) TT 1B 2
i=1

(provided all but one of the 6; are negative).

These also have applications to tomographic transforms...

Supposed > 2,1 <p<ooand0< qg<1l. Ifl<r < oo satisfies

GDED--DE) o

then there exists a constant C > 0 such that

-1

1_1 1 1-1
CIXFIEE, < 1718 Xl (2)
for all nonnegative functions f : RY — R*. Morever, if the condition (1) is not
satisfied then (2) fails for all positive C.
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Further results

Adjoint discrete Brascamp—Lieb inequalities. There are discrete
Brascamp—Lieb inequalities

k

Zﬁff"oB < BL(B,c H(Zf)

G i=1 i=1
that also admit adjoint versions. Here ABL(B, c, p,0) < BL(B, c) ~! holds
with equality.

Nonlinear adjoint Brascamp—Lieb inequalities. The process of taking adjoints
doesn't care about linear/algebraic structure. For example, one can take an
adjoint of the “spherical Brascamp—Lieb inequality”

/Szﬁ(xl)%fz(Xz)%f%(x3)%dU(X) < </_11 fl)% </_11 6); (/_11 f3>;

of Carlen—Lieb—Loss (2004). These have applications to spherical Radon
transforms...

Jonathan Bennett Brascamp-Lieb 24 /25



Thank you for listening!
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