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The (free) Schrödinger equation on the manifold M.
Here x =space, t =time, u :M× R→ R{

2πiut(x , t) = ∆xu(x , t), (x , t) ∈M× R
u(x , 0) = φ(x), x ∈M

.

Most common examples are M = Rn−1 (Euclidean) and
M = Tn−1 (periodic).

Questions/problems that are typically asked/considered about this
equation include: is there a local/global in time solution, prove
Strichartz estimates, does the solution u converge to the initial
data φ as t approaches 0?
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A Strichartz estimate seeks to dominate the norm ‖u‖LpxLqt using

some norm (typically L2) of the initial data φ.

The resolution of the case p = q when X = Rn−1 (Strichartz
1977) has been a defining moment in Fourier Restriction and
PDEs. This is equivalent to the (so-called restriction) estimate

‖d̂σ‖Lp(Rn) . ‖σ‖L2(Pn−1), p ≥ 2(n + 1)

n − 1

where σ is the pull-back of φ to the paraboloid (singular measure)

Pn−1 = {(ξ1, . . . , ξn−1, ξ21 + . . .+ ξ2n−1)}

and

d̂σ(x1, . . . , xn) =

∫
Pn−1

e(x · ξ)dσ(ξ)

Notation: e(z) = e iz , z ∈ R
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The proof of

‖d̂σ‖Lp(Rn) . ‖σ‖L2(Pn−1), p ≥ 2(n + 1)

n − 1

is very “elementary” by today’s standards. It uses TT ∗ and the
decay of the Fourier transform of the surface measure on the
paraboloid. The range p ≥ 2(n+1)

n−1 is sharp for this estimate.
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For the periodic Schrödinger equation{
2πiut(x , t) = ∆xu(x , t), (x , t) ∈ Tn−1 × R
u(x , 0) = φ(x), x ∈ Tn−1 .

The solution is easily seen to be an exponential sum

u(x1, . . . , xn−1, t)

=
∑

ξ1,...,ξn−1∈Z
φ̂(ξ1, . . . , ξn−1)e(x1ξ1+. . .+xn−1ξn−1+t(ξ21+. . .+ξ2n−1))

=
∑

ξ∈Pn−1∩Zn

aξe((x , t) · ξ)

where aξ is the Fourier coefficient of the initial data φ.
E.g. when n = 2 this is a weighted Gauss sum

∑
n ane(nx + n2t).
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Notation: PN .ε N
εQN , or PN / QN , means that for each ε > 0

there is some constant Cε independent of N such that
PN ≤ CεN

εQN . For example

logN .ε N
ε.

Theorem (Bourgain, D. 2015, Strichartz estimates for tori)

Let φ ∈ L2(Tn−1) with supp(φ̂) ⊂ [−N,N]n−1. Then for each
ε > 0 we have

‖u‖Lp(Tn−1×[0,1]) .ε

{
Nε‖φ‖2, 2 ≤ p ≤ 2(n+1)

n−1

N
n−1
2
− n+1

p ‖φ‖2, p > 2(n+1)
n−1 no ε loss

.

Prior to this, in 1993 Bourgain proved this theorem when n = 2
and n = 3 using elementary methods (the key is that the critical

exponent 2(n+1)
n−1 is an even integer in these cases). This approach

fails in higher dimensions.
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In early 90’s Bourgain attacked this problem by combining
Strichartz’s approach from the Euclidean case (estimates for the
kernel and its Fourier transform) with number theory.

The resolution of the Strichartz estimates on tori came via a purely
Fourier analytic method, called decoupling. This was introduced by
Tom Wolff in 2000, for the cone. Bourgain and I were able to
prove (essentially) sharp estimates in the sharp range.

Theorem (Bourgain, D. 2015, Decoupling for the paraboloid)

Let σ be a measure supported on Pd−1 ∩ B(0, 1). Given R � 1,
we cover the paraboloid with 1/

√
R-caps θ. Then for each ball

BR ⊂ Rd of radius R

‖σ̂‖Lp(BR) .ε R
ε(
∑
θ

‖σ̂1θ‖2Lp(BR)
)1/2

Ciprian Demeter, IU Bloomington When the Schrödinger equation meets number theory



Question (The ”Carleson problem”)

For what range of s is it true that φ ∈ Hs(Rn−1) implies that

lim
t→0

u(x , t) = φ(x)

for almost every x ∈ Rn−1?

When n = 2, s ≥ 1/4 was known for a long time to be sharp
(Carleson 1979, Dahlberg-Kenig 1981) (convergence for s ≥ 1/4,
divergence for s < 1/4).
In 2016 Bourgain proved divergence for s < n−1

2n .
The recent papers (Du, Guth, Li, Ann. 2017 of Math. ) and (Du,
Zhang, Ann. of Math. 2019) proved convergence for s > n−1

2n
when n = 3, then n ≥ 3. The endpoint is open, likely very difficult.

Ciprian Demeter, IU Bloomington When the Schrödinger equation meets number theory



These papers rely on the fact that it suffices to prove sharp Lp

bounds for the associated Schrödinger maximal function (this is a
Strichartz estimate!)

x 7→ sup
t>0
|u(x , t)|

‖u‖LpxL∞t . ‖φ‖L2 .

These bounds are proved using wave-packet decompositions,
refined decoupling and incidence estimates from the multi-linear
Kakeya problem.

Like the non-mixed Strichartz estimates, Carleson’s problem has
generated a lot of interest, and a lot of powerful mathematics.
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Carleson’s problem has an analogue on the torus. Strikingly, it is
open even in the case n = 2.

Conjecture (Schrödinger maximal function on T)

Assume ‖an‖l2 = 1. Then for each p ≤ 4

‖ sup
t
|

N∑
n=1

ane(nx + n2t)|‖Lp([0,1],dx) / N1/4. (1)

The best known upper bound in (1) for any p ≤ 4 is / N
1
3

(Moyua and Vega, 2008), valid in the range 1 ≤ p ≤ 6. It is
essentially a consequence of Bourgain’s Strichartz estimate on T2

‖
N∑

n=1

ane(nx + n2t)|‖L6([0,1]2,dxdt) / ‖an‖l2 .
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The conjecture was recently solved in the case an ≡ 1, first by
Barron then by Baker. The latter identified the precise magnitude

‖ sup
t
|

N∑
n=1

e(nx + n2t)|‖Lp([0,1],dx) ∼ Na(p)(logN)b(p)

for each p ≥ 1.
The wave packet analysis that was successful in the Euclidean case
is ill-fitted for the periodic case. Wave packets are not sensitive
enough to distinguish the parabola (on which (n, n2) lies) from
other strictly convex curves (e.g. (t, t3), Jarnick’s curve, whose
appropriate dilates contain many lattice points). Fu, Ren and
Wang recently proved that N1/3 is sharp within the class of convex
sequences, a category covered by decoupling methods.
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The conjecture can be reformulated using level set estimates.

Conjecture

Assume ‖an‖l2 = 1 and N
1
4 ≤ λ ≤ N

1
2 . (outside this range the estimate is

trivial) Then

|Eλ := {x ∈ [0, 1] : sup
t
|

N∑
n=1

ane(nx + n2t)| ≥ λ}| / N

λ4
.

This offers a parallel, independent track of conjectures. No such estimate
appeared in the literature. In particular, sharp level-set estimates do not follow
from a sub-optimal estimate

‖ sup
t
|

N∑
n=1

ane(nx + n2t)|‖L4([0,1],dx) / N
1
4
+β , β > 0. (2)

On the other hand, for example, the sub-optimal bound

|Eλ| /
N4/3

λ4
, for all λ & N1/3

would imply the best known exponent 1
4

+ β = 1
3

in (2).
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Conjecture

Assume ‖an‖l2 = 1 and N
1
4 ≤ λ ≤ N

1
2 . Then

|{x ∈ [0, 1] : sup
t
|

N∑
n=1

ane(nx + n2t)| ≥ λ}| / N

λ4
.

An argument of Bourgain (On Λp subsets for squares, Israel J

Math) can be used to prove the conjecture for λ≫ N
1
4
+ 1

8 (Alex
Barron, private communication). This argument breaks down even

for λ ∼ N
1
4
+ 1

8 .
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I proved

Theorem

Assume ‖an‖l2 = 1 and N
1
4
+ 1

10 / λ ≤ N
1
2 . Then

|{x ∈ [0, 1] : sup
t
|

N∑
n=1

ane(nx + n2t)| ≥ λ}| / N

λ4
.

Via discretization, a variant of TT ∗ and standard Gauss sum
estimates this would follow from another conjecture with
arithmetic/additive combinatorial structure
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Let A(q) = {1 ≤ a ≤ q − 1 : gcd(a, q) = 1}. For dyadic 1 ≤ Q ≤ N and for
1 ≤ 2l . N

Q
we write

SQ,l =
⋃
q∼Q

⋃
a∈A(q)

⋃
0≤b≤q−1

[
b

q
− 1

2lq
,
b

q
+

1

2lq
]× [

a

q
− 1

2lqN
,
a

q
+

1

2lqN
].

The t-intervals are pairwise disjoint, while the x-intervals overlap.
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SQ,l =
⋃
q∼Q

⋃
a∈A(q)

⋃
0≤b≤q−1

[
b

q
− 1

2lq
,
b

q
+

1

2lq
]× [

a

q
− 1

2lqN
,
a

q
+

1

2lqN
].

Conjecture

Assume 1 ≤ 2l . N
Q and 1 ≤ K ≤ 2l/2.

Let zr = (xr , tr ) ∈ [0, 1]2, 1 ≤ r ≤ R, with xr 1/N-separated,
satisfy

R2 . K
R∑

r ,r ′=1

1SQ,l (zr − z ′r ).

Then we have

R . K 2N

2l
.

The point is that SQ,l does not have enough additive structure. E.g. it does
not contain a large AP× AP
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SQ,l =
⋃
q∼Q

⋃
a∈A(q)

⋃
0≤b≤q−1

[
b

q
− 1

2lq
,
b

q
+

1

2lq
]× [

a

q
− 1

2lqN
,
a

q
+

1

2lqN
].

Conjecture

Assume 1 ≤ 2l . N
Q

and 1 ≤ K ≤ 2l/2. Let zr = (xr , tr ) ∈ [0, 1]2, 1 ≤ r ≤ R,
with xr 1/N-separated, satisfy

R2 . K
R∑

r,r′=1

1SQ,l (zr − z ′r ).

Then we have

R . K 2N

2l
.

A tight example: Take zr of the form ( a
q ,

a
q ) with q ∼

√
Q prime

and 1 ≤ a ≤ q − 1. Then R ∼ Q and K ∼ 1, since
q 6= q′ =⇒ a′

q′ −
a
q = A′

Q′ with Q ′ ∼ Q and (A′,Q ′) = 1.

Note that R ∼ Q . N
2l

= K 2N
2l
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SQ,l =
⋃
q∼Q

⋃
a∈A(q)

⋃
0≤b≤q−1

[
b

q
− 1

2lq
,
b

q
+

1

2lq
]× [

a

q
− 1

2lqN
,
a

q
+

1

2lqN
].

XQ,l =
⋃
q∼Q

⋃
0≤b≤q−1

[
b

q
− 1

2lq
,
b

q
+

1

2lq
]

Fourier analysis on [0,1] and Gauss sum estimates give the following.

Theorem (A. Barron, private communication)

Assume 1 ≤ 2l . N
Q
, 1 ≤ K ≤ 2l/2 and 2l & N1/2

Let xr ∈ [0, 1], 1 ≤ r ≤ R, with xr 1/N-separated, satisfy

R2 . K
R∑

r,r′=1

1XQ,l (xr − x ′r ). (3)

Then we have

R . K 2N

2l
. (4)

This theorem (i.e using information only about the x-component) is false for
2l . N1/2. For example, X√N,

√
N has measure ∼ 1, and is a union of intervals

of length ∼ 1/N. Thus, xr = r/N, r ≤ R = N satisfies (3) with K = 1.
However (4) is false, since 2l ∼

√
N.
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Here is my result.

Theorem

Assume 1 ≤ 2l . N
Q , 1 ≤ K ≤ 2l/2 and 2l & N2/5.

Let zr = (xr , tr ) ∈ [0, 1]2, 1 ≤ r ≤ R, with xr 1/N-separated,
satisfy

R2 . K
R∑

r ,r ′=1

1SQ,l (zr − z ′r ). (5)

Then we have

R .
K 2

2l
N. (6)

My proof uses no Fourier analysis. One obstacle for using Fourier
analysis on [0, 1]2 is that it does not detect the false
counter-example: choose zr to be the R ∼ Q2 points (bq ,

a
q ) with q

fixed and 1 ≤ a, b ≤ q − 1. Note that zr − zr ′ ∈ SQ,l for each pair,
so (5) is satisfied with K ∼ 1, but (6) is false. But xr are not
1/N-separated!
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Instead, I use number theory and a little bit of graph theory.

Let G be the graph with vertices zr , 1 ≤ r ≤ R and an edge
between zr and zr1 if zr − zr1 ∈ SQ,l . There are & R2K−1 edges.
This easily implies that there is a pair (zr , zr ′) that shares & R/K 2

neighbors zr1 , zr2 , . . ..

Ciprian Demeter, IU Bloomington When the Schrödinger equation meets number theory



Since there is an edge between zr1 and zr , ther must exist a, b, q
such that zr1 − zr ∈ [bq −

1
2lq
, bq + 1

2lq
]× [ aq −

1
2lqN

, aq + 1
2lqN

]. I

write this as zr1 − zr ≈ (bq ,
a
q ). Similarly, zr1 − zr ′ ≈ (b

′

q′ ,
a′

q′ ).Thus

zr − zr ′ ≈ (
b′

q′
− b

q
,
a′

q′
− a

q
)
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I prove that for “many” values (x , t), the number of solutions
(a, b, q, a′, b′, q′) with q, q′ ∼ Q to

(x , t) ≈ (
b′

q′
− b

q
,
a′

q′
− a

q
)

is . Q. Thus, a typical pair of vertices (zr , zr ′) has at most Q
joint neighbors. Since we can pick a pair with R/K 2 joint
neighbors, we find

R/K 2 . Q . N/2l or R .
K 2

2l
N.
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Complications:

The number of solutions to

(x , t) ≈ (
b′

q′
− b

q
,
a′

q′
− a

q
)

is only . Q if gcd(q, q′) = 1, and it gets larger if this condition
fails. Pigeonholing is used to find a dyadic value D such that the
graph G is dominated by pairs of neighbors with gcd(q, q′) ∼ D.
Two other (more subtle) parameters are also needed besides
gcd(q, q′) and they also need to be pigeonholed.

In a certain range of these parameters, I need to identify subgraphs
of G with high additive structure, and localize analysis to them
(a-la induction on scales). I get better estimates in these cases.
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My argument using joint neighbors of two vertices can only prove
the conjecture for 2l & N2/5. The enemy scenario is when the
graph is dominated by D ∼ 1. I recover the suboptimal estimate

|Eλ| /
N4/3

λ4
, for all λ & N1/3

that is equivalent to

‖
N∑

n=1

ane(nx + n2t)|‖L4([0,1]2,dxdt) / N1/3‖an‖l2 .

The novelty is that it produces sharp estimates for λ & N
1
4
+ 1

10 .
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Working with three or more neighbors has the potential to fully
solve the conjecture. For example, heuristics show that the
three-neighbor argument would produce sharp estimates for
2l & N1/3. This means λ = (N2l)1/3 & N1/3.
Executing the 3-neighbor argument boils down to controlling the
number of solutions (a, b, q, a′, b′, q′, a′′, b′′, q′′) for{

(x ′, t ′) ≈ (b
′

q′ −
b
q ,

a′

q′ −
a
q )

(x ′′, t ′′) ≈ (b
′′

q′′ −
b
q ,

a′′

q′′ −
a
q )

Even getting a Qε gain over the trivial count seems difficult. Any
such gain would very likely lead to an exponent β smaller than 1/3
in

‖
N∑

n=1

ane(nx + n2t)|‖L4([0,1]2,dxdt) / Nβ‖an‖l2 .
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