Mathematics 623 – Complex Analysis Fall 2014

Assignment 8

Due Wednesday, November 5

1. Let f be holomorphic in a domain containing $\{z : |z| \le 1\}$ and suppose that |f(z)| < |z| if |z| = 1. Show that f has a unique fixed point in $\{z : |z| < 1\}$, i.e. there is a unique z with f(z) = z and |z| < 1.

2. (i) Prove that all zeros of $z^5 - 2z + 16$ are contained in the annulus $\{z : 1 < |z| < 2\}$.

(ii) How many of the zeros of $z^3 - 3z + 1$ are contained in $\{z : 1 < |z| < 2\}$?

3. Suppose that f_n are holomorphic functions in the domain¹ Ω and f_n converges to f uniformly on every compact subset of Ω . Suppose that $f_n(z) \neq 0$ for all $z \in \Omega$. Prove that either $f \equiv 0$ on Ω or f has no zeros on Ω .

4. Compute (with proof)

$$\int_0^\infty \frac{\sqrt{x}}{(x^2+4)^2} dx$$

- 5. Problem No. 10, p. 104, in the textbook.
- 6. Problem No. 16, p. 106, in the textbook.
- 7. Problem No. 17, p. 106, in the textbook.

Additional (recommended) problem: 8.* One can prove the familiar formula

$$\int_{-\infty}^{\infty} e^{-x^2} dx = \sqrt{\pi}$$

using an (admittedly complicated) complex analytic argument. Do this using the following outline:

Define $b = (1+i)\sqrt{\pi/2}$ and let

$$g(z) = \frac{e^{-z^2}}{1 + e^{-2bz}}.$$

Show that e^{-2bz} is periodic with period b and that $g(z) - g(z+b) = e^{-z^2}$. For large r, s integrate g(z) over the rectangle with lower corners -r, s, and height $\sqrt{\pi/2}$.

¹Recall: This means Ω is open and connected.