Mathematics 623 – Complex Analysis Fall 2014

Assignment 7.

Due Wednesday, October 29

1. Let f and g be entire functions and suppose that $|f(z)| \leq |g(z)|$ for all $z \in \mathbb{C}$. Prove that there exists a complex number a with $|a| \leq 1$ so that f(z) = ag(z) for all $z \in \mathbb{C}$.

2. Problem No. 12 on p. 105 in the textbook.

3. Problem No. 13 on p. 105 in the textbook.

4. Let $f(z) = \sum_{n=0}^{\infty} a_n z^n$ where the power series converges for all |z| < 1. Let |w| = 1 and suppose that there exists an R > 1 so that f extends to a holomorphic function in $\{z : |z| < R, z \neq w\}$ and suppose that f has a pole at w.

Show that

$$\lim_{n \to \infty} \frac{a_n}{a_{n+1}} = w$$

Hint. Let $\gamma_{\epsilon}(w)$ be the circle of radius ε centered at w and let Γ_{δ} be the circle of radius $1 + \delta$ centered at 0. For small δ and $\epsilon < \delta$ consider the integrals

$$\int_{\gamma_{\epsilon}} \frac{f(z)}{z^{n+1}} dz, \qquad \int_{\Gamma_{\delta}} \frac{f(z)}{z^{n+1}} dz$$

and relate them to the coefficient a_n .