Mathematics 522

Bounded Linear Operators and the Definition of Derivatives

Definition. Let V, W be normed vector spaces (both over \mathbb{R} or over \mathbb{C}). A *linear transformation* or *linear operator* $T: V \to W$ is *bounded* if there is a constant C such that

(1)
$$||Tx||_W \le C||x||_V \text{ for all } x \in V.$$

Remark: We use the linearity of T and the homogeneity of the norm in W to see that

$$\left\| T\left(\frac{x}{\|x\|_{V}}\right) \right\|_{W} = \left\| \frac{T(x)}{\|x\|_{V}} \right\|_{W} = \frac{\|T(x)\|_{W}}{\|x\|_{V}}$$

we see that T is bounded, satisfying (1), if and only if

$$\sup_{\|x\|_V=1} \|T(x)\|_W \le C.$$

Theorem. Let V, W be normed vector spaces and let $T : V \to W$ be a linear transformation. The following statements are equivalent.

(i) T is a bounded linear transformation.

(ii) T is continuous everwhere in V.

(iii) T is continuous at 0 in V.

Proof. (i) \implies (ii). Let C as in the definition of bounded linear transformation. By linearity of T we have

$$||T(v) - T(\tilde{v})||_{W} = ||T(v - \tilde{v})||_{W} \le C ||v - \tilde{v}||_{V}$$

which implies (ii).

(ii) \implies (iii) is trivial.

(iii) \implies (i): If T is continuous at 0 there exists $\delta > 0$ such that for all $v \in V$ with $||v|| < \delta$ we have ||Tv|| < 1. Now let $x \in V$ and $x \neq 0$. Then

$$\left\|\delta\frac{x}{2\|x\|_V}\right\|_V = \delta/2 \text{ and thus } \left\|T(\delta\frac{x}{\|x\|_V})\right\|_W < 1.$$

But by the linearity of T and the homogeneity of the norm we get

$$1 \ge \left\| T(\delta \frac{x}{\|x\|_{V}}) \right\|_{W} = \left\| \delta \frac{T(x)}{2\|x\|_{V}} \right\|_{W} = \frac{\delta}{2\|x\|_{V}} \|Tx\|_{W}$$

and therefore $||Tx||_W \leq C ||x||_V$ with $C = 2/\delta$.

Notation: If $T: V \to W$ is linear one often writes Tx for T(x).

Definition. We denote by L(V, W) the set of all bounded linear transformations $T: V \to W$.

 $\mathbf{2}$

L(V,W) form a vector space. S + T is the transformation with (S + T)(x) = S(x) + T(x) and cT is the operator $x \mapsto cT(x)$. On L(V,W) we define the *operator norm* (depending on the norms on V and W) by

$$||T||_{L(V,W)} \equiv ||T||_{op} = \sup_{v \neq 0} \frac{||Tv||_W}{||v||_V}$$

We can think of $||T||_{L(V,W)}$ as the best constant for which (1) holds. Note that

$$||Tx||_W \le ||T||_{L(V,W)} ||x||_V.$$

Using the homogeneity of the W-norm we also can write

$$||T||_{L(V,W)} = \sup_{||x||_V = 1} ||Tx||_W$$

We use the $\|\cdot\|_{op}$ notation if the choice of V, W and the norms are clear from the context. In the textbook, Rudin considers $V = \mathbb{R}^n$, $W = \mathbb{R}^m$ with the standard Euclidean norms and simply writes $\|T\|$ for the operator norm.

Lemma. Let V and W be normed spaces. If V is finite dimensional then all linear transformations from V to W are bounded.

Proof. Let v_1, \ldots, v_n be a basis of V. Then for $v = \sum_{j=1}^n \alpha_j v_j$ we have

$$\|Tv\|_{W} = \left\|\sum_{j=1}^{n} \alpha_{j} Tv_{j}\right\|_{W} \le \sum_{j=1}^{n} |\alpha_{j}| \|Tv_{j}\|_{W} \le \sum_{j=1}^{n} \|Tv_{j}\|_{W} \max_{k=1,\dots,n} |\alpha_{k}|$$

The expression $\max_{k=1,\dots,n} |\alpha_k|$ defines a norm on V. Since all norms on V are equivalent, there is a constant C_1 such that

$$\max_{j=1,\dots,n} |\alpha_j| \le C \left\| \sum_{j=1}^n \alpha_j v_j \right\|_V$$

for all choices of $\alpha_1, \ldots, \alpha_n$. Thus we get $||Tv||_W \le C ||v||_V$ for all $v \in V$, where the constant C is given by $C = C_1 \sum_{j=1}^n ||Tv_j||$.

Lemma. On \mathbb{R}^n , \mathbb{R}^m use the Euclidean norms $||x||_2 = (\sum_{j=1}^n |x_j|^2)^{1/2}$, $||y||_2 = (\sum_{i=1}^m |y_i|^2)^{1/2}$. Let A be an $m \times n$ matrix and consider the linear operator $T : \mathbb{R}^n \to \mathbb{R}^m$ defined by T(x) = Ax. Let

$$||A||_{HS} := (\sum_{i=1}^{m} \sum_{j=1}^{n} |a_{ij}|^2)^{1/2}.$$

Then

$$||T||_{op} \le ||A||_{HS}.$$

Proof. $||Ax||_2^2 = \sum_{i=1}^m |\sum_{j=1}^n a_{ij}x_j|^2$. By the Cauchy-Schwarz inequality $|\sum_{j=1}^n a_{ij}x_j|^2 \leq \sum_{j=1}^n |a_{ij}|^2 ||x||_2^2$ and hence $||Ax||_2 \leq ||A||_{HS} ||x||_2$ for all $x \in \mathbb{R}^n$. Thus $||T||_{op} \leq ||A||_{HS}$.

Remark. We often write A for both the matrix and the linear operator $x \to Ax$. The expression $||A||_{HS}$ is a norm on the space of $m \times n$ matrices called the Hilbert-Schmidt norm of A. In many cases it is substantially larger than the operator norm (and so the estimate in the Lemma is rather inefficient). To illustrate this let D an $n \times n$ diagonal matrix (with entries $\lambda_1, ..., \lambda_n$ on the diagonal and zeroes elsewhere. Then it is easy to verify the inequality

$$||Dx||_2 \le \max_{j=1,\dots,n} |\lambda_j| ||x||_2$$

and this is seen to be sharp by testing on the unit vectors $x = e_j$. Thus $\|D\|_{op} = \max_{j=1,\dots,n} |\lambda_j|$ while $\|D\|_{HS} = (\sum_{j=1}^n |\lambda_j|^2)^{1/2}$. In particular for the identity operator I we have $\|I\|_{op} = 1$ but $\|I\|_{HS} = \sqrt{n}$.

Normed vector spaces and compleness. Let V be a normed space. Then V is a metric space with respect to the metric d(x, y) = ||x - y||. Recall that a sequence $\{x_n\}_{n=1}^{\infty}$ is a Cauchy-sequence in V if for every $\varepsilon > 0$ there is K such that $||x_n - x_m||_V < \varepsilon$ for $m, n \ge K$.

Definition. A *Banach space* is a normed space which is complete (i.e. every Cauchy sequence converges).

Lemma: A finite dimensional normed space over \mathbb{R} or \mathbb{C} is complete. Proof. Let v_1, \ldots, v_N be a basis of V and for $x \in V$ let $\beta_1(x), \ldots, \beta_N(x)$ be the coordinates of f with respect to the basis v_1, \ldots, v_N .

We need to show that $\{x_n\}$ has a limit in V. For every n we can write

$$x_n = \sum_{i=1}^N \beta_i(x_n) v_i.$$

The expression

$$\|x\|_{\infty} := \max_{i=1,\dots,N} |\beta_i(x)|$$

defines a norm on ${\cal V}$ which is equivalent to the given norm. In particular we have

$$|\beta_i(x_n) - \beta_i(x_m)| \le C ||x_n - x_m||_V, \quad i = 1, \dots, N.$$

This shows that for each i = 1, ..., N the numbers $\beta_i(x_n)$ form a Cauchysequence of scalars and thus converge to a scalar β_i . Define $x = \sum_{i=1}^N \beta_i v_i$ (so that $\beta_i = \beta_i(x)$). Then

$$||x_n - x||_V = ||\sum_{i=1}^N (\beta_i(x_n) - \beta_i) v_i||_V \le \sum_{i=1}^n |\beta_i(x_n) - \beta_i|||v_i||_V$$

which converges to 0 as $n \to \infty$. Hence $x_n \to x$ in V.

Theorem: Let V and W be normed spaces and assume that W is complete. Then the space L(V, W) of bounded linear operators from V to W is a Banach space.

Proof. We need to show that L(V, W) is complete. Let T_n be a Cauchy sequence in L(V, W) (with respect to the norm $||T||_{op} = \sup_{||x||_V=1} ||Tx||_W$). Then for each $x \in V$, $T_n x$ is Cauchy in W and by assumption $T_n x$ converge to some vector Tx. Check, using limiting arguments, that $T: V \to W$ is linear. Since T_n is Cauchy the sequence T_N is bounded in L(V, W) and thus there exists M with $||T_n||_{op} \leq M$.

We need to show that T is a bounded operator. We have for all n and all $x \in V$

$$||Tx||_{W} \le ||Tx - T_{n}x||_{W} + ||T_{n}x||_{W} \le ||Tx - T_{n}x||_{W} + ||T_{n}||_{op}||x||_{W}.$$

Letting $n \to \infty$ we see that $||Tx||_W \leq M|x||_V$. Hence $T \in L(V, W)$ with $||T||_{op} \leq M$.

Finally we need to show that $T_n \to T$ in L(V, W). Given $\varepsilon > 0$ we choose N such that $||T_n - T_m||_{op} < \varepsilon/2$ for $m, n \ge N$.

We prove the following *Claim:*

For each $x \in V$, $x \neq 0$, and $n \geq N$ we have $||T_n x - Tx||_W < \varepsilon ||x||_V$.

Let $n \ge N$. Since $T_m x \to T x$ in W we can choose $m(x) \ge N$ such that $\|T_{m(x)}x - Tx\|_W \le \varepsilon/4 \|x\|_V$. We estimate we estimate (with $m \ge N$)

$$\begin{aligned} \|Tx - T_n x\|_W &\leq \|Tx - T_{m(x)} x + T_{m(x)} x - T_n(x)\|_W \\ &\leq \|Tx - T_{m(x)} x\|_W + \|T_{m(x)} x - T_n x\|_W \\ &\leq \frac{\varepsilon}{4} \|x\|_V + \|T_{m(x)} - T_n\|_{op} \|x\|_V \\ &\leq \frac{\varepsilon}{4} \|x\|_V + \frac{\varepsilon}{2} \|x\|_V < \varepsilon \|x\|_V. \end{aligned}$$

Hence the claim is established and thus $||T_n - T||_{op} < \varepsilon$ for $n \ge N$. This shows $T_n \to T$ with respect to the operator norm.

Definition. (i) Let V be a normed vector space over \mathbb{R} . Bounded linear transformations from V to \mathbb{R} are called bounded linear functionals. The space $L(V,\mathbb{R})$ with the operator norm is called the dual space to V, or V^{*}.

(ii) Similarly if V be a normed vector space over \mathbb{C} we call the bounded linear transformations from V to \mathbb{R} bounded linear functionals and refer to the space $L(V, \mathbb{C})$ with the operator norm as the dual space V^* .

Since \mathbb{R} and \mathbb{C} are complete the above theorem about completeness of L(V, W) immediately yields the

Corollary. Dual spaces of normed vector spaces are Banach spaces.

Exercise: The space $L(\mathbb{R}^n, \mathbb{R})$ of linear functionals $\ell : \mathbb{R}^n \to \mathbb{R}$ can be identified with \mathbb{R} , since for any such ℓ there is a unique vector $y \in \mathbb{R}^n$ such that $\ell(x) = \sum_{j=1}^n x_j y_j$ for all $x \in \mathbb{R}^n$. We consider the *p*-norm on \mathbb{R}^n , $||x||_p = (\sum_{j=1}^n |x_j|^p)^{1/p}, 1 \leq p < \infty$. Also set $||x||_{\infty} = \max_{j=1,\dots,n} |x_j|$. The norm on \mathbb{R} is just the absolute value $|\cdot|$.

(i) Prove

$$\sup_{\|x\|_{1}\neq 0} \frac{\left|\sum_{j=1}^{n} x_{j} y_{j}\right|}{\|x\|_{1}} = \|y\|_{\infty}$$

and

$$\sup_{\|x\|_{\infty}\neq 0} \frac{\left|\sum_{j=1}^{n} x_{j} y_{j}\right|}{\|x\|_{\infty}} = \|y\|_{1}.$$

(ii) Prove that if 1 then

$$\|\ell\|_{op} \equiv \sup_{\|x\|_p \neq 0} \frac{\left|\sum_{j=1}^n x_j y_j\right|}{\|x\|_p} = \|y\|_{p'} \text{ where } p' = \frac{p}{p-1}$$

Hint: Hölder's inequality should be used here.

Finally we consider compositions of linear transformations. The operator norms are submultiplicative in the sense of the following lemma.

Lemma. Let V_1 , V_2 , V_3 be normed vector spaces and let $T \in L(V_1, V_2)$ and $S \in L(V_2, V_3)$. Define the composition $ST : V_1 \to V_3$ by ST(x) = S(T(x)). Then $ST \in L(V_1, V_3)$ and we have

$$||ST||_{L(V_1,V_3)} \le ||S||_{L(V_2,V_3)} ||T||_{L(V_1,V_2)}.$$

Proof: For $x \in V_1$,

$$||ST(x)||_{V_3} \le ||S||_{L(V_2,V_3)} ||T(x)||_{V_2} \le ||S||_{L(V_2,V_3)} ||T||_{L(V_1,V_2)} ||x||_{V_1}.$$

This implies $ST \in L(V_1, V_3)$ and the asserted submultiplicativity property. \Box

Differentiation

Definition. Let V and W be normed vector spaces. Let $U \subset V$ be an open subset of V and let $F : U \to W$ be a function. Let $a \in U$. We say that F is differentiable at a if there exists a bounded linear transformation $T: V \to W$ (usually denoted by Df_a or by f'(a)) such that

$$\lim_{h \to 0} \frac{\|f(a+h) - f(a) - Th\|_W}{\|h\|_V} = 0$$

Uniqueness: For the derivative of f at a to be well defined we must prove uniqueness of T. Suppose there are two linear bounded transformations Tand \tilde{T} with $\frac{\|f(a+h)-f(a)-Th\|_W}{\|h\|_V} \to 0$ and $\frac{\|f(a+h)-f(a)-\tilde{T}h\|_W}{\|h\|_V} \to 0$ as $\|h\|_V \to 0$ 0. The triangle inequality implies that $\lim_{h\to 0} \frac{\|Th-\tilde{T}h\|_W}{\|h\|_V} = 0$. I.e. for every $\varepsilon > 0$ there is a $\delta > 0$ such that $\|Th - \tilde{T}h\|_W \le \varepsilon \|h\|_V$ for all $\|h\| \le \delta$. However since T, \tilde{T} are linear this inequality also holds with h replaced by ch for all scalars c, and thus we have

$$||Th - Th||_W \le \varepsilon ||h||_V$$
 for all $h \in V$.

Hence $||T - \tilde{T}||_{op} \leq \varepsilon$ for all $\varepsilon > 0$ which implies $T = \tilde{T}$. Thus if the derivative of f at a exists it is uniquely defined and we shall henceforth denote it by Df_a or by f'(a).

Remark: Other terns for this derivative Df_a are "total derivative of f at a" or "Fréchet derivative of f at a".

Exercise: Prove that if f is differentiable at a then f is continuous at a.

Example: Let M(n,n) be the space of $n \times n$ matrices, with any norm. Define $F(A) = A^2$. Then F is differentiable at any A and its derivative DF_A is given by

$$DF_A(H) = AH + HA$$
.

For the proof observe that $F(A + H) - F(A) = (A + H)^2 - A^2 = AH + HA + H^2$ and check that $\lim_{H\to 0} ||H^2||/||H|| = 0$. This is accomplished by showing that $||H^2|| \leq C||H||_2$ and if one uses a submultiplicative norm on M(n, n) one gets this even with the constant 1.

Example: Let $F : \mathbb{R}^2 \to \mathbb{R}$ be given by $F(x_1, x_2) = x_1^2 + \sin(\pi x_2)$. You are being asked to check from the definition whether F differentiable at (2, 1) and to determine the derivative $DF_{(2,1)}$, as a linear transformation $\mathbb{R}^2 \to \mathbb{R}$. Observe that

$$F(2+h_1, 1+h_2) - F(2, 1) = (2+h_1)^2 - 2^2 + (\sin(\pi(1+h_2)) - \sin\pi)$$
$$= 4h_1 + \pi\cos(\pi)h_2 + O(h_1^2) + O(h_2^2).$$

Hence $DF_{(2,1)}: \mathbb{R}^2 \to \mathbb{R}$ is the linear transformation given by

$$DF_{(2,1)}(h) = 4h_1 - \pi h_2$$
.

Example: Let C([0, 1]) be the space of continuous functions with the usual max-norm $||f||_{\infty} = \max_{x \in [0,1]} |f(x)|$. We define a function

$$\Gamma: C([0,1]) \to C([0,1])$$

by saying that for $f \in C([0, 1])$, $\Gamma[f]$ is the function whose values at $x \in [0, 1]$ are given by

$$\Gamma[f](x) = \int_0^x f(t)^2 \cos t \, dt$$

Show that Γ is differentiable at every $g \in C([0,1])$ and determine $D\Gamma_g$ for all $g \in C([0,1])$.

For $h \in C([0,1])$ we compute

$$\Gamma[g+h](x) - \Gamma[g](x) = \int_0^x (g(t) + h(t))^2 \cos t \, dt - \int_0^x (g(t))^2 \cos t \, dt$$
$$= \int_0^x h(t) \, 2g(t) \cos t \, dt + \int_0^x (h(t))^2 \cos t \, dt$$

We claim that $D\Gamma_g : C([0, 1]) \to C([0, 1])$ is the linear transformation which to each $h \in C([0, 1])$ assigns the function T[h] whose values at x are given by

$$T[h](x) = \int_0^x h(t) 2g(t) \cos t \, dt$$
.

We must show that T is a bounded linear transformation and that it is really the derivative of Γ at g. Clearly T is linear and maps C([0, 1]) to itself.

It is bounded since

$$\max_{0 \le x \le 1} \Big| \int_0^x h(t) \, 2g(t) \cos t \, dt \Big| \le 2 \max_{[0,1]} |g(x)| \max_{x \in [0,1]} |h(x)|;$$

this inequality shows that the operator norm of T is at most $2||g||_{\infty}$.

To verify that T is really the derivative of Γ at g we must analyze the error term and show that

$$\frac{\max_{x \in [0,1]} \left| \int_0^x h(t)^2 \cos t \, dt \right|}{\|h\|_{\infty}} \to 0 \text{ as } \|h\|_{\infty} \to 0.$$

The numerator is bounded by $\max_{t \in [0,1]} |h(t)^2| = ||h||_{\infty}^2$ and hence the displayed expression tends to 0 as $||h||_{\infty} \to 0$. Thus we have shown that Γ is differentiable at g and $D\Gamma_g = T$.

Example: Let C([0, 1]) be the space of continuous functions with the usual max-norm $||f||_{\infty} = \max_{x \in [0,1]} |f(x)|$. Define $\Lambda : C([0,1]) \to \mathbb{R}$ by

$$\Lambda[f] = \int_0^1 f(t)^2 \cos t \, dt \, .$$

Show that Λ is differentiable at every $g \in C([0,1])$ and that

$$D\Lambda_g: C([0,1]) \to \mathbb{R}$$

is the bounded linear functional defined by

$$D\Lambda_g[h] = \int_0^1 h(t) \, 2g(t) \cos t \, dt \, .$$