
Mathematics 522

Bounded Linear Operators and the Definition of Derivatives

Definition. Let V , W be normed vector spaces (both over R or over C).
A linear transformation or linear operator T : V →W is bounded if there is
a constant C such that

(1) ‖Tx‖W ≤ C‖x‖V for all x ∈ V .

Remark: We use the linearity of T and the homogeneity of the norm in
W to see that ∥∥∥T ( x

‖x‖V
)∥∥∥

W
=
∥∥∥ T (x)

‖x‖V

∥∥∥
W

=
‖T (x)‖W
‖x‖V

we see that T is bounded, satisfying (1), if and only if

sup
‖x‖V =1

‖T (x)‖W ≤ C.

Theorem. Let V , W be normed vector spaces and let T : V → W be a
linear transformation. The following statements are equivalent.

(i) T is a bounded linear transformation.
(ii) T is continuous everwhere in V .
(iii) T is continuous at 0 in V .

Proof. (i) =⇒ (ii). Let C as in the definition of bounded linear transfor-
mation. By linearity of T we have

‖T (v)− T (ṽ)‖W = ‖T (v − ṽ)‖W ≤ C‖v − ṽ‖V
which implies (ii).

(ii) =⇒ (iii) is trivial.
(iii) =⇒ (i): If T is continuous at 0 there exists δ > 0 such that for all

v ∈ V with ‖v‖ < δ we have ‖Tv‖ < 1. Now let x ∈ V and x 6= 0. Then∥∥∥δ x

2‖x‖V

∥∥∥
V

= δ/2 and thus
∥∥∥T (δ

x

‖x‖V
)
∥∥∥
W
< 1.

But by the linearity of T and the homogeneity of the norm we get

1 ≥
∥∥∥T (δ

x

‖x‖V
)
∥∥∥
W

=
∥∥∥δ T (x)

2‖x‖V

∥∥∥
W

=
δ

2‖x‖V
‖Tx‖W

and therefore ‖Tx‖W ≤ C‖x‖V with C = 2/δ. �

Notation: If T : V →W is linear one often writes Tx for T (x).

Definition. We denote by L(V,W ) the set of all bounded linear trans-
formations T : V →W .
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L(V,W ) form a vector space. S + T is the transformation with (S +
T )(x) = S(x) + T (x) and cT is the operator x 7→ cT (x). On L(V,W ) we
define the operator norm (depending on the norms on V and W ) by

‖T‖L(V,W ) ≡ ‖T‖op = sup
v 6=0

‖Tv‖W
‖v‖V

.

We can think of ‖T‖L(V,W ) as the best constant for which (1) holds. Note
that

‖Tx‖W ≤ ‖T‖L(V,W )‖x‖V .
Using the homogeneity of the W -norm we also can write

‖T‖L(V,W ) = sup
‖x‖V =1

‖Tx‖W .

We use the ‖ · ‖op notation if the choice of V , W and the norms are clear
from the context. In the textbook, Rudin considers V = Rn, W = Rm with
the standard Euclidean norms and simply writes ‖T‖ for the operator norm.

Lemma. Let V and W be normed spaces. If V is finite dimensional then
all linear transformations from V to W are bounded.

Proof. Let v1, . . . , vn be a basis of V . Then for v =
∑n

j=1 αjvj we have

‖Tv‖W =
∥∥∥ n∑

j=1

αjTvj

∥∥∥
W
≤

n∑
j=1

|αj |‖Tvj‖W ≤
n∑

j=1

‖Tvj‖W max
k=1,...,n

|αk|.

The expression maxk=1,...,n |αk| defines a norm on V . Since all norms on V
are equivalent, there is a constant C1 such that

max
j=1,...,n

|αj | ≤ C
∥∥∥ n∑

j=1

αjvj

∥∥∥
V

for all choices of α1, . . . , αn. Thus we get ‖Tv‖W ≤ C‖v‖V for all v ∈ V ,
where the constant C is given by C = C1

∑n
j=1 ‖Tvj‖. �

Lemma. On Rn, Rm use the Euclidean norms ‖x‖2 = (
∑n

j=1 |xj |2)1/2,

‖y‖2 = (
∑m

i=1 |yi|2)1/2. Let A be an m × n matrix and consider the linear
operator T : Rn → Rm defined by T (x) = Ax. Let

‖A‖HS := (

m∑
i=1

n∑
j=1

|aij |2)1/2.

Then
‖T‖op ≤ ‖A‖HS .

Proof. ‖Ax‖22 =
∑m

i=1 |
∑n

j=1 aijxj |2. By the Cauchy-Schwarz inequality

|
∑n

j=1 aijxj |2 ≤
∑n

j=1 |aij |2‖x‖22 and hence ‖Ax‖2 ≤ ‖A‖HS‖x‖2 for all

x ∈ Rn. Thus ‖T‖op ≤ ‖A‖HS . �
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Remark. We often write A for both the matrix and the linear operator
x → Ax. The expression ‖A‖HS is a norm on the space of m × n matrices
called the Hilbert-Schmidt norm of A. In many cases it is substantially
larger then the operator norm (and so the estimate in the Lemma is rather
inefficient). To illustrate this let D an n × n diagonal matrix (with entries
λ1,...,λn on the diagonal and zeroes elsewhere. Then it is easy to verify the
inequality

‖Dx‖2 ≤ max
j=1,...,n

|λj |‖x‖2

and this is seen to be sharp by testing on the unit vectors x = ej . Thus

‖D‖op = maxj=1,...,n |λj | while ‖D‖HS = (
∑n

j=1 |λj |2)1/2. In particular for

the identity operator I we have ‖I‖op = 1 but ‖I‖HS =
√
n.

Normed vector spaces and compleness. Let V be a normed space.
Then V is a metric space with respect to the metric d(x, y) = ‖x−y‖. Recall
that a sequence {xn}∞n=1 is a Cauchy-sequence in V if for every ε > 0 there
is K such that ‖xn − xm‖V < ε for m,n ≥ K.

Definition. A Banach space is a normed space which is complete (i.e.
every Cauchy sequence converges).

Lemma: A finite dimensional normed space over R or C is complete.
Proof. Let v1, . . . , vN be a basis of V and for x ∈ V let β1(x), . . . , βN (x)

be the coordinates of f with respect to the basis v1, . . . , vN .
We need to show that {xn} has a limit in V . For every n we can write

xn =
N∑
i=1

βi(xn)vi.

The expression

‖x‖∞ := max
i=1,...,N

|βi(x)|

defines a norm on V which is equivalent to the given norm. In particular we
have

|βi(xn)− βi(xm)| ≤ C‖xn − xm‖V , i = 1, . . . , N .

This shows that for each i = 1, . . . , N the numbers βi(xn) form a Cauchy-

sequence of scalars and thus converge to a scalar βi. Define x =
∑N

i=1 βivi
(so that βi = βi(x)). Then

‖xn − x‖V = ‖
N∑
i=1

(
βi(xn)− βi

)
vi‖V ≤

n∑
i=1

|βi(xn)− βi|‖vi‖V

which converges to 0 as n→∞. Hence xn → x in V . �



4

Theorem: Let V and W be normed spaces and assume that W is com-
plete. Then the space L(V,W ) of bounded linear operators from V to W is
a Banach space.

Proof. We need to show that L(V,W ) is complete. Let Tn be a Cauchy
sequence in L(V,W ) (with respect to the norm ‖T‖op = sup‖x‖V =1 ‖Tx‖W ).
Then for each x ∈ V , Tnx is Cauchy in W and by assumption Tnx converge
to some vector Tx. Check, using limiting arguments, that T : V → W is
linear. Since Tn is Cauchy the sequence TN is bounded in L(V,W ) and thus
there exists M with ‖Tn‖op ≤M .

We need to show that T is a bounded operator. We have for all n and all
x ∈ V

‖Tx‖W ≤ ‖Tx− Tnx‖W + ‖Tnx‖W ≤ ‖Tx− Tnx‖W + ‖Tn‖op‖x‖W .

Letting n → ∞ we see that ‖Tx‖W ≤ M |x‖V . Hence T ∈ L(V,W ) with
‖T‖op ≤M .

Finally we need to show that Tn → T in L(V,W ). Given ε > 0 we choose
N such that ‖Tn − Tm‖op < ε/2 for m,n ≥ N .

We prove the following Claim:

For each x ∈ V , x 6= 0, and n ≥ N we have ‖Tnx− Tx‖W < ε‖x‖V .

Let n ≥ N . Since Tmx → Tx in W we can choose m(x) ≥ N such that
‖Tm(x)x− Tx‖W ≤ ε/4‖x‖V . We estimate we estimate (with m ≥ N)

‖Tx− Tnx‖W ≤ ‖Tx− Tm(x)x+ Tm(x)x− Tn(x)‖W
≤ ‖Tx− Tm(x)x‖W + ‖Tm(x)x− Tnx‖W

≤ ε

4
‖x‖V + ‖Tm(x) − Tn‖op‖x‖V

≤ ε

4
‖x‖V +

ε

2
‖x‖V < ε‖x‖V .

Hence the claim is established and thus ‖Tn − T‖op < ε for n ≥ N . This
shows Tn → T with respect to the operator norm. �

Definition. (i) Let V be a normed vector space over R. Bounded linear
transformations from V to R are called bounded linear functionals. The
space L(V,R) with the operator norm is called the dual space to V , or V ∗.

(ii) Similarly if V be a normed vector space over C we call the bounded
linear transformations from V to R bounded linear functionals and refer to
the space L(V,C) with the operator norm as the dual space V ∗.

Since R and C are complete the above theorem about completeness of
L(V,W ) immediately yields the

Corollary. Dual spaces of normed vector spaces are Banach spaces.
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Exercise: The space L(Rn,R) of linear functionals ` : Rn → R can be
identified with R, since for any such ` there is a unique vector y ∈ Rn such
that `(x) =

∑n
j=1 xjyj for all x ∈ Rn. We consider the p-norm on Rn,

‖x‖p = (
∑n

j=1 |xj |p)1/p, 1 ≤ p < ∞. Also set ‖x‖∞ = maxj=1,...,n |xj |. The

norm on R is just the absolute value | · |.
(i) Prove

sup
‖x‖1 6=0

∣∣∣∑n
j=1 xjyj

∣∣∣
‖x‖1

= ‖y‖∞

and

sup
‖x‖∞ 6=0

∣∣∣∑n
j=1 xjyj

∣∣∣
‖x‖∞

= ‖y‖1.

(ii) Prove that if 1 < p <∞ then

‖`‖op ≡ sup
‖x‖p 6=0

∣∣∣∑n
j=1 xjyj

∣∣∣
‖x‖p

= ‖y‖p′ where p′ =
p

p− 1
.

Hint: Hölder’s inequality should be used here.

Finally we consider compositions of linear transformations. The operator
norms are submultiplicative in the sense of the following lemma.

Lemma.Let V1, V2, V3 be norned vector spaces and let T ∈ L(V1, V2) and
S ∈ L(V2, V3). Define the composition ST : V1 → V3 by ST (x) = S(T (x)).
Then ST ∈ L(V1, V3) and we have

‖ST‖L(V1,V3) ≤ ‖S‖L(V2,V3)‖T‖L(V1,V2) .

Proof: For x ∈ V1,
‖ST (x)‖V3 ≤ ‖S‖L(V2,V3)‖T (x)‖V2 ≤ ‖S‖L(V2,V3)‖T‖L(V1,V2)‖x‖V1 .

This implies ST ∈ L(V1, V3) and the asserted submultiplicativity property.
�

Differentiation

Definition. Let V and W be normed vector spaces. Let U ⊂ V be an
open subset of V and let F : U → W be a function. Let a ∈ U . We say
that F is differentiable at a if there exists a bounded linear transformation
T : V →W (usually denoted by Dfa or by f ′(a)) such that

lim
h→0

‖f(a+ h)− f(a)− Th‖W
‖h‖V

= 0

Uniqueness: For the derivative of f at a to be well defined we must prove
uniqueness of T . Suppose there are two linear bounded transformations T

and T̃ with ‖f(a+h)−f(a)−Th‖W
‖h‖V → 0 and ‖f(a+h)−f(a)−T̃ h‖W

‖h‖V → 0 as ‖h‖V →
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0. The triangle inequality implies that limh→0
‖Th−T̃ h‖W
‖h‖V = 0 . I.e. for every

ε > 0 there is a δ > 0 such that ‖Th − T̃ h‖W ≤ ε‖h‖V for all ‖h‖ ≤ δ.

However since T, T̃ are linear this inequality also holds with h replaced by
ch for all scalars c, and thus we have

‖Th− T̃ h‖W ≤ ε‖h‖V for all h ∈ V.

Hence ‖T − T̃‖op ≤ ε for all ε > 0 which implies T = T̃ . Thus if the
derivative of f at a exists it is uniquely defined and we shall henceforth
denote it by Dfa or by f ′(a).

Remark: Other terns for this derivative Dfa are “total derivative of f at
a” or “Fréchet derivative of f at a”.

Exercise: Prove that if f is differentiable at a then f is continuous at a.

Example: Let M(n, n) be the space of n × n matrices, with any norm.
Define F (A) = A2. Then F is differentiable at any A and its derivative DFA

is given by

DFA(H) = AH +HA .

For the proof observe that F (A + H) − F (A) = (A + H)2 − A2 = AH +
HA + H2 and check that limH→0 ‖H2‖/‖H‖ = 0. This is accomplished by
showing that ‖H2‖ ≤ C‖H‖2 and if one uses a submultiplicative norm on
M(n, n) one gets this even with the constant 1.

Example: Let F : R2 → R be given by F (x1, x2) = x21 +sin(πx2). You are
being asked to check from the definition whether F differentiable at (2, 1)
and to determine the derivative DF(2,1), as a linear transformation R2 → R.
Observe that

F (2 + h1, 1 + h2)− F (2, 1) = (2 + h1)
2 − 22 + (sin(π(1 + h2))− sinπ

= 4h1 + π cos(π)h2 +O(h21) +O(h22).

Hence DF(2,1) : R2 → R is the linear transformation given by

DF(2,1)(h) = 4h1 − πh2 .

Example: Let C([0, 1] be the space of continuous functions with the usual
max-norm ‖f‖∞ = maxx∈[0,1] |f(x)|. We define a function

Γ : C([0, 1])→ C([0, 1])

by saying that for f ∈ C([0, 1]), Γ[f ] is the function whose values at x ∈ [0, 1]
are given by

Γ[f ](x) =

∫ x

0
f(t)2 cos t dt .

Show that Γ is differentiable at every g ∈ C([0, 1]) and determine DΓg for
all g ∈ C([0, 1]).
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For h ∈ C([0, 1]) we compute

Γ[g + h](x)− Γ[g](x) =

∫ x

0
(g(t) + h(t))2 cos t dt−

∫ x

0
(g(t))2 cos t dt

=

∫ x

0
h(t) 2g(t) cos t dt+

∫ x

0
(h(t))2 cos t dt

We claim that DΓg : C([0, 1])→ C([0, 1]) is the linear transformation which
to each h ∈ C([0, 1]) assigns the function T [h] whose values at x are given
by

T [h](x) =

∫ x

0
h(t) 2g(t) cos t dt .

We must show that T is a bounded linear transformation and that it is really
the derivative of Γ at g. Clearly T is linear and maps C([0, 1]) to itself.

It is bounded since

max
0≤x≤1

∣∣∣ ∫ x

0
h(t) 2g(t) cos t dt

∣∣∣ ≤ 2 max
[0,1]
|g(x)| max

x∈[0,1]
|h(x)|;

this inequality shows that the operator norm of T is at most 2‖g‖∞.
To verify that T is really the derivative of Γ at g we must analyze the

error term and show that

maxx∈[0,1]

∣∣∣ ∫ x
0 h(t)2 cos t dt

∣∣∣
‖h‖∞

→ 0 as ‖h‖∞ → 0.

The numerator is bounded by maxt∈[0,1] |h(t)2| = ‖h‖2∞ and hence the dis-
played expression tends to 0 as ‖h‖∞ → 0. Thus we have shown that Γ is
differentiable at g and DΓg = T .

Example: Let C([0, 1] be the space of continuous functions with the usual
max-norm ‖f‖∞ = maxx∈[0,1] |f(x)|. Define Λ : C([0, 1])→ R by

Λ[f ] =

∫ 1

0
f(t)2 cos t dt .

Show that Λ is differentiable at every g ∈ C([0, 1]) and that

DΛg : C([0, 1])→ R
is the bounded linear functional defined by

DΛg[h] =

∫ 1

0
h(t) 2g(t) cos t dt .


