Some basic inequalities

Definition. Let V be a vector space over the complex numbers. An
inner product is given by a function (-, )

VxV —=C
(z,y) = (z,y)
satisfying the following properties (for all z € V, y € V and c € C)

(1) {z+2,y) = (z,9) +(Z,y)

(2) (cx,y) = c{,y)

(3) (y,2) = (z,9)

(4) (z,x) > 0 and (x,z) = 0 if and only of z = 0.

Note that if (-,-) is an inner product then for each y the function z —
(x,y) is a linear function. Also we have (z,cy) = ¢(x,y) and (z,y + §) =
(z,y) + (z, 7).

Remark: We can also define inner products for vector spaces over R, but
then the third axiom is changed to the symmetry axiom (y,z) = (z,y) for
all z,y € V. Thus if V is a vector space over the real numbers then then
for each y the function = — (z,y) is a linear function, and for each x the
function y — (z,y) is a linear function. The latter statement for y — (z,y)
fails in vector spaces over C.

Definition. A semi-norm on a vector space over C (or over R) is a

function ||-]| : V' — [0, 00) satisfying the following properties for all z,y € V.
(1) [l«]l =0
(2) For scalars ¢, ||cz|| = |c|||z]|-

(3) [z +yl| < |lz||+ ||ly|| (the triangle inequality).

If in addition we also have the property that and ||z|| = 0 only if x = 0 then
we call || - || a norm.

1. THE CAUCHY-SCHWARZ INEQUALITY

Theorem. Let (-,-) be an inner product on V.. Then for all x,y € V

(@, 9) < V{z2)v/ (Y, )-

Proof. The inequality is immediate if one of the two vectors is 0. We may
thus assume that y # 0 and therefore (y,y) > 0. We shall first show the
weaker inequality

(1.1) Re (z,y) < V(z,2)V(y,y)
Let t € R. We shall use that

(x4 ty, z + ty) > 0.
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Then compute
(z+ty,z +ty) = (x,2) + t{z,y) + t{y, ) + *(y,y)
= (z,z) + 2t Re (z,y) + t*(y, ).

Here we used that for the complex number z = (z, y) we have z+Zz = 2Re (z2).
We have seen that for all t € R

(x,z) + 2t Re (z,y) + t2<y, y) > 0.

Re ({z,y)) (
(v,y)
to be the choice of ¢ that minimizes the quadratic polynomial). Plugging in

this value of ¢ yields the inequality
2
(2, ) — (Re (z,9))
(,y)

We use this inequality for the special choice t = — which happens

>0

which gives

(Re (z,9))* < (z,2){y,y)
and (1.1) follows.

Finally let z := (x,y). If z = 0 there is nothing to prove, so assume z # 0.
Then we can write z in polar form, i.e. z = |z|(cos ¢ +isin ¢) for some angle
¢. Let ¢ = cos ¢ — isin$. Then cz = |z| and cz is real and positive. 1 Also
lc| = 1. Hence we get

|(z,y)| = c{z,y) = (cx,y) = Re(cz,y).

Applying the already proved inequality (1.1) for the vectors cz and y we see
that the last expression is

< Ve, cx)\/{y,y) = Vel 2)\/(y,y) = (@, 2)V/ (9, 9) -

This finishes the proof. U

Exercise: Show that equality in Cauchy-Schwarz, |(z,y)| = \/(z,2)\/{y,y),
only happens if z and y are linearly dependent (i.e. one of the two is a scalar

multiple of the other).
Definition. We set ||z| = /(z, z).

Theorem The map = +— +/(z, ) defines a norm on V.

Proof. Setting ||z|| := \/(x, z) we clearly have that ||z|| > 0 and ||z| = 0 if
and only if x = 0, by property (4) for the inner product. Also +/{cz, czx) =

Vee(r, x) = |c|y/(x,z). It remains to prove the triangle inequality.

Lyg you prefer not to use polar notation, another equivalent way to define ¢, given z =
a+bi with z # Ois to set c = —2=%_ i.e. ¢ = Z/|2|. Note that cz = 27/|z| = |2|*/|2| = |2|.

\a2+b2 ’




We compute
lz +ylI” = (@ +y,2 +y) = (z,2) + (z,9) + (g, 2) + (v, )
= [lz]* + 2Re ((z, 9)) + [ly]1?
and by the Cauchy-Schwarz inequality the last expression is
< lll” + 20zl Iyl + llyl* = (] + llyll)>.

So we have shown ||z + y||> < (||=]| + [Jy||)?> and the triangle inequality
follows. 0

2. GENERALIZED ARITHMETIC AND GEOMETRIC MEANS

Given two nonnegative numbers a, b we call v/ab the geometric mean of a
and b. The geometric significance is that the rectangle with sides of length a
and b has the same area as the square with sidelength v/ab. The arithmetic

mean is %2, The arithmetic mean exceeds the geometric mean:

2
\/@g“;b.

This follows immediately from (v/a —vb)? > 0, i.e. a +b—2y/avb > 0 (for
nonnegative a, b).
A useful generalization is

Theorem. Let a,b be nonnegative numbers and let 0 <9 < 1. Then
(2.1) a7 < (1 —9)a +Vb.

Proof. If one of a, b is zero then the inequality is immediate. Let’s assume
that @ # 0. Then setting ¢ = b/a the assertion is equivalent with

(2.2) ¢’ < (1—19) +de, for ¢ > 0.
To prove (2.2) we set
fle):==(1—=09)+0c—c

and observe that f’(c) = 9(1 — ¢’~1). Since by assumption 0 < ¥ < 1 we
see that f'(¢c) <0for 0 < c¢<1and f'(¢c) >0 for ¢ > 1. Hence f must have
a minimum at ¢ = 1. Clearly f(1) = 0 and therefore f(c) > 0 for all ¢ > 0.
Thus (2.2) holds. O

3. THE INEQUALITIES BY HOLDER AND MINKOWSKI

For vectors = (x1,...,2,) in R™ (or in C™) we define

folly = (3 fax) ™"
=1

It is our intention to show that ||z||, defines a norm ehen p > 1. We shall
use the following result (Holder’s inequality) to prove this.



For p > 1 we define the conjugate number p’ by
1 1
S4+==1
p P
ie. p/ = %.
Theorem: (Holder’s inequality): Let 1 < p < oo, 1/p+1/p’ = 1. For

xz,y € C*,
" " 1/p / & N 1/
> | < (X ) (D )
i=1 i=1 i=1

or in the above notation

< llzllpllylly-

n
i=1

Remark. When p = 2, then p’ = 2 and Holder’s inequality becomes
the Cauchy-Schwarz inequality for the standard scalar product (z,y) =
dom xiy; on R™ (or the standard scalar product (z,y) = > " ; x;y; on C").

Proof of Hélder’s inequality. 1f we replace x with z/||z||, and y with y/||y||,
then we see that it is enough to show that

n
i=1
Also it is clearly sufficient to do this for vectors x and y with nonnegative
entries (simply replace x; with |z;| etc.)
Thus for the rest of the proof we assume that x, y are vectors with non-
negative entries satisfying ||z, =1, ||yl = 1.

< 1 provided that |z||, =1 and |jy[[,y =1

Set a; = 2, b; = yf,. And set ¥ =1 — 1/p. Since we assume p > 1 we
see that 0 < ¥ < 1. By the inequality for the generalized arithmetic and
geometric means we have al ~VbY < (1 —0)a; + 0b; i.e.

1 1 1 1.

_ Upp1-1/ _
LiYi = a; pbi P < ];ai + (1 - Z;)bz = 1;.%‘:) +(1- E)yf
Thus
n 1 n 1 n ,
D awi <) wl+(1- ) v
i=1 P P i3
1 1 | 1
Sl + =Dyl = 2+ 1= 2)
here we have used that ||z||, =1, ||y[/,y = 1. O

Remark: Holder’s inequality has extensions to ther settings. One is in
Problem 6 on the first homework assignment. Here note that Riemann
integrals can be approximated by sums, and so the Holder inequality with
n summands may be useful for similar versions for integrals as well.
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The following result called Minkowski’s inequality® establishes the triangle
inequality for || - ||,.

Theorem: For z,y € C"

(S < (S0e) "+ (S
o =1 i=1

or shortly, ||z + yllp < ||zllp + ||yllp-

Proof. If x + y = 0 the inequality is trivial, thus we assume that z +y # 0
and hence ||z + y||, > 0
Write

n n
lz+ylls = lwi+yil” =D i + vl i + wil
=1 i=1

n n n
< S Jai 4 gl el + i) = S Jallas w4 il + gl
=1 =1 =1

By Hoélder’s inequality

- 1 " 1/p n (p—1)p’ 1/p
Stz + il < (D wl) (Y fai 4 gl @70)
=1 =1 =1

= |llplle +ylb™

since (p — 1)p’ = p. The same calculation yields

n

D lwilles + wilP ™ < yllpllz + wlp ™

i=1
We add the two inequalities and we get

o+ < e+ w127l + sl
Divide by ||z + y|[5~" and the asserted inequality follows. O

Corollary. Let 1 < p < oo. The expression ||z|l, = (30, |=;[P)"/P
defines a norm on C" (or R").

2Minkowski is pronounced “Minkoffski”



