
Some basic inequalities

Definition. Let V be a vector space over the complex numbers. An
inner product is given by a function 〈·, ·〉

V × V → C
(x, y) 7→ 〈x, y〉

satisfying the following properties (for all x ∈ V , y ∈ V and c ∈ C)

(1) 〈x+ x̃, y〉 = 〈x, y〉+ 〈x̃, y〉
(2) 〈cx, y〉 = c〈x, y〉
(3) 〈y, x〉 = 〈x, y〉
(4) 〈x, x〉 ≥ 0 and 〈x, x〉 = 0 if and only of x = 0.

Note that if 〈·, ·〉 is an inner product then for each y the function x 7→
〈x, y〉 is a linear function. Also we have 〈x, cy〉 = c〈x, y〉 and 〈x, y + ỹ〉 =
〈x, y〉+ 〈x, ỹ〉.

Remark: We can also define inner products for vector spaces over R, but
then the third axiom is changed to the symmetry axiom 〈y, x〉 = 〈x, y〉 for
all x, y ∈ V . Thus if V is a vector space over the real numbers then then
for each y the function x 7→ 〈x, y〉 is a linear function, and for each x the
function y 7→ 〈x, y〉 is a linear function. The latter statement for y 7→ 〈x, y〉
fails in vector spaces over C.

Definition. A semi-norm on a vector space over C (or over R) is a
function ‖·‖ : V → [0,∞) satisfying the following properties for all x, y ∈ V .

(1) ‖x‖ ≥ 0
(2) For scalars c, ‖cx‖ = |c|‖x‖.
(3) ‖x+ y‖ ≤ ‖x‖+ ‖y‖ (the triangle inequality).

If in addition we also have the property that and ‖x‖ = 0 only if x = 0 then
we call ‖ · ‖ a norm.

1. The Cauchy-Schwarz inequality

Theorem. Let 〈·, ·〉 be an inner product on V . Then for all x, y ∈ V

|〈x, y〉| ≤
√
〈x, x〉

√
〈y, y〉.

Proof. The inequality is immediate if one of the two vectors is 0. We may
thus assume that y 6= 0 and therefore 〈y, y〉 > 0. We shall first show the
weaker inequality

(1.1) Re 〈x, y〉 ≤
√
〈x, x〉

√
〈y, y〉

Let t ∈ R. We shall use that

〈x+ ty, x+ ty〉 ≥ 0.
1
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Then compute

〈x+ ty, x+ ty〉 = 〈x, x〉+ t〈x, y〉+ t〈y, x〉+ t2〈y, y〉
= 〈x, x〉+ 2tRe 〈x, y〉+ t2〈y, y〉.

Here we used that for the complex number z = 〈x, y〉 we have z+z = 2 Re (z).
We have seen that for all t ∈ R

〈x, x〉+ 2tRe 〈x, y〉+ t2〈y, y〉 ≥ 0.

We use this inequality for the special choice t = −Re (〈x,y〉)
〈y,y〉 (which happens

to be the choice of t that minimizes the quadratic polynomial). Plugging in
this value of t yields the inequality

〈x, x〉 − (Re 〈x, y〉)2

〈y, y〉
≥ 0

which gives

(Re 〈x, y〉)2 ≤ 〈x, x〉〈y, y〉
and (1.1) follows.

Finally let z := 〈x, y〉. If z = 0 there is nothing to prove, so assume z 6= 0.
Then we can write z in polar form, i.e. z = |z|(cosφ+ i sinφ) for some angle
φ. Let c = cosφ− i sinφ. Then cz = |z| and cz is real and positive. 1 Also
|c| = 1. Hence we get

|〈x, y〉| = c〈x, y〉 = 〈cx, y〉 = Re 〈cx, y〉.

Applying the already proved inequality (1.1) for the vectors cx and y we see
that the last expression is

≤
√
〈cx, cx〉

√
〈y, y〉 =

√
cc〈x, x〉

√
〈y, y〉 =

√
〈x, x〉

√
〈y, y〉 .

This finishes the proof. �

Exercise: Show that equality in Cauchy-Schwarz, |〈x, y〉| =
√
〈x, x〉

√
〈y, y〉,

only happens if x and y are linearly dependent (i.e. one of the two is a scalar
multiple of the other).

Definition. We set ‖x‖ =
√
〈x, x〉.

Theorem The map x 7→
√
〈x, x〉 defines a norm on V .

Proof. Setting ‖x‖ :=
√
〈x, x〉 we clearly have that ‖x‖ ≥ 0 and ‖x‖ = 0 if

and only if x = 0, by property (4) for the inner product. Also
√
〈cx, cx〉 =√

cc〈x, x〉 = |c|
√
〈x, x〉. It remains to prove the triangle inequality.

1If you prefer not to use polar notation, another equivalent way to define c, given z =
a+bi with z 6= 0 is to set c = a−ib√

a2+b2
, i.e. c = z/|z|. Note that cz = zz/|z| = |z|2/|z| = |z|.
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We compute

‖x+ y‖2 = 〈x+ y, x+ y〉 = 〈x, x〉+ 〈x, y〉+ 〈y, x〉+ 〈y, y〉
= ‖x‖2 + 2 Re (〈x, y〉) + ‖y‖2

and by the Cauchy-Schwarz inequality the last expression is

≤ ‖x‖2 + 2‖x‖‖y‖+ ‖y‖2 = (‖x‖+ ‖y‖)2.
So we have shown ‖x + y‖2 ≤ (‖x‖ + ‖y‖)2 and the triangle inequality
follows. �

2. Generalized arithmetic and geometric means

Given two nonnegative numbers a, b we call
√
ab the geometric mean of a

and b. The geometric significance is that the rectangle with sides of length a
and b has the same area as the square with sidelength

√
ab. The arithmetic

mean is a+b
2 . The arithmetic mean exceeds the geometric mean:

√
ab ≤ a+ b

2
.

This follows immediately from (
√
a−
√
b)2 ≥ 0, i.e. a+ b− 2

√
a
√
b ≥ 0 (for

nonnegative a, b).
A useful generalization is

Theorem. Let a, b be nonnegative numbers and let 0 < ϑ < 1. Then

(2.1) a1−ϑbϑ ≤ (1− ϑ)a+ ϑb .

Proof. If one of a, b is zero then the inequality is immediate. Let’s assume
that a 6= 0. Then setting c = b/a the assertion is equivalent with

(2.2) cϑ ≤ (1− ϑ) + ϑc, for c ≥ 0.

To prove (2.2) we set

f(c) := (1− ϑ) + ϑc− cϑ

and observe that f ′(c) = ϑ(1 − cϑ−1). Since by assumption 0 < ϑ < 1 we
see that f ′(c) ≤ 0 for 0 ≤ c ≤ 1 and f ′(c) ≥ 0 for c ≥ 1. Hence f must have
a minimum at c = 1. Clearly f(1) = 0 and therefore f(c) ≥ 0 for all c ≥ 0.
Thus (2.2) holds. �

3. The inequalities by Hölder and Minkowski

For vectors x = (x1, . . . , xn) in Rn (or in Cn) we define

‖x‖p =
( n∑

i=1

|xi|p
)1/p

.

It is our intention to show that ‖x‖p defines a norm ehen p > 1. We shall
use the following result (Hölder’s inequality) to prove this.
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For p > 1 we define the conjugate number p′ by

1

p
+

1

p′
= 1

i.e. p′ = p
p−1 .

Theorem: (Hölder’s inequality): Let 1 < p < ∞, 1/p + 1/p′ = 1. For
x, y ∈ Cn, ∣∣∣ n∑

i=1

xiyi

∣∣∣ ≤ ( n∑
i=1

|xi|p
)1/p( n∑

i=1

|yi|p
′
)1/p′

or in the above notation ∣∣∣ n∑
i=1

xiyi

∣∣∣ ≤ ‖x‖p‖y‖p′ .
Remark. When p = 2, then p′ = 2 and Hölder’s inequality becomes

the Cauchy-Schwarz inequality for the standard scalar product 〈x, y〉 =∑n
i=1 xiyi on Rn (or the standard scalar product 〈x, y〉 =

∑n
i=1 xiyi on Cn).

Proof of Hölder’s inequality. If we replace x with x/‖x‖p and y with y/‖y‖p′
then we see that it is enough to show that

(3.1)
∣∣∣ n∑
i=1

xiyi

∣∣∣ ≤ 1 provided that ‖x‖p = 1 and ‖y‖p′ = 1

Also it is clearly sufficient to do this for vectors x and y with nonnegative
entries (simply replace xi with |xi| etc.)

Thus for the rest of the proof we assume that x, y are vectors with non-
negative entries satisfying ‖x‖p = 1, ‖y‖p′ = 1.

Set ai = xpi , bi = yp
′

i . And set ϑ = 1 − 1/p. Since we assume p > 1 we
see that 0 < ϑ < 1. By the inequality for the generalized arithmetic and
geometric means we have a1−ϑi bϑi ≤ (1− ϑ)ai + ϑbi i.e.

xiyi = a
1/p
i b

1−1/p
i ≤ 1

p
ai + (1− 1

p
)bi =

1

p
xpi + (1− 1

p
)yp
′

i

Thus
n∑

i=1

xiyi ≤
1

p

n∑
i=1

xpi + (1− 1

p
)

n∑
i=1

yp
′

i

=
1

p
‖x‖pp + (1− 1

p
)‖y‖p

′

p′ =
1

p
+ (1− 1

p
) = 1;

here we have used that ‖x‖p = 1, ‖y‖p′ = 1. �

Remark: Hölder’s inequality has extensions to ther settings. One is in
Problem 6 on the first homework assignment. Here note that Riemann
integrals can be approximated by sums, and so the Hölder inequality with
n summands may be useful for similar versions for integrals as well.
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The following result called Minkowski’s inequality2 establishes the triangle
inequality for ‖ · ‖p.

Theorem: For x, y ∈ Cn( n∑
i=1

|xi + yi|p
)1/p

≤
( n∑

i=1

|xi|p
)1/p

+
( n∑

i=1

|yi|p
)1/p

or shortly, ‖x+ y‖p ≤ ‖x‖p + ‖y‖p.
Proof. If x+ y = 0 the inequality is trivial, thus we assume that x+ y 6= 0
and hence ‖x+ y‖p > 0

Write

‖x+ y‖pp =
n∑

i=1

|xi + yi|p =
n∑

i=1

|xi + yi|p−1|xi + yi|

≤
n∑

i=1

|xi + yi|p−1(|xi|+ |yi|) =
n∑

i=1

|xi||xi + yi|p−1 +
n∑

i=1

|yi||xi + yi|p−1

By Hölder’s inequality
n∑

i=1

|xi||xi + yi|p−1 ≤
( n∑

i=1

|xi|p
)1/p( n∑

i=1

|xi + yi|(p−1)p
′
)1/p′

= ‖x‖p‖x+ y‖p−1p

since (p− 1)p′ = p. The same calculation yields
n∑

i=1

|yi||xi + yi|p−1 ≤ ‖y‖p‖x+ y‖p−1p .

We add the two inequalities and we get

‖x+ y‖pp ≤ ‖x+ y‖p−1p (‖x‖p + ‖y‖p).

Divide by ‖x+ y‖p−1p and the asserted inequality follows. �

Corollary. Let 1 ≤ p < ∞. The expression ‖x‖p = (
∑n

i=1 |xi|p)1/p
defines a norm on Cn (or Rn).

2Minkowski is pronounced “Minkoffski”


