Mathematics 522 Problem set 6

Due Friday, October 25

1. Let $C^1([0,1])$ be the space of differentiable functions on [0,1] for which f' is continuous. Define

$$||f||_{C_1} = \max_{x \in [0,1]} |f(x)| + \max_{x \in [0,1]} |f'(x)|.$$

Show that C^1 is a complete normed vector space.

2. Let $\{f_n\}$ be a sequence of C^2 functions on [0,1] for which $|f_n(0)| \leq 1$, $|f'_n(0)| \leq 2$ and $\max_{x \in [0,1]} |f''_n(x)| \leq 10$ for all $n \in \mathbb{N}$. Prove that this sequence has a subsequence which is convergent with respect to the C^1 norm (as defined in the previous problem).

3. Let $C_0(\mathbb{R})$ be the space of continuous functions on \mathbb{R} with the property that $\lim_{|x|\to\infty} |f(x)| = 0$. The norm is the usual max-norm.

(i) Prove that $C_0(\mathbb{R})$ is complete.

(ii) Let $\mathcal{F} \subset C_0(\mathbb{R})$ be a family of functions satisfying the following assumptions:

(a) For every R > 0 the set \mathcal{A} is (uniformly) equicontinuous on the interval [-R, R].

(b) The family \mathcal{F} is uniformly bounded.

(c) With $M_R := \sup_{f \in \mathcal{F}} \sup_{|t| \ge R} |f(t)|$ we have $\lim_{R \to \infty} M_R = 0$. Prove that \mathcal{F} is totally bounded. You may use the Arzela-Ascoli theorem.

4. Let f be a continuous function on \mathbb{R} with the property that

$$\lim_{|x| \to \infty} f(x) = 0$$

Let, for n > 0,

$$A_n f(x) = \frac{n}{2} \int_{-\infty}^{\infty} f(x-y) e^{-n|y|} dy.$$

Prove that $A_n f$ converges to f uniformly on \mathbb{R} , as $n \to \infty$.

5. Let f be a C^1 function on an interval [a, b] (i.e. f is differentiable and f' is continuous on [a, b]).

Prove that there is a sequence of polynomials p_n so that p_n converges to f and p'_n converges to f', both uniformly on [a, b].