Mathematics 522 Handout and Problem set 5

Metric entropy and covering numbers. Let E be a totally bounded subset of a metric space X, i.e. for every $\delta > 0$ it is contained in a finite collection of δ -balls.

For $\delta > 0$ let $\mathcal{N}(E, \delta)$ be the minimal number of δ -balls needed to cover E(the centers of these balls are not required to belong to E). This number is called the δ -covering number of E; note that it depends not only on E but also on the underlying metric space X and the given metric d. The function $\delta \mapsto \log \mathcal{N}(E, \delta)$ is called the *metric entropy function* of E.

One is interested in the behavior of $\mathcal{N}(E, \delta)$ for small δ . For compact E this serves as a quantitative measure of compactness.

We also set $\mathcal{N}(E, \delta) = \infty$ if E is not totally bounded. The number

$$\overline{\dim}(E) = \limsup_{\delta \to 0+} \frac{\log \mathcal{N}(E, \delta)}{\log(\frac{1}{\delta})}$$

is called the *upper Minkowski dimension*¹ or upper metric dimension of E. The analogous expression $\underline{\dim}(E)$ where the lim sup is replaced by a lim inf is called *lower Minkowski dimension* or lower metric dimension of E. If $\underline{\dim}(K) = \overline{\dim}(E) = \alpha$ we say that E has Minkowski dimension α .

1. (i) Show that if we replace the natural log in the above definitions by another \log_b with base b > 1 then the definitions of the dimensions do not change.

(ii) Let $\alpha > 0$. Suppose that for every $\varepsilon > 0$ there is a $\delta(\varepsilon) > 0$ and a positive constant $C_{\varepsilon} \ge 1$ such that $C_{\varepsilon}^{-1}\delta^{-\alpha+\varepsilon} \le \mathcal{N}(E,\delta) \le C_{\varepsilon}\delta^{-\alpha-\varepsilon}$ for $0 < \delta < \delta(\varepsilon)$. Show that E has Minkowski dimension α .

(iii) Let $E \subset X$ be totally bounded and let \overline{E} be the closure of E. Then \overline{E} is totally bounded and we have

$$\mathcal{N}(\delta, E) \leq \mathcal{N}(\overline{E}, \delta) \leq \mathcal{N}(E, \delta') \text{ if } 0 < \delta' < \delta.$$

(iv) Define $N^{\text{cent}}(E, \delta)$ to be the minimal number of δ -balls with center in E needed to cover E. Show that

$$\mathcal{N}(E,\delta) \leq N^{\operatorname{cent}}(E,\delta) \leq \mathcal{N}(E,\delta/2).$$

(v) Let B_1, \ldots, B_M be balls of radius δ in X, so that each ball has nonempty intersection with the set E. For each $i = 1, \ldots, M$ denote by B_i^* the ball with same center as B_i and radius 3δ . Assume that the balls B_1^*, \ldots, B_M^* are disjoint. Prove that $M \leq \mathcal{N}(E, \delta)$.

Remark: This can be an effective tool to prove lower bounds for the covering numbers.

¹Minkowski is pronounced as Minkoffski

2. Consider the following norms in \mathbb{R}^n

$$||x||_1 = \sum_{i=1}^n |x_i|, \quad ||x||_2 = \left(\sum_{i=1}^n |x_i|^2\right)^{1/2}, \quad ||x||_\infty = \max_{i=1,\dots,n} |x_i|.$$

with associated metrics d_1, d_2, d_{∞} .

(i) Show that $||x||_{\infty} \le ||x||_1 \le \sqrt{n} ||x||_2 \le n ||x||_{\infty}$ for all $x \in \mathbb{R}^n$.

(ii) Let $E \subset \mathbb{R}^n$ and let $\mathcal{N}_1(E, \delta)$, $\mathcal{N}_2(E, \delta)$, $\mathcal{N}_{\infty}(E, \delta)$ be the metric entropy numbers of E associated with to the metrics d_1, d_2, d_{∞} , respectively. Show that

$$\mathcal{N}_{\infty}(E,\delta) \leq \mathcal{N}_{2}(E,\delta) \leq \mathcal{N}_{1}(E,\delta) \leq \mathcal{N}_{2}(E,\delta/\sqrt{n}) \leq \mathcal{N}_{\infty}(E,\delta/n).$$

(iii) Let $Q = [0, 1]^n$ be the unit cube in \mathbb{R}^n . Show that Q has Minkowski dimension n (with respect to any of the metrics d_1, d_2, d_3).

(iv) Let f be a differentiable function on [0,1] with bounded derivative. Let E be the set of all $x = (x_1, x_2) \in \mathbb{R}^2$ for which $0 \leq x_1 \leq 1$ and $x_2 = f(x_1)$. What is the Minkowski dimension of E?

 $(v)^*$ Let E be the set of all $x = (x_1, x_2) \in \mathbb{R}^2$ for which $0 \le x_1 \le 1$ and $x_2 = \sqrt{x_1}$. What is the Minkowski dimension of E?

3. (i) Let $\beta > 0$. Consider the subset E of \mathbb{R} consisting of the numbers $n^{-\beta}$, for $n = 1, 2, \ldots$ Show that E has a Minkowski dimension and determine it.

Hint: It might help to try this first for the sequence 1/n which, perhaps counterintuitively, turns out to have Minkowski dimension $\frac{1}{2}$.

(ii)^{*} Recommended only exercise for those of you who know the Cantor middle third set: its Minkowski dimension is equal to $\frac{\log 2}{\log 3}$.

4. Let A be the space of functions $f : \mathbb{N} \to \mathbb{R}$ (aka sequences) so that $|f(n)| \leq 2^{-n}$ for all $n \in \mathbb{N}$. It is a subset of the space of bounded sequences with norm $||f||_{\infty} = \sup_{n \in \mathbb{N}} |f(n)|$ and associated metric d_{∞} . Show that for $\delta < 1/2$ the covering numbers $\mathcal{N}(A, \delta)$ satisfy the bounds

$$\mathcal{N}(A,\delta) \le \left(\frac{1}{\delta}\right)^{C+\frac{1}{2}\log_2\frac{1}{\delta}}$$

where C is independent of δ . *Hint:* It helps to work with $\delta = 2^{-M}$ where $M \in \mathbb{N}$.

Also provide a lower bound which shows that A does not have finite lower Minkowski dimension.

Equivalence of norms

Definition. Two norms $\|\cdot\|_1$, $\|\cdot\|_2$ on a vector space V are said to be equivalent if there exist two positive constants c, C so that

$$c||x||_1 \le ||x||_2 \le C||x||_1$$
 for all $x \in V$.

5. (i) Show that the above definition yields an equivalence relation.

 $\mathbf{2}$

(ii) If V is a finite dimensional vector space, show that all norms are equivalent.

Remark. The relies on the fact that a continuous real-valued function on a compact space has a minimum and a maximum.

6. Let V be the space of continuous functions on [0, 1] and set

$$||f||_{\infty} = \sup_{x \in [0,1]} |f(x)|$$

and for $1 \le p < \infty$ let

$$||f||_p = \left(\int_0^1 |f(x)|^p dx\right)^{1/p}.$$

(i) Show that these expressions defines norms on V.

(ii) Show that $\|\cdot\|_{p_1}$ and $\|\cdot\|_{p_2}$ are not equivelent when $p_1 \neq p_2$. (iii) Show that V is a complete space with respect to the norm $\|\cdot\|_{\infty}$.

(iv) Show that V is not a complete space with respect to the norm $\|\cdot\|_p$ when $p < \infty$.

(v) Show that $\lim_{p\to\infty} \|f\|_p = \|f\|_\infty$ for all $f \in V$.