
Mathematics 522

Handout and Problem set 5

Metric entropy and covering numbers. Let E be a totally bounded
subset of a metric space X, i.e. for every δ > 0 it is contained in a finite
collection of δ-balls.

For δ > 0 let N (E, δ) be the minimal number of δ-balls needed to cover E
(the centers of these balls are not required to belong to E). This number is
called the δ-covering number of E; note that it depends not only on E but
also on the underlying metric space X and the given metric d. The function
δ 7→ logN (E, δ) is called the metric entropy function of E.

One is interested in the behavior of N (E, δ) for small δ. For compact E
this serves as a quantitative measure of compactness.

We also set N (E, δ) = ∞ if E is not totally bounded.
The number

dim(E) = lim sup
δ→0+

logN (E, δ)

log(1δ )

is called the upper Minkowski dimension 1 or upper metric dimension of E.
The analogous expression dim(E) where the lim sup is replaced by a lim inf
is called lower Minkowski dimension or lower metric dimension of E. If
dim(K) = dim(E) = α we say that E has Minkowski dimension α.

1. (i) Show that if we replace the natural log in the above definitions by
another logb with base b > 1 then the definitions of the dimensions do not
change.

(ii) Let α > 0. Suppose that for every ε > 0 there is a δ(ε) > 0 and
a positive constant Cε ≥ 1 such that C−1

ε δ−α+ε ≤ N (E, δ) ≤ Cεδ
−α−ε for

0 < δ < δ(ε). Show that E has Minkowski dimension α.
(iii) Let E ⊂ X be totally bounded and let E be the closure of E. Then

E is totally bounded and we have

N (δ,E) ≤ N (E, δ) ≤ N (E, δ′) if 0 < δ′ < δ.

(iv) Define N cent(E, δ) to be the minimal number of δ-balls with center
in E needed to cover E. Show that

N (E, δ) ≤ N cent(E, δ) ≤ N (E, δ/2).

(v) Let B1, . . . , BM be balls of radius δ in X, so that each ball has
nonempty intersection with the set E. For each i = 1, . . . ,M denote by
B∗

i the ball with same center as Bi and radius 3δ. Assume that the balls
B∗

1 , . . . , B
∗

M are disjoint. Prove that M ≤ N (E, δ).
Remark: This can be an effective tool to prove lower bounds for the

covering numbers.

1Minkowski is pronounced as Minkoffski
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2. Consider the following norms in R
n

‖x‖1 =
n
∑

i=1

|xi|, ‖x‖2 =
(

n
∑

i=1

|xi|2
)1/2

, ‖x‖∞ = max
i=1,...,n

|xi|.

with associated metrics d1, d2, d∞.
(i) Show that ‖x‖∞ ≤ ‖x‖1 ≤ √

n‖x‖2 ≤ n‖x‖∞ for all x ∈ R
n.

(ii) Let E ⊂ R
n and let N1(E, δ), N2(E, δ), N∞(E, δ) be the metric

entropy numbers of E associated with to the metrics d1, d2, d∞, respectively.
Show that

N∞(E, δ) ≤ N2(E, δ) ≤ N1(E, δ) ≤ N2(E, δ/
√
n) ≤ N∞(E, δ/n).

(iii) Let Q = [0, 1]n be the unit cube in R
n. Show that Q has Minkowski

dimension n (with respect to any of the metrics d1, d2, d3).
(iv) Let f be a differentiable function on [0, 1] with bounded derivative.

Let E be the set of all x = (x1, x2) ∈ R
2 for which 0 ≤ x1 ≤ 1 and

x2 = f(x1). What is the Minkowski dimension of E?
(v)∗ Let E be the set of all x = (x1, x2) ∈ R

2 for which 0 ≤ x1 ≤ 1 and
x2 =

√
x1. What is the Minkowski dimension of E?

3. (i) Let β > 0. Consider the subset E of R consisting of the num-
bers n−β, for n = 1, 2, . . . . Show that E has a Minkowski dimension and
determine it.

Hint: It might help to try this first for the sequence 1/n which, perhaps
counterintuitively, turns out to have Minkowski dimension 1

2 .
(ii)∗ Recommended only exercise for those of you who know the Cantor

middle third set: its Minkowski dimension is equal to log 2
log 3 .

4. Let A be the space of functions f : N → R (aka sequences) so that
|f(n)| ≤ 2−n for all n ∈ N. It is a subset of the space of bounded sequences
with norm ‖f‖∞ = supn∈N |f(n)| and associated metric d∞. Show that for
δ < 1/2 the covering numbers N (A, δ) satisfy the bounds

N (A, δ) ≤
(1

δ

)C+ 1

2
log

2

1

δ

where C is independent of δ. Hint: It helps to work with δ = 2−M where
M ∈ N.

Also provide a lower bound which shows that A does not have finite lower
Minkowski dimension.

Equivalence of norms

Definition. Two norms ‖ · ‖1, ‖ · ‖2 on a vector space V are said to be
equivalent if there exist two positive constants c, C so that

c‖x‖1 ≤ ‖x‖2 ≤ C‖x‖1 for all x ∈ V.

5. (i) Show that the above definition yields an equivalence relation.
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(ii) If V is a finite dimensional vector space, show that all norms are
equivalent.

Remark. The relies on the fact that a continuous real-valued function on
a compact space has a minimum and a maximum.

6. Let V be the space of continuous functions on [0, 1] and set

‖f‖∞ = sup
x∈[0,1]

|f(x)|

and for 1 ≤ p < ∞ let

‖f‖p =
(

∫ 1

0
|f(x)|pdx

)1/p
.

(i) Show that these expressions defines norms on V .
(ii) Show that ‖ · ‖p1 and ‖ · ‖p2 are not equivelent when p1 6= p2.
(iii) Show that V is a complete space with respect to the norm ‖ · ‖∞.
(iv) Show that V is not a complete space with respect to the norm ‖ · ‖p

when p < ∞.
(v) Show that limp→∞ ‖f‖p = ‖f‖∞ for all f ∈ V .


