Mathematics 522 Homework assignment No. 5 Due Wednesday, March 9

1. For k = 0, 1, 2, ... let $C^k([0, 1])$ be the space of functions that are k-times differentiable on [0, 1] and for which $f^{(k)}$ is continuous. Define

$$||f||_{C^{k}[0,1]} = \sum_{j=0}^{k} \max_{x \in [0,1]} |f^{(j)}(x)|.$$

(i) Prove that $C^k([0,1])$ is a Banach space (i.e. complete normed vector space).

(ii) Let $\{f_n\}$ be a sequence of C^{k+1} functions on [0,1] for which there is a constant B such that $||f_n||_{C^{k+1}} \leq B$. Prove that this sequence has a subsequence which is convergent with respect to the $C^k([0,1])$ norm.

2. Let A be an $m \times n$ matrix. Recall the notation $||x||_1 = \sum_{j=1}^n |x_j|$, $||x||_{\infty} = \max_{j=1,\dots,n} |x_j|$, and use similar notation for the corresponding norms for vectors in \mathbb{R}^m .

(i) Define $||A||_{1\to 1} := \sup_{x\neq 0} \frac{||Ax||_1}{||x||_1}$. Show that

$$||A||_{1 \to 1} = \max_{j=1,\dots,n} \sum_{i=1}^{m} |a_{ij}|.$$

(ii) Define $||A||_{\infty \to \infty} := \sup_{x \neq 0} \frac{||Ax||_{\infty}}{||x||_{\infty}}$. Show that

$$||A||_{\infty \to \infty} = \max_{i=1,\dots,m} \sum_{j=1}^{n} |a_{ij}|.$$

(iii) Define $||A||_{1\to\infty} := \sup_{x\neq 0} \frac{||Ax||_{\infty}}{||x||_1}$. Find and prove an explicit expression for $||A||_{1\to\infty}$.

3. Let M(n,n) be the space of real $n \times n$ matrices. Specify a norm of your choice. Define $F : M(n,n) \to M(n,n)$ by $F(A) = 4A + 2A^3$, and, for every $A \in M(n,n)$, show that F is differentiable at A and compute the derivative DF_A .

4. Let $f : \mathbb{R}^2 \to \mathbb{R}$ be defined by

$$f(x,y) = \begin{cases} \frac{x_1 x_2}{x_1^2 + x_2^2} & \text{if } (x_1, x_2) \neq (0,0) \\ 0 & \text{if } (x_1, x_2) = (0,0) \end{cases}$$

Show that the partial derivatives $\frac{\partial f}{\partial x_1}$, $\frac{\partial f}{\partial x_2}$ exist everywhere on \mathbb{R}^2 but f is not continuous at (0,0).