Some approximation theorems in Math 522

Prelude: Basic facts and formulas for the partial sum operator for Fourier
series.
Consider the partial sums of the Fourier series

Suf@) = 3 e

k=—n

where ¢, = % I f (t)e~*tdt are the Fourier coefficients.
We can write

Suf@) = Y 5o [ e vayet

k=—n

L[ ke
=9 _Wf(y)Dn(x —y)dy where D,(t) = k; et

Definition. The convolution of two 27 periodic functions f, g is defined
as
1 K
frglz) =5 (W)g(x —y)dy.
7T —T
Note that the convolution of 27 periodic continuous functions is well de-
fined and is again a 27-periodic continuous function. and we also have the

commutativity property

frgla) =g f(z)

To see we first note that for a 27 periodic inegrable functione we have

/_ : Ft)dt / j F(b)dt

for any a. The commutativity property follows if in the definition of f * g
we change variables t = x — y (with dt = —dy) and get

r—T

2n f9e) = [ Swigte -~y = [ fla - gD

+7
r+T s
— [ ta-naat = [ g5 -t = 2mgs f(2)
where in the last formula we have used the 27-periodicity of f and g.
Going back to the partial sum of the Fourier series we have

Spf(x) = f* Dyp(x) = Dy * f(x) where D,(t) = Z ekt

k=—n
Below we will need a more explicit expression for D,,, namely

sin(n + )t
Dn(t) = Tf
2
1



2

i . i(nt+1)t_ _ . .
To see this we use Yp_, e = €2 =L and Y71 eht = S0 et =

et—1
% —1 and the second sum can be simplified to e;ii; L Thus D,(t) =
w Multiplying numerator and denominator with e~%/2 yields
ett—1

Dy,(t) = QB et 2 and this yields the displayed formula.

eit/2_—it/2

I. Fejér’s theorem

We would like to prove that every continuous function can be approxi-
mated by trigonometric polynomials, uniformly on [—m,7]. One may think
that, in view of Theorem 8.11 in Rudin’s book, the partial sums S, f of the
Fourier series are good candidates for such an approximation. Unfortunately
for merely continuous f, given x, the partial sums S, f(x) may not converge
to f(z) (and then of course S, f cannot converge uniformly). !

However instead of S, f we consider the better behaved arithmetic means
(or Cesaro means) of the partial sums. Define

N
oS (@) = 17 O Sul (@)
n=0

The means oy f are also called the Fejér means of the Fourier series, in tri-
bute to the Hungarian mathematician Leopold Fejér who in 1900 published
the following

Theorem. Let f be a continuous 2m-periodic function. Then the means
onf converge to f uniformly, i.e.

malgla]vf(x) — f(x)] — 0, as N — oc.
Te

If we use the convolution formula S, f = D,, * f then it follows that
1 ™
oxf@) = Ko @) = 5 | Knta =)y
1 ™

=5 | En(O)f(z—t)dt

—T

where

Ky is called the Nth Fejér kernel.

IThe situation is even worse. Given x € [—m, 7] one can show that in a certain sense
the convergence of Sy, f(z) fails for typical f. I hope to return to this point later in the
class.

2VVhy is one allowed to write max here for sup?



We need the following properties of K.
Lemma. (a) Explicit formulas for Ky on [—m,w| are given by

1 1—cos(N+1)x

K =

N(x) N+1 1 —cosx
_ 1 (Sin%xf
O N+1 sing ’

if x is not an integer multiple of 2m. Also Kn(0) = N + 1.

(b)
(c)

Kn(z) >0 for all x > 0.

1 ™
— Ky(t)dt = 1.
o | N(t)

(d)
2

1
Kn(z) < <
(@) < N+1\1—cosd
By (c), (d) most of Ky is concentrated near 0 for large N. Properties (b),
(c), (d) are important, the explicit expressions for K much less so.

)f0r0<5§x§7r.

Proof of the Lemma. We use and rewrite the above explicit formula for the
Dirichlet kernel namely
_ sin(n + Dz sinZ sin(n+ 3)z

D,(x) = =
n() sin% sin2%

Observe that 2sinasinb = cos(a — b) — cos(a + b) and apply this with
a=(n+3)z, b=2% to get

cosnx — cos(n + 1)z

Dy(x) =
n(®) ZSin2%
Thus
T
Ky(z) = N1l Z Dy, ()
n=0
N
1 Z cosnz — cos(n + 1)z
 N+1 2sin? £
n=0 2
1 1—cos(N+1)x
C N+1 2sin? 5
Now recall the formula cos2a = cos?a — sin?a = 1 — 2sin’a, hence

2sina = 1 — cos2a. If we use this for a = x/2 we get the first claimed

formula for Ky, and if we use it for a = (N + 1)5 then we get the second

claimed formula. Compute the limit as x — 0, this yields Kx(0) = N + 1.
Property (d) is immediate from the first explicit formula. Estimate

|1 —cos(N 4+ 1)z| < 2 and (1 —cosz) > 1 —cosd for § < z < 7 and
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also use that the cosine is an even function to get the same estimate for
-7 <x< -4

The nonnegativity of Ky is also clear from the explicit formulas.

The property (c) follows from - f D, (t)dt = 1 (and taking the arith-
metic mean of 1s gives a 1). ]

Proof of Fejér’s theorem. Given € > 0 we have to show that there is
M = M(e) so that for all N > M,

lon f(z) — f(x)| < e for all z.
Now we write

onf(e)— f@) =5 [ En(Of(@ 1)t — (@)

- —/ Kn(0)[f 1) ~ 7))t

here we have used property (c).

f is continuous and therefore uniformly continuous on any compact inter-
val. Since f is also 2m-periodic, f is uniformly continuous on R. This means
that there is a § > 0 such that

|flx —t)— f(x)| < Z for |t| <9, and allx € R.

We split the integral into two parts:

o [ BN -0 - f@]d = Iv@) + 1x()
where
é
In@) = 5 [ K@=t - faar,
1
Iy(x) = 5 /[ e K OU =)~ f@]ar

We give an estimate of Iy which holds for all N. Namely

é
@) < 5 [ 1K@l =6 = fwldr

L9
S5 ’KN()\ dt

ﬁ—/ | K (t ’ dt =

by (b) and (c). Since this estimate holds for all N we may now choose N
large to estimate the second term Iy (z).
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We use property (d) to estimate the integral for x € [§, 7] U [—m, —J]. We
crudely bound |f(z —t) — f(z)| < |f(x —t)| + | f(z)| < 2max|f|. Thus

1 1 2
< _
[Iy(z)] < 2max |f] o /[—w,ﬂ]\[—&(ﬂ N+1 (1 — cosé)dt

1 <4max\f\>
" N+1\1—-coséd/’
As ﬁ — 0 as N — oo we may choose Ny so that for N > Ny the quantity

ﬁ(ﬂ?ﬁ;‘{;') is less than £/4. Thus for N > Ny both quantities |Iy(z)]

and |IIn(z)| are < /4 for all z and thus we conclude that
ma{g\aNf(x) — f(x)] <e/2 for N > Nj.
Te

An application for the partial sum operator

Theorem. Let f be a continuous 27-periodic function. Then

im ([ 150 f(0) - Fla)Par) " =

=0
n—~o0

i.e., S, f converges to f in the L?-norm in the space of square-integrable
functions. 3

Proof. By Theorem 8.11 in Rudin (which is linear algebra) we have
Sntayr = tyr for every trigonometric polynomial ¢y/(z) = nyz M ypeFt
provided that N > M.

Now let € > 0. By Fejér’s theorem we can find such a trigonometric
polynomial t3; (of some degree M depending on €) so that max|f(z) —
ta(x)] < e. Then for n > M we have S, f — f = Sp(f —tm) — (f — tum)-
We also have

[Sn(f = tan)1> < If = tar]?
this is just (76) in 8.13 in Rudin. Thus

1Snf = FIF < (1S (f = tan)ll + If = taall < 20[f = tal]-

But we have

(% /_7; () —tM(x)|2d:1:>1/2 < max|f — tar] < 2

and we are done. O

3Recall: This norm is given by || f| = (= /7| f(z)dx) 1/2) and is derived from the
scalar product (f,g) = = [*_ f(x)g(x)dx .

o7 J—m



II. The Weierstrass approximation theorem

Theorem. Let f be a continuous function on an interval [a,b]. Then f
can be uniformly approrimated by polynomials on [a,b).

In other words: Given € > 0 there exists a polynomial P (depending on
) so that

max |f(z) — P(x)| < e.
z€a,b]

Here f may be complex valued and then a polynomial is a function of the
form Zév:o arz® with complex coefficients ay, (considered for x € [a,b]). If
f is real-valued, the polynomial can be chosen real-valued.

A short proof relies on Fejér’s theorem and approximation of trigonomet-
ric functions by their Taylor polynomials.

Proof. We first consider the special case [a,b] = [-F, §].

Extend the function f to a continuous function F' on [—m, 7| so that
F(x) = f(z) on [-F, 5] and F'(—7) = F(m) = 0. Then we can extend F' to
a continuous 27 periodic function on R.

Let € > 0. By Fejér’s theorem we can find a trigonometric polynomial

N
T(x) =ag+ Z[ak cos kx + by, sin kx|
k=1
so that
max |F(x) — T(z)| < /2.
T€R

Now the Taylor series for cos and sin converge uniformly on every compact
interval. Thus we can find a polynomial P so that
max |T'(x) — P(x)| < /2.
[—m.7]

xe
Combining the two estimates (and using that f = F on [, T]) yields

e |f(x) — P(z)| = Jnax |F(z) — P(z)| < e.

Arbitrary compact intervals. Consider an interval [a, b] and let g € C([a, b]).
We wish to approximate g by polynomials on [a,b]. Let £(t) = Ct+ D so
that ¢(—m/2) = a and ¢(7/2) = b (you can compute that C' = b_T“, D= HT“.
The inverse of £ is given by (~!(z) = ;2 (z — HT“)

The function g o £ is in C([—7, §]). Thus by what we have already done,
there exists a polynomial P such that

max_ |9(6(0) — P(o)] <

272
and therefore if we set Q(z) = P({71(z)) = P(;%(z — %)) then Q is a
polynomial and we have

mas [g(x) — Qx| < <.
x€[a,b]



ITI. Approximations of the identity

In this section we leave the subject of polynomial approximation and try
to approximate continuous functions vanishing at 0o by smooth functions.

In a previous homework problem a C*°-function ¢ was constructed with
the property that ¢ is positive on (—1,1) and ¢(¢) = 0 for |[t| > 1. If we
divide by a suitable constant we may achieve and assume

/1 S(t)dt = 1
—1

and we may also write [*°_¢(t)dt = 1 since ¢ vanishes off [-1, 1].
Now for s > 0 define

6x() = 0(%).

Then we also have [ ¢s(t)dt = 1, by the substitution u = t/s. Graph the
function ¢s for small values of the parameter s.
Definition. For continuous f € C(R) we define

Asf(z) = /_00 os(x —t)f(t)dt.

We shall be interested in the behavior of A;f for s — 0. Note that the
t-integral extends over a compact interval depending on z,s. The integral

is also called a convolution of the functions ¢, and f.
4

Ezercise: Let f € C(R). Show that for every s > 0 the function x — Agf
is a C°° function on (—00,00). If lim;_o |f(z)] = 0 then show also that

Theorem. (a) Let f € C(R) and let J be any compact interval. Then, as
s — 0, Agf converges to f uniformly on J.

(b) Let f be as in (a) and assume in addition that lim|,_ |f(z)| = 0.
Then Asf converges to f uniformly on R.

Proof. We shall only prove part (b). As an exercise you can prove part
(a) in the same way, or alternatively, deduce it from part (b).
One may change variables to write

Af(w) = /_ T ou(t) flw — t)dt.

4The convolution of two functions defined on R is given by frg(z) = [7 f(y)glz—y)dy
whenever this makes sense; again one checks f *x g = g x f. We will not go into details
here.
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Since [ ¢5(t)dt =1 we see that

AJ@w<mw=/f¢AMﬂx—w—ﬂ@ut

Note that, since ¢5(t) = 0 for |t| > s, the ¢ integral is really an integral over
[—s,s].

The assumptions that f is continuous and that lim|, |f(z)] = 0 imply
that f is uniformly continuous on R (prove this!). Thus given € > 0 there
isa d > 0 so that |f(x —t) — f(x)] < £/2 for all ¢t with |t| < ¢ and for all
xz € R. If 0 < s < d we have by the nonnegativity of ¢

S

Asf(z) — f(2)] < _%@uu—w—ﬂmwsg/l@wﬁzg
for all x € R. O

Terminology: The linear transformations (aka as linear operators) A are
called approximations of the identity. The identity operator Id is simply
given by Id(f) = f, and the above Theorem says that the operators Aj
approximate in a certain sense the identity operator as s — 0.

One can use other approximations of the identity defined like the one
above where ¢ is replaced by a not necessarily compactly supported function.
If one drops the compact support the proofs get slightly more involved.

Other types of approximations of the identity (with a parameter n — o)
are given by the families of linear operators L,, in §IV below and B, in §V
below. For each f these linear operators will produce families of polynomials
depending on f.

IV. The Landau polynomials:
A second proof of Weierstrass’ theorem

Let f be continuous on the interval [—1/2,1/2]. Define
Qn(z) = cy(1 — )"
where ¢, = (f_ll(l — 32)”ds)_1 so that f_ll Qn(t)dt = 1. The sequence of
Landau polynomials associated to f is defined by

1/2

Lnf(z) = f)@n(t —x)dt.

—-1/2
Verify that L, f is a polynomial of degree at most 2n.
By a change of variables one can use the following theorem to prove the
Weierstrass approximation theorem on any compact interval [a, b].

Theorem. Let v > 0 and let I, = [-1/2 + ~,1/2 — ~]|. The sequence L, f
converges to f, uniformly on the interval I, i.e.

max |L, f(z) — f(x)] — 0, as n — oo.
x€ly



Proof.5 We first need some information about the size of the polynomials
Qp. Consider ;! = f_ll(l — 52)"ds. We use the inequality

(1—x2)”21—n:p2, for0<az<1.

To see this let h(z) = (1 — 22)" — 1 + na?. The derivative of h is h/(z) =
—2xn(1—22)""142nz = 2nx(1—(1—22)""1) which is positive for z € [0, 1].
Thus h is increasing on [0, 1] and since h(0) = 0 we see that h(x) > 0 for
x € ]0,1]. Since h is even we have h(z) > 0 for z € [-1,1].
We use the last displayed inequality in the integral defining the constant
¢, and get
1 1 n~—1/2
et = / (1—2®)"de = 2/ (1 —2?)"de > 2/ (1 — z?)"dx
-1 0 0
n—1/2

> 2/ (1 —nz?)dz > n~1/?
0

and from this we obtain
(*)  Qulz) < vVn(l—2*)"

Given € > 0 the goal is to show that max.er, |L,f(x) — f(z)] < ¢ for
sufficiently large n.

Let € > 0. Since f is uniformly continuous on [—1/2,1/2] we can find
d > 0 so that § <y and so that for all € I, and all ¢ with [t| < ¢ we have
that |f(z +1t) — f(z)] < e/4.

Write (with a change of variables)

1/2 3+
($)Qn(s —x)ds = / ft+x)Qn(t)dt
—-1/2 — 1+
Since z € I, = [-1/2 + ~,1/2 — 7] and since § < v we have —1/2 + z <

—0 < 0 < 1/2+ x. We may thus split the integral as

/—jm +/_1 +/j+x F(t+)Qn(t)at

The idea is that the first and the third term will be small for large n. We
modify the middle integral further to write

) ) )
/ F(t + 2)Qu(t)dt — / F(t+2) — F@)Qu(t)dt + f(2) / Qu(t)dt
-5 -0

)

5The proof here is essentially the same as the proof of Weierstrass’ theorem in Theorem
7.26 of W. Rudin’s book.



10

1)

/ Qu(t)dt = / Qu(t)di — f(x) /;sz(wdt

Putting it all together we get
Lnf(z) — f(z) = In(z) + I1(z) + 111, ()

and finally (using f Qn(t)

where
)
nmaz/;ua+@—f@m%@Mt
-0 %+x
Ih@ﬁz/;ﬂ+f&+w%h(wﬁ+/ F(t -+ 2)Qut)dt
-5
1) = 1) [ o - 5@ [ @uta
Estimate

)
1 <ﬂ—/‘\u+x> F(2)|Qu ()dt

_4/QN t)dt < - /QN

this estimate is true for all n.

Now let M = maxge(—1/2,1/2] | f(z)]. Then by our estimate (*) for @, we
see that

[T, (x)| + |11, (x)] <2M  max  Qu(t) < 2M+/n(1 — §%)"
te[—1,—0]U[4,1]

and since 2M/n(1 — §?)" tends to 0 as n — oo we see that there is N so
that for n > N we have max,ecr |1, (z) + I11,(z)| < &/2 for n > N. If we
combine this with the estimate for I,,(x) we see that |L,, f(x) — f(x)| < € for
n > N and all x € I,. (]

V. The Bernstein polynomials:
A third proof of Weierstrass’ theorem

Here we consider the interval [0,1]. For n =1,2,... define

Zf <>tk1—t)

the sequence of Bernstein polynomials associated to f. Here (Z) = )’

the binomial coefficients. For each n, B,, f is a polynomial of degree at most
n.
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Theorem. If f € C([0,1]) then the polynomials B, f converge to f uni-
formly on [0,1].

For the proof we will use the following auxiliary

Lemma. n )
St 2(”)#“ -tk < —.
0<Zk;n(n ) k ( ) 4n
We shall first prove the Theorem based on the Lemma and then give
a proof of the Lemma. There is also a probabilistic interpretation of the
Lemma which is appended below.

Proof of the theorem. By the binomial theorem

l=(+1—t)" = Zn: (Z)tk(l — -k

k=0
and thus we may write

810 - 10 =3 £C) () —0rt — o1
k=0
N~k N\ koq _ yn—k
UORIT (3)ea-n

Given € > 0 find 6 > 0 so that [f(t + h) — f(t)| < e/4if t,t + h € [0,1]
and |h| < d. For the terms with ]% —t| < 0 we will exploit the smallness of
f(E) = ()] and for the terms with |£ —¢| > § we will exploit the smallness

of the term in the Lemma, for large n. We thus split B, f(t) — f(t) =
I,(t) + I1,(t) where

no= ¥ G- sel())ta-om

0<k<n
E_t]<6
k n
I1,(t) = FE) =l )t —nr
X vg-so()
k_t|>6

n

the decomposition depends of course on ¢ but § does not depend on n. We
show that |I,,(t)] <e/4 for alln =2,3,....
Indeed, since |f(%) — f(t)] <e/4 for |% —t| < 0 we compute

s ¥ G - o)) ta- o

0<k<n
|&—t]<5

<5 (D)ea-oes

0<k<n
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where we have used again the binomial theorem.
Concerning I, we observe that 1 < 5_2(% —t)? for |% —t| > ¢ and
estimate |f(£) — ()| < 2max|f|. Thus

< 3 G -0 - sl () )t ot

0<k<n k
E_t]>6
<6 22max|f] 3 (% )2 <Z>tk(1 gk

0<k<n

By the Lemma |I1,(t)| < (4n)~16722max |f| and for sufficiently large n
this is < &/2 and we are done. O

Proof of the Lemma. We set 1o(t) = 1, ¢1(t) = t and o(t) = t2, etc.
Then we can explicitly compute the polynomials B, v, Bp1, Bpo for n =
1,2,....

First, by the binomial theorem (as used before)

B =3 () - =1

k=0

thus B,vg = ¢g. Next forn > 1

Bui(t) = Zn: % (Z) O

k=0
- (n—1)! k n—k
- th(1—¢
2 (k= 1)i(n — k)! (-1
_ ~ (n—1 k=171 _ pyn—1—(k—1)
=ty <1<; - 1>t (1-1)
k=1
n—1 n 1 ' '
=t < ‘ >tf(1 T =t
=0~ J

which means B,y = 91 for n > 1.
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To compute By,1p2 we observe that Biya(t) = 12(0)(1 —t) + ¢o(l)t =t =
P1(t) and, for n > 2

B (t) = f: z_z (Z) Bl — gynk

k=0

— n (k=1 (n—k)! ( )
— l <t2(n - 1) Zn: <TL - 2) tk—2(1 t)n—2—(k—2)
n k—2
k=2
- =1\ k1 n—1—(k—1)
+tYy <1<;— 1>t (1—1)
k=1
(n—D2+t 5 t—1t
N n N n

We summarize: For n > 2 we have

Bubo =0, Buthr =1, Bus =t + (1 — v).

To prove the assertion in the Lemma lets multiply out
k 2 k.o koo
S )= () =2+t
(-t = ()P -2+
and use that the transformation f — B, f(t) is linear (i.e we have By [c1 f1 +

cafo](x) = 1By f1(x) + coBBy, fo(x) for functions f1, fo and scalars c1, ¢). We

compute, for n > 2
k 2( T .k n—k
> (¢ -0?(})ta-o

0<k<n
= Buta(t) — 2tBuiy (t) + 1
t —t? t —t?
=t + — 2t t+t° =
and since maxg<;<1t — t2=1 /4 we get the assertion of the Lemma. O

Remark. Let’s consider an arbitrary compact interval [a,b] and let f €
C([a, b]). Then the polynomials

= n\ (z — a)*(b — z)"F
Puf(z) =) fla+%(b—a)) o
2 ()5

converge to f uniformly on [a, b].
Using a change of variable derive this statement from the above theorem.
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Addendum:

Probabilistic interpretation of the Bernstein polynomials. You
might have seen the expressions B, f(t) in a course on probability. In what
follows the parameter ¢ is a parameter for a probability (between 0 and 1).

Let’s consider a series of trials of an experiment. Each trial may is sup-
posed to have two possible outcomes (either success or failure). Each inte-
ger in X, := {1,...,n} represents a trial; we label the jth trial as 7. Let
t € [0,1] be fixed. In each trial the probability of success is assumed to be
t, and the probability of failure is then (1 —¢). The trials are supposed to
be independent.

Let A be a specific subset of {1,...,n} which is of cardinality k, i.e. A is
of the form {j1, ja,...,Jjx} for mutually different integers ji,...,jg; if £ =0
then A = (). Then the event Q4 that for each j € A the trial T} results in a
success and for each j € X\ A the trial T} results in a failure has probability
tk(1 — t)"~*. There are exactly (}) subsets A of X,, which have cardinality
k and they represent mutually exclusive (aka disjoint) events. Let {2 be the
event that the n trials result in k& successes, then the probability of ) is

P(Qy) = <Z>tk(1 )k

The probabilities of the mutually exclusive events €2 add up to 1;

D P() = 1;
k=0

(cf. the binomial theorem).

Let now X be the number of successes in a series of n trials (X is a
“random variable” which depends on the outcome of each trial). The event
Q. is just the event that X assumes the value k (one writes P(Qy) also as
P(X = k)). The random variable X/n is the ratio of successes and total
number of trials, and it takes values in [0, 1] (more precisely in {0, e ).

The expected value of X/n is by definition

E[X/n] = Z “P(Q)

and in the proof of the Lemma we computed it to

n

B/ = 30 2 ()=t = B -

k=0

Generally, if f is a function of ¢, the expected value of f(X/n) is equal to

f(X/n)] Zf Zf <>tk1—t)
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that gives the probabilistic interpretation of the Bernstein polynomials eval-
uated at t;

B, f(t) = E[f(X/n)].
The Variance of X/n is given by

E[(X -E[X)’] = Z(ﬁ —t)? <Z>tk(1 = Lt 7

n n
k=0

as computed in the proof of the lemma.
Let 6 > 0 be a small number. The probability that the number of successes
deviates from the expected value tn by more than dn is given by

Y R = Y <:>tk(1—t)”_k.

0<k<n 0<k<n
|k—nt|>dn |k—nt|>dn

The smallness of this quantity (uniformly in ¢) played an important role in
the Bernstein proof of Weierstrass’ theorem. It was estimated by

B[ = o (e ot = T
k=0

Thus, by the statement of the Lemma, the event that the number of successes
deviates from the expected value tn by more than én has probability no more
than (46%n)~1.



