Some approximation theorems in Math 522

Prelude: Basic facts and formulas for the partial sum operator for Fourier series.

Consider the partial sums of the Fourier series

$$S_n f(x) = \sum_{k=-n}^n c_k e^{ikx}$$

where $c_k = \frac{1}{2\pi} \int_{-\pi}^{\pi} f(t) e^{-ikt} dt$ are the Fourier coefficients. We can write

$$S_n f(x) = \sum_{k=-n}^n \frac{1}{2\pi} \int_{-\pi}^{\pi} f(y) e^{-iky} \, dy \, e^{ikx}$$
$$= \frac{1}{2\pi} \int_{-\pi}^{\pi} f(y) D_n(x-y) \, dy \quad \text{where } D_n(t) = \sum_{k=-n}^n e^{ikt} \, dx.$$

Definition. The *convolution* of two 2π periodic functions f, g is defined as

$$f * g(x) = \frac{1}{2\pi} \int_{-\pi}^{\pi} f(y)g(x-y)dy.$$

Note that the convolution of 2π periodic continuous functions is well defined and is again a 2π -periodic continuous function. and we also have the commutativity property

$$f * g(x) = g * f(x)$$

To see we first note that for a 2π periodic inegrable functione we have

$$\int_{-\pi}^{\pi} F(t)dt = \int_{a-\pi}^{a+\pi} F(t)dt$$

for any a. The commutativity property follows if in the definition of f * gwe change variables t = x - y (with dt = -dy) and get

$$2\pi f * g(x) = \int_{-\pi}^{\pi} f(y)g(x-y)dy = \int_{x+\pi}^{x-\pi} f(x-t)g(t)(-1)dt$$
$$= \int_{x-\pi}^{x+\pi} f(x-t)g(t)dt = \int_{-\pi}^{\pi} g(t)f(x-t)dt = 2\pi g * f(x)$$

where in the last formula we have used the 2π -periodicity of f and g. Going back to the partial sum of the Fourier series we have

$$S_n f(x) = f * D_n(x) = D_n * f(x)$$
 where $D_n(t) = \sum_{k=-n}^n e^{ikt}$.

Below we will need a more explicit expression for D_n , namely

$$D_n(t) = \frac{\sin(n+\frac{1}{2})t}{\sin\frac{t}{2}}$$

To see this we use $\sum_{k=0}^{n} e^{ikt} = \frac{e^{i(n+1)t}-1}{e^{it}-1}$ and $\sum_{k=-n}^{-1} e^{ikt} = \sum_{k=1}^{n} e^{-ikt} = \frac{e^{-i(n+1)t}-1}{e^{-it}-1} - 1$ and the second sum can be simplified to $\frac{e^{-int}-1}{1-e^{it}}$. Thus $D_n(t) = \frac{e^{i(n+1)t}-e^{-int}}{e^{it}-1}$. Multiplying numerator and denominator with $e^{-it/2}$ yields $D_n(t) = \frac{e^{i(n+1/2)t}-e^{-i(n+1/2)t}}{e^{it/2}-e^{-it/2}}$ and this yields the displayed formula.

I. Fejér's theorem

We would like to prove that every continuous function can be approximated by trigonometric polynomials, uniformly on $[-\pi, \pi]$. One may think that, in view of Theorem 8.11 in Rudin's book, the partial sums $S_n f$ of the Fourier series are good candidates for such an approximation. Unfortunately for merely continuous f, given x, the partial sums $S_n f(x)$ may not converge to f(x) (and then of course $S_n f$ cannot converge uniformly).¹

However instead of $S_n f$ we consider the better behaved arithmetic means (or Cesàro means) of the partial sums. Define

$$\sigma_N f(x) = \frac{1}{N+1} \sum_{n=0}^N S_n f(x).$$

The means $\sigma_N f$ are also called the *Fejér means* of the Fourier series, in tribute to the Hungarian mathematician Leopold Fejér who in 1900 published the following

Theorem. Let f be a continuous 2π -periodic function. Then the means $\sigma_N f$ converge to f uniformly, i.e.

$$\max_{x \in \mathbb{R}} |\sigma_N f(x) - f(x)| \to 0, \text{ as } N \to \infty.$$

2

If we use the convolution formula $S_n f = D_n * f$ then it follows that

$$\sigma_N f(x) = K_N * f(x) = \frac{1}{2\pi} \int_{-\pi}^{\pi} K_N(x-y) f(y) dy$$
$$= \frac{1}{2\pi} \int_{-\pi}^{\pi} K_N(t) f(x-t) dt$$

where

$$K_N(t) = \frac{1}{N+1} \sum_{n=0}^{N} D_n(t)$$

 K_N is called the *N*th Fejér kernel.

¹The situation is even worse. Given $x \in [-\pi, \pi]$ one can show that in a certain sense the convergence of $S_n f(x)$ fails for *typical* f. I hope to return to this point later in the class.

 $^{^{2}}$ Why is one allowed to write max here for sup?

We need the following properties of K_N . Lemma. (a) Explicit formulas for K_N on $[-\pi, \pi]$ are given by

$$K_N(x) = \frac{1}{N+1} \frac{1 - \cos(N+1)x}{1 - \cos x}$$
$$= \frac{1}{N+1} \left(\frac{\sin\frac{N+1}{2}x}{\sin\frac{x}{2}}\right)^2,$$

if x is not an integer multiple of 2π . Also $K_N(0) = N + 1$. (b)

$$K_N(x) \ge 0$$
 for all $x \ge 0$

(c)

$$\frac{1}{2\pi} \int_{-\pi}^{\pi} K_N(t) dt = 1$$

(d)

$$K_N(x) \le \frac{1}{N+1} \left(\frac{2}{1-\cos\delta}\right) \text{ for } 0 < \delta \le x \le \pi$$

By (c), (d) most of K_N is concentrated near 0 for large N. Properties (b), (c), (d) are important, the explicit expressions for K_N much less so.

Proof of the Lemma. We use and rewrite the above explicit formula for the Dirichlet kernel namely

$$D_n(x) = \frac{\sin(n+\frac{1}{2})x}{\sin\frac{x}{2}} = \frac{\sin\frac{x}{2}\sin(n+\frac{1}{2})x}{\sin^2\frac{x}{2}}$$

Observe that $2\sin a \sin b = \cos(a-b) - \cos(a+b)$ and apply this with $a = (n + \frac{1}{2})x$, $b = \frac{x}{2}$ to get

$$D_n(x) = \frac{\cos nx - \cos(n+1)x}{2\sin^2 \frac{x}{2}}$$

Thus

$$K_N(x) = \frac{1}{N+1} \sum_{n=0}^{N} D_n(x)$$

= $\frac{1}{N+1} \sum_{n=0}^{N} \frac{\cos nx - \cos(n+1)x}{2\sin^2 \frac{x}{2}}$
= $\frac{1}{N+1} \frac{1 - \cos(N+1)x}{2\sin^2 \frac{x}{2}}$

Now recall the formula $\cos 2a = \cos^2 a - \sin^2 a = 1 - 2\sin^2 a$, hence $2\sin^2 a = 1 - \cos 2a$. If we use this for a = x/2 we get the first claimed formula for K_N , and if we use it for $a = (N+1)\frac{x}{2}$ then we get the second claimed formula. Compute the limit as $x \to 0$, this yields $K_N(0) = N + 1$.

Property (d) is immediate from the first explicit formula. Estimate $|1 - \cos(N+1)x| \le 2$ and $(1 - \cos x) \ge 1 - \cos \delta$ for $\delta \le x \le \pi$ and

also use that the cosine is an even function to get the same estimate for $-\pi \le x \le -\delta.$

The nonnegativity of K_N is also clear from the explicit formulas. The property (c) follows from $\frac{1}{2\pi} \int_{-\pi}^{\pi} D_n(t) dt = 1$ (and taking the arithmetic mean of 1s gives a 1).

Proof of Fejér's theorem. Given $\varepsilon > 0$ we have to show that there is $M = M(\varepsilon)$ so that for all $N \ge M$,

$$|\sigma_N f(x) - f(x)| \le \varepsilon$$
 for all x .

Now we write

$$\sigma_N f(x) - f(x) = \frac{1}{2\pi} \int_{-\pi}^{\pi} K_N(t) f(x-t) dt - f(x)$$

= $\frac{1}{2\pi} \int_{-\pi}^{\pi} K_N(t) [f(x-t) - f(x)] dt;$

here we have used property (c).

f is continuous and therefore uniformly continuous on any compact interval. Since f is also 2π -periodic, f is uniformly continuous on \mathbb{R} . This means that there is a $\delta > 0$ such that

$$|f(x-t) - f(x)| \le \frac{\varepsilon}{4}$$
 for $|t| \le \delta$, and all $x \in \mathbb{R}$.

We split the integral into two parts:

$$\frac{1}{2\pi} \int_{-\pi}^{\pi} K_N(t) \big[f(x-t) - f(x) \big] dt = I_N(x) + II_N(x)$$

where

$$I_N(x) = \frac{1}{2\pi} \int_{-\delta}^{\delta} K_N(t) [f(x-t) - f(x)] dt,$$

$$II_N(x) = \frac{1}{2\pi} \int_{[-\pi,\pi] \setminus [-\delta,\delta]} K_N(t) [f(x-t) - f(x)] dt.$$

We give an estimate of I_N which holds for all N. Namely

$$|I_N(x)| \leq \frac{1}{2\pi} \int_{-\delta}^{\delta} |K_N(t)| |f(x-t) - f(x)| dt$$

$$\leq \frac{1}{2\pi} \int_{-\delta}^{\delta} |K_N(t)| \frac{\varepsilon}{4} dt$$

$$\leq \frac{1}{2\pi} \int_{-\pi}^{\pi} |K_N(t)| \frac{\varepsilon}{4} dt = \frac{\epsilon}{4},$$

by (b) and (c). Since this estimate holds for all N we may now choose Nlarge to estimate the second term $II_N(x)$.

We use property (d) to estimate the integral for $x \in [\delta, \pi] \cup [-\pi, -\delta]$. We crudely bound $|f(x-t) - f(x)| \le |f(x-t)| + |f(x)| \le 2 \max |f|$. Thus

$$|II_N(x)| \le 2\max|f| \frac{1}{2\pi} \int_{[-\pi,\pi]\setminus[-\delta,\delta]} \frac{1}{N+1} \left(\frac{2}{1-\cos\delta}\right) dt$$
$$\le \frac{1}{N+1} \left(\frac{4\max|f|}{1-\cos\delta}\right).$$

As $\frac{1}{N+1} \to 0$ as $N \to \infty$ we may choose N_0 so that for $N \ge N_0$ the quantity $\frac{1}{N+1} \left(\frac{4 \max |f|}{1-\cos \delta}\right)$ is less than $\varepsilon/4$. Thus for $N \ge N_0$ both quantities $|I_N(x)|$ and $|II_N(x)|$ are $\le \varepsilon/4$ for all x and thus we conclude that

$$\max_{x \in \mathbb{R}} |\sigma_N f(x) - f(x)| \le \varepsilon/2 \text{ for } N \ge N_0.$$

An application for the partial sum operator

Theorem. Let f be a continuous 2π -periodic function. Then

$$\lim_{n \to \infty} \left(\int_{-\pi}^{\pi} |S_n f(x) - f(x)|^2 dx \right)^{1/2} = 0$$

i.e., $S_n f$ converges to f in the L^2 -norm in the space of square-integrable functions. ³

Proof. By Theorem 8.11 in Rudin (which is linear algebra) we have $S_N t_M = t_M$ for every trigonometric polynomial $t_M(x) = \sum_{k=-M}^{M} \gamma_k e^{ikt}$ provided that $N \ge M$.

Now let $\varepsilon > 0$. By Fejér's theorem we can find such a trigonometric polynomial t_M (of some degree M depending on ϵ) so that $\max |f(x) - t_M(x)| \le \varepsilon$. Then for n > M we have $S_n f - f = S_n (f - t_M) - (f - t_M)$. We also have

$$||S_N(f - t_M)||^2 \le ||f - t_M||^2$$

this is just (76) in 8.13 in Rudin. Thus

$$||S_n f - f|| \le ||S_n (f - t_M)|| + ||f - t_M|| \le 2||f - t_M||.$$

But we have

$$\left(\frac{1}{2\pi} \int_{-\pi}^{\pi} |f(x) - t_M(x)|^2 dx\right)^{1/2} \le \max|f - t_M| < \frac{\varepsilon}{2}$$

and we are done.

³Recall: This norm is given by $||f|| = \left(\frac{1}{2\pi} \int_{-\pi}^{\pi} |f(x)|^2 dx\right)^{1/2}$ and is derived from the scalar product $\langle f, g \rangle = \frac{1}{2\pi} \int_{-\pi}^{\pi} f(x) \overline{g(x)} dx$.

II. The Weierstrass approximation theorem

Theorem. Let f be a continuous function on an interval [a, b]. Then fcan be uniformly approximated by polynomials on [a, b].

In other words: Given $\varepsilon > 0$ there exists a polynomial P (depending on ε) so that

$$\max_{x \in [a,b]} |f(x) - P(x)| \le \varepsilon.$$

Here f may be complex valued and then a polynomial is a function of the form $\sum_{k=0}^{N} a_k x^k$ with complex coefficients a_k (considered for $x \in [a, b]$). If f is real-valued, the polynomial can be chosen real-valued.

A short proof relies on Fejér's theorem and approximation of trigonometric functions by their Taylor polynomials.

Proof. We first consider the special case $[a, b] = [-\frac{\pi}{2}, \frac{\pi}{2}]$.

Extend the function f to a continuous function \tilde{F} on $[-\pi,\pi]$ so that F(x) = f(x) on $\left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$ and $F(-\pi) = F(\pi) = 0$. Then we can extend F to a continuous 2π periodic function on \mathbb{R} .

Let $\varepsilon > 0$. By Fejér's theorem we can find a trigonometric polynomial

$$T(x) = a_0 + \sum_{k=1}^{N} [a_k \cos kx + b_k \sin kx]$$

so that

$$\max_{x \in \mathbb{R}} |F(x) - T(x)| < \varepsilon/2.$$

Now the Taylor series for cos and sin converge uniformly on every compact interval. Thus we can find a polynomial P so that

$$\max_{x \in [-\pi,\pi]} |T(x) - P(x)| < \varepsilon/2.$$

Combining the two estimates (and using that f = F on $\left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$) yields

$$\max_{|x| \le \pi/2} |f(x) - P(x)| = \max_{|x| \le \pi/2} |F(x) - P(x)| < \varepsilon.$$

Arbitrary compact intervals. Consider an interval [a, b] and let $g \in C([a, b])$. We wish to approximate g by polynomials on [a, b]. Let $\ell(t) = Ct + D$ so that $\ell(-\pi/2) = a$ and $\ell(\pi/2) = b$ (you can compute that $C = \frac{b-a}{\pi}$, $D = \frac{b+a}{2}$. The inverse of ℓ is given by $\ell^{-1}(x) = \frac{\pi}{b-a}(x - \frac{b+a}{2})$. The function $g \circ \ell$ is in $C([-\frac{\pi}{2}, \frac{\pi}{2}])$. Thus by what we have already done,

there exists a polynomial P such that

$$\max_{t \in [-\frac{\pi}{2}, \frac{\pi}{2}]} |g(\ell(t)) - P(t)| < \varepsilon$$

and therefore if we set $Q(x) = P(\ell^{-1}(x)) = P(\frac{\pi}{b-a}(x-\frac{b+a}{2}))$ then Q is a polynomial and we have

$$\max_{x \in [a,b]} |g(x) - Q(x)| < \varepsilon \,.$$

III. Approximations of the identity

In this section we leave the subject of polynomial approximation and try to approximate continuous functions vanishing at $\pm \infty$ by smooth functions.

In a previous homework problem a C^{∞} -function ϕ was constructed with the property that ϕ is positive on (-1, 1) and $\phi(t) = 0$ for $|t| \ge 1$. If we divide by a suitable constant we may achieve and assume

$$\int_{-1}^{1} \phi(t) dt = 1$$

and we may also write $\int_{-\infty}^{\infty} \phi(t) dt = 1$ since ϕ vanishes off [-1, 1].

Now for s > 0 define

$$\phi_s(t) = \frac{1}{s}\phi(\frac{t}{s}) \,.$$

Then we also have $\int \phi_s(t)dt = 1$, by the substitution u = t/s. Graph the function ϕ_s for small values of the parameter s.

Definition. For continuous $f \in C(\mathbb{R})$ we define

$$A_s f(x) = \int_{-\infty}^{\infty} \phi_s(x-t) f(t) dt.$$

We shall be interested in the behavior of $A_s f$ for $s \to 0$. Note that the *t*-integral extends over a compact interval depending on x, s. The integral is also called a convolution of the functions ϕ_s and f.

Exercise: Let $f \in C(\mathbb{R})$. Show that for every s > 0 the function $x \mapsto A_s f$ is a C^{∞} function on $(-\infty, \infty)$. If $\lim_{|x|\to\infty} |f(x)| = 0$ then show also that $\lim_{|x|\to\infty} |A_s f(x)| = 0$.

Theorem. (a) Let $f \in C(\mathbb{R})$ and let J be any compact interval. Then, as $s \to 0$, $A_s f$ converges to f uniformly on J.

(b) Let f be as in (a) and assume in addition that $\lim_{|x|\to\infty} |f(x)| = 0$. Then $A_s f$ converges to f uniformly on \mathbb{R} .

Proof. We shall only prove part (b). As an exercise you can prove part (a) in the same way, or alternatively, deduce it from part (b).

One may change variables to write

$$A_s f(x) = \int_{-\infty}^{\infty} \phi_s(t) f(x-t) dt.$$

⁴The convolution of two functions defined on \mathbb{R} is given by $f * g(x) = \int_{-\infty}^{\infty} f(y)g(x-y)dy$ whenever this makes sense; again one checks f * g = g * f. We will not go into details here.

Since $\int \phi_s(t) dt = 1$ we see that

$$A_s f(x) - f(x) = \int_{-\infty}^{\infty} \phi_s(t) [f(x-t) - f(x)] dt.$$

Note that, since $\phi_s(t) = 0$ for |t| > s, the t integral is really an integral over [-s,s].

The assumptions that f is continuous and that $\lim_{|x|\to\infty} |f(x)| = 0$ imply that f is uniformly continuous on \mathbb{R} (prove this!). Thus given $\varepsilon > 0$ there is a $\delta > 0$ so that $|f(x-t) - f(x)| < \varepsilon/2$ for all t with $|t| \leq \delta$ and for all $x \in \mathbb{R}$. If $0 < s < \delta$ we have by the nonnegativity of ϕ_s

$$|A_s f(x) - f(x)| \le \int_{-s}^{s} \phi_s(t) |f(x - t) - f(x)| dt \le \frac{\varepsilon}{2} \int_{-s}^{s} \phi_s(t) dt = \frac{\varepsilon}{2}$$

all $x \in \mathbb{R}$.

for

Terminology: The linear transformations (aka as linear operators) A_s are called approximations of the identity. The identity operator Id is simply given by Id(f) = f, and the above Theorem says that the operators A_s approximate in a certain sense the identity operator as $s \to 0$.

One can use other approximations of the identity defined like the one above where ϕ is replaced by a not necessarily compactly supported function. If one drops the compact support the proofs get slightly more involved.

Other types of approximations of the identity (with a parameter $n \to \infty$) are given by the families of linear operators L_n in §IV below and \mathcal{B}_n in §V below. For each f these linear operators will produce families of polynomials depending on f.

IV. The Landau polynomials: A second proof of Weierstrass' theorem

Let f be continuous on the interval [-1/2, 1/2]. Define

$$Q_n(x) = c_n (1 - x^2)^n$$

where $c_n = (\int_{-1}^{1} (1-s^2)^n ds)^{-1}$ so that $\int_{-1}^{1} Q_n(t) dt = 1$. The sequence of Landau polynomials associated to f is defined by

$$L_n f(x) = \int_{-1/2}^{1/2} f(t)Q_n(t-x)dt.$$

Verify that $L_n f$ is a polynomial of degree at most 2n.

By a change of variables one can use the following theorem to prove the Weierstrass approximation theorem on any compact interval [a, b].

Theorem. Let $\gamma > 0$ and let $I_{\gamma} = [-1/2 + \gamma, 1/2 - \gamma]$. The sequence $L_n f$ converges to f, uniformly on the interval I_{γ} , i.e.

$$\max_{x \in I_{\gamma}} |L_n f(x) - f(x)| \to 0, \ as \ n \to \infty.$$

*Proof.*⁵ We first need some information about the size of the polynomials Q_n . Consider $c_n^{-1} = \int_{-1}^1 (1-s^2)^n ds$. We use the inequality

$$(1-x^2)^n \ge 1-nx^2$$
, for $0 \le x \le 1$.

To see this let $h(x) = (1 - x^2)^n - 1 + nx^2$. The derivative of h is $h'(x) = -2xn(1-x^2)^{n-1} + 2nx = 2nx(1-(1-x^2)^{n-1})$ which is positive for $x \in [0, 1]$. Thus h is increasing on [0, 1] and since h(0) = 0 we see that $h(x) \ge 0$ for $x \in [0, 1]$. Since h is even we have $h(x) \ge 0$ for $x \in [-1, 1]$.

We use the last displayed inequality in the integral defining the constant c_n and get

$$c_n^{-1} = \int_{-1}^1 (1-x^2)^n dx = 2 \int_0^1 (1-x^2)^n dx \ge 2 \int_0^{n^{-1/2}} (1-x^2)^n dx$$
$$\ge 2 \int_0^{n^{-1/2}} (1-nx^2) dx > n^{-1/2}$$

and from this we obtain

(*)
$$Q_n(x) \le \sqrt{n(1-x^2)^n}.$$

Given $\varepsilon > 0$ the goal is to show that $\max_{x \in I_{\gamma}} |L_n f(x) - f(x)| < \varepsilon$ for sufficiently large n.

Let $\varepsilon > 0$. Since f is uniformly continuous on [-1/2, 1/2] we can find $\delta > 0$ so that $\delta < \gamma$ and so that for all $x \in I_{\gamma}$ and all t with $|t| \leq \delta$ we have that $|f(x+t) - f(x)| < \varepsilon/4$.

Write (with a change of variables)

$$\int_{-1/2}^{1/2} f(s)Q_n(s-x)ds = \int_{-\frac{1}{2}+x}^{\frac{1}{2}+x} f(t+x)Q_n(t)dt$$

Since $x \in I_{\gamma} = [-1/2 + \gamma, 1/2 - \gamma]$ and since $\delta < \gamma$ we have $-1/2 + x < -\delta < \delta < 1/2 + x$. We may thus split the integral as

$$\int_{-1/2+x}^{-\delta} + \int_{-\delta}^{\delta} + \int_{\delta}^{\frac{1}{2}+x} f(t+x)Q_n(t)dt.$$

The idea is that the first and the third term will be small for large n. We modify the middle integral further to write

$$\int_{-\delta}^{\delta} f(t+x)Q_n(t)dt = \int_{-\delta}^{\delta} [f(t+x) - f(x)]Q_n(t)dt + f(x)\int_{-\delta}^{\delta} Q_n(t)dt$$

⁵The proof here is essentially the same as the proof of Weierstrass' theorem in Theorem 7.26 of W. Rudin's book.

and finally (using $\int_{-1}^{1} Q_n(t) dt = 1$)

$$f(x) \int_{-\delta}^{\delta} Q_n(t) dt = f(x) - f(x) \int_{-1}^{-\delta} Q_N(t) dt - f(x) \int_{\delta}^{1} Q_N(t) dt$$

Putting it all together we get

$$L_n f(x) - f(x) = I_n(x) + II_n(x) + III_n(x)$$

where

$$I_n(x) = \int_{-\delta}^{\delta} [f(t+x) - f(x)]Q_n(t)dt$$
$$II_n(x) = \int_{-1/2+x}^{-\delta} f(t+x)Q_n(t)dt + \int_{\delta}^{\frac{1}{2}+x} f(t+x)Q_n(t)dt$$
$$III_n(x) = -f(x)\int_{-1}^{-\delta} Q_N(t)dt - f(x)\int_{\delta}^{1} Q_N(t)dt.$$

Estimate

$$|I_n(x)| = \int_{-\delta}^{\delta} |f(t+x) - f(x)|Q_n(t)dt$$

$$\leq \frac{\varepsilon}{4} \int_{-\delta}^{\delta} Q_N(t)dt \leq \frac{\varepsilon}{4} \int_{-1}^{1} Q_N(t)dt = \frac{\varepsilon}{4};$$

this estimate is true for all n.

Now let $M = \max_{x \in [-1/2, 1/2]} |f(x)|$. Then by our estimate (*) for Q_n we see that

$$|II_n(x)| + |III_n(x)| \le 2M \max_{t \in [-1, -\delta] \cup [\delta, 1]} Q_n(t) \le 2M\sqrt{n}(1 - \delta^2)^n$$

and since $2M\sqrt{n}(1-\delta^2)^n$ tends to 0 as $n \to \infty$ we see that there is N so that for $n \ge N$ we have $\max_{x \in I_{\gamma}} |II_n(x) + III_n(x)| < \varepsilon/2$ for $n \ge N$. If we combine this with the estimate for $I_n(x)$ we see that $|L_n f(x) - f(x)| < \varepsilon$ for n > N and all $x \in I_{\gamma}$.

V. The Bernstein polynomials: A third proof of Weierstrass' theorem

Here we consider the interval [0, 1]. For n = 1, 2, ... define

$$\mathcal{B}_n f(t) = \sum_{k=0}^n f(\frac{k}{n}) \binom{n}{k} t^k (1-t)^{n-k},$$

the sequence of Bernstein polynomials associated to f. Here $\binom{n}{k} = \frac{n!}{k!(n-k)!}$, the binomial coefficients. For each n, $\mathcal{B}_n f$ is a polynomial of degree at most n.

10

Theorem. If $f \in C([0,1])$ then the polynomials $\mathcal{B}_n f$ converge to f uniformly on [0,1].

For the proof we will use the following auxiliary **Lemma.**

$$\sum_{0 \le k \le n} (\frac{k}{n} - t)^2 \binom{n}{k} t^k (1 - t)^{n-k} \le \frac{1}{4n}$$

We shall first prove the Theorem based on the Lemma and then give a proof of the Lemma. There is also a probabilistic interpretation of the Lemma which is appended below.

Proof of the theorem. By the binomial theorem

$$1 = (t + (1 - t))^n = \sum_{k=0}^n \binom{n}{k} t^k (1 - t)^{n-k}$$

and thus we may write

$$\mathcal{B}_n f(t) - f(t) = \sum_{k=0}^n f(\frac{k}{n}) \binom{n}{k} t^k (1-t)^{n-k} - f(t) \cdot 1$$
$$= \sum_{k=0}^n \left[f(\frac{k}{n}) - f(t) \right] \binom{n}{k} t^k (1-t)^{n-k}$$

Given $\varepsilon > 0$ find $\delta > 0$ so that $|f(t+h) - f(t)| \le \varepsilon/4$ if $t, t+h \in [0,1]$ and $|h| < \delta$. For the terms with $|\frac{k}{n} - t| \le \delta$ we will exploit the smallness of $f(\frac{k}{n}) - f(t)$] and for the terms with $|\frac{k}{n} - t| > \delta$ we will exploit the smallness of the term in the Lemma, for large n. We thus split $\mathcal{B}_n f(t) - f(t) = I_n(t) + II_n(t)$ where

$$I_n(t) = \sum_{\substack{0 \le k \le n \\ |\frac{k}{n} - t| \le \delta}} \left[f(\frac{k}{n}) - f(t) \right] \binom{n}{k} t^k (1-t)^{n-k}$$
$$II_n(t) = \sum_{\substack{0 \le k \le n \\ |\frac{k}{n} - t| > \delta}} \left[f(\frac{k}{n}) - f(t) \right] \binom{n}{k} t^k (1-t)^{n-k}$$

the decomposition depends of course on δ but δ does not depend on n. We show that $|I_n(t)| \leq \varepsilon/4$ for all $n = 2, 3, \ldots$.

Indeed, since $|f(\frac{k}{n}) - f(t)| \le \varepsilon/4$ for $|\frac{k}{n} - t| \le \delta$ we compute

$$|I_n(t)| \le \sum_{\substack{0 \le k \le n \\ |\frac{k}{n} - t| \le \delta}} |f(\frac{k}{n}) - f(t)| \binom{n}{k} t^k (1-t)^{n-k}$$
$$\le \frac{\varepsilon}{4} \sum_{0 \le k \le n} \binom{n}{k} t^k (1-t)^{n-k} = \frac{\varepsilon}{4}$$

where we have used again the binomial theorem. Concerning II_n we observe that $1 \leq \delta^{-2}(\frac{k}{n}-t)^2$ for $|\frac{k}{n}-t| \geq \delta$ and estimate $|f(\frac{k}{n}) - f(t)| \leq 2 \max |f|$. Thus

$$II_{n}(t) \leq \sum_{\substack{0 \leq k \leq n \\ |\frac{k}{n} - t| > \delta}} \delta^{-2} (\frac{k}{n} - t)^{2} |f(\frac{k}{n}) - f(t)| \binom{n}{k} t^{k} (1 - t)^{n - k}$$
$$\leq \delta^{-2} 2 \max |f| \sum_{0 \leq k \leq n} (\frac{k}{n} - t)^{2} \binom{n}{k} t^{k} (1 - t)^{n - k}$$

By the Lemma $|II_n(t)| \leq (4n)^{-1} \delta^{-2} 2 \max |f|$ and for sufficiently large nthis is $\leq \varepsilon/2$ and we are done.

Proof of the Lemma. We set $\psi_0(t) = 1$, $\psi_1(t) = t$ and $\psi_2(t) = t^2$, etc. Then we can explicitly compute the polynomials $\mathcal{B}_n\psi_0$, $\mathcal{B}_n\psi_1$, $\mathcal{B}_n\psi_2$ for n = $1, 2, \ldots$

First, by the binomial theorem (as used before)

$$\mathcal{B}_n \psi_0(t) = \sum_{k=0}^n \binom{n}{k} t^k (1-t)^{n-k} = 1$$

thus $\mathcal{B}_n \psi_0 = \psi_0$. Next for $n \ge 1$

$$\mathcal{B}_n \psi_1(t) = \sum_{k=0}^n \frac{k}{n} \binom{n}{k} t^k (1-t)^{n-k}$$

= $\sum_{k=1}^n \frac{(n-1)!}{(k-1)!(n-k)!} t^k (1-t)^{n-k}$
= $t \sum_{k=1}^n \binom{n-1}{k-1} t^{k-1} (1-t)^{n-1-(k-1)}$
= $t \sum_{j=0}^{n-1} \binom{n-1}{j} t^j (1-t)^{n-1-j} = t$

which means $\mathcal{B}_n \psi_1 = \psi_1$ for $n \ge 1$.

12

To compute $\mathcal{B}_n \psi_2$ we observe that $\mathcal{B}_1 \psi_2(t) = \psi_2(0)(1-t) + \psi_2(1)t = t =$ $\psi_1(t)$ and, for $n \ge 2$

$$\mathcal{B}_n \psi_2(t) = \sum_{k=0}^n \frac{k^2}{n^2} \binom{n}{k} t^k (1-t)^{n-k}$$

$$=\sum_{k=1}^{n} \frac{k-1+1}{n} \frac{(n-1)!}{(k-1)!(n-k)!} t^{k} (1-t)^{n-k}$$

$$=\frac{1}{n} \left(t^{2}(n-1) \sum_{k=2}^{n} \binom{n-2}{k-2} t^{k-2} (1-t)^{n-2-(k-2)} + t \sum_{k=1}^{n} \binom{n-1}{k-1} t^{k-1} (1-t)^{n-1-(k-1)} \right)$$

$$=\frac{(n-1)t^{2}+t}{n} = t^{2} + \frac{t-t^{2}}{n}.$$

We summarize: For $n \ge 2$ we have

$$\mathcal{B}_n \psi_0 = \psi_0, \quad \mathcal{B}_n \psi_1 = \psi_1, \quad \mathcal{B}_n \psi_2 = \psi_2 + \frac{1}{n} (\psi_1 - \psi_2).$$

To prove the assertion in the Lemma lets multiply out

$$(\frac{k}{n}-t)^2 = (\frac{k}{n})^2 - 2t\frac{k}{n} + t^2$$

and use that the transformation $f \mapsto \mathcal{B}_n f(t)$ is linear (i.e we have $\mathcal{B}_n[c_1 f_1 +$ $c_2 f_2](x) = c_1 \mathcal{B}_n f_1(x) + c_2 \mathcal{B}_n f_2(x)$ for functions f_1, f_2 and scalars c_1, c_2). We compute, for $n \ge 2$

$$\sum_{0 \le k \le n} (\frac{k}{n} - t)^2 \binom{n}{k} t^k (1 - t)^{n-k}$$

= $\mathcal{B}_n \psi_2(t) - 2t \mathcal{B}_n \psi_1(t) + t^2$
= $t^2 + \frac{t - t^2}{n} - 2t \cdot t + t^2 = \frac{t - t^2}{n}$

and since $\max_{0 \le t \le 1} t - t^2 = 1/4$ we get the assertion of the Lemma.

Remark. Let's consider an arbitrary compact interval [a, b] and let $f \in$ C([a, b]). Then the polynomials

$$\mathcal{P}_n f(x) = \sum_{k=0}^n f(a + \frac{k}{n}(b-a)) \binom{n}{k} \frac{(x-a)^k (b-x)^{n-k}}{(b-a)^n}$$

converge to f uniformly on [a, b].

Using a change of variable derive this statement from the above theorem.

Addendum:

Probabilistic interpretation of the Bernstein polynomials. You might have seen the expressions $\mathcal{B}_n f(t)$ in a course on probability. In what follows the parameter t is a parameter for a probability (between 0 and 1).

Let's consider a series of trials of an experiment. Each trial may is supposed to have two possible outcomes (either success or failure). Each integer in $X_n := \{1, \ldots, n\}$ represents a trial; we label the *j*th trial as T_j . Let $t \in [0, 1]$ be fixed. In each trial the probability of success is assumed to be t, and the probability of failure is then (1 - t). The trials are supposed to be *independent*.

Let A be a specific subset of $\{1, \ldots, n\}$ which is of cardinality k, i.e. A is of the form $\{j_1, j_2, \ldots, j_k\}$ for mutually different integers j_1, \ldots, j_k ; if k = 0then $A = \emptyset$. Then the event Ω^A that for each $j \in A$ the trial T_j results in a success and for each $j \in X_N \setminus A$ the trial T_j results in a failure has probability $t^k(1-t)^{n-k}$. There are exactly $\binom{n}{k}$ subsets A of X_n which have cardinality k and they represent mutually exclusive (aka disjoint) events. Let Ω_k be the event that the n trials result in k successes, then the probability of Ω_k is

$$\mathbb{P}(\Omega_k) = \binom{n}{k} t^k (1-t)^{n-k}.$$

The probabilities of the mutually exclusive events Ω_k add up to 1;

$$\sum_{k=0}^{n} \mathbb{P}(\Omega_k) = 1;$$

(cf. the binomial theorem).

Let now X be the number of successes in a series of n trials (X is a "random variable" which depends on the outcome of each trial). The event Ω_k is just the event that X assumes the value k (one writes $\mathbb{P}(\Omega_k)$ also as $\mathbb{P}(X = k)$). The random variable X/n is the ratio of successes and total number of trials, and it takes values in [0, 1] (more precisely in $\{0, \frac{1}{n}, \ldots, \frac{n}{n}\}$).

The expected value of X/n is by definition

$$\mathbb{E}[X/n] = \sum_{k=0}^{n} \frac{k}{n} \mathbb{P}(\Omega_k)$$

and in the proof of the Lemma we computed it to

$$\mathbb{E}[X/n] = \sum_{k=0}^{n} \frac{k}{n} \binom{n}{k} t^k (1-t)^{n-k} = \mathcal{B}_n \psi_1(t) = t$$

Generally, if f is a function of t, the expected value of f(X/n) is equal to

$$\mathbb{E}[f(X/n)] = \sum_{k=0}^{n} f\left(\frac{k}{n}\right) \mathbb{P}(\Omega_k) = \sum_{k=0}^{n} f\left(\frac{k}{n}\right) \binom{n}{k} t^k (1-t)^{n-k};$$

that gives the probabilistic interpretation of the Bernstein polynomials evaluated at t;

$$\mathcal{B}_n f(t) = \mathbb{E}[f(X/n)].$$

The Variance of X/n is given by

$$\mathbb{E}\left[\left(\frac{X}{n} - \mathbb{E}\left[\frac{X}{n}\right]\right)^2\right] = \sum_{k=0}^n \left(\frac{k}{n} - t\right)^2 \binom{n}{k} t^k (1-t)^{n-k} = \frac{t-t^2}{n},$$

as computed in the proof of the lemma.

Let $\delta > 0$ be a small number. The probability that the number of successes deviates from the expected value tn by more than δn is given by

$$\sum_{\substack{0 \le k \le n \\ |k-nt| \ge \delta n}} \mathbb{P}(\Omega_k) = \sum_{\substack{0 \le k \le n \\ |k-nt| \ge \delta n}} \binom{n}{k} t^k (1-t)^{n-k}.$$

The smallness of this quantity (uniformly in t) played an important role in the Bernstein proof of Weierstrass' theorem. It was estimated by

$$\mathbb{E}\left[\left(\frac{X-\mathbb{E}[X]}{\delta n}\right)^2\right] = \delta^{-2} \sum_{k=0}^n \left(\frac{k}{n}-t\right)^2 \binom{n}{k} t^k (1-t)^{n-k} = \frac{t-t^2}{\delta^2 n}.$$

Thus, by the statement of the Lemma, the event that the number of successes deviates from the expected value tn by more than δn has probability no more than $(4\delta^2 n)^{-1}$.