
Equivalence of norms

Definition. Let V be a vector space over the real or complex numbers.
Let ‖ · ‖a, ‖ · ‖b be norms. We say that ‖ · ‖a, ‖ · ‖b are equivalent if there
exist positive constants c, C such that for all x ∈ V

c‖x‖a ≤ ‖x‖b ≤ C‖x‖a.

Exercise: Check that this defines an equivalence relation on the set of
norms on V.

Exercise: Let ‖ · ‖, ‖ · ‖∗ be norms on V. Let B(x, r) = {y : ‖y− x‖ < r},
B∗(x, r) = {y : ‖y − x‖∗ < r}. Show that ‖ · ‖, ‖ · ‖∗ are equivalent norms if
and only if there exist two positive constants such that

B(x, c1r) ⊂ B∗(x, r) ⊂ B(x, c2r) for all x ∈ V and all r > 0.

Exercise: Let ‖·‖a, ‖·‖b be equivalent norms and let da, db the associated
metrics defined by da(x, y) = ‖x− y‖a, db(x, y) = ‖x− y‖b.

(i) Show that a sequence converges in (V, da) if and only it converges in
(V, db).

(ii) Show that (V, da) is complete if and only if (V, db) is complete.
(iiii) Show that a set O ⊂ V is open in (V, da) if and only it is open in

(V, db).
(iiii) Show that a set F ⊂ V is closed in (V, da) if and only it is closed in

(V, db).

Example. Let V be a finite dimensional vector space, and let v1, . . . , vn be
a basis of V. Thus every x ∈ V has a unique representation as x =

∑n
i=1 xivi

where xi are the coordinates of x with respect to the basis v1, . . . , vn. We
define

‖x‖∗ = max
i=1,...,n

|xi| for x =
n∑

i=1

xivi.

Then ‖ · ‖∗ is a norm on V and V with this norm is a complete vector space.

Exercise: Show this. Verify that a sequence x(m) of vectors converges in

V if and only if for i = 1, . . . , n the coordinate sequences x
(m)
i converge in R

(or C).

Theorem. Let V be finite-dimensional. Then all norms are equivalent.

Proof. Let v1, . . . , vn be a basis of V. We define ‖x‖∗ := maxi=1,...,n |xi|
for x =

∑n
i=1 xivi as in the above example.
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Let ‖ · ‖ be any norm. Our goal is to prove that there are constants
c, C > 0 such that c‖x‖∗ ≤ ‖x‖ ≤ C‖x‖∗. For the second inequality we use

‖x‖ =
∥∥∥ n∑

i=1

xivi

∥∥∥ ≤ n∑
i=1

‖xivi‖ =
n∑

i=1

|xi|‖vi‖ ≤ n max
i=1,...,n

‖vi‖ max
i=1,...,n

|xi|

and so we find

‖x‖ ≤ C‖x‖∗, with C = n max
i=1,...,n

‖vi‖ .

For the opposite inequality we use that S = {x : ‖x‖∗ = 1} is compact.
To show this we verify that S is complete and totally bounded. Note that
the function x 7→ ‖x‖∗ is continuous since |‖x‖∗ − ‖y‖∗| ≤ ‖x− y‖∗, by the
triangle inequality. Thus S is a closed subset of V (as the inverse image of
{1} under this function) and hence S is complete as a closed subset of the
complete space V. To show that S is totally bounded let ε > 0 and choose
m > 1/ε. Then S is covered by the finite collection of balls (of radius 1/m
with respect to the ‖ · ‖∗−norm)

Bj1,...,jn :=
{ n∑

i=1

xivi :
ji
m
− ε < xi <

ji
m

+ ε, i = 1, . . . , n
}

where ji = −m, . . . ,m for i = 1, . . . , n. 1 Hence S is totally bounded.
Now consider the function f(x) = ‖x‖ which has values in [0,∞) and is

also continuous, since

|f(x)− f(y)| ≤
∣∣‖x‖ − ‖y‖∣∣ ≤ ‖x− y‖ ≤ C‖x− y‖∗.

Then f has a minimum on the compact set S (see Theorem 4.16 in Rudin).
Since x 6= 0 for x ∈ S we have that c := minx∈S f(x) > 0. Now let x 6= 0,
then x/‖x‖∗ ∈ S and hence∥∥∥ x

‖x‖∗

∥∥∥ ≡ f(x/‖x‖∗) ≥ c

which implies
‖x‖ ≥ c‖x‖∗.

1These are O(md) many balls. Verify that for the covering of S we only need O(md−1)
of those balls.


