Equivalence of norms

Definition. Let \mathbb{V} be a vector space over the real or complex numbers. Let $\|\cdot\|_a$, $\|\cdot\|_b$ be norms. We say that $\|\cdot\|_a$, $\|\cdot\|_b$ are *equivalent* if there exist positive constants c, C such that for all $x \in \mathbb{V}$

$$c\|x\|_{a} \le \|x\|_{b} \le C\|x\|_{a}.$$

Exercise: Check that this defines an equivalence relation on the set of norms on \mathbb{V} .

Exercise: Let $\|\cdot\|$, $\|\cdot\|_*$ be norms on \mathbb{V} . Let $B(x,r) = \{y : \|y-x\| < r\}$, $B_*(x,r) = \{y : \|y-x\|_* < r\}$. Show that $\|\cdot\|$, $\|\cdot\|_*$ are equivalent norms if and only if there exist two positive constants such that

$$B(x,c_1r) \subset B_*(x,r) \subset B(x,c_2r)$$
 for all $x \in \mathbb{V}$ and all $r > 0$.

Exercise: Let $\|\cdot\|_a$, $\|\cdot\|_b$ be equivalent norms and let d_a , d_b the associated metrics defined by $d_a(x, y) = \|x - y\|_a$, $d_b(x, y) = \|x - y\|_b$.

(i) Show that a sequence converges in (\mathbb{V}, d_a) if and only it converges in (\mathbb{V}, d_b) .

(ii) Show that (\mathbb{V}, d_a) is complete if and only if (\mathbb{V}, d_b) is complete.

(iiii) Show that a set $O \subset \mathbb{V}$ is open in (\mathbb{V}, d_a) if and only it is open in (\mathbb{V}, d_b) .

(iiii) Show that a set $F \subset \mathbb{V}$ is closed in (\mathbb{V}, d_a) if and only it is closed in (\mathbb{V}, d_b) .

Example. Let \mathbb{V} be a finite dimensional vector space, and let v_1, \ldots, v_n be a basis of \mathbb{V} . Thus every $x \in \mathbb{V}$ has a unique representation as $x = \sum_{i=1}^n x_i v_i$ where x_i are the coordinates of x with respect to the basis v_1, \ldots, v_n . We define

$$||x||_* = \max_{i=1,\dots,n} |x_i|$$
 for $x = \sum_{i=1}^n x_i v_i$.

Then $\|\cdot\|_*$ is a norm on \mathbb{V} and \mathbb{V} with this norm is a complete vector space.

Exercise: Show this. Verify that a sequence $x^{(m)}$ of vectors converges in \mathbb{V} if and only if for $i = 1, \ldots, n$ the coordinate sequences $x_i^{(m)}$ converge in \mathbb{R} (or \mathbb{C}).

Theorem. Let \mathbb{V} be finite-dimensional. Then all norms are equivalent.

Proof. Let v_1, \ldots, v_n be a basis of \mathbb{V} . We define $||x||_* := \max_{i=1,\ldots,n} |x_i|$ for $x = \sum_{i=1}^n x_i v_i$ as in the above example.

Let $\|\cdot\|$ be any norm. Our goal is to prove that there are constants c, C > 0 such that $c\|x\|_* \le \|x\| \le C\|x\|_*$. For the second inequality we use

$$\|x\| = \left\|\sum_{i=1}^{n} x_{i} v_{i}\right\| \le \sum_{i=1}^{n} \|x_{i} v_{i}\| = \sum_{i=1}^{n} |x_{i}| \|v_{i}\| \le n \max_{i=1,\dots,n} \|v_{i}\| \max_{i=1,\dots,n} |x_{i}|$$

and so we find

$$||x|| \le C ||x||_*$$
, with $C = n \max_{i=1,\dots,n} ||v_i||$.

For the opposite inequality we use that $S = \{x : \|x\|_* = 1\}$ is compact. To show this we verify that S is complete and totally bounded. Note that the function $x \mapsto \|x\|_*$ is continuous since $\|\|x\|_* - \|y\|_* \le \|x - y\|_*$, by the triangle inequality. Thus S is a closed subset of \mathbb{V} (as the inverse image of $\{1\}$ under this function) and hence S is complete as a closed subset of the complete space \mathbb{V} . To show that S is totally bounded let $\varepsilon > 0$ and choose $m > 1/\varepsilon$. Then S is covered by the finite collection of balls (of radius 1/mwith respect to the $\|\cdot\|_*$ -norm)

$$B_{j_1,\dots,j_n} := \left\{ \sum_{i=1}^n x_i v_i : \frac{j_i}{m} - \varepsilon < x_i < \frac{j_i}{m} + \varepsilon, \ i = 1,\dots,n \right\}$$

where $j_i = -m, \ldots, m$ for $i = 1, \ldots, n$.¹ Hence S is totally bounded.

Now consider the function f(x) = ||x|| which has values in $[0, \infty)$ and is also continuous, since

$$|f(x) - f(y)| \le ||x|| - ||y||| \le ||x - y|| \le C||x - y||_*.$$

Then f has a minimum on the compact set S (see Theorem 4.16 in Rudin). Since $x \neq 0$ for $x \in S$ we have that $c := \min_{x \in S} f(x) > 0$. Now let $x \neq 0$, then $x/||x||_* \in S$ and hence

$$\left\|\frac{x}{\|x\|_{*}}\right\| \equiv f(x/\|x\|_{*}) \ge c$$

which implies

$$||x|| \ge c ||x||_*.$$

 $\mathbf{2}$

¹These are $O(m^d)$ many balls. Verify that for the covering of S we only need $O(m^{d-1})$ of those balls.