
CHARACTERIZATIONS OF COMPACTNESS

FOR METRIC SPACES

Definition. Let X be a metric space with metric d.

(a) A collection {Gα}α∈A of open sets is called an open cover of X if every x ∈ X belongs

to at least one of the Gα, α ∈ A. An open cover is finite if the index set A is finite.

(b) X is compact if every open cover of X contains a finite subcover.

Definition. Let X be a metric space with metric d and let A ⊂ X. We say that A is a

compact subset if the metric space A with the inherited metric d is compact.

Examples: Any finite metric space is compact.

As an exercise show directly from the definition that the subset K of R consisting of 0

and the numbers 1/n, n = 1, 2, . . . is compact.

Definition. A subset A of X is relatively compact if the closure A ⊂ X is a compact subset

of X.

Definition. A metric space is called sequentially compact if every sequence in X has a

convergent subsequence.

Definition. A metric space is called totally bounded if for every ǫ > 0 there is a finite cover

of X consisting of balls of radius ǫ.

THEOREM. Let X be a metric space, with metric d. Then the following properties are

equivalent (i.e. each statement implies the others):

(i) X is compact.

(ii) X has the Bolzano-Weierstrass property, namely that every infinite set has an accu-

mulation point.∗

(iii) X is sequentially compact, i.e. every sequence has a convergent subsequence.

(iv) X is totally bounded and complete.

∗If A is a subset of X then p is called an accumulation point if every neighborhood of p contains a point

q ∈ A so that q 6= p. In Rudin’s book the terminology ‘limit point’ is used for this.
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Example: A closed bounded interval I = [a, b] in R is totally bounded and complete,

thus compact. For the proof that I is totally bounded note that we can cover I with N(ε)

intervals of length ε where N(ε) ≤ 10ε−1(b− a).

Example: Any closed bounded subset of Rn is totally bounded and complete. For the

proof note that any ball of radius R (with respect to the usual Euclidean metric) can be

covered that N(ε) intervals where N(ε) ≤ (10dR)dε−d; you can obtain of course a somewhat

better constant.

Example: Let B be the metric space of all bounded sequences on N, with metric d(a, b) =

supn∈N |an−bn|. Let A be the closed ball of radius 1 centered at the zero sequence (0, 0, . . . ).

Then A is bounded and closed but not sequentially compact (and by the theorem neither

compact).

Indeed let e(k) be the member of B with e(k)(n) = 0 if k 6= n and e(n)(n) = 1. Then

d(e(k), e(l)) = 1 if k 6= l. Thus the e(k) form a bounded sequence in B which does not have

a convergent subsequence. The set A is complete (as a closed subset of a complete space)

but it is not totally bounded. Show this directly from the definition!

We conclude that merely bounded and complete sets in an arbitrary metric space may not

be compact. Thus the cases of Rn and C
n (where this characterization of compact subsets

holds) are exceptional instances which do not have ‘infinite dimensional’ analogues. The

condition of total boundedness is crucial.

Example: Let ℓ1 denote the space of all absolutely summable sequences, i.e. the space of

all sequences {an}n=1,2,... for which
∑

|an| converges. A metric in ℓ1 is given by d1(a, b) =∑∞
n=1 |an− bn|. Let A be the closed ball of radius 1 centered at the zero sequence (0, 0, . . . )

(i.e. the set of all absolutely summable sequences for which
∑∞

n=1 |an| ≤ 1.

Verify as in the previous example that A is bounded and closed but not sequentially

compact (and therefore not compact).

However one can show that the set of sequences {an}
∞
n=1 for which |an| ≤ 2−n for all

n ≥ 1 is a compact subset of A.

Example: Compact sets of continuous function (with respect to the sup metric) can

be characterized by the Arzela-Ascoli theorem, see the section “equicontinuous families of

functions” in ch. 7 of Rudin’s book.

Lemma 1. Any closed subset of a compact metric space is compact.
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The proof of the main theorem is contained in a sequence of lemmata which we now

state. In the subsequent sections we discuss the proof of the lemmata.

Lemma 2. A metric space is sequentially compact if and only if every infinite subset has

an accumulation point.

Lemma 3. A compact metric space is sequentially compact.

Lemma 4. A sequentially compact subset of a metric space is bounded † and closed.

Lemma 5. A metric space which is sequentially compact is totally bounded and complete.

Lemma 6. A metric space which is totally bounded and complete is also sequentially com-

pact.

Lemma 7. A sequentially compact space is compact.

In what follows we shall always assume (without loss of generality) that the metric space

X is not empty.

1. Proof of Lemma 1:

Any closed subset of a compact metric space is compact.

Let F be a closed subset of X and let {Gα}α∈A be an open cover of F . Every Gα is of

the form Uα ∩ F where Uα is open in X (see Theorem 2.30 in Rudin’s book). Since X \ F

is open in X as the complement of a closed set the collection W of sets consisting of the

Uα, α ∈ A together with X \ F form an open cover of X. As X is compact there is a finite

subcover which consists of Uα1
, . . . , UαN

, for suitable indices α1, . . . , αN , and possibly also

X \ F . But the latter set is disjoint from F and so the sets Uα1
, . . . , UαN

form a cover of

F . Since Uα ∩ F = Gα the sets Gα1
, . . . , GαN

form a cover of F which is a subcover of the

original collection. �

2. Proof of Lemma2:

A metric space is sequentially compact if and only if every infinite subset

has an accumulation point.

Let Y be an infinite subset of X and let {pn}n∈N be a sequence of pairwise different points

in Y . Since X is sequentially compact the sequence contains a convergent subsequence and

the limit is an accumulation point of Y .

†A set A in a metric space is bounded if the diameter diam(A) = sup{d(x, x̃) : x ∈ A, x̃ ∈ A} is finite.

This is the same as saying that A is contained in a fixed ball (of finite radius).
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Vice versa let X be a metric space with the Bolzano-Weierstrass property, i.e. every

infinite subset has an accumulation point. Now let {pn} be a sequence of points in X. If one

point occurs an infinite number of times in the sequence then it has a ‘constant’ subsequence

which of course converges. If every point in the sequence occurs only a finite number of

times then we may choose a subsequence {pnk
}k∈N whose members are all pairwise different.

But by assumption this set has an accumulation point and we can choose a subsequence

which converges to this accumulation point. �

3. Proof of Lemma 3:

A compact metric space is sequentially compact.

By Lemma 2 we need to show the Bolzano-Weierstrass property, i.e. every infinite subset

of X has an accumulation point.

Suppose not, so let Y be an infinite subset of X which does not have an accumulation

point. Then for every y ∈ Y there is an open ball By centered at y such that By contains

no other points in y.

As Y has no accumulation points Y is closed in X and, by Lemma 1, Y is compact. For

every y ∈ Y the singleton set {y} = By ∩ Y is an open set in the metric space Y . Since Y

is infinite they form an open cover from which we cannot select an open subcover, which

gives a contradiction (since Y is compact). �

4. Proof of Lemma 4:

A sequentially compact subset of a metric space is bounded and closed.

Let K be a compact subset of X. We first show that K is bounded, i.e. the diameter of

K

diam(K) = sup{d(x, x̃) : x ∈ K, x̃ ∈ K}

is finite.

Suppose it is not finite. Then for a fixed y1 we can choose y2 so that d(y1, y2) ≥ 1. Since

the diameter is not finite we can choose a point y3 so that d(y1, y3) ≥ 1 + d(y1, y2) and we

continue this way so that if for n ≥ 3 points y1, . . . , yn−1 so that d(y1, yi) ≥ 1 + d(y1, yi−1)

for i ≤ 3 ≤ n we choose a point yn so that d(y1, yn) ≥ 1 + d(y1, yn−1).

It is easy to see that this implies

d(y1, ym) ≥ 1 + d(y1, yn) for m > n .

Thus by the triangle inequality

d(ym, yn) ≥ |d(ym, y1)− d(yn, y1)| ≥ 1
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and therefore the sequence {yn} does not have a convergent subsequence. Thus the space

is not sequentially compact and by Lemma 3 it is not compact, a contradiction to our

hypothesis.

Thus we have shown that K is bounded. To prove that K is closed let {pn} be a

convergent sequence of points in K; we have to show that the limit belongs to K. But since

K is sequentially compact this sequence has a subsequence which converges to a limit in

K. Thus the limit of the convergent sequence {pn} belongs to K. �

5. Proof of Lemma 5:

A sequentially compact metric space is totally bounded and complete

Definition: A set A is called an ε-net for X if A is finite and if the balls Bε(x) (with

radius ε and center x) where x ∈ A, cover X.

We consider a sequentially compact space X and let ε > 0.

Claim: Let ε > 0 and let A ⊂ X be a set of points of mutual distance ≥ ε (i.e. if p ∈ A

and q ∈ A and p 6= q then d(p, q) ≥ ε). Then A is finite.

Suppose the claim is not true, then we can construct a sequence xn ∈ X so that

d(xn, xm) ≥ ε whenever m 6= n and clearly this sequence does not have a convergent

subsequence, in contradiction to the sequential compactness of X.

We now construct a finite ε-net.

Pick a point p1. Then (if possible) pick a point p2 with d(p1, p2) ≥ ε, (if not possible,

stop). Then (if possible) pick a point p3 with d(p1, p3) ≥ ε and d(p2, p3) ≥ ε, if not possible

stop.

Continue (if possible) until points p1, p2, . . . , pm are chosen for which d(pi, pj) ≥ ε for

1 ≤ i < j ≤ m. Then pick a point pm+1 so that d(pi, pm+1) ≥ ε for i = 1, . . . , pm. If this

is not possible then stop, and in this case every point in X is contained in an open ball of

radius ε centered at one of the points p1, . . . , pm, so we have a finite ε-net of points.

By the claim above the construction stops after a finite number of steps, and the resulting

set of points obtained before stopping form a finite ε-net for X. Thus we have shown that

X is totally bounded.
‡

Next we observe that X is complete. Let {xn} be a Cauchy sequence in X. Since X

is sequentially compact this sequence has a convergent subsequence whose limit is also the

limit of the Cauchy-sequence (provide the details or refer to a previously done exercise!). �

‡An alternative shorter formulation of this argument goes as follows: Let P be an ǫ-separated subset of

X which is maximal with respect to inclusion. Then P is finite, by the avove claim. The balls Bε(p), p ∈ P

form a finite ǫ-net.
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6. Proof of Lemma 6:

A totally bounded and complete metric space is sequentially compact.

We consider a sequence {an} in X and assume that X is a totally bounded and complete

metric space.

By the assumption ‘X totally bounded’ (applied with ε = 1) we can cover the space X

with finitely many balls of radius 1; then one of them contains an’s for infinitely many n’s;

i.e. there is a ball B1 of radius 1 so that there is a subsequence of {an} whose members all

belong to B1. We denote this subsequence by {a
(1)
n } and thus all a

(1)
n belong to B1.

Similarly by the totally boundedness condition with ε = 1/2 we can find a subsequence

{a
(2)
n } of {a

(1)
n } and a ball B2 of radius 1/2 so that all a

(2)
n belong to B2. Continuing in this

way we obtain for any k ≥ 2 a subsequence {a
(k)
n } of {a

(k−1)
n } and a ball Bk of radius 2−k

so that all a
(k)
n belong to Bk.

Now consider the sequence {a
(n)
n } which is a subsequence of the original sequence. We

show that it is a Cauchy-sequence. Indeed if m ≥ n we have by the triangle inequality

d(a(m)
m , a(n)n ) ≤ d(a(m)

m , a
(m−1)
m−1 ) + · · ·+ d(a

(n+1)
n+1 , a(n)n )

and since a
(j)
j and a

(j−1)
j−1 are both in Bj−1 their mutual distance is ≤ 2 · 21−j . Thus the

previous displayed inequality implies that for m > n

d(a(m)
m , a(n)n ) ≤ 22−m + · · ·+ 22−(n+1) ≤ 22−n

which shows that {a
(n)
n } is a Cauchy sequence. Thus by the assumed completeness it

converges, and we have found a convergent subsequence of {an}. �

7. Proof of Lemma 7:

A sequentially compact space is compact

To show this we first prove an auxiliary statement:

Sublemma. Let X be a sequentially compact space. Suppose we are given an infinite open

cover {Gα}α∈A of X. Then there exists an ε > 0 so that every ball of radius ε is contained

in one of the (open) sets Gα.

We argue by contradiction and assume that the statement does not hold. Then for every

n ∈ N there is a ball Bn of radius 1/n which is not contained in any of the sets Gα. Let

pn be the center of Bn. Since we assume that X is sequentially compact the sequence of

centers has a convergent subsequence {pnk
} whose limit we denote by p. Since the Gα is a

cover there is an index αo so that p ∈ Gαo
. As p is an interior point of the (open) set Gαo

it contains an open ball of radius δ > 0. Also there is an M so that for k ≥ M we have

d(pnk
, p)) < δ/2. By the triangle inequality we see that the ball Bnk

is contained in Gαo
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provided that k > M . But this is a contradiction to the construction of the sequence {pn}

(which implied that none of the balls Bn is contained in any of the sets Gα). �

We now proceed to show that a sequentially compact is compact. We need to show that

a given open cover {Gα}α∈A of X contains a finite subcover. By the sublemma there exists

an ε > 0 so that every ball of radius ε is contained in one of the (open) sets Gα. We have

shown in Lemma 5 that a sequentially compact space is totally bounded; thus there exist

points {p1, . . . , pk} so that X is contained in the union of the balls Bε(pi), i = 1, . . . , k.

As each Bε(pi) is contained in one of the sets in the cover, say in Gαi
, the collection Gαi

,

i = 1, . . . , k is a finite subcover. �

Exercises:

1. Prove that a totally bounded metric space is separable (i.e. contains a countable

dense subset).

2. A collection {Fα : α ∈ A} of closed sets has the finite intersection property if for every

finite subset Ao of A the intersection ∩α∈Ao
Fα is not empty.

Prove that the following statements (i), (ii) are equivalent.

(i) A metric space X, with metric d, is compact.

(ii) For every collection {Fα}α∈A of closed sets with the finite intersection property it

follows that ⋂

α∈A

Fα 6= ∅.

3. Let ℓ1 denote the space of all absolutely summable sequences, i.e. the space of all

sequences {an}n=1,2,... for which
∑

|an| converges, with the metric d(a, b) =
∑∞

n=1 |an− bn|.

(i) Prove that the set of all sequences {an} which satisfy |an| ≤ 2−n for all n ∈ N is

compact.

(ii) More generally, if {bn} is a fixed sequence of nonnegative terms with the property

that
∑

bn < ∞ then the set of all sequences {an} which satisfy |an| ≤ bn is compact.

Thanks to the students in the Math 522 class of Fall 2010 and to Juan Tolosa for

corrections and valuable comments. Any further comments are appreciated.


