
I. The space C(K)

Let K be a compact metric space, with metric dK . Let B(K) be the space
of real valued bounded functions on K with the sup-norm

‖f‖∞ = sup
x∈K

|f(x)|

Proposition : B(K) is complete.

Proof. Let fn be a Cauchy sequence. By the definition of ‖ · ‖∞ this implies
that for every x ∈ K the n umerical sequence fn(x) is a Cauchy sequence in
R, and thus convergent in R. Define f(x) = limn→∞ fn(x).

We show that f is bounded, and that ‖fn − f‖∞ → 0. Let ε > 0. Then
there is N = N(ε) so that supx |fn(x) − fm(x)| < ε/2 for n,m ≥ N . This
shows that |fn(x)−f(x)| ≤ ε/2 for n,m ≥ N and for all x ∈ K. In particular
|f(x)| ≤ sup |fN (x)| + ε so that f is bounded; moreover ‖fn − f‖∞ ≤ ε/2
for n ≥ N .

As ε > 0 was arbitrary this establishes that ‖fn−f‖∞ → 0 as n → ∞. �

Let C(K) be the vector space of real valued continuous functions on K.

Proposition. Every f ∈ C(K) is bounded and uniformly continuous.

Proof. Let ε > 0. We have to show that there is δ > 0 so that |f(x)−f(x′)| <
ε whenever dK(x, x′) < δ; moreover there is M so that supx∈K |f(x)| ≤ M .

As f is continuous, for every x there is a δx > 0 so that for all t with
dK(t, x) < δx we have |f(x)− f(t)| < ε/2. As K is compact there is a finite
number of points xi, i = 1, . . . , L so that the balls B(xi, δxi

/2) cover K.
Define δ = mini=1,...,L δxi

/2. Suppose dK(x, x′) < δ. Then there is an xi
so that dK(x, xi) < δxi

/2. Then also

dK(x′, xi) ≤ dK(x′, x) + dK(x, xi) < δ + δxi
/2 ≤ δxi

so that

|f(x)− f(x′)| ≤ |f(x)− f(xi)|+ |f(xi)− f(x′)| < ε/2 + ε/2 = ε.

This already shows that f is uniformly continuous.
By the same argument we have |f(x)| ≤ |f(x) − f(xi)| + |f(xi)| ≤ ε +

|f(xi)| for x ∈ B(xi, δxi
/2). Thus, for all x ∈ K it follows that |f(x)| ≤

maxi=1,...,L |f(xi)|+ ε so that certainly f is bounded. �

We have just seen that C(K) is a subspace of B(K). We consider C(K)
as a normed space with the norm (and therefore with the metric) inherited
from B(K). The following result shows that C(K) is complete.

Proposition. C(K) is a closed subspace of B(K).

Proof. Let fn be a sequence of functions in C(K) which converges to f (i.e.
‖fn − f‖∞ → 0). We will show that f is (uniformly) continuous, i.e. given
ε > 0 there is δ > 0 so that |f(x)− f(x′)| < ε if dK(x, x′) < δ.

1



2

Let ε > 0. Let N be so that ‖fn − f‖∞ < ε/4 for all n ≥ N , that means
|fn(t)−f(t)| < ε/4 for all t ∈ K and all n ≥ N . Since fN is (uniformly) con-
tinuous there is δ > 0 so that |fN (x)−fN(x′)| < ε/2 whenever dK(x, x′) < δ.
For those x, x′ we also have

|f(x)− f(x′)| ≤ |f(x)− fN (x)|+ |fN (x)− fN(x′)|+ |fN (x′)− f(x′)|

≤ 2‖f − fN‖∞ + |fN (x)− fN(x′)| < 2ε/4 + ε/2 = ε. �

II. The Arzelà-Ascoli theorem

Definition. Let F be a collection of functions in C(K).
(i) The collection F is said to be pointwise bounded if for every x ∈ K

there is an M(x) ≥ 0 so that |f(x)| ≤ M(x) for every f ∈ F .
(ii) The collection F is said to be equicontinuous 1 if for every ε > 0 there

exists δ > 0 so that for all f ∈ F and x, x′ with dK(x, x′) < δ we have
|f(x)− f(x′)| < ε.

Remark: It is not difficult to show that a collection F which is both equicon-

tinuous and pointwise bounded on a compact set K is also uniformly bounded

on K, meaning that there is an M ≥ 0 so that ‖f‖∞ = supx∈K |f(x)| ≤ M
for all f ∈ F . This implication is hidden in the proof of the theorem below
where a stronger property is proved (namely that F is totally bounded).

Theorem. A subset F of C(K) is totally bounded if and only if it is point-

wise bounded and equicontinuous.

Proof of necessity: If F is a totally bounded subset of C(K) then F is

pointwise bounded and equicontinuous.

By the definition of F totally bounded there are functions f1, . . . , fN in F
so that for every f ∈ F there is an index i ∈ {1, . . . , N} with ‖fi−f‖∞ < ε/4.
Clearly ‖f‖ ≤ ‖fi‖∞ + ‖f − fi‖∞ ≤ maxi=1,...,N ‖fi‖∞ + ε/4 so that F is
bounded in norm (and clearly pointwise bounded).

Now we show the equicontinuity of the family F . By a Lemma above each
fi is uniformly continuous. Thus for each i there exists a δi > 0 such that
|fi(x) − fi(x

′)| < ε/2 whenever dK(x, x′) < δi. Let δ = min{δ1, . . . , δN}.
Then δ > 0 and we have |fi(x) − fi(x

′)| < ε/2 for every i whenever
dK(x, x′) < δ.

Now pick any f ∈ F , and let i be so that ‖fi − f‖∞ < ε/4, and let x, x′

be so that dK(x, x′) < δ. Then

|f(x)− f(x′)| ≤ |f(x)− fi(x)|+ |fi(x)− fi(x
′)|+ |fi(x

′)− f(x′)|

≤ 2‖f − fi‖∞ + |fi(x)− fi(x
′)| < 2ε/4 + ε/2 = ε . �

1Some authors also use the terminology “uniformly equicontinous”.
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Proof of sufficiency: If F ⊂ C(K) is equicontinuous and pointwise bounded

then F is totally bounded.

Fix ε > 0. We shall first find a finite collection G of functions in B(K) so
that for every f ∈ F there exists a g ∈ G with ‖f − g‖∞ < ε.

Let δ > 0 so that for all f ∈ F we have |f(x) − f(x′)| < ε/4 whenever
|x− x′| < δ. Again we use the compactness of K and cover K with finitely
many balls B(xi, δ), i = 1, . . . , L. There is Mi so that |f(xi)| ≤ Mi for all
f ∈ F . Let M = 1 +maxi=1,...,LMi.

We now let A1 = B(x1, δ), and Ai = B(xi, δ)\∪
i−1
ν=1B(xν , δ), for 2 ≤ i ≤ L.

(Some of the Ai could be empty but that does not matter).
Let ZL(M,ε) be the set of L-tuples ~n of integers ~n = (n1, . . . , nL) with

the property that |ni|ε/4 ≤ M for i = 1, . . . , L. Note that ZL(M,ε) is a
finite set (indeed its cardinality is ≤ (8Mε−1 + 1)L).

We now define a collection G of functions which are constant on the sets
Ai (these are analogues of step functions). Namely given ~n in ZL(M,ε)
we let g~n be the unique function that takes the value niε/4 on the set Ai

(provided that that set is nonempty). Clearly the cardinality of G is not
larger than the cardinality of ZL(M,ε).

Let f ∈ F . Consider an Ai which by construction is a subset of B(xi, δ).
Then |f(x) − f(xi)| < ε/4 for all x ∈ Ai (this condition is vacuous if Ai

is empty). Now |f(xi)| ≤ Mi ≤ M and therefore there exists an integer ni

with the property that −M ≤ niε/4 ≤ M and |f(xi)− niε/4| < ε/4. Then
we also have that for i = 1, . . . , L and for every x ∈ Ai,

|f(x)− niε/4| ≤ |f(x)− f(xi)|+ |f(xi)− niε/4| < ε/4 + ε/4 = ε/2.

This implies that for this choice of ~n = (n1, . . . , nL) we get ‖f−g~n‖∞ < ε/2.
Finally, we need to find a finite cover of F with ε-balls centered at points

in F . Consider the subcollection G̃ of functions in G for which the ball of
radius ε/2 centered at g contains a function in F . Denote the functions in

G̃ by g1, . . . , gN . The balls of radius ε/2 centered at g1, . . . gN cover F . For
i = 1, . . . , N pick fi ∈ F so that ‖gi−fi‖∞ < ε/2. By the triangle inequality
(for the norm in B(K) whose restriction to C(K) is also the norm in C(K))
the ball of radius ε/2 centered at gi is contained in the ball of radius ε
centered at fi. Thus the balls of radius ε centered at fi, i = 1, . . . , N cover
the set F . �

Corollary. A closed subset F of C(K) is compact if and only if it is point-

wise bounded and equicontinuous.

Proof. The space B(K) is complete and so is the closed subspace C(K).
Since we now assume that F is closed in C(K) the metric space F is com-
plete. Thus by the characterization of compactness (F compact ⇐⇒ F
totally bounded and complete) the corollary follows from the theorem. �
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Corollary. An equicontinuous and bounded sequence {fn} of functions in

C(K) has a uniformly convergent subsequence.

Proof. The closure of F := {fn : n ∈ N} is bounded, complete, and equicon-
tinuous, thus compact. By a part of the theorem on the characterization of
compactness it is also sequentially compact, therefore fn has a convergent
subsequence. �

III. The Peano Existence theorem for differential equations

We are concerned with the initial value problem for a differential equation

y′(t) = F (t, y(t)), y(t0) = y0 .

Here (t, y) 7→ F (t, y) is a continuous function of two variables defined near
a point (t0, y0) ∈ R

2 and we wish to find a function t 7→ y(t) for which the
derivative y′(t) equals the value of F (t, y) for y = y(t), and which has the
value y0 at the “initial” time t0.

This problem has a solution, as stated in the following existence theorem.

Theorem. Let Ω be a nonempty open set in R× R, let (t0, y0) ∈ Ω and let

F : Ω → R be continuous. Let R be a compact rectangle of the form

R = {(t, y) : |t− t0| ≤ a, |y − y0| ≤ b}

contained in Ω. Suppose that |F (t, y)| ≤ M for (t, y) ∈ R and let ã =
min{a, b/M}. Then there exists a function t 7→ y(t) defined on (t0−ã, t0+ã)
which satisfies the initial value problem

y′(t) = F (t, y(t)) for |t− t0| < ã

y(t0) = y0.

Proof. 2

The strategy is to prove the existence of a continuous function y on [t0 −
ã, t0 + ã] which satisfies the integral equation

y(t) = y0 +

∫ t

t0

F (s, y(s)) ds.

Once we have found this function we observe that the integrand F (s, y(s)) is
also a continuous function. Thus the integral represents a differentiable func-
tion (by the fundamental theorem of calculus) and its derivative is F (t, y(t)).
Thus y is also differentiable and we have y′ = F (t, y(t)) for t ∈ (t0−ã, t0+ã),
i.e. y is a solution of the differential equation. Also by the last display
y(t0) = y0 and a solution is found.

2The proof becomes less technical if one makes the more restrictive assumption that
|F (t, y)| ≤ M for all (t, y0) with |t− t0| ≤ a and y ∈ R. We then have ã = a and much of
the discussion in step 1 is then superfluous. We will first discuss this special case in class.
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We write up the proof of the existence of y only for the interval [t0, t0+ ã]
and leave the notational changes for the interval [t0 − ã, t0] to the reader.
We will split the proof into five steps.

1. We shall construct functions with polygonal graphs which are candi-
dates to approximate the solutions.

F is uniformly continuous on the compact set R. Let ε > 0 a small
number and let δ = δ(ε) be as in the definition of uniform continuity, i.e.
we have

|F (t, y)− F (t′, y′)| < ε

whenever |(t, y)− (t′, y′)| ≤ δ and (t, y) ∈ R, (t′, y′) ∈ R.

Let

t0 < t1 < · · · < tN = t0 + ã

be a partition of [t0, t0 + ã] so that tk+1 − tk < 1
2 min{δ, δ/M} for k =

0, . . . , N − 1.
We now construct a function Y ≡ Yε on [t0, ã]; this definition depends on

ε, δ and the partition chosen, however keeping this dependence in mind we
will omit the subscript ǫ in steps 1-4 to avoid cluttered notation.

To define Y ≡ Yε we set Y (t0) = y0. On the first partition interval
[t0, t1] the graph of Y will be a line with initial point (t0, Y (t0)) and slope
F (t, y0) = F (t, Y (t0)). The value of this function at t1 is Y (t1) = Y (t0) +
F (t0, Y (t0))(t1−t0). On the interval (t1, t2] we wish to define Y as the graph
of a line starting at (t1, Y (t1)) with readjusted slope F (t1, Y (t1)). In order
for this construction to work we need to make sure that F (t1, Y (t1)) is still
well defined, meaning that the point (t, Y (t1)) belongs to the rectangle R.
For this we have to check |Y (t1)−y0| ≤ b. Indeed we have that |Y (t1)−y0| =
|F (t0, Y (t0))(t1 − t0)| ≤ M(t1 − t0) ≤ Mã ≤ b by definition of ã. A similar
calculation has to be made at every step.

To be rigorous we formulate the following
Claim. For k = 0, . . . , N there are numbers yk so that

|yk − y0| ≤ M(tk − t0) ≤ b and

yk = yk−1 + F (tk−1, yk−1)(tk − tk−1).

For k = 0 the statement is clear. We argue by induction. Above we have
just verified this claim for k = 1, and in a similar way we do the induction
step.

If k ∈ {1, . . . , N−1} we prove the claim for k+1, i.e. the existence of yk+1

with the required properties, under the induction hypothesis, that y1, . . . , yk
have been found. Since by the induction hypothesis |yk − y0| ≤ M(tk − t0)
which is ≤ b the expression F (tk, yk) is well defined and thus yk+1 = yk +
F (tk, yk)(tk+1− tk) is well defined. To check that |yk+1−y0| ≤ M(tk+1− t0)
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we observe that

|yk+1 − y0| = |yk+1 − yk + yk − y0| ≤ |yk+1 − yk|+ |yk − y0|

= |F (tk, yk)|(tk+1 − tk) + |yk − y0| ≤ M(tk+1 − tk) + |yk − y0|

≤ M(tk+1 − tk) +M(tk − t0) = M(tk+1 − t0)

where we have in the second to last step used the induction hypothesis. Of
course M(tk+1 − t0) ≤ Mã ≤ b. The claim follows by induction.

Now that the claim is verified we can define Y (t) on [t0, ã] by Y (tk) = yk
and

Y (t) = yk + F (tk, yk)(t− tk), tk < t < tk+1, k = 0, 1, . . . , N − 1.

Observe that this definition is also valid for tk ≤ t ≤ tk+1. The function
Y is continuous, piecewise linear, and the absolute values of all slopes are
bounded by M .

2. The function Y ≡ Yε constructed in part 1 satisfies the inequality

|Y (t)− Y (t′)| ≤ M |t− t′| whenever t, t′ are both in [t0, t0 + ã].

Proof: W.l.o.g t′ < t. If t′, t lie in the same partition interval [tk, tk+1]
then this is immediate since

|Y (t)− Y (t′)| = |F (tk, yk)(t− t′)| ≤ M |t− t′|.

If t′, t lie in different partition intervals, t′ ∈ [tk, tk+1], t ∈ [tl, tl+1] with
k < l, then

|Y (t)− Y (t′)| =
∣∣∣Y (t)− Y (tl) +

∑

k<ν<l

Y (tν+1)− Y (tν) + Y (tk+1)− Y (t′)
∣∣∣

≤ |Y (t)− Y (tl)|+
∑

k<ν<l

|Y (tν+1)− Y (tν)|+ |Y (tk+1)− Y (t′)|

= |F (tl, yl)|(t− tl) +
∑

k<ν<l

|F (tν , yν)|(tν+1 − tν) + |F (tk, yk)|(tk+1 − t′)

≤ M(t− tl) +
∑

k<ν<l

M(tν+1 − tν) +M(tk+1 − t′) = M(t− t′) ;

here the middle terms with the sum
∑

k<ν<l are only present when when
k + 1 < l. The claim 2 is proved.

3. Note that if we define g(t) = F (tk−1, Y (tk−1)) if tk−1 ≤ t < t then g is
a step function and Y is differentiable in the open intervals (tk−1, tk) with
derivative Y ′(t) = g(t).

Claim: For t0 ≤ t ≤ t0 + ã we have

Y (t) = y0 +

∫ t

t0

g(s)ds

and ∣∣g(s)− F (s, Y (s))
∣∣ ≤ ε if tk−1 < s < tk .
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We first verify the first formula for t = tk. Then

Y (tk)− y0 = Y (tk)− Y (t0) =

k∑

ν=1

[Y (tν)− Y (tν−1)]

=

k∑

ν=1

F (tν−1, Y (tν−1))(tν − tν−1) =

k∑

ν=1

∫ tν

tν−1

g(s)ds =

∫ tk

t0

g(s)ds

Similarly for tk < t < tk+1,

Y (t)− Y (tk) = F (tk, Y (tk))(t− tk) =

∫ t

tk

g(s)ds .

We put the two formulas together and get

Y (t) = Y (tk) +

∫ t

tk

g(s)ds = y0 +

∫ tk

t0

g(s)ds+

∫ t

tk

g(s)ds = y0 +

∫ t

t0

g(s)ds .

For the second assertion let tk−1 < s < tk and observe

|g(s)− F (s, Y (s))| = |F (tk−1, Y (tk−1))− F (s, Y (s))|

and |Y (tk−1) − Y (s)| ≤ M |tk−1 − s| ≤ M(tk − tk−1) ≤ δ/2 (since the
maximal width of the partition is < δ/2M). Thus the distance of the points
(tk−1, Y (tk−1) and (s, Y (s)) is no more than δ. It follows that

|F (tk−1, Y (tk−1))− F (s, Y (s))| < ε.

4. Claim: For t0 ≤ s ≤ t0 + ã,

∣∣∣Y (t)−
(
y0 +

∫ t

t0

F (s, Y (s))ds
)∣∣∣ ≤ εã .

This follows from part 3, since the right hand side is

∣∣∣y0 +
∫ t

t0

g(s)ds −
(
y0 +

∫ t

t0

F (s, Y (s))ds
)∣∣∣

=
∣∣∣
∫ t

t0

[g(s)− F (s, Y (s))]ds
∣∣∣

and this is estimated by
∫

[t0,t]
|g(s) − F (s, Y (s))|ds ≤ ε(t− t0) ≤ εã .

5. So far we have only considered a fixed function Y ≡ Yε. Now consider
a sequence of such functions Yε(n) where ε(n) → 0 (for example ε(n) = 2−n).
These functions satisfy the properties in part 1-4 with the parameter ε =
ε(n) and with δ = δ(ε(n)).
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By part 2 the family of functions Yε(n) is uniformly bounded and uniformly
equicontinuous. Indeed for all n and all t ∈ [t0, t0 + ã] we have shown

|Yε(n)(t)− Yε(n)(t
′)| ≤ M |t− t′|

(which implies the uniform equicontinuity) and it follows also that

|Yε(n)(t)| ≤ |Yε(n)(t0)|+ |Yε(n)(t)− Yε(n)(t0)| ≤ |y0|+M |t− t0| ≤ |y0|+Mã .

Thus the Arzelà-Ascoli theorem allows us to choose an increasing sequence
of integers mn such that the subsequence Yε(mn)(t) converges uniformly on
[t0, t0+ ã] to a limit y(t). As a uniform limit of continuous functions y is con-
tinuous on [t0, t0 + ã]. Now by the uniform continuity of F and the uniform
convergence of Yε(mn) we see3 that F (t, Yε(mn)(t)) converges to F (t, y(t)),

uniformly on [t0, t0 + ã]. This implies that y0 +
∫ t

t0
F (s, Yε(mn)(s))ds con-

verges to y0 +
∫ t

t0
F (s, y(s))ds. But by part (4) we also have

∣∣∣Yε(mn)(t)−
(
y0 +

∫ t

t0

F (s, Yε(mn)(s)) ds
)∣∣∣ ≤ ε(mn)ã → 0 as n → ∞.

Thus we obtain for the limit (as m → ∞)

y(t) = y0 +

∫ t

t0

F (s, y(s)) ds

which is the desired integral equation for y. �

Remark. The proof of the Peano existence theorem is not constructive
(and, given the nonuniqueness examples below, one should perhaps not ex-
pect such a proof). In the next section will provide an alternative con-
structive proof based on a concrete iterative scheme, that works under the
additional Lipschitz assumption on F . The metric dC in the uniqueness
proof will again play an important role in that proof.

IV. Possible failure of uniqueness

The Peano theorem does not guarantee uniqueness.
We give an example. Here F (t, y) =

√
|y| which is continuous (but near

near the x-axis it does not satisfy the Lipschitz condition with respect to y
in the above uniqueness theorem). Consider the initial value problem

y′(t) =
√

|y(t)| , y(0) = 0 .

3Provide the details of this argument.
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Verify that the four functions

Y1(t) = 0 Y2(t) =

{
t2/4 if t > 0

0 if t ≤ 0

Y3(t) =

{
0 if t > 0

−t2/4 if t ≤ 0
Y4(t) =

{
t2/4 if t > 0

−t2/4 if t ≤ 0

are solutions of the initial value problem.

V. An existence and uniqueness theorem

It turns out that if the function F has additional regularity properties
then one can prove uniqueness (and the example in §IV shows that some
additional hypothesis is needed). This section does not rely on §III.

Theorem. Let Ω be a nonempty open set in R× R, let (t0, y0) ∈ Ω and let

F : Ω → R be continuous. Let R be a compact rectangle of the form

R = {(t, y) : |t− t0| ≤ a, |y − y0| ≤ b}

contained in Ω. Suppose that |F (t, y)| ≤ M for (t, y) ∈ R and let ã =
min{a, b/M}. In addition assume that there is a constant C so that

|F (t, y)− F (t, u)| ≤ C|y − u| whenever (t, y) ∈ R, (t, u) ∈ R.

Then there exists a unique function t 7→ y(t) defined on (t0− ã, t0+ ã) which
satisfies the initial value problem

y′(t) = F (t, y(t)) for |t− t0| < ã

y(t0) = y0.

Remark: The additional hypothesis says that on R the function F satisfies
a Lipschitz-condition with respect to the variable y. In the case where F
is differentiable with respect to y and the partial derivative ∂F

∂y
satisfies the

bound |∂F
∂y

| ≤ C on R, the hypothesis is satisfied. This is a consequence of

the mean value theorem applied to y 7→ F (t, y), for any fixed t.

Proof of a weaker version of the theorem. The existence of a solution
in [t0−ã, t0+ã] follows from the previous theorem and we shall now establish
uniqueness. In this weaker version we will be content to establish uniqueness
on a smaller interval [t0 − γ, t0 + γ] where γ = min{ã, (2C)−1}.

Let Y1, Y2 are solutions; we will prove that Y1 = Y2 on [t0 − γ, t0 + γ].
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Y1 and Y2 will then satisfy the above integral equation, i.e.

Y1(t) = y0 +

∫ t

t0

F (s, Y1(s)) ds ,

Y2(t) = y0 +

∫ t

t0

F (s, Y2(s)) ds .

Hence

Y2(t)− Y1(t) =

∫ t

t0

[
F (s, Y2(s))− F (s, Y1(s))] ds

and therefore by our Lipschitz condition

|Y2(t)− Y1(t)| ≤

∫ t0+γ

t0−γ

C|Y2(s)− Y1(s)| ds.

We take the maximum over t ∈ [t0 − γ, t0 + γ] on the right hand side and
get

max
|t−t0|≤γ

|Y2(t)− Y1(t)| ≤ 2γC max
|t−t0|≤γ

|Y2(t)− Y1(t)|.

Since we assumed 2γC < 1 this forces max|t−t0|≤γ |Y2(t) − Y1(t)| = 0, that
is Y1(t) = Y2(t) for t ∈ [t0 − γ, t0 + γ]. �

Proof of the stronger claimed version of the theorem. It remains to
show that uniqueness holds on the [t0 − ã, t0 + ã] (which does not depend
on C). This requires a refined estimate.

We start as above with solutions Y1 and Y2 and get

Y2(t)− Y1(t) =

∫ t

t0

[
F (s, Y2(s))− F (s, Y1(s))] ds.

By the Lipschitz condition,

|Y2(t)− Y1(t)| ≤

{
C
∫ t

t0
|Y2(s)− Y1(s)| ds if t ≥ t0

C
∫ t0
t

|Y2(s)− Y1(s)| ds if t ≤ t0
.

It will now be advantageous to replace on the space of functions which
are continuous on [t0 − ã, t0 + ã], the standard sup norm by

‖f‖∞;C = max
|t−t0|≤ã

e−2C|t−t0||f(t)|;

this is a sup-norm with a damping factor.
The associated metric is then

dC(f, g) = max
|t−t0|≤ã

e−2C|t−t0||f(t)− g(t)|.

We are aiming to show the inequality dC(Y1, Y2) ≤
1
2dC(Y1, Y2) which forces

dc(Y1, Y2) = 0 and hence Y1 = Y2 on [t0 − ã, t0 + ã].
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To show this inequality we estimate for t ∈ [t0, t0 + ã]

|Y2(t)− Y1(t)| ≤

∫ t

t0

C|Y2(s)− Y1(s)| ds

= C

∫ t

t0

e2C(s−t0)e−2C(s−t0)|Y2(s)− Y1(s)| ds

≤ C

∫ t

t0

e2C(s−t0)dC(Y1, Y2) ds = CdC(Y1, Y2)

∫ t

t0

e2C(s−t0) ds

= CdC(Y1, Y2)
e2C(t−t0) − 1

2C
≤

1

2
e2C|t−t0|dC(Y1, Y2) .

Similarly, for t ∈ [t0 − ã, t0]

|Y2(t)− Y1(t)| ≤

∫ t0

t

C|Y2(s)− Y1(s)| ds

= C

∫ t0

t

e2C(t0−t)e−2C(t0−s)|Y2(s)− Y1(s)| ds

≤ C

∫ t0

t

e2C(t0−s)dC(Y1, Y2) ds

= CdC(Y1, Y2)
e2C(t0−s) − 1

2C
≤

1

2
e2C|t0−t|dC(Y1, Y2) .

Combining both cases we see that

e−2C|t−t0||Y2(t)− Y1(t)| ≤
1

2
dC(Y1, Y2) whenever |t− t0| ≤ ã

which means dC(Y1, Y2) ≤
1
2dC(Y1, Y2). �


