
The space C(K)

Let K be a compact metric space, with metric dK . Let B(K) be the space
of real valued bounded functions on K with the sup-norm

‖f‖∞ = sup
x∈K
|f(x)|

Proposition : B(K) is complete.

Proof. Let fn be a Cauchy sequence. By the definition of ‖ · ‖∞ this implies
that for every x ∈ K the numerical sequence fn(x) is a Cauchy sequence in
R, and thus convergent in R. Define f(x) = limn→∞ fn(x).

We show that f is bounded, and that ‖fn − f‖∞ → 0. Let ε > 0. Then
there is N = N(ε) so that supx |fn(x) − fm(x)| < ε/2 for n,m ≥ N . This
shows that |fn(x)−f(x)| ≤ ε/2 for n,m ≥ N and for all x ∈ K. In particular
|f(x)| ≤ sup |fN (x)| + ε so that f is bounded; moreover ‖fn − f‖∞ ≤ ε/2
for n ≥ N .

As ε > 0 was arbitrary this establishes that ‖fn−f‖∞ → 0 as n→∞. �

Let C(K) be the vector space of real valued continuous functions on K.

Proposition. Every f ∈ C(K) is bounded and uniformly continuous.

Proof. Let ε > 0. We have to show that there is δ > 0 so that |f(x)−f(x′)| <
ε whenever dK(x, x′) < δ; moreover there is M so that supx∈K |f(x)| ≤M .

As f is continuous, for every x there is a δx > 0 so that for all t with
dK(t, x) < δx we have |f(x)− f(t)| < ε/2. As K is compact there is a finite
number of points xi, i = 1, . . . , L so that the balls B(xi, δxi/2) cover K.

Define δ = mini=1,...,L δxi/2. Suppose dK(x, x′) < δ. Then there is an xi
so that dK(x, xi) < δxi/2. Then also

dK(x′, xi) ≤ dK(x′, x) + dK(x, xi) < δ + δxi/2 ≤ δxi
so that

|f(x)− f(x′)| ≤ |f(x)− f(xi)|+ |f(xi)− f(x′)| < ε/2 + ε/2 = ε.

This already shows that f is uniformly continuous.
By the same argument we have |f(x)| ≤ |f(x) − f(xi)| + |f(xi)| ≤ ε +

|f(xi)| for x ∈ B(xi, δxi/2). Thus, for all x ∈ K it follows that |f(x)| ≤
maxi=1,...,L |f(xi)|+ ε so that certainly f is bounded. �

We have just seen that C(K) is a subspace of B(K). We consider C(K)
as a normed space with the norm (and therefore with the metric) inherited
from B(K). The following result shows that C(K) is complete.

Proposition. C(K) is a closed subspace of B(K).

Proof. Let fn be a sequence of functions in C(K) which converges to f (i.e.
‖fn − f‖∞ → 0). We will show that f is (uniformly) continuous, i.e. given
ε > 0 there is δ > 0 so that |f(x)− f(x′)| < ε if dK(x, x′) < δ.
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Let ε > 0. Let N be so that ‖fn − f‖∞ < ε/4 for all n ≥ N , that means
|fn(t)−f(t)| < ε/4 for all t ∈ K and all n ≥ N . Since fN is (uniformly) con-
tinuous there is δ > 0 so that |fN (x)−fN (x′)| < ε/2 whenever dK(x, x′) < δ.
For those x, x′ we also have

|f(x)− f(x′)| ≤ |f(x)− fN (x)|+ |fN (x)− fN (x′)|+ |fN (x′)− f(x′)|
≤ 2‖f − fN‖∞ + |fN (x)− fN (x′)| < 2ε/4 + ε/2 = ε. �

The Arzelà-Ascoli theorem

Definition. Let F be a collection of functions in C(K).
(i) The collection F is said to be pointwise bounded if for every x ∈ K

there is an M(x) ≥ 0 so that |f(x)| ≤M(x) for every f ∈ F .
(ii) The collection F is said to be equicontinuous 1 if for every ε > 0 there

exists δ > 0 so that for all f ∈ F and x, x′ with dK(x, x′) < δ we have
|f(x)− f(x′)| < ε.

Remark: It is not difficult to show that a collection F which is both equicon-
tinuous and pointwise bounded on a compact set K is also uniformly bounded
on K, meaning that there is an M ≥ 0 so that ‖f‖∞ = supx∈K |f(x)| ≤M
for all f ∈ F . This implication is hidden in the proof of the theorem below
where a stronger property is proved (namely that F is totally bounded).

Theorem. A subset F of C(K) is totally bounded if and only if it is point-
wise bounded and equicontinuous.

Proof of necessity: If F is a totally bounded subset of C(K) then F is
pointwise bounded and equicontinuous.

By the definition of F totally bounded there are functions f1, . . . , fN in F
so that for every f ∈ F there is an index i ∈ {1, . . . , N} with ‖fi−f‖∞ < ε/4.
Clearly ‖f‖ ≤ ‖fi‖∞ + ‖f − fi‖∞ ≤ maxi=1,...,N ‖fi‖∞ + ε/4 so that F is
bounded in norm (and clearly pointwise bounded).

Now we show the equicontinuity of the family F . By a Lemma above each
fi is uniformly continuous. Thus for each i there exists a δi > 0 such that
|fi(x) − fi(x′)| < ε/2 whenever dK(x, x′) < δi. Let δ = min{δ1, . . . , δN}.
Then δ > 0 and we have |fi(x) − fi(x

′)| < ε/2 for every i whenever
dK(x, x′) < δ.

Now pick any f ∈ F , and let i be so that ‖fi − f‖∞ < ε/4, and let x, x′

be so that dK(x, x′) < δ. Then

|f(x)− f(x′)| ≤ |f(x)− fi(x)|+ |fi(x)− fi(x′)|+ |fi(x′)− f(x′)|
≤ 2‖f − fi‖∞ + |fi(x)− fi(x′)| < 2ε/4 + ε/2 = ε . �

1Some authors also use the terminology “uniformly equicontinous”.
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Proof of sufficiency: If F ⊂ C(K) is equicontinuous and pointwise bounded
then F is totally bounded.

Fix ε > 0. We shall first find a finite collection G of functions in B(K) so
that for every f ∈ F there exists a g ∈ G with ‖f − g‖∞ < ε.

Let δ > 0 so that for all f ∈ F we have |f(x) − f(x′)| < ε/4 whenever
|x− x′| < δ. Again we use the compactness of K and cover K with finitely
many balls B(xi, δ), i = 1, . . . , L. There is Mi so that |f(xi)| ≤ Mi for all
f ∈ F . Let M = 1 + maxi=1,...,LMi.

We now let A1 = B(x1, δ), and Ai = B(xi, δ)\∪i−1ν=1B(xν , δ), for 2 ≤ i ≤ L.
(Some of the Ai could be empty but that does not matter).

Let ZL(M, ε) be the set of L-tuples ~n of integers ~n = (n1, . . . , nL) with
the property that |ni|ε/4 ≤ M for i = 1, . . . , L. Note that ZL(M, ε) is a
finite set (indeed its cardinality is ≤ (8Mε−1 + 1)L).

We now define a collection G of functions which are constant on the sets
Ai (these are analogues of step functions). Namely given ~n in ZL(M, ε)
we let g~n be the unique function that takes the value niε/4 on the set Ai
(provided that that set is nonempty). Clearly the cardinality of G is not
larger than the cardinality of ZL(M, ε).

Let f ∈ F . Consider an Ai which by construction is a subset of B(xi, δ).
Then |f(x) − f(xi)| < ε/4 for all x ∈ Ai (this condition is vacuous if Ai
is empty). Now |f(xi)| ≤ Mi ≤ M and therefore there exists an integer ni
with the property that −M ≤ niε/4 ≤M and |f(xi)− niε/4| < ε/4. Then
we also have that for i = 1, . . . , L and for every x ∈ Ai,

|f(x)− niε/4| ≤ |f(x)− f(xi)|+ |f(xi)− niε/4| < ε/4 + ε/4 = ε/2.

This implies that for this choice of ~n = (n1, . . . , nL) we get ‖f−g~n‖∞ < ε/2.
Finally, we need to find a finite cover of F with ε-balls centered at points

in F . Consider the subcollection G̃ of functions in G for which the ball of
radius ε/2 centered at g contains a function in F . Denote the functions in

G̃ by g1, . . . , gN . The balls of radius ε/2 centered at g1, . . . gN cover F . For
i = 1, . . . , N pick fi ∈ F so that ‖gi−fi‖∞ < ε/2. By the triangle inequality
(for the norm in B(K) whose restriction to C(K) is also the norm in C(K))
the ball of radius ε/2 centered at gi is contained in the ball of radius ε
centered at fi. Thus the balls of radius ε centered at fi, i = 1, . . . , N cover
the set F . �

Corollary. A closed subset F of C(K) is compact if and only if it is point-
wise bounded and equicontinuous.

Proof. The space B(K) is complete and so is the closed subspace C(K).
Since we now assume that F is closed in C(K) the metric space F is com-
plete. Thus by the characterization of compactness (F compact ⇐⇒ F
totally bounded and complete) the corollary follows from the theorem. �
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Corollary. An equicontinuous and bounded sequence {fn} of functions in
C(K) has a uniformly convergent subsequence.

Proof. The closure of F := {fn : n ∈ N} is bounded, complete, and equicon-
tinuous, thus compact. By a part of the theorem on the characterization of
compactness it is also sequentially compact, therefore fn has a convergent
subsequence. �


