The space C(K)

Let K be a compact metric space, with metric di. Let B(K) be the space
of real valued bounded functions on K with the sup-norm

[flloo = sup | f(z)]
zeK

Proposition : B(K) is complete.

Proof. Let f, be a Cauchy sequence. By the definition of || - || this implies
that for every x € K the numerical sequence f,(z) is a Cauchy sequence in
R, and thus convergent in R. Define f(z) = limy,_o0 fn ().

We show that f is bounded, and that || f, — f|lcc — 0. Let € > 0. Then
there is N = N(¢g) so that sup, |fn(x) — fm(z)| < /2 for n,m > N. This
shows that |f,(z)— f(x)| < e/2forn,m > N and for all z € K. In particular
|f(x)] < sup|fn(z)|+ € so that f is bounded; moreover ||f, — flloo < €/2
for n > N.

As e > 0 was arbitrary this establishes that || f,, — f|lcc = 0asn — co. O

Let C(K) be the vector space of real valued continuous functions on K.
Proposition. Every f € C(K) is bounded and uniformly continuous.

Proof. Let e > 0. We have to show that there is § > 0so that |f(z)—f(2')| <
e whenever dg (z,2") < d; moreover there is M so that sup,cx |f(z)| < M.
As f is continuous, for every x there is a §, > 0 so that for all ¢ with
di(t,z) < d; we have |f(x) — f(t)| < €/2. As K is compact there is a finite
number of points z;, i = 1,..., L so that the balls B(z;,0,/2) cover K.
Define 6 = min;— 1, dz,/2. Suppose di(z,z") < 0. Then there is an z;
so that di(x,x;) < dz,/2. Then also

di (2, 2;) < dg (2, 2) + dic (2, 2;) <0+ 6z, /2 < 6s
so that
[f(@) = F@ < [f(@) = fl@a)l +|f (i) — f@)] <e/2+e/2=e.

This already shows that f is uniformly continuous.

By the same argument we have |f(z)| < |f(z) — f(z:)| + [f(2z)| < e+
|f(z;)| for x € B(x;,04,/2). Thus, for all z € K it follows that |f(z)| <
max;—1 .1, |f(z;)| + € so that certainly f is bounded. O

We have just seen that C(K) is a subspace of B(K). We consider C(K)
as a normed space with the norm (and therefore with the metric) inherited
from B(K). The following result shows that C(K) is complete.

Proposition. C(K) is a closed subspace of B(K).

Proof. Let f, be a sequence of functions in C'(K') which converges to f (i.e.
| fn = flloo = 0). We will show that f is (uniformly) continuous, i.e. given
e > 0 there is § > 0 so that |f(z) — f(2')] < ¢ if dg(z,2") < 0.
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Let € > 0. Let N be so that ||f, — fllec < &/4 for all n > N, that means
|fn(t)—f(t)] <e/dforallt € K and all n > N. Since fy is (uniformly) con-
tinuous there is 6 > 0 so that | fx(z)— fn(2')] < £/2 whenever di (x,2") < 6.
For those z,z’ we also have

F(@) = f(@)] < [F(@) - fn@)| + | fn () = fla))| + | fn () — £(2)
<20f = fwlloo + fn(0) - fu(@))| < 2e/4+¢/2=c. O

The Arzela-Ascoli theorem

Definition. Let F be a collection of functions in C(K).

(i) The collection F is said to be pointwise bounded if for every x € K
there is an M (x) > 0 so that |f(z)| < M (z) for every f € F.

(ii) The collection F is said to be equicontinuous * if for every ¢ > 0 there
exists 6 > 0 so that for all f € F and z,2’ with dg(z,2’) < § we have

[f(z) = f(@)] <e.

Remark: Tt is not difficult to show that a collection F which is both equicon-
tinuous and pointwise bounded on a compact set K is also uniformly bounded
on K, meaning that there is an M > 0 so that || f||cc = sup,ex |f(z)] < M
for all f € F. This implication is hidden in the proof of the theorem below
where a stronger property is proved (namely that F is totally bounded).

Theorem. A subset F of C(K) is totally bounded if and only if it is point-
wise bounded and equicontinuous.

Proof of necessity: If F is a totally bounded subset of C(K) then F is
pointwise bounded and equicontinuous.

By the definition of F totally bounded there are functions fi, ..., fy in F
so that for every f € F thereisanindexi € {1,..., N} with || fi— f]lc < €/4.
Clearly [If1| < Ifilloe + I — filloo < maxiy... [l filloo + £/4 so that F is
bounded in norm (and clearly pointwise bounded).

Now we show the equicontinuity of the family F. By a Lemma above each
fi is uniformly continuous. Thus for each ¢ there exists a §; > 0 such that
|fi(x) — fi(z")] < /2 whenever dg (z,2’) < §;. Let § = min{dy,...,0n}.
Then § > 0 and we have |fi(z) — fi(2')] < &/2 for every i whenever
di(xz,2") < 6.

Now pick any f € F, and let i be so that ||f; — f|lco < /4, and let z, 2’
be so that dg (z,z") < 0. Then

(@) — f@) < (@) ~ file)] +1file) — fila)] + | fila') — ()
<20f ~ fillo + 1fil@) — file)| < 2e/4tef2=c. O

1Some authors also use the terminology “uniformly equicontinous”.
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Proof of sufficiency: If F C C(K) is equicontinuous and pointwise bounded
then F is totally bounded.

Fix € > 0. We shall first find a finite collection G of functions in B(K) so
that for every f € F there exists a g € G with || f — gllc < €.

Let 6 > 0 so that for all f € F we have |f(z) — f(2/)| < €/4 whenever
|x — 2’| < §. Again we use the compactness of K and cover K with finitely
many balls B(x;,0), i = 1,..., L. There is M; so that |f(z;)] < M; for all
feF. Let M =1+ max;=1,...,L M;.

We now let A1 = B(z1,6), and A; = B(2;,8)\U'Z} B(z,, ), for2 < i < L.
(Some of the A; could be empty but that does not matter).

Let Z%(M,e) be the set of L-tuples 7 of integers 7i = (n1,...,nr) with
the property that |n;|e/4 < M for i = 1,...,L. Note that ZX(M,e¢) is a
finite set (indeed its cardinality is < (8Me~t + 1)5).

We now define a collection G of functions which are constant on the sets
A; (these are analogues of step functions). Namely given 7 in Z%(M,¢)
we let ¢" be the unique function that takes the value n;e/4 on the set A;
(provided that that set is nonempty). Clearly the cardinality of G is not
larger than the cardinality of Z%(M,¢).

Let f € F. Consider an A; which by construction is a subset of B(x;, ).
Then |f(x) — f(x;)| < €/4 for all € A; (this condition is vacuous if A;
is empty). Now |f(z;)] < M; < M and therefore there exists an integer n;
with the property that —M < n;e/4 < M and |f(x;) — ne/4| < e/4. Then
we also have that for i = 1,..., L and for every z € A;,

[f (@) —nie/4] < [f(x) = [zl + |f(2i) —nie /4] <e/d+e/d=e/2.

This implies that for this choice of @i = (ny,...,nr) we get || f —¢" |00 < /2.

Finally, we need to find a finite cover of F with e-balls centered at points
in F. Consider the subcollection G of functions in G for which the ball of
radius €/2 centered at g contains a function in F. Denote the functions in
G by g1,...,9n. The balls of radius £/2 centered at g, ... gy cover F. For
i=1,...,N pick f; € F so that ||g; — fi]lco < €/2. By the triangle inequality
(for the norm in B(K) whose restriction to C'(K) is also the norm in C(K))
the ball of radius /2 centered at g; is contained in the ball of radius e
centered at f;. Thus the balls of radius € centered at f;, i =1,..., N cover
the set F. O

Corollary. A closed subset F of C(K) is compact if and only if it is point-
wise bounded and equicontinuous.

Proof. The space B(K) is complete and so is the closed subspace C'(K).
Since we now assume that F is closed in C(K) the metric space F is com-
plete. Thus by the characterization of compactness (F compact <= F
totally bounded and complete) the corollary follows from the theorem. [
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Corollary. An equicontinuous and bounded sequence {f,} of functions in
C(K) has a uniformly convergent subsequence.

Proof. The closure of F := {f, : n € N} is bounded, complete, and equicon-
tinuous, thus compact. By a part of the theorem on the characterization of
compactness it is also sequentially compact, therefore f,, has a convergent
subsequence. O



