Some analysis problems ¹

1. Let f be a continuous function on \mathbb{R} and let for n = 1, 2, ...,

$$F_n(x) = \int_0^x (x-t)^{n-1} f(t) dt$$

Prove that F_n is n times differentiable, and prove a simple formula for its n-th derivative.

2. Let

$$f(x,y) = \sum_{n=1}^{\infty} \frac{x}{x^2 + yn^2}, \quad y > 0.$$

(i) Show that for each y > 0, the limit

$$g(y) := \lim_{x \to +\infty} f(x, y)$$

exists. Evaluate the limit function g.

- (ii) Determine if f(x, y) converges to g(y) uniformly for $y \in (0, \infty)$ as $x \to +\infty$.
- **3.** (i) Find an explicit value of $\epsilon > 0$ such that for every $x \in [0, 1]$

$$|\sqrt{x} - \sqrt{x + \epsilon}| \leqslant \frac{1}{200}.$$

(ii) Find an explicit integer N such that there exists a polynomial P of degree at most N such that for every $x \in [0, 1]$

$$|\sqrt{x} - P(x)| \leqslant \frac{1}{100}.$$

Hint: Although this may not be clever, you can use the expansion of $\sqrt{x+\epsilon}$ in power series in (x-1).

4. Determine all complex-valued functions f, which are continuous in [0, 2] and satisfy the condition $\int_0^2 f(x)x^n dx = 0$ for $n = 0, 1, 2, 3, \ldots$

5. Does the series

$$\sum_{n=1}^{\infty} e^{-x/n} \frac{(-1)^n}{n}$$

converge uniformly on $[0, \infty)$?

Prove or disprove.

¹Mostly from previous qualifying exams, some slightly modified

6. Let $\{a_n\}_{n=1}^{\infty}$ be a numerical sequence and let

$$b_n = \frac{1}{n^6} \sum_{k=1}^n k^5 a_k.$$

(i) Does the limit exist when $a_k = a$ is constant?

(ii) Prove or disprove: If a_n converges then b_n converges.

(iii) Prove or disprove: If b_n converges then a_n converges.

7. Given a sequence $\{c_n\}_{n=0}^{\infty}$ of complex numbers, we let $s_n = \sum_{k=0}^{n} c_k$ denote the partial sums and $\sigma_N = \frac{s_0 + \dots + s_N}{N+1}$ their arithmetic means. We say that the series $\sum_{n \ge 0} c_n$ is *Cesáro summable* to σ if $\lim_{N \to \infty} \sigma_N = \sigma$.

Show that if $\sum_{n\geq 0} c_n$ is Cesáro summable to σ and $\lim_{n\to\infty} nc_n = 0$ then the series $\sum c_n$ converges and $\sum_{n=0}^{\infty} c_n = \sigma$.

8. Let

$$s_N(x) = \sum_{n=1}^{N} (-1)^n \frac{x^{3n}}{n^{2/3}}$$

Prove that $s_N(x)$ converges to a limit s(x) on [0, 1] and that there is a constant C so that for all $N \ge 1$ the inequality

$$\sup_{x \in [0,1]} |s_N(x) - s(x)| \le C N^{-2/3}$$

holds.

9. Let $\alpha \in \mathbb{R}$, and let u be the function defined on $(1, \infty)$, by $u(x) = x^{\alpha}$. For which values of α does

$$\frac{u(x+h) - u(x)}{h} \to u'(x) ,$$

uniformly on $(1, \infty)$, as $h \to 0$ $(h \neq 0)$.

10. Let f be a real-valued differentiable function defined on the entire real line. Assume that $\frac{f(x+h)-f(x)}{h} \rightarrow f'(x)$, uniformly as $h \rightarrow 0$. Show that f' is uniformly continuous. Must f itself be uniformly continuous?

11. Recall the following definition: a function $g : (0,1) \to \mathbb{R}$ has bounded variation if

$$\sup_{N \ge 2} \sup_{0 < x_N < \dots < x_1 < 1} |g(x_1) - g(x_2)| + \dots + |g(x_{N-1}) - g(x_N)| < \infty,$$

where the second sup is taken over all strictly decreasing sequences $x_N < \cdots < x_1$ with $x_i \in (0, 1)$.

Find the exponents p for which the function $f: (0,1) \to \mathbb{R}$,

$$f(x) = x^p \sin(1/x)$$

has bounded variation.

12. Let $\lambda_1, \lambda_2, ..., \lambda_n, ...$ be real numbers. Argue that

$$f(x) = \sum_{n=1}^{\infty} \frac{e^{i\lambda_n x}}{n^2}$$

defines a continuous bounded function on \mathbb{R} and then show that the limit

$$\lim_{T \to \infty} \frac{1}{T} \int_{-T}^{T} f(x) dx$$

exists.

13. For every $b \in \mathbb{R}$ prove or disprove that the improper integral

$$\int_0^\infty x^b \cos(e^x) dx$$

converges.

14. (i) Let $\{f_n\}$ be a sequence of C^1 functions on a compact interval I such that $|f_n(x)| + |f'_n(x)| \leq M$ for all $x \in I$. Show that there is a subsequence $\{f_{n_k}\}$ which converges uniformly on I.

(ii) Is the preceding statement still true if we drop the assumption that I is compact? (Proof or counterexample)

(iii) Can one also show that under the assumptions in (i) the sequence f_n has a subsequence whose derivatives converge uniformly? (Proof or counterexample)

15. Let $\sum_{n=1}^{\infty} a_n$ be the rearrangement of $\sum_{n=1}^{\infty} \frac{(-1)^n}{n}$ where *M* positive terms are followed by *N* negative terms, *i.e.*

$$\sum_{n=1}^{\infty} a_n = \frac{1}{2} + \frac{1}{4} + \dots + \frac{1}{2M} - 1 - \frac{1}{3} - \dots - \frac{1}{2N-1} + \frac{1}{2(M+1)} + \dots$$

Compute $\sum_{n=1}^{\infty} a_n$.

4

16. (i) Determine for which $\eta \in \mathbb{R}$ the indefinite integral

$$\int_0^\infty t^{i\eta-1}\sin t\,dt$$

exists.

(ii) Determine whether the limit

$$\lim_{\eta \to 0} \int_0^\infty t^{i\eta - 1} \sin t \, dt$$

exists.

(iii) Determine whether the limit

$$\lim_{\eta \to \infty} \int_1^\infty t^{i\eta - 1} \sin t \, dt$$

exists.

17.

Let $1 \leq p < q < \infty$. Prove or disprove the following statements. (i) $L^p(\mathbb{R}^n) \subset L^q(\mathbb{R}^n)$. (ii) $L^q(\mathbb{R}^n) \subset L^p(\mathbb{R}^n)$. (iii) $L^q([0,1]) \subset L^p([0,1])$. (iv) $L^p([0,1]) \subset L^q([0,1])$. (v) $\ell^p(\mathbb{Z}) \subset \ell^q(\mathbb{Z})$. (vii) $\ell^q(\mathbb{Z}) \subset \ell^p(\mathbb{Z})$. (viii) $\ell^p(\mathbb{Z}) \subset \ell^q(\mathbb{Z})$. (ix) $L^p(\mathbb{R}^n) \cap L^q(\mathbb{R}^n) \subset L^s(\mathbb{R}^n)$ for all $s \in [p,q]$.

18. Suppose $\alpha \ge 0$, and let f be a bounded function on the real line with the property that

$$|f(x+h) - f(x)| \leq A|h|^{\alpha}$$

for all $h \in \mathbb{R}$ and almost all $x \in \mathbb{R}$.

Show that there is a constant C and for each t > 0 a C¹-function g_t such that

$$\sup_{x} |f(x) - g_t(x)| \leqslant Ct^{\alpha}$$

and

$$\sup_{x} |g_t'(x)| \leqslant Ct^{\alpha - 1}.$$

Hint: Use an approximation of the identity.

19. Let X, Y be normed spaces, and let Ω be an open subset of X. A function $f: \Omega \to Y$ is differentiable at $a \in \Omega$ if there is a bounded linear transformation $L: X \to Y$ so that

$$\lim_{\|h\|\to 0} \frac{\|f(a+h) - f(a) - L(h)\|_Y}{\|h\|_X} = 0.$$

(i) Show that this linear transformation is unique. We call it the derivative of f at a, also denoted by f'(a).

(ii) Let M_n be the set of $n \times n$ matrices. Specify the norm on M_n that you work with. Define $g: M_n \to M_n$ by $g(A) = A^3$. Show that g is differentiable everywhere and determine the derivative g'(A).

(iii) Let $\Omega \subset M_n$ be the subset of invertible matrices. Show that Ω is open Define $f : \Omega \to \Omega$ by $f(A) = A^{-1}$. Show that f is differentiable on Ω and determine f'(A).

(iv) Let M_n be the set of $n \times n$ matrices and define $f : M_n \to \mathbb{R}$ by $f(A) = \det(A)$. Show that f is differentiable everywhere and determine f'(A).

20. Let $b \ge 1$. The sequence $\{a_n\}_{n=0}^{\infty}$ satisfies

$$a_{n+1} = \frac{a_n}{2} + \frac{b}{2a_n} \text{ for } n \ge 0.$$

(i) Suppose that a_n converges to L. Then determine L.

(ii) Does a_n converge?

21. Let f be a continuous function on [0, 1]. Prove that

$$\lim_{p \to \infty} \left(\int_0^1 |f(x)|^p dx \right)^{1/p}$$

exists and identify this limit.

22. For which exponent p > 0 is the function

$$f(x,y) = \frac{1}{|x|^p + y^2}$$

integrable in a neighborhood of 0 in \mathbb{R}^2 ?

Hint: you can decompose the domain of integration in regions defined by $2^{-m-1} \leq |x|^p + y^2 < 2^{-m}$.

23. Let a > 0 and b > 0. Prove that there is a unique differentiable function f defined on $(-\infty, \infty)$ satisfying f(0) = 0 and

$$f'(x) = a - b|f(x)|^{3/2}$$

for all x. Also show that $\lim_{x\to\infty} f(x)$ exists and determine this limit.

24. Let q be the solution on some interval [0, T] to the problem:

$$g(0) = 1$$

$$g'(t) = [g(t)]^2 (2 + \sin(e^t + g(t)))]$$

Show that T < 1.

25. Let
$$f \in L^1(\mathbb{R})$$
 (meaning that $\int_{-\infty}^{\infty} |f(x)| dx < \infty$). Let
$$G(\lambda) = \int_{\mathbb{R}} e^{i\lambda t^2} f(t) dt.$$

Prove that G is a continuous function and that $\lim_{\lambda \to \infty} G(\lambda) = 0$.

26.

(i) Does $p_N = \prod_{n=2}^N (1 + \frac{(-1)^n}{n})$ tend to a nonzero limit as $N \to \infty$? (ii) Does $q_N = \prod_{n=2}^N (1 + \frac{(-1)^n}{\sqrt{n}})$ tend to a nonzero limit as $N \to \infty$?

27. Let *a* be a decreasing C^1 -function in $[0, \infty)$ such that $\lim_{t\to\infty} a(t) = 0$. (i) Show that $\lim_{N\to\infty} \int_0^N a(t) \sin(tx) dt$ exists for all x > 0. (ii) For $\epsilon > 0$ show that $\lim_{N\to\infty} \int_0^N a(t) \sin(tx) dt$ converges uniformly for $x \in C$.

 $[\epsilon,\infty).$

(iii) Show that uniform convergence fails in $(0, \infty)$, for a suitable choice of a.

28. For $n \ge 0$ let $a_n = [\log(2+n)]^{-1}$.

(i) For which complex numbers z does the series $\sum_{n=0}^{\infty} a_n z^n$ converge? (ii) For which complex numbers z does the series $\sum_{n=0}^{\infty} a_n z^n$ converge absolutely?

(iii) On which compact sets of the complex plane does the series $\sum_{n=0}^{\infty} a_n z^n$ converge uniformly?

29. Give an example of a Riemann integrable function $f: [0,1] \rightarrow [0,1]$ which has a dense set of discontinuities. Verify all conclusions.

30. Let

$$s_n(x) = \sum_{k=1}^n \sin(kx).$$

Show that there exists a constant C, independent of N, x, such that

$$\sum_{n=1}^{N} \frac{|s_n(x)|}{n^2} < C, \quad 0 < x < \pi, \quad N = 1, 2, 3, \dots$$

(*Hint*: Estimate $s_n(x)$ for $n \leq \frac{1}{x}$ and for $n > \frac{1}{x}$ separately.)

31. For $\lambda > 1$, define

$$H(\lambda) = \int_0^{+\infty} e^{-\lambda(x^3 + x^5)} dx$$

Prove that, for some constant C > 0,

$$H(\lambda) = C\lambda^{-1/3} + O(\lambda^{-1}).$$

Hint: Evaluate $\int_0^{+\infty} e^{-\lambda x^3} dx$ in terms of λ and $\int_0^{+\infty} e^{-x^3} dx$. Use the same change of variables, and estimate the difference $\int_0^{+\infty} e^{-\lambda(x^3+x^5)} dx - \int_0^{+\infty} e^{-\lambda x^3} dx$, dealing separately with 'large' and 'small' values of x.

32. Let $M(n, \mathbb{R})$ be the vector space of $n \times n$ matrices with real entries. Denote by $\|\cdot\|$ a norm on $M(n, \mathbb{R})$. For $A \in M(n, \mathbb{R})$ let tr(A) be the trace of A (that is the sum over all entries on the diagonal). Show that there are neighborhoods U, V of the identity matrix I such that for every $A \in V$ there is a unique $B \in U$ with $n^{-1}tr(B)B^3 = A$.

33. Let $u : \mathbb{R}^3 \to \mathbb{R}$ denote a smooth function and let $\Delta u = \partial_x^2 u + \partial_y^2 u + \partial_z^2 u$ be the Laplacian of u.

Suppose that $\Delta u = 1$ on \mathbb{R}^3 and $u(x, y, z) = x^3 y^3$ on the sphere of radius R centered at the origin. Find u(0, 0, 0).

34. Calculate

$$\oint_{\mathcal{C}} \frac{-y^3 dx + xy^2 dy}{(x^2 + y^2)^2}$$

where C is the plane curve given by the equation $10x^{12} + 22y^8 = 240$, with the positive orientation.

35. Let $\mathcal{D} \subset \mathbb{R}^d$, $d \ge 2$ be a compact convex set with smooth boundary $\partial \mathcal{D}$ so that the origin belongs to the interior of \mathcal{D} . For every $y \in \partial \mathcal{D}$ let $\alpha(x) \in [0, \pi)$ be the angle between the position vector x and the outer normal vector $\mathfrak{n}(x)$. Let ω_d be the surface area of the unit sphere in \mathbb{R}^d . Compute

$$\frac{1}{\omega_d}\int_{\partial \mathcal{D}}\frac{\cos(\alpha(x))}{|x|^{d-1}}d\sigma(x)$$

where $d\sigma$ denotes surface measure on $\partial \mathcal{D}$.

Does (a reasonable interpretation of) your result hold true if d = 1?

36. Let f be a function in $C^1(\mathbb{R})$ with compact support and let b > 0. Show that the limit

$$A_b(x) = \lim_{\varepsilon \to 0+} \int_{\mathbb{R} \setminus [-\epsilon, b\epsilon]} \frac{f(x-y)}{y} dy$$

exists for all $x \in \mathbb{R}$.

How do $A_b(x)$ and $A_c(x)$ differ for $b \neq c$?

37. Prove or disprove the following statement:

$$\lim_{\varepsilon \to 0} \iint_{x^2 + y^2 \ge \varepsilon^2} \frac{f(x, y)}{(x + iy)^3} \, dx \, dy$$

exists for every function $f \in C^2(\mathbb{R}^2)$ with compact support.

Hint: For 0 < a < b, what are the values of

$$\iint_{a^2 < x^2 + y^2 < b^2} \frac{x}{(x + iy)^3} \, dx \, dy \text{ and } \iint_{a^2 < x^2 + y^2 < b^2} \frac{y}{(x + iy)^3} \, dx \, dy?$$

38. Let X be a metric space with metric d. (i) Define $\rho: X \times X \to \mathbb{R}$ by

$$\rho(x,y) = \frac{d(x,y)}{1+d(x,y)}.$$

Prove that ρ is a metric on X.

(ii) Show that a subset U of X is open with respect to the metric d if and only if it is open with respect to the metric ρ .

39. Let $f : \mathbb{R} \to \mathbb{R}$ be a continuous function with $f(x) \ge 0$ for all $x \ge 0$. Consider the two statements

$$\int_{0}^{\infty} f(x) dx \quad \text{converges}, \tag{1}$$

$$\sum_{n=0} f(n) \quad \text{converges.} \tag{2}$$

(i) Discuss the truth of the implications $(1) \implies (2)$ and $(2) \implies (1)$.

(ii) Assume f is continuously differentiable and satisfies $|f'(x)| \leq A$ for some constant $A < \infty$; again discuss the truth of the implications (1) \implies (2) and (2) \implies (1).

(iii) Finally, assume $|f'(x)| \leq A|f(x)|$ for some constant $A < \infty$ and once more discuss the truth of the implications $(1) \implies (2)$ and $(2) \implies (1)$.

40. Assume that $a_k > 0$ and $\sum_{k=0}^{+\infty} a_k = +\infty$. Assume that (b_k) is a bounded sequence. Show that one can choose an increasing sequence of integers k(n) such that

$$\sum_{n=0}^{+\infty} a_{k(n)} = +\infty$$

and the sequence $(b_{k(n)})$ has a limit.

41. (i) What is the volume of the region Ω in \mathbb{R}^n , defined by

$$\Omega = \{ (x_1, \dots, x_n) \in \mathbb{R}^n \mid x_j > 0, \ 0 < x_1 + x_2 + \dots + x_n < 1 \}?$$

(ii) What is the area of the parallelogram spanned by the vectors (1, 1, -1, 1)and (2, 1, 2, 1) in \mathbb{R}^4 ?

(iii) What is the (3 dimensional) volume of the box (parallelepiped) spanned by the vectors (1, 1, 0, 0, 0), (0, 1, 1, 1, 0), and (0, 0, 1, -1, 1) in \mathbb{R}^5 ?

42. (i) Let $\psi \in C_0(\mathbb{R})$ be a compactly supported continuous function. Show that

$$\lim_{N \to \infty} \frac{1}{N} \int_0^\infty \frac{\psi(x/N)}{\sqrt{1+x}} \, dx = 0.$$

Let

$$J_N = \int_0^N e^{ix} \sqrt{1+x} \, dx.$$

Does $\lim_{N \to +\infty} J_N$ exist? (ii) Let $\chi \in C_0^2(\mathbb{R})$. Prove that

$$\lim_{N \to +\infty} \int_0^{+\infty} \chi(\frac{x}{N}) \, e^{ix} \sqrt{1+x} \, dx$$

exists.

(iii) To what extent does the limit in part (3) depend on the choice of the function χ ?

43. Let f be a positive decreasing function defined on $(0, \infty)$. This means that if $0 < a < b < \infty$, then $f(a) \ge f(b) > 0$. Let $\epsilon > 0$ be a fixed positive number.

(i) Suppose that for all $0 < x < \infty$, $f(2x) \leq 2^{-1-\epsilon} f(x)$. Prove that there is a constant C depending only on ϵ so that for a > 0,

$$\int_{a}^{\infty} f(x) \, dx \leqslant C \, a \, f(a)$$

(ii) Suppose that for all $0 < x < \infty$, $f(x) \leq 2^{+1-\epsilon} f(2x)$. Prove that there is a constant C depending only on ϵ so that for a > 0,

$$\int_0^a f(x) \, dx \leqslant C \, a \, f(a).$$

Suppose that for all $0 < x < \infty$, $f(2x) \ge 2^{-1} f(x)$. Prove that the (iii) improper integral $\int_{1}^{\infty} f(x) dx$ diverges.

44. For a, b > 0, let

$$F(a,b) = \int_{-\infty}^{+\infty} \frac{dx}{x^4 + (x-a)^4 + (x-b)^4}.$$

For which p > 0 is it true that

$$\int_{0}^{1} \int_{0}^{1} F(a,b)^{p} \, da \, db < +\infty?$$

Hint: Do not try to evaluate the integral defining F(a, b) directly. Instead, first suppose $a \leq b$ and show that there are positive constants C_1 and C_2 so that

$$C_1 \leqslant b^3 F(a,b) \leqslant C_2.$$

45.

- (i) State and prove the Baire category theorem for complete metric spaces.
- (ii) Let $\{f_n\}_{n \ge 1}$ be a sequence of real valued continuous functions on the interval [0, 1], and let E be the set of $x \in [0, 1]$ for which $\sup_n |f_n(x)| = \infty$.

Show that E cannot be $[0,1] \cap \mathbb{Q}$.

46. Let $\{f_n\}_{n=1}^{\infty}$ be a sequence of continuous functions on [0, 1] and assume that $\sup_n |f_n(x)| < \infty$ for every $x \in [0, 1]$. Show that there exists an interval $(a, b) \subset [0, 1]$ and an $M \in \mathbb{R}$ so that $|f_n(x)| \leq M$ for all $x \in (a, b)$ and all $n = 1, 2, \ldots$

47. Consider a function $f : \mathbb{R} \to \mathbb{R}$.

(i) Prove: If the second derivative $f''(x_0)$ exists then

$$\lim_{h \to 0} \frac{f(x_0 + h) - 2f(x_0) + f(x_0 - h)}{h^2} = f''(x_0).$$

(ii) Suppose that

$$\lim_{h \to 0} \frac{f(x_0 + h) - 2f(x_0) + f(x_0 - h)}{h^2}$$

exists. Is it true that the second derivative of f exists at $f''(x_0)$?

Give a proof or a counterexample!

10

48. Let f be a function defined in the interval [-2, 2] satisfying

$$\frac{f(b) - f(a)}{b - a} \leqslant \frac{f(c) - f(b)}{c - b} \leqslant A$$

whenever $-2 \leq a < b < c \leq 2$ (i.e., f is a convex function).

Show that there is $C \ge 0$ such that for $|h| \le 1$

$$\int_{-1}^{1} |f(x+h) + f(x-h) - 2f(x)| dx \leq Ch^{2}.$$

Hint: Show first that if $x_0 < x_1 < \cdots < x_N$ and $x_i - x_{i-1} = h$ then

$$\sum_{1}^{N-1} |f(x_{i+1}) - 2f(x_i) + f(x_{i-1})| \leq C'|h|$$

49. Let K be a continuous function on the unit square $Q = [0, 1] \times [0, 1]$ with the property that |K(x, y)| < 1 for all $(x, y) \in Q$. Show that there is a continuous function g defined on [0, 1] so that

$$g(x) + \int_0^1 K(x,y)g(y)dy = \frac{e^x}{1+x^2}, \quad 0 \le x \le 1.$$

50. Prove that there is a unique C^{∞} function f defined on [0, 1] which satisfies the integral equation

$$f(x) + \int_0^x \frac{t\cos(tx)f(t)}{1+f(t)^2} dt = 0$$

for all $x \in [0, 1]$.