
Some analysis problems 1

1. Let f be a continuous function on R and let for n = 1, 2, . . . ,

Fn(x) =

∫ x

0

(x− t)n−1f(t)dt.

Prove that Fn is n times differentiable, and prove a simple formula for its n-th
derivative.

2. Let

f(x, y) =
∞
∑

n=1

x

x2 + yn2
, y > 0.

(i) Show that for each y > 0, the limit

g(y) := lim
x→+∞

f(x, y)

exists. Evaluate the limit function g.
(ii) Determine if f(x, y) converges to g(y) uniformly for y ∈ (0,∞) as x→ +∞.
3. (i) Find an explicit value of ǫ > 0 such that for every x ∈ [0 , 1]

|
√
x−

√
x+ ǫ| 6 1

200
.

(ii) Find an explicit integer N such that there exists a polynomial P of degree
at most N such that for every x ∈ [0 , 1]

|
√
x− P (x)| 6 1

100
.

Hint: Although this may not be clever, you can use the expansion of
√
x+ ǫ

in power series in (x− 1).

4. Determine all complex-valued functions f , which are continuous in [0, 2]

and satisfy the condition
∫ 2

0
f(x)xndx = 0 for n = 0, 1, 2, 3, . . . .

5. Does the series ∞
∑

n=1

e−x/n (−1)n

n

converge uniformly on [0,∞)?
Prove or disprove.

1Mostly from previous qualifying exams, some slightly modified
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6. Let {an}∞n=1 be a numerical sequence and let

bn =
1

n6

n
∑

k=1

k5ak.

(i) Does the limit exist when ak = a is constant?
(ii) Prove or disprove: If an converges then bn converges.
(iii) Prove or disprove: If bn converges then an converges.

7. Given a sequence {cn}∞n=0 of complex numbers, we let sn =
∑n

k=0 ck denote
the partial sums and σN = s0+...+sN

N+1
their arithmetic means. We say that the

series
∑

n>0 cn is Cesáro summable to σ if limN→∞ σN = σ.
Show that if

∑

n>0 cn is Cesáro summable to σ and limn→∞ ncn = 0 then the
series

∑

cn converges and
∑∞

n=0 cn = σ.

8. Let

sN(x) =
N
∑

n=1

(−1)n
x3n

n2/3
.

Prove that sN(x) converges to a limit s(x) on [0, 1] and that there is a constant
C so that for all N > 1 the inequality

sup
x∈[0,1]

|sN(x)− s(x)| 6 CN−2/3

holds.

9. Let α ∈ R, and let u be the function defined on (1,∞), by u(x) = xα. For
which values of α does

u(x+ h)− u(x)

h
→ u′(x) ,

uniformly on (1,∞), as h→ 0 (h 6= 0).

10. Let f be a real-valued differentiable function defined on the entire real

line. Assume that f(x+h)−f(x)
h

→ f ′(x), uniformly as h → 0. Show that f ′ is
uniformly continuous. Must f itself be uniformly continuous?
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11. Recall the following definition: a function g : (0, 1) → R has bounded

variation if

sup
N>2

sup
0<xN<...<x1<1

|g(x1)− g(x2)|+ . . .+ |g(xN−1)− g(xN)| <∞,

where the second sup is taken over all strictly decreasing sequences xN < · · · < x1
with xi ∈ (0, 1).

Find the exponents p for which the function f : (0, 1) → R,

f(x) = xp sin(1/x)

has bounded variation.

12. Let λ1, λ2,..., λn, ... be real numbers. Argue that

f(x) =
∞
∑

n=1

eiλnx

n2

defines a continuous bounded function on R and then show that the limit

lim
T→∞

1

T

∫ T

−T

f(x)dx

exists.

13. For every b ∈ R prove or disprove that the improper integral
∫ ∞

0

xb cos(ex)dx

converges.

14. (i) Let {fn} be a sequence of C1 functions on a compact interval I such
that |fn(x)|+ |f ′

n(x)| 6 M for all x ∈ I. Show that there is a subsequence {fnk
}

which converges uniformly on I.
(ii) Is the preceding statement still true if we drop the assumption that I is

compact? (Proof or counterexample)
(iii) Can one also show that under the assumptions in (i) the sequence fn has

a subsequence whose derivatives converge uniformly? (Proof or counterexample)

15. Let
∑∞

n=1 an be the rearrangement of
∑∞

n=1
(−1)n

n
where M positive terms

are followed by N negative terms, i.e.
∞
∑

n=1

an =
1

2
+

1

4
+ · · ·+ 1

2M
− 1− 1

3
− · · · − 1

2N − 1
+

1

2(M + 1)
+ . . .

Compute
∑∞

n=1 an.
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16. (i) Determine for which η ∈ R the indefinite integral
∫ ∞

0

tiη−1 sin t dt

exists.
(ii) Determine whether the limit

lim
η→0

∫ ∞

0

tiη−1 sin t dt

exists.
(iii) Determine whether the limit

lim
η→∞

∫ ∞

1

tiη−1 sin t dt

exists.

17.

Let 1 6 p < q <∞.
Prove or disprove the following statements.
(i) Lp(Rn) ⊂ Lq(Rn).
(ii) Lq(Rn) ⊂ Lp(Rn).
(iii) Lq([0, 1]) ⊂ Lp([0, 1]).
(iv) Lp([0, 1]) ⊂ Lq([0, 1]).
(v) ℓp(Z) ⊂ ℓq(Z).
(vii) ℓq(Z) ⊂ ℓp(Z).
(viii) ℓp(Z) ⊂ ℓq(Z).
(ix) Lp(Rn) ∩ Lq(Rn) ⊂ Ls(Rn) for all s ∈ [p, q].

18. Suppose α > 0, and let f be a bounded function on the real line with the
property that

|f(x+ h)− f(x)| 6 A|h|α
for all h ∈ R and almost all x ∈ R.

Show that there is a constant C and for each t > 0 a C1-function gt such that

sup
x

|f(x)− gt(x)| 6 Ctα

and
sup
x

|g′t(x)| 6 Ctα−1.

Hint: Use an approximation of the identity.
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19. Let X , Y be normed spaces, and let Ω be an open subset of X . A function
f : Ω → Y is differentiable at a ∈ Ω if there is a bounded linear transformation
L : X → Y so that

lim
‖h‖→0

‖f(a+ h)− f(a)− L(h)‖Y
‖h‖X

= 0.

(i) Show that this linear transformation is unique. We call it the derivative of
f at a, also denoted by f ′(a).

(ii) Let Mn be the set of n × n matrices. Specify the norm on Mn that you
work with. Define g : Mn → Mn by g(A) = A3. Show that g is differentiable
everywhere and determine the derivative g′(A).

(iii) Let Ω ⊂ Mn be the subset of invertible matrices. Show that Ω is open
Define f : Ω → Ω by f(A) = A−1. Show that f is differentiable on Ω and
determine f ′(A).

(iv) Let Mn be the set of n × n matrices and define f : Mn → R by f(A) =
det(A). Show that f is differentiable everywhere and determine f ′(A).

20. Let b > 1. The sequence {an}∞n=0 satisfies

an+1 =
an
2

+
b

2an
for n > 0.

(i) Suppose that an converges to L. Then determine L.
(ii) Does an converge?

21. Let f be a continuous function on [0, 1]. Prove that

lim
p→∞

(

∫ 1

0

|f(x)|pdx
)1/p

exists and identify this limit.

22. For which exponent p > 0 is the function

f(x, y) =
1

|x|p + y2

integrable in a neighborhood of 0 in R2?
Hint: you can decompose the domain of integration in regions defined by

2−m−1 6 |x|p + y2 < 2−m.

23. Let a > 0 and b > 0. Prove that there is a unique differentiable function
f defined on (−∞,∞) satisfying f(0) = 0 and

f ′(x) = a− b|f(x)|3/2

for all x. Also show that limx→∞ f(x) exists and determine this limit.
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24. Let g be the solution on some interval [0 , T ) to the problem:

g(0) = 1

g′(t) = [g(t)]2
(

2 + sin(et + g(t))
)

].

Show that T < 1.

25. Let f ∈ L1(R) (meaning that
∫∞
−∞ |f(x)|dx <∞). Let

G(λ) =

∫

R

eiλt
2

f(t)dt.

Prove that G is a continuous function and that limλ→∞G(λ) = 0.

26.

(i) Does pN =
∏N

n=2(1 +
(−1)n

n
) tend to a nonzero limit as N → ∞?

(ii) Does qN =
∏N

n=2(1 +
(−1)n√

n
) tend to a nonzero limit as N → ∞?

27. Let a be a decreasing C1-function in [0,∞) such that limt→∞ a(t) = 0.

(i) Show that limN→∞
∫ N

0
a(t) sin(tx)dt exists for all x > 0.

(ii) For ǫ > 0 show that limN→∞
∫ N

0
a(t) sin(tx)dt converges uniformly for x ∈

[ǫ,∞).
(iii) Show that uniform convergence fails in (0,∞), for a suitable choice of a.

28. For n > 0 let an = [log(2 + n)]−1.
(i) For which complex numbers z does the series

∑∞
n=0 an z

n converge?
(ii) For which complex numbers z does the series

∑∞
n=0 an z

n converge abso-
lutely?

(iii) On which compact sets of the complex plane does the series
∑∞

n=0 an z
n

converge uniformly?

29. Give an example of a Riemann integrable function f : [0, 1] → [0, 1] which
has a dense set of discontinuities. Verify all conclusions.

30. Let

sn(x) =

n
∑

k=1

sin(kx).

Show that there exists a constant C, independent of N, x, such that

N
∑

n=1

|sn(x)|
n2

< C, 0 < x < π, N = 1, 2, 3, . . . .

(Hint: Estimate sn(x) for n 6
1
x
and for n > 1

x
separately.)
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31. For λ > 1, define

H(λ) =

∫ +∞

0

e−λ(x3+x5) dx .

Prove that, for some constant C > 0,

H(λ) = Cλ−1/3 +O(λ−1).

Hint : Evaluate
∫ +∞
0

e−λx3

dx in terms of λ and
∫ +∞
0

e−x3

dx. Use the same

change of variables, and estimate the difference
∫ +∞
0

e−λ(x3+x5) dx−
∫ +∞
0

e−λx3

dx,
dealing separately with ‘large’ and ‘small’ values of x.

32. LetM(n,R) be the vector space of n×n matrices with real entries. Denote
by ‖ · ‖ a norm on M(n,R). For A ∈ M(n,R) let tr(A) be the trace of A (that
is the sum over all entries on the diagonal). Show that there are neighborhoods
U , V of the identity matrix I such that for every A ∈ V there is a unique B ∈ U
with n−1tr(B)B3 = A.

33. Let u : R3 → R denote a smooth function and let ∆u = ∂2xu+ ∂2yu + ∂2zu
be the Laplacian of u.

Suppose that ∆u = 1 on R3 and u(x, y, z) = x3y3 on the sphere of radius R
centered at the origin. Find u(0, 0, 0).

34. Calculate
∮

C

−y3dx+ xy2dy

(x2 + y2)2

where C is the plane curve given by the equation 10x12 + 22y8 = 240, with the
positive orientation.

35. Let D ⊂ Rd, d > 2 be a compact convex set with smooth boundary ∂D so
that the origin belongs to the interior of D. For every y ∈ ∂D let α(x) ∈ [0, π) be
the angle between the position vector x and the outer normal vector n(x). Let
ωd be the surface area of the unit sphere in Rd. Compute

1

ωd

∫

∂D

cos(α(x))

|x|d−1
dσ(x)

where dσ denotes surface measure on ∂D.
Does (a reasonable interpretation of) your result hold true if d = 1?
36. Let f be a function in C1(R) with compact support and let b > 0. Show

that the limit

Ab(x) = lim
ε→0+

∫

R\[−ǫ,bǫ]

f(x− y)

y
dy

exists for all x ∈ R.
How do Ab(x) and Ac(x) differ for b 6= c?
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37. Prove or disprove the following statement:

lim
ε→0

∫∫

x2+y2>ε2

f(x, y)

(x+ iy)3
dx dy

exists for every function f ∈ C2(R2) with compact support.

Hint: For 0 < a < b, what are the values of
∫∫

a2<x2+y2<b2

x

(x+ iy)3
dx dy and

∫∫

a2<x2+y2<b2

y

(x+ iy)3
dx dy?

38. Let X be a metric space with metric d.
(i) Define ρ : X ×X → R by

ρ(x, y) =
d(x, y)

1 + d(x, y)
.

Prove that ρ is a metric on X .
(ii) Show that a subset U of X is open with respect to the metric d if and only

if it is open with respect to the metric ρ.

39. Let f : R → R be a continuous function with f(x) > 0 for all x > 0.
Consider the two statements

∫ ∞

0

f(x) dx converges, (1)

∞
∑

n=0

f(n) converges. (2)

(i) Discuss the truth of the implications (1) =⇒ (2) and (2) =⇒ (1).
(ii) Assume f is continuously differentiable and satisfies |f ′(x)| 6 A for some

constant A < ∞; again discuss the truth of the implications (1) =⇒ (2) and
(2) =⇒ (1).

(iii) Finally, assume |f ′(x)| 6 A|f(x)| for some constant A <∞ and once more
discuss the truth of the implications (1) =⇒ (2) and (2) =⇒ (1).

40. Assume that ak > 0 and
∑+∞

k=0 ak = +∞. Assume that (bk) is a bounded
sequence. Show that one can choose an increasing sequence of integers k(n) such
that

+∞
∑

n=0

ak(n) = +∞

and the sequence
(

bk(n)
)

has a limit.



9

41. (i) What is the volume of the region Ω in Rn, defined by

Ω = {(x1, . . . , xn) ∈ Rn | xj > 0, 0 < x1 + x2 + · · ·+ xn < 1}?
(ii) What is the area of the parallelogram spanned by the vectors (1, 1,−1, 1)

and (2, 1, 2, 1) in R4?
(iii) What is the (3 dimensional) volume of the box (parallelepiped) spanned

by the vectors (1, 1, 0, 0, 0), (0, 1, 1, 1, 0), and (0, 0, 1,−1, 1) in R5?
42. (i) Let ψ ∈ C0(R) be a compactly supported continuous function. Show

that

lim
N→∞

1

N

∫ ∞

0

ψ(x/N)√
1 + x

dx = 0.

Let

JN =

∫ N

0

ei x
√
1 + x dx.

Does lim
N→+∞

JN exist?

(ii) Let χ ∈ C2
0 (R). Prove that

lim
N→+∞

∫ +∞

0

χ(
x

N
) ei x

√
1 + x dx

exists.
(iii) To what extent does the limit in part (3) depend on the choice of the

function χ?

43. Let f be a positive decreasing function defined on (0,∞). This means that
if 0 < a < b <∞, then f(a) > f(b) > 0. Let ǫ > 0 be a fixed positive number.

(i) Suppose that for all 0 < x < ∞, f(2x) 6 2−1−ǫ f(x). Prove that there is a
constant C depending only on ǫ so that for a > 0,

∫ ∞

a

f(x) dx 6 C a f(a).

(ii) Suppose that for all 0 < x <∞, f(x) 6 2+1−ǫ f(2x). Prove that there is a
constant C depending only on ǫ so that for a > 0,

∫ a

0

f(x) dx 6 C a f(a).

(iii) Suppose that for all 0 < x < ∞, f(2x) > 2−1 f(x). Prove that the

improper integral

∫ ∞

1

f(x) dx diverges.
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44. For a, b > 0, let

F (a, b) =

∫ +∞

−∞

dx

x4 + (x− a)4 + (x− b)4
.

For which p > 0 is it true that
∫ 1

0

∫ 1

0

F (a, b)p da db < +∞?

Hint: Do not try to evaluate the integral defining F (a, b) directly. Instead, first
suppose a 6 b and show that there are positive constants C1 and C2 so that

C1 6 b3 F (a, b) 6 C2.

45.

(i) State and prove the Baire category theorem for complete metric spaces.
(ii) Let {fn}n>1 be a sequence of real valued continuous functions on the interval

[0, 1], and let E be the set of x ∈ [0, 1] for which supn |fn(x)| = ∞.
Show that E cannot be [0, 1] ∩Q.

46. Let {fn}∞n=1 be a sequence of continuous functions on [0, 1] and assume
that supn |fn(x)| < ∞ for every x ∈ [0, 1]. Show that there exists an interval
(a, b) ⊂ [0, 1] and an M ∈ R so that |fn(x)| 6 M for all x ∈ (a, b) and all
n = 1, 2, . . . .

47. Consider a function f : R → R.
(i) Prove: If the second derivative f ′′(x0) exists then

lim
h→0

f(x0 + h)− 2f(x0) + f(x0 − h)

h2
= f ′′(x0).

(ii) Suppose that

lim
h→0

f(x0 + h)− 2f(x0) + f(x0 − h)

h2

exists. Is it true that the second derivative of f exists at f ′′(x0)?
Give a proof or a counterexample!
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48. Let f be a function defined in the interval [−2, 2] satisfying

f(b)− f(a)

b− a
6
f(c)− f(b)

c− b
6 A

whenever −2 6 a < b < c 6 2 (i.e., f is a convex function).
Show that there is C > 0 such that for |h| 6 1

∫ 1

−1

|f(x+ h) + f(x− h)− 2f(x)|dx 6 Ch2.

Hint: Show first that if x0 < x1 < · · · < xN and xi − xi−1 = h then

N−1
∑

1

|f(xi+1)− 2f(xi) + f(xi−1)| 6 C ′|h|

49. Let K be a continuous function on the unit square Q = [0, 1]× [0, 1] with
the property that |K(x, y)| < 1 for all (x, y) ∈ Q. Show that there is a continuous
function g defined on [0, 1] so that

g(x) +

∫ 1

0

K(x, y)g(y)dy =
ex

1 + x2
, 0 6 x 6 1.

50. Prove that there is a unique C∞ function f defined on [0, 1] which satisfies
the integral equation

f(x) +

∫ x

0

t cos(tx)f(t)

1 + f(t)2
dt = 0

for all x ∈ [0, 1].


