cosh and sinh

The hyperbolic functions cosh and sinh are defined by

(1)
$$\cosh x = \frac{e^x + e^{-x}}{2}$$

$$\sinh x = \frac{e^x - e^{-x}}{2}$$

We compute that the derivative of $\frac{e^x + e^{-x}}{2}$ is $\frac{e^x - e^{-x}}{2}$ and the derivative of $\frac{e^x - e^{-x}}{2}$ is $\frac{e^x + e^{-x}}{2}$, i.e.

(3)
$$\frac{d}{dx}\cosh x = \sinh x$$

(4)
$$\frac{d}{dx}\sinh x = \cosh x$$

Note that $\sinh x > 0$ for x > 0, and $\sinh x < 0$ for x < 0. However $\cosh x \ge 0$ for all x (strictly positive away from 0). $\sinh x$ is increasing for all x. $\cosh x$ is increasing for all x > 0 (and decreasing for x < 0). Note that $\cosh(x) = \cosh(-x)$ and $\sinh(-x) = -\sinh(x)$. The minimum of $\cosh x$ is attained at x = 0 where $\cosh(0) = 1$, thus $\cosh(x) \ge 1$ for all x.

Draw your picture of the graphs of cosh and sinh here:

The inverse of sinh

 $\sinh x$ is (strictly) increasing and $\lim_{x\to\infty} \sinh(x) = \infty$ and $\lim_{x\to\infty} \sinh(x) = -\infty$. We see that the range of sinh is $(-\infty, \infty)$ and sinh is invertible. Then

sinh :
$$(-\infty, \infty) \to (-\infty, \infty)$$

sinh⁻¹ : $(-\infty, \infty) \to (-\infty, \infty)$

Let us compute the inverse. That is, we consider the equation $\sinh(x) = y$, and express x in terms of y. This means we need to solve for x in $\frac{e^x - e^{-x}}{2} = y$. To do this we first set $w = e^x$, determine w and then take the natural logarithm of w. The equation for w becomes $w - w^{-1} = 2y$ or $w^2 - 2yw - 1 = 0$. By the quadratic formula there are two possibilities for w, namely $w = y + \sqrt{y^2 + 1}$ and $w = y - \sqrt{y^2 + 1}$. The first solution for w is positive, the second is negative, and since $w = e^x$ has to be positive we can discard the negative solution for w. Hence $e^x = w = y + \sqrt{y^2 + 1}$ and after taking the logarithm we see that $x = \ln(y + \sqrt{y^2 + 1})$. We have thus computed the inverse function for sinh and it is given by

(5)
$$\sinh^{-1}(y) = \ln(y + \sqrt{y^2 + 1}).$$

In some of the European literature this inverse function is denoted by Arsinh, hence $\operatorname{Arsinh}(y) = \ln(y + \sqrt{y^2 + 1})$.¹

The derivative of \sinh^{-1}

We could use the general formula for the derivative of inverse functions, or just the above formula for \sinh^{-1} , let's do the latter.

I am now writing x for the independent variable. Using the chain rule we get

$$\frac{d}{dx}\left(\ln(x+\sqrt{x^2+1})\right) = \frac{1}{x+\sqrt{x^2+1}}\frac{d}{dx}\left(x+\sqrt{x^2+1}\right)$$

We note that $\frac{d}{dx}(x+(x^2+1)^{1/2}) = 1 + \frac{1}{2}(x^2+1)^{-1/2}2x$ and get that the last displayed expression is equal to

$$\frac{1}{x + \sqrt{x^2 + 1}} \left(1 + \frac{x}{\sqrt{x^2 + 1}} \right) = \frac{1}{x + \sqrt{x^2 + 1}} \frac{\sqrt{x^2 + 1} + x}{\sqrt{x^2 + 1}} = \frac{1}{\sqrt{x^2 + 1}}$$

Therefore we get the rule

(6)
$$\operatorname{Arsinh}'(x) \equiv \frac{d}{dx} \sinh^{-1}(x) = \frac{1}{\sqrt{x^2 + 1}}.$$

For the integral this is

$$\int \frac{1}{\sqrt{x^2 + 1}} \, dx \, = \, \ln(x + \sqrt{x^2 + 1}) \, + C \, .$$

¹Arsinh stands for Area sinus hyperbolicus. I have not seen this in any American textbook. Use \sinh^{-1} instead but then make sure that you do not confuse it with the reciprocal of sinh y.

The inverse of cosh

As a function on the real line cosh does not have an inverse (note that $\cosh(x) = \cosh(-x)$ so that two different points in x correspond to the same value of \cosh). However *if we restrict the domain to* $[0, \infty)$ then cosh is strictly increasing and invertible. The range of \cosh is $[1, \infty)$ so that we have

$$\cosh: [0,\infty) \to [1,\infty)$$
$$\cosh^{-1}: [1,\infty) \to [0,\infty)$$

We compute $\cosh^{-1}(y)$ for $y \ge 1$. Thus, for each $y \ge 1$ we wish to determine an $x \ge 0$ so that $\cosh x = y$, or equivalently $(e^x + e^{-x})/2 = y$. To determine xwe again first determine $w = e^x$ from the equation $w + w^{-1} = 2y$, or equivalently, $w^2 - 2yw + 1 = 0$. This quadratic equation has two solutions, namely w could be $y \pm \sqrt{y^2 - 1}$. The possibility of the minus sign can be discarded since a calculation² shows that $y - \sqrt{y^2 - 1}$ is < 1 for all $y \ge 1$, and therefore it can not be an e^x for some x > 0. Thus $w = y + \sqrt{y^2 - 1}$ and $e^x = w$, so $\cosh^{-1} y = x = \ln w$. We get the formula

(7)
$$\cosh^{-1}(y) = \ln(y + \sqrt{y^2 - 1}).$$

Again this inverse function is occasionally denoted by Arcosh, so we may write sometimes $\operatorname{Arcosh}(y) = \ln(y + \sqrt{y^2 + 1})$.

The derivative of \cosh^{-1}

Again I am now writing x for the independent variable (it is now restricted to x > 1). The calculation is completely analogous to the calculation for the derivative of sinh⁻¹. By the chain rule we get

$$\frac{d}{dx}(\ln(x+\sqrt{x^2-1})) = \frac{1}{x+\sqrt{x^2-1}}\frac{d}{dx}(x+\sqrt{x^2-1})$$

and we now calculate that this yields $\frac{1}{\sqrt{x^2-1}}$. Hence we get the rule

(8)
$$\operatorname{Arcosh}'(x) \equiv \frac{d}{dx} \operatorname{cosh}^{-1}(x) = \frac{1}{\sqrt{x^2 - 1}}.$$

This also yields (for x > 1)

$$\int \frac{1}{\sqrt{x^2 - 1}} \, dx \, = \, \ln(x + \sqrt{x^2 - 1}) \, + C \, .$$

 $\frac{1}{2} \text{Indeed } y - \sqrt{y^2 - 1} = \frac{y^2 - (\sqrt{y^2 - 1})^2}{y + \sqrt{y^2 - 1}} = \frac{1}{y + \sqrt{y^2 - 1}} < 1 \text{ for } y \ge 1.$

Practice problems

- 1. Prove the following identities. (i) $(\cosh x)^2 - (\sinh x)^2 = 1$. (ii) $\cosh(2x) = (\cosh x)^2 + (\sinh x)^2$. (iii) $\sinh(2x) = 2\sinh x \cosh x$.
- 2. Compute the integrals (i) $\int_0^x (a^2 - t^2)^{-1/2} dt$ for |x| < a. (ii) $\int_0^x (a^2 + t^2)^{-1/2} dt$ for all x. (iii) $\int_0^x (a^2 - t^2)^{1/2} dt$ for |x| < a. (iv) $\int_0^x (a^2 + t^2)^{1/2} dt$ for all x.

3. The function tanh is defined by

$$\tanh x = \frac{\sinh x}{\cosh x}$$

(i) Show that \tanh is defined and differentiable for all x and show that its derivative is given by

$$\tanh'(x) = \frac{1}{\cosh^2 x}$$

(ii) Show that the range of tanh is the interval (-1, 1) and that

 $\tanh:(-\infty,\infty)\to(-1,1)$

is invertible.

(iii) Prove that the inverse function

$$\tanh^{-1}: (-1,1) \to (-\infty,\infty)$$

is given by $\tanh^{-1}(y) = \frac{1}{2} (\ln(1+y) - \ln(1-y)).$

(iv) Sketch the graph of \tanh and the graph of \tanh^{-1} .