
cosh and sinh

The hyperbolic functions cosh and sinh are defined by

(1) cosh x =
ex + e−x

2

(2) sinh x =
ex − e−x

2

We compute that the derivative of ex+e−x

2
is ex−e−x

2
and the derivative of ex−e−x

2
is

ex+e−x

2
, i.e.

(3)
d

dx
cosh x = sinh x

(4)
d

dx
sinh x = cosh x

Note that sinh x > 0 for x > 0, and sinh x < 0 for x < 0. However cosh x ≥ 0
for all x (strictly positive away from 0). sinh x is increasing for all x. cosh x is
increasing for all x > 0 (and decreasing for x < 0). Note that cosh(x) = cosh(−x)
and sinh(−x) = − sinh(x). The minimum of cosh x is attained at x = 0 where
cosh(0) = 1, thus cosh(x) ≥ 1 for all x.
Draw your picture of the graphs of cosh and sinh here:
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The inverse of sinh
sinh x is (strictly) increasing and limx→∞ sinh(x) = ∞ and limx→−∞ sinh(x) = −∞.

We see that the range of sinh is (−∞,∞) and sinh is invertible. Then

sinh : (−∞,∞) → (−∞,∞)

sinh−1 : (−∞,∞) → (−∞,∞)

Let us compute the inverse. That is, we consider the equation sinh(x) = y, and

express x in terms of y. This means we need to solve for x in ex−e−x

2
= y. To do

this we first set w = ex, determine w and then take the natural logarithm of w. The
equation for w becomes w−w−1 = 2y or w2−2yw−1 = 0. By the quadratic formula
there are two possibilities for w, namely w = y +

√

y2 + 1 and w = y −
√

y2 + 1.
The first solution for w is positive, the second is negative, and since w = ex has to be
positive we can discard the negative solution for w. Hence ex = w = y+

√

y2 + 1 and

after taking the logarithm we see that x = ln(y+
√

y2 + 1). We have thus computed
the inverse function for sinh and it is given by

(5) sinh−1(y) = ln(y +
√

y2 + 1).

In some of the European literature this inverse function is denoted by Arsinh, hence
Arsinh(y) = ln(y +

√

y2 + 1) . 1

The derivative of sinh−1

We could use the general formula for the derivative of inverse functions, or just the
above formula for sinh−1, let’s do the latter.
I am now writing x for the independent variable. Using the chain rule we get

d

dx

(

ln(x+
√
x2 + 1)

)

=
1

x+
√
x2 + 1

d

dx

(

x+
√
x2 + 1

)

We note that d
dx

(

x+(x2+1)1/2
)

= 1+ 1

2
(x2+1)−1/22x and get that the last displayed

expression is equal to

1

x+
√
x2 + 1

(

1 +
x√

x2 + 1

)

=
1

x+
√
x2 + 1

√
x2 + 1 + x√
x2 + 1

=
1√

x2 + 1

Therefore we get the rule

(6) Arsinh′(x) ≡ d

dx
sinh−1(x) =

1√
x2 + 1

.

For the integral this is
∫

1√
x2 + 1

dx = ln(x+
√
x2 + 1) + C .

1Arsinh stands for Area sinus hyperbolicus. I have not seen this in any American textbook. Use

sinh−1 instead but then make sure that you do not confuse it with the reciprocal of sinh y.
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The inverse of cosh
As a function on the real line cosh does not have an inverse (note that cosh(x) =

cosh(−x) so that two different points in x correspond to the same value of cosh).
However if we restrict the domain to [0,∞) then cosh is strictly increasing and
invertible. The range of cosh is [1,∞) so that we have

cosh : [0,∞) → [1,∞)

cosh−1 : [1,∞) → [0,∞)

We compute cosh−1(y) for y ≥ 1. Thus, for each y ≥ 1 we wish to determine
an x ≥ 0 so that cosh x = y, or equivalently (ex + e−x)/2 = y. To determine x
we again first determine w = ex from the equation w + w−1 = 2y, or equivalently,
w2 − 2yw + 1 = 0. This quadratic equation has two solutions, namely w could be
y ±

√

y2 − 1. The possibility of the minus sign can be discarded since a calculation2

shows that y −
√

y2 − 1 is < 1 for all y ≥ 1, and therefore it can not be an ex for

some x > 0. Thus w = y +
√

y2 − 1 and ex = w, so cosh−1 y = x = lnw. We get the
formula

(7) cosh−1(y) = ln(y +
√

y2 − 1).

Again this inverse function is occasionally denoted by Arcosh, so we may write
sometimes Arcosh(y) = ln(y +

√

y2 + 1).

The derivative of cosh−1

Again I am now writing x for the independent variable (it is now restricted to
x > 1). The calculation is completely analogous to the calculation for the derivative
of sinh−1. By the chain rule we get

d

dx

(

ln(x+
√
x2 − 1)

)

=
1

x+
√
x2 − 1

d

dx

(

x+
√
x2 − 1

)

and we now calculate that this yields 1√
x2−1

. Hence we get the rule

(8) Arcosh′(x) ≡ d

dx
cosh−1(x) =

1√
x2 − 1

.

This also yields (for x > 1)
∫

1√
x2 − 1

dx = ln(x+
√
x2 − 1) + C .

2Indeed y −
√

y2 − 1 =
y
2
−(
√

y2
−1)2

y+
√

y2
−1

= 1

y+
√

y2
−1

< 1 for y ≥ 1 .
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Practice problems

1. Prove the following identities.
(i) (cosh x)2 − (sinh x)2 = 1 .
(ii) cosh(2x) = (cosh x)2 + (sinh x)2 .
(iii) sinh(2x) = 2 sinh x cosh x .

2. Compute the integrals
(i)

∫ x

0
(a2 − t2)−1/2 dt for |x| < a.

(ii)
∫ x

0
(a2 + t2)−1/2 dt for all x.

(iii)
∫ x

0
(a2 − t2)1/2 dt for |x| < a.

(iv)
∫ x

0
(a2 + t2)1/2 dt for all x.

3. The function tanh is defined by

tanh x =
sinh x

cosh x
(i) Show that tanh is defined and differentiable for all x and show that its derivative

is given by

tanh′(x) =
1

cosh2 x
.

(ii) Show that the range of tanh is the interval (−1, 1) and that

tanh : (−∞,∞) → (−1, 1)

is invertible.
(iii) Prove that the inverse function

tanh−1 : (−1, 1) → (−∞,∞)

is given by tanh−1(y) = 1

2

(

ln(1 + y)− ln(1− y)
)

.

(iv) Sketch the graph of tanh and the graph of tanh−1.


