
Math 222 – Review problems.

1. Determine

lim
x→0

sin x

ex − 1

by using the Taylor expansions of ex, e−x and sin x. Same for

lim
x→0

ex + e−x − 2

sin2 x
.

Use sin x = x + o(x2), ex − 1 = x + o(x) to see that

lim
x→0

sinx

ex − 1
= 1

Use that ex = 1+x+x2

2 +o(x2), e−x = 1−x+x2

2 +o(x2) to see that ex+e−x−2 = x2+o(x2).

Since sin2 x = (x + o(x))2 hence sin2 x = x2 + o(x) we see that limx→0
ex+e−x−2

sin2 x
= 1.

2. (i) Show that

0 < ex − 1 − x <
1

100
for 0 < x < 1/10 .

(ii) Show that for all x > 0

0 <

∫ x

0
arctan(t) dt <

x2

2
.

Taylor’s formula shows that ex − 1 − x = ecx2/2 where c is between 0 and 1/10 . Thus

ec is between 1 and e1/10. Clearly ecx2/2 > 0 for x > 0 and ecx2/2 ≤ e1/10 x2

200 .

You can check that e1/10 < 2. In fact 0 < e1/10 − 1 < e/10 by another Taylor expansion

(or mean value theorem), thus e1/10 < 1 + e/10 < 2.

4. Prove that the Taylor series of sin(2x) converges to sin(2x) for all x.

Compute the derivatives of f(x) = sin(2x) and find that

f (n)(x) =





2n sin 2x if n = 4k

2n cos 2x if n = 4k + 1

−2n sin 2x if n = 4k + 2

−2n cos 2x if n = 4k + 3

(k any nonnegative integer).

Now | sin(2x)| ≤ 1, | cos(2x)| ≤ 1 for all x. Thus |f (n+1)(x)| ≤ 2n+1 for all x and
hence the remainder term Rn(x) satisfies |Rn(x)| ≤ 2n+1|x|n+1/(n + 1)! which tends to 0
as n → ∞. See Example 18.11.

5. (i) Find the Taylor series for x
x+4 (in terms of powers of x). Explain why it converges

for |x| < 4.

Write x
x+4 = x

4
1

1−(−x/4) and use the geometric series representation 1
1−(−x/4) =

∑∞
n=0(−x/4)n

which converges for |x/4| < 1. Thus x
x+4 =

∑∞
n=0(−1)n4−n−1xn+1 which converges for

|x| < 4.
1
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(ii) Find the Taylor series of 1
(x+4)(x−2) (in terms of powers of x). Explain why it converges

for |x| < 2.

Write 1
(x+4)(x−2) = A

x+4 + B
x−2 (use partial fractions and determine A and B). Then write

A

x + 4
+

B

x − 2
=

A

4

1

1 − −x
4

− B

2

1

1 − x
2

and then use the geometric sum formula.

6. Suppose f(x) = o(x2) as x → 0. Why is it true that f(x) = o(x) as x → 0?
f(x) = o(x2) means limx→0 x−2f(x) = 0. This implies that limx→0 x ·x−2f(x) = 0 which

is the definition of f(x) = o(x) as x → 0.

7. Each of the following expressions f(x) satisfies limx→0 f(x) = 0. Find the largest
non-negative integer n so that the expression is o(xn) as x → 0.

(i)

cos x − cosh x.

(ii)

cos(x2) + cosh(x2) − 2.

(iii) ∫ x

0

sin t

t
dt.

(iv) ∫ x

0

cos(3t2) − 1

t3
dt.

(v)
1

1 − x
− 1.

Also, for each expression f(x) above find a number m for which the limit limx→0
f(x)
xm

exists (as a number) and is not equal to 0. Then determine this limit.

For these we use Taylor expansions.

(i) Expand cosx − cosh x = 1 − x2

2 − (1 + x2

2 ) + o(x3) = −x2 + o(x3).

We get that cos x − cosh x = o(x) but not o(x2), and limx→0 x−2(cos x − cosh x) = −1.
(ii)

cos(x2) + cosh(x2) − 2.

Find that cos(t) + cosh(t) − 2 = t4

12 + o(t4). Thus cos(x2) + cosh(x2) − 2 = x8

12 + o(x8).

Thus limx→0
cos(x2)+cosh(x2)−2

x8 = 1/12 and cos(x2) + cosh(x2) − 2 = o(x7) (but not o(x8)).
(iii) ∫ x

0

sin t

t
dt.

Expand sin t = t − t3

6 + o(t4) and thus sin t
t = 1 − t2

6 + o(t3). Therefore
∫ x
0

sin t
t dt =

x − x3

18 + o(x4). The expression is o(1) but not o(x). Also 1
x

∫ x
0

sin t
t dt tends to 1 as x → 0.

Additional problem: Answer the same questions for
∫ x
0

sin t
t dt − x.
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(iv)

g(x) :=

∫ x

0

cos(3t2) − 1

t3
dt.

Expand cos(3t2) − 1 = −1
2(3t2)2 + 1

24(3t2)4 + o(t8), thus cos(3t2)−1
t3

= −9
2t + 27

8 t4 + o(t4)
and then ∫ x

0

cos(3t2) − 1

t3
dt = −9

4
x2 + o(x4).

Thus g(x) = o(x) and not o(x2). Also limx→0 g(x)/x2 = −9/4.

8. Determine the Taylor polynomial of degree 11 for the following functions (i) sin(x2),

(ii) 1 + x2 + e3x2

, (iii)
∫ x
0 (1 + t2 + e3t2)dt

Which theorem do you use that supports your calculation? If f(x) = P (x)+o(xn) where
P is a polynomial of degree ≤ n then P is the Taylor polynomial Tn(x) for f (expanded in
powers of x).

Answer for (i): Expand sin(t) = t − 1
3! t

3 + 1
5!t

5 − 1
7! t

7 + o(t7) hence

sin(x2) = x2 − 1

3!
x6 +

1

5!
x10 + o(x13)

Thus x2 − 1
3!x

6 + 1
5!x

10 is the Taylor polynomial T11(x).

9. Approximate ex by its third order Taylor polynomial (in powers of x) to find an
approximate value of ∫ 1

0

ex − 1

x
dx .

Estimate the error.
ex − 1 = x + x2

2 + x3

6 + R3(x) where R3(x) = x4

24ec; here c is some number between 0 and

1 depending on x. Note that |R3(x)| ≤ e
24x4. Now divide by x and integrate to see that

∫ 1

0

ex − 1

x
dx =

∫ 1

0

[
1 +

x

2
+

x2

6

]
dx +

∫ 1

0
x−1R3(x)dx

= 1 +
1

4
+

1

18
+

∫ 1

0
x−1R3(x)dx

The main term (the approximate value of the integral) is equal to 47/36 and the error
term can be estimated as

∣∣∣
∫ 1

0
x−1R3(x)dx

∣∣∣ ≤ e

24

∫ 1

0
x3 dx =

e

96
<

3

96
= 1/32.

10. We expand 3x cos(x2) in its Taylor series in powers of x. It converges for all x
(why?). Write 3x cos(x2) =

∑∞
n=0 anxn and give a formula for an. You may have to

distinguish several cases.

You get cos t =
∑∞

k=0(−1)k t2k

(2k)! and then 3x cos(x2) = 3
∑∞

k=0(−1)k x4k+1

(2k)! .

Thus a4k+1 = 3(−1)k 1
(2k)! , and an = 0 whenever n− 1 is not divisible by four. What are

a36, a53, a101 and a102?
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11. (i) Compute the integrals ∫ x

0

3√
5 + t2

dt

and ∫ x

0
t cosh(t) dt .

For the first one use that the derivative of sinh−1(x) = ln(x +
√

x2 + 1) is equal to 1√
x2+1

,

see the handout on hyperbolic functions. Reduce to this case by a substitution t =
√

5 s,
dt =

√
5 ds. A calculation shows

∫ x

0

3√
5 + t2

dt = 3

∫ x/
√

5

0

1√
1 + s2

ds = 3 ln( x√
5

+

√
x2

5 + 1) .

For the second one use integration by parts to write
∫ x
0 t cosh(t) dt = x sinh x−

∫ x
0 sinh(t)dt =

x sinhx − cosh x + 1.
(ii) Approximate for small x both integrals by a cubic polynomial and estimate the error

(depending on x).
We assume |x| ≤ 1 (the problem just mentions “small x” without further specifications,

so we are interested in what happens as x → 0).

Here is one possible procedure for the first part (there are other possible approaches).

A Taylor expansion for f(s) = (5 + s)−1/2 gives

(5 + s)−1/2 = 5−1/2 − 5−3/2

2
s +

3

8
5−5/2s2 + E(s)

where the error term satisfies E(s) = 1
3!(−15

8 )(5 + c)−7/2s3 with c between 0 and 1. Thus

|E(s)| ≤ 15
3!·85−7/2|s|3 for |s| ≤ |x| which gives |E(s)| ≤ 1

400
√

5
|s|3

This implies (5 + t2)−1/2 = 5−1/2 − 5−3/2

2 t2 + 3
85−5/2t4 + Ẽ(t) with |Ẽ(t)| ≤ 1

400
√

5
t6 for t

between 0 and x.
Note: to go on we could now omit the term 3

85−5/2t4 since after integration it becomes

constant× x5 which is not part of a cubic polynomial. We would then have to incorporate
it in the error time (this discussion also shows that we would have gotten away with just

expanding (5+s)−1/2 without the quadratic term). I however choose to keep 3
85−5/2t4, and

compute the integral explicitly since we have already done the work for it. We may then
get a more precise bound for the error.

Now ∫ x

0

3√
5 + t2

dt = 3

∫ x

0

[
5−1/2 − 5−3/2

2
t2 +

3

8
5−5/2t4

]
dt + E∗(x)

where the main term is

3 ×
[
5−1/2x − 5−3/2

2
x3/3 +

3

8
5−5/2x5/5

]
=

3√
5
x − x3

10
√

5
+

9

1000
√

5
x5

and |E∗(x)| ≤ 3
400

√
5

∣∣∣
∫ x
0 t6 dt

∣∣∣. Thus

|E∗(x)| ≤ 3

2800
√

5
|x|7.



5

Conclusion (for the approximation by a cubic polynomial): We can write
∫ x

0

3√
5 + t2

dt =
3√
5
x − x3

10
√

5
+ Error(x)

where |Error(x)| ≤ 9
1000

√
5
|x|5 + 3

2800
√

5
|x|7 which is ≤ 5 × 10−3|x|5.

If we wanted approximation by a fifth order polynomial we would get
∫ x

0

3√
5 + t2

dt =
3√
5
x − x3

10
√

5
+

9

1000
√

5
x5 + E∗(x)

with the estimate of E∗ as above.
Now to the second integral. Notice that t cosh t = t(1 + t2

2 ) + t cosh(c) t4

4! where c is
between 0 and x. Then we compute the main term and make an estimate for the error (fill
in the details). We get

∫ x

0
t cosh(t) dt =

∫ x

0
t(1 +

t2

2
)dt + Error(x)

where
∫ x
0 t(1 + t2

2 )dt = x2/2 + x4/8 and Error(x) ≤ cosh(1) |x|
5

120 .

12. (i) (3 + i)(4 − 2i) = 14 − 2i,
(ii) 2+i

2−i = 3
5 + 4

5 i,

(iii) 3+i
2+5i = 11

29 − 13
29 i,

(iv) (cos α + i sin α)3 = cos(3α) + i sin(3α),

(v) For (1 + i)5 we use the polar coordinate form. Note that |1 + i| =
√

2 and that
(1+i) =

√
2(cos π

4 +i sin π
4 ). Thus (1+i)5 = (

√
2)5(cos 5π

4 +i sin 5π
4 ). Now cos 5π

4 = −
√

2/2,

sin 5π
4 = −

√
2/2. This yields (1 + i)5 = −4 − 4i.


