Selecta Mathematica, New Series

Orthogonality of natural sheaves on moduli stacks of SL(2)bundles with connections on \mathbb{P}^1 minus 4 points

D. Arinkin

Abstract. A special kind of SL(2)-bundles with connections on $\mathbb{P}^1 \setminus \{x_1, \ldots, x_4\}$ is considered. We construct an equivalence between the derived category of quasicoherent sheaves on the moduli stack of such bundles and the derived category of modules over a TDO ring on some (non-separated) curve.

Mathematics Subject Classification (2000). Primary 14D20; Secondary 14F05.

Key words. Moduli of connections, orthogonal families of bundles.

Introduction

It is well-known that for an abelian variety X there is a natural equivalence (the Fourier transform) between the derived categories of D_X -modules and $O_{X^{\ddagger}}$ modules (see [12], [13] or [18], [17]), where X^{\ddagger} is the moduli space of \natural -extensions of X by \mathbf{G}_m (\natural -extensions are line bundles with flat connections satisfying some additional conditions). This equivalence is defined by a natural bundle \mathcal{P} on $X^{\ddagger} \times X$ with a connection along X (the Poincaré bundle), and the proof is based on the fact that \mathcal{P} is an orthogonal X-family of $O_{X^{\ddagger}}$ -modules and an orthogonal X^{\ddagger} -family of D_X -modules. Here orthogonal means the tensor product of two different bundles in each of these families has zero cohomology groups.

In this paper, the role of X^{\ddagger} is played by the moduli space \mathcal{M} of a special kind of rank 2 bundles with connections on \mathbb{P}^1 . We construct a natural orthogonal family of bundles on \mathcal{M} parametrized by \mathbb{P}^1 , so \mathbb{P}^1 plays the role of X.

More precisely, \mathcal{M} is the moduli stack of SL(2)-bundles with connections on \mathbb{P}^1 (see [14] for the definition of algebraic stack). These connections are supposed to have poles of order 1 at x_1, \ldots, x_4 , and the eigenvalues of their residues at x_1, \ldots, x_4

Partially supported by INTAS grant 94-4720.

are fixed. The universal \mathcal{M} -family of SL(2)-bundles with connections on \mathbb{P}^1 defines a \mathbb{P}^1 -family of vector bundles on \mathcal{M} .

To prove the \mathbb{P}^1 -family is orthogonal, we construct a smooth compactification of \mathcal{M} in terms of algebraic stacks. The compactification is based on the same idea as the compactification of a moduli space of bundles with connection constructed by C. Simpson ([19], [20]): the compactifying space is the moduli stack of a certain class of "bundles with λ -connections" introduced by P. Deligne. The compactification is still defined for any number of points $x_1, \ldots, x_n \in \mathbb{P}^1$.

Bundles with connections of this kind can be thought of as modules over a TDO ring D_{λ} on the projective line with doubled points x_1, \ldots, x_4 (D_{λ} depends on the conjugacy classes of residues). Thus, we get an \mathcal{M} -family of D_{λ} -modules. We claim this family has properties similar to those of the Poincaré bundle: we prove it is orthogonal as a family of $O_{\mathcal{M}}$ -modules, and, by the results of S. Lysenko ([15]), it is also orthogonal as a family of D_{λ} -modules. Combining the statements, we see the family defines an equivalence between the derived category of D_{λ} -modules and the full subcategory of the derived category of quasicoherent sheaves on \mathcal{M} formed by objects on which $-1 \in \mu_2$ acts as -1 (since \mathcal{M} is a μ_2 -gerbe over an algebraic space, μ_2 acts on any sheaf on \mathcal{M}).

Notation. In this paper, the ground field is \mathbb{C} , in other words, "space" means " \mathbb{C} -space", \mathbb{P}^1 means $\mathbb{P}^1_{\mathbb{C}}$, and so on.

For any schemes (or stacks) X_1, \ldots, X_k , p_i stands for the natural projection $X_1 \times \cdots \times X_k \to X_i$, p_{ij} is the projection $X_1 \times \cdots \times X_k \to X_i \times X_j$, and so on.

We denote by $(F^0 \xrightarrow{d^0} F^1 \xrightarrow{d^1} \dots)$ the complex (or the corresponding object of the derived category) F^{\bullet} with $F^i = 0$ for i < 0 (here F^i are objects of some abelian category).

1. Formulation of main results

Let us fix $x_1, \ldots, x_n \in \mathbb{P}^1$ and $\lambda_1, \ldots, \lambda_n \in \mathbb{C}$ such that $x_i \neq x_j$ for $i \neq j, n \geq 4$, $2\lambda_i \notin \mathbb{Z}$, and

$$\sum_{i=1}^{n} \epsilon_i \lambda_i \notin \mathbb{Z} \tag{1}$$

for any $\epsilon_i \in \mu_2 := \{1, -1\}.$

Definition 1. A $(\lambda_1, \ldots, \lambda_n)$ -bundle is a triple (L, ∇, φ) such that L is a rank 2 vector bundle on $\mathbb{P}^1, \nabla: L \to L \otimes \Omega_{\mathbb{P}^1}(x_1 + \cdots + x_n)$ is a connection, $\varphi: \bigwedge^2 L \xrightarrow{\sim} O_{\mathbb{P}^1}$ is a horizontal isomorphism, and the residue $R_i := \operatorname{res}_{x_i} \nabla$ of ∇ at x_i has eigenvalues $\{\lambda_i, -\lambda_i\}$.

The following definition is a generalization of Definition 1.

Suppose E is a one-dimensional vector space, $\epsilon \in E$, L is a rank 2 vector bundle on \mathbb{P}^1 , $\nabla : L \to L \otimes \Omega_{\mathbb{P}^1}(x_1 + \cdots + x_n) \otimes E$ is a \mathbb{C} -linear map, $\varphi : \bigwedge^2 L \xrightarrow{\sim} O_{\mathbb{P}^1}$. Let $l_i \subset L_{x_i}$ be a one-dimensional subspace for each $i = 1, \ldots, n$.

Definition 2. A collection $(L, \nabla, \varphi; E, \epsilon; l_1, \ldots, l_n)$ is called an ϵ -bundle if the following conditions hold:

- (i) $\nabla(fs) = f \nabla s + s \otimes df \otimes \epsilon$ for $f \in O_{\mathbb{P}^1}, s \in L$;
- (ii) $\varphi(\nabla s_1 \wedge s_2) + \varphi(s_1 \wedge \nabla s_2) = d(\varphi(s_1 \wedge s_2)) \otimes \epsilon \text{ for } s_1, s_2 \in L;$
- (iii) The map $R_i : L_{x_i} \to (L \otimes \Omega(x_1 + \dots + x_n) \otimes E)_{x_i} = L_{x_i} \otimes E$ induced by ∇ satisfies $R_i|_{l_i} = \epsilon \lambda_i$;
- (iv) (L, ∇) is irreducible, that is, there is no rank 1 subbundle $L_0 \subset L$ such that $\nabla(L_0) \subset L_0 \otimes \Omega(x_1 + \cdots + x_n) \otimes E$.

Remark 1. From a certain point of view, it is natural to consider collections $(L, \nabla, \varphi; E, \epsilon)$ that satisfy (i), (ii), (iv), and the following condition

(iii') The map $R_i: L_{x_i} \to L_{x_i} \otimes E$ has eigenvalues $\pm \lambda_i \epsilon$.

For n = 4, these two definitions are equivalent (in other words, l_i is uniquely determined by $(L, \nabla, \varphi; E, \epsilon)$). So, for n = 4, we also use the term ϵ -bundle for $(L, \nabla, \varphi; E, \epsilon)$ that satisfies (i), (ii), (iii'), and (iv). However, the advantage of Definition 2 is that the moduli stack of ϵ -bundles is smooth for any n (Theorem 1). One can check that the moduli stack of collections $(L, \nabla, \varphi; E, \epsilon)$ that satisfy (i), (ii), (iii'), and (iv) and (iv) is no longer smooth if n > 4 (although the stack is still complete).

Example. Let (L, ∇, φ) be a $(\lambda_1, \ldots, \lambda_n)$ -bundle. Set $l_i := \operatorname{Ker}(R_i - \lambda_i) \subset L_{x_i}$. Then $(L, \nabla, \varphi; \mathbb{C}, 1; l_1, \ldots, l_n)$ satisfies conditions (i)–(iii) of Definition 2. Let us check (iv). Assume $L_0 \subset L$ is a ∇ -invariant subbundle of rank 1. Then ∇ induces a connection $\nabla_0 : L_0 \to L_0 \otimes \Omega_{\mathbb{P}^1}(x_1 + \cdots + x_n)$ such that $\operatorname{res}_{x_i} \nabla_0 = \pm \lambda_i$. This contradicts (1), so $(L, \nabla, \varphi; \mathbb{C}, 1; l_1, \ldots, l_n)$ is an ϵ -bundle.

Example. Let *L* be a rank 2 bundle on \mathbb{P}^1 , $\nabla \in \operatorname{Hom}_{O_{\mathbb{P}^1}}(L, L \otimes \Omega(x_1 + \dots + x_n))$, and $\varphi : \bigwedge^2 L \xrightarrow{\sim} O_{\mathbb{P}^1}$. Suppose $\det(\nabla) \in H^0(\mathbb{P}^1, \Omega^{\otimes 2}(x_1 + \dots + x_n))$ and $\operatorname{tr}(\nabla) = 0$. In this case, $R_i \in \operatorname{End}(L_{x_i})$ is nilpotent, so one can choose $l_i \subset L_{x_i}$ such that $R_i|_{l_i} = 0$. Clearly $(L, \nabla, \varphi; \mathbb{C}, 0; l_1, \dots, l_n)$ satisfies conditions (i)–(iii) of Definition 2. If $\det(\nabla) = 0$, then any rank 1 subbundle $L_0 \subset \operatorname{Ker} \nabla$ is ∇ -invariant; hence (L, ∇) is reducible. Conversely, assume (L, ∇) is reducible. Then ∇ has eigenvalues $\omega_{\pm} \in H^0(\mathbb{P}^1, \Omega_{\mathbb{P}^1}(x_1 + \dots + x_n))$. We have $\omega_{+} + \omega_{-} = \operatorname{tr}(\nabla) = 0$ and $\omega_{+}\omega_{-} = \det(\nabla) \in H^0(\mathbb{P}^1, \Omega_{\mathbb{P}^1}^{\otimes 2}(x_1 + \dots + x_n))$. Hence $\omega_{\pm} \in H^0(\mathbb{P}^1, \Omega_{\mathbb{P}^1}) = 0$, this implies $\det(\nabla) = \omega_{+}\omega_{-} = 0$. So $(L, \nabla, \varphi; \mathbb{C}, 0; l_1, \dots, l_n)$ is an ϵ -bundle if and only if $\det(\nabla) \neq 0$.

Remark 2. For an ϵ -bundle $(L, \nabla, \varphi; E, \epsilon; l_1, \ldots, l_n)$, one can pick an isomorphism $E \xrightarrow{\sim} \mathbb{C}$ such that ϵ maps either to $1 \in \mathbb{C}$ or to $0 \in \mathbb{C}$. So the above two examples

describe all ϵ -bundles. Hence we can replace condition (iv) in Definition 2 with the condition

(iv') If $\epsilon = 0$, then $det(\nabla) \neq 0$.

Let $\overline{\mathcal{M}}$ be the moduli stack of ϵ -bundles (so $\overline{\mathcal{M}}_U$ is the groupoid of U-families of ϵ -bundles). Vector spaces E for ϵ -bundles $(L, \nabla, \varphi; E, \epsilon; l_1, \ldots, l_n)$ form an invertible sheaf \mathcal{E} on $\overline{\mathcal{M}}$ together with a natural section $\epsilon \in H^0(\overline{\mathcal{M}}, \mathcal{E})$. Denote by $\mathcal{M}_H \subset \overline{\mathcal{M}}$ the closed substack defined by the equation $\epsilon = 0$. We identify the stack of $(\lambda_1, \ldots, \lambda_n)$ -bundles with $\mathcal{M} := \overline{\mathcal{M}} \setminus \mathcal{M}_H$.

Theorem 1.

- (i) $\overline{\mathcal{M}}$ is a complete Deligne–Mumford stack;
- (ii) $\mathcal{M}, \overline{\mathcal{M}}, and \mathcal{M}_H$ are smooth algebraic stacks.

For $x \in \mathbb{P}^1$, let ξ_x be the bundle on $\overline{\mathcal{M}}$ whose fiber at $(L, \nabla, \varphi; E, \epsilon; l_1, \ldots, l_n)$ is L_x .

Theorem 2. Suppose $x, y \in \mathbb{P}^1$, n = 4. Then

(i)
$$H^{i}(\mathcal{M}, \xi_{x} \otimes \xi_{y}) = 0$$
 for $x \neq y, i \geq 0$.
(ii) $H^{i}(\mathcal{M}, O_{\mathcal{M}}) = \begin{cases} \mathbb{C}, & i = 0\\ 0, & i > 0 \end{cases}$.
(iii) $H^{i}(\mathcal{M}, \operatorname{Sym}^{2}(\xi_{x})) = 0$ for $i \geq 0, x \notin \{x_{1}, \dots, x_{4}\}$.

Remark. This result is announced in [1]. (ii) is proved in [1].

Remark. Clearly $\bigwedge^2 \xi_x = O_{\overline{\mathcal{M}}}$. So (ii) and (iii) of Theorem 2 imply

$$H^{i}(\mathcal{M},\xi_{x}^{\otimes 2}) = \begin{cases} \mathbb{C}, & i = 0\\ 0, & i > 0 \end{cases} \quad \text{for } x \in \mathbb{P}^{1} \setminus \{x_{1},\ldots,x_{4}\}.$$

Theorem 2 describes $H^i(\mathcal{M}, \xi_x \otimes \xi_y)$ for some $(x, y) \in (\mathbb{P}^1)^2$. It is natural to consider $\xi_x \otimes \xi_y$ as a family of bundles on \mathcal{M} parametrized by $(x, y) \in (\mathbb{P}^1)^2$. Then the problem is to compute the push-forward of the bundle with respect to $\mathcal{M} \times (\mathbb{P}^1)^2 \to (\mathbb{P}^1)^2$ (actually, \mathbb{P}^1 should be replaced by another curve: see Theorem 3 for the precise statement).

Denote by $p: P \to \mathbb{P}^1$ the projective line with doubled points x_1, \ldots, x_4 . In other words, P is obtained by gluing two copies of \mathbb{P}^1 outside x_1, \ldots, x_4 . Let $x_i^{\pm} \in P$ be the preimages of $x_i \in \mathbb{P}^1$, $[\lambda] := \sum_{i=1}^4 \lambda_i (x_i^+ - x_i^-) \in \operatorname{div} P \otimes_{\mathbb{Z}} \mathbb{C}$, where div P is the group of divisors on P. Denote by D_{λ} the TDO ring corresponding to $[\lambda]$ (see [3] for the definition of TDO rings).

For a $(\lambda_1, \ldots, \lambda_4)$ -bundle L, we denote by L_{λ} the D_{λ} -module generated by p^*L . More precisely, $L_{\lambda} := j_{!*}(L|_U)$, where $j : U := \mathbb{P}^1 \setminus \{x_1, \ldots, x_4\} \hookrightarrow P$ is the natural embedding. Since $L|_U$ is a D_U -module and $[\lambda]$ is supported outside of U, L_{λ} is well-defined. This construction still makes sense for families of $(\lambda_1, \ldots, \lambda_4)$ -bundles. Hence we can apply it to the universal family of $(\lambda_1, \ldots, \lambda_4)$ -bundles, getting an \mathcal{M} -family ξ_{λ} of D_{λ} -modules.

Consider $p_{12} : P \times P \times \mathcal{M} \to P \times P$ and $p_{13}, p_{23} : P \times P \times \mathcal{M} \to P \times \mathcal{M}$. \mathcal{M} . Set $\mathcal{F}_P := (p_{13}^*\xi_{\lambda}) \otimes (p_{23}^*\xi_{\lambda})$ (since ξ_{λ} is a flat $O_{P \times \mathcal{M}}$ -module, $(p_{13}^*\xi_{\lambda}) \otimes (p_{23}^*\xi_{\lambda}) = (p_{13}^*\xi_{\lambda}) \otimes^L (p_{23}^*\xi_{\lambda})$). Note that p_{13}^* and p_{23}^* stand for the O-module pullback (from the viewpoint of D-modules, these pull-back functors should include a cohomological shift).

 $Rp_{12,*}\mathcal{F}_P$ is an object of the derived category of $p_1^{\bullet}D_{\lambda} \circledast p_2^{\bullet}D_{\lambda}$ -modules, where $p_1, p_2 : P \times P \to P$ are the projections. Here p_i^{\bullet} (resp. \circledast) stands for the inverse image (resp. the Baer sum) of TDO rings (the corresponding functors on Picard Lie algebroids are described in [3]).

Theorem 3. $Rp_{12,*}\mathcal{F}_P = \delta_{\Delta'}[-1]$, where $\Delta' \subset P \times P$ is the graph of the involution $\sigma: P \to P$ such that $\sigma(x_i^{\pm}) = x_i^{\mp}$, and $\delta_{\Delta'}$ is the direct image of $O_{\Delta'}$ as a $D_{\Delta'}$ -module.

Remark. In general, for a map $f : X \to Y$ and a TDO ring D_1 on Y, there is a functor $f_+ : \mathcal{D}^b(f^{\bullet}D_1) \to \mathcal{D}^b(D_1)$, where $\mathcal{D}^b(D_1)$ is the derived category of D_1 modules. For the embedding $i : \Delta' \hookrightarrow P \times P$, one easily checks $i^{\bullet}(p_1^{\bullet}D_{\lambda} \otimes p_2^{\bullet}D_{\lambda})$ is the (non-twisted) differential operator ring $D_{\Delta'}$, so $\delta_{\Delta'} := i_+(O_{\Delta'})$ is well-defined as a $p_1^{\bullet}D_{\lambda} \otimes p_2^{\bullet}D_{\lambda}$ -module.

By Theorem 3, ξ_{λ} is an orthogonal *P*-family of $O_{\mathcal{M}}$ -bundles. To construct an equivalence of categories, one should also show that ξ_{λ} is orthogonal as an \mathcal{M} -family of D_{λ} -modules. Let us give the precise statement. We follow closely S. Lysenko's unpublished notes [15].

Consider $\mathcal{F}_{\mathcal{M}} := p_{13}^* \xi_{\lambda} \otimes p_{23}^* (id_{\mathcal{M}} \times \sigma)^* \xi_{\lambda}$ (here $p_{13}, p_{23} : \mathcal{M} \times \mathcal{M} \times P \to \mathcal{M} \times P$ are the projections and $\sigma : P \xrightarrow{\sim} P$ is the involution introduced in Theorem 3).

 $\mathcal{F}_{\mathcal{M}}$ can be viewed as a family of D_P -modules parametrized by $\mathcal{M} \times \mathcal{M}$. Consider the de Rham complex of $\mathcal{F}_{\mathcal{M}}$ in the direction of P:

$$\mathbb{DR}(\mathcal{F}_{\mathcal{M}}) = \mathbb{DR}_{P}(\mathcal{F}_{\mathcal{M}}) := (\mathcal{F}_{\mathcal{M}} \to \mathcal{F}_{\mathcal{M}} \otimes \Omega_{\mathcal{M} \times \mathcal{M} \times P/\mathcal{M} \times \mathcal{M}})$$

Our aim is to compute $Rp_{12,*} \mathbb{DR}(\mathcal{F}_{\mathcal{M}})$.

 $\mathcal{M} \times \mathcal{M}$ is a $\mu_2 \times \mu_2$ -gerbe over some algebraic space (actually, a scheme), so $\mu_2 \times \mu_2$ acts on any quasicoherent sheaf \mathcal{F} on \mathcal{M} . Therefore, \mathcal{F} can be decomposed with respect to the characters of $\mu_2 \times \mu_2$. Denote by \mathcal{F}^{ψ} the component of \mathcal{F} corresponding to the character $\psi : \mu_2 \times \mu_2 \to \mathbf{G}_m$ defined by $(a, b) \mapsto ab$.

Let diag : $\mathcal{M} \to \mathcal{M} \times \mathcal{M}$ be the diagonal morphism.

Theorem 4 (S. Lysenko). $Rp_{12,*} \mathbb{DR}(\mathcal{F}_{\mathcal{M}}) = (\operatorname{diag}_* O_{\mathcal{M}})^{\psi}[-2].$

Remark. The definition of $(\lambda_1, \ldots, \lambda_n)$ -bundles can be carried out using *l*-adic sheaves instead of bundles with connections. In this situation, the moduli space of

" $(\lambda_1, \ldots, \lambda_n)$ -l-adic sheaves" exists only infinitesimally: there is no analogue of \mathcal{M} (so the analogue of Theorem 3 cannot be formulated), but the formal neighborhood of a point on \mathcal{M} can still be defined. So Theorem 4 admits an *l*-adic version, which is also proved in [15].

Since \mathcal{M} is a μ_2 -gerbe, the derived category $\mathcal{D}_{qc}(\mathcal{M})$ of quasicoherent sheaves on \mathcal{M} naturally decomposes as $\mathcal{D}_{qc}(\mathcal{M}) = \mathcal{D}_{qc}(\mathcal{M})^+ \times \mathcal{D}_{qc}(\mathcal{M})^-$, where $\mathcal{F} \in \mathcal{D}_{qc}(\mathcal{M})^{\pm}$ if and only if $-1 \in \mu_2$ acts as ± 1 on $H^i(\mathcal{F})$ for any i.

Using base change, one easily derives from Theorems 3 and 4 the following equivalence of categories:

Theorem 5. The functor

$$\Phi_{\mathcal{M}\to P}: \mathcal{F} \mapsto Rp_{2,*}(\xi_{\lambda} \otimes_{O_{\mathcal{M}\times P}} p_1^*\mathcal{F})[1]$$

is an equivalence between $\mathcal{D}_{qc}(\mathcal{M})^-$ and the derived category of D_{λ} -modules. The inverse functor is given by

$$\Phi_{P \to \mathcal{M}} : \mathcal{F} \mapsto Rp_{1,*} \mathbb{D}\mathbb{R}_P((id_{\mathcal{M}} \times \sigma)^* \xi_\lambda \otimes_{O_{\mathcal{M} \times P}} p_2^* \mathcal{F})[1].$$

Remark. The functors $\Phi_{\mathcal{M}\to P}$ and $\Phi_{P\to\mathcal{M}}$ provide an equivalence between the derived category of coherent D_{λ} -modules and the full subcategory of $\mathcal{D}_{qc}(\mathcal{M})^-$ consisting of objects with coherent cohomologies. Note that both categories are equipped with natural anti-equivalences. Namely, for coherent D_{λ} -modules, we consider the composition of the Verdier duality with the pull-back functor σ^* , while on the derived category of coherent $\mathcal{O}_{\mathcal{M}}$ -modules, the anti-equivalence is given by $\mathcal{H}om(\bullet, \Omega^2_{\mathcal{M}})$ (Serre's duality). $\Phi_{\mathcal{M}\to P}$ and $\Phi_{P\to\mathcal{M}}$ agree with the anti-equivalences. The proof of these statements will be given elsewhere.

This paper has the following structure:

In Section 2, we explain the place of our results in the geometric Langlands philosophy. The proof of Theorem 1 occupies Sections 3 (the first statement of the theorem) and 4 (its second statement). In Sections 5–8, we prove Theorem 2 by first studying the behavior of $\xi_x \otimes \xi_y$ on \mathcal{M}_H (Section 5), its infinitesimal neighborhood (Section 6), and $\overline{\mathcal{M}}$ (Section 7). These results are used in Section 8 to prove Theorem 2. Theorem 3 is derived from Theorem 2 in Section 9. In Section 10, we sketch S. Lysenko's proof of Theorem 4.

2. Relation to the geometric Langlands program

In this section, we explain the meaning of Theorem 5 from the viewpoint of the geometric Langlands conjecture. Detailed proofs of the statements will be given elsewhere. This section is independent from the rest of the text.

Set $G := PGL(2) = GL(2)/\mathbf{G}_m$. Fix a Borel subgroup $B \subset G$, a Cartan subgroup $T \subset G$, and an isomorphism $T \xrightarrow{\sim} \mathbf{G}_m$.

Denote by $\mathcal{B}un_{qp}(G)$ the moduli stack of principal G bundles \mathcal{F} on \mathbb{P}^1 together with $l_i \in (\mathcal{F}_{x_i})/B$ for $i = 1, \ldots, n$ (a quasiparabolic structure). Let $\xi_i^{(B)}$ be the principal B-bundle on $\mathcal{B}un_{qp}(G)$ whose fiber at $(\mathcal{F}, l_1, \ldots, l_n)$ is l_i (viewed as a B-orbit in \mathcal{F}_{x_i}). The map $B \to T \xrightarrow{\sim} \mathbf{G}_m$ transforms $\xi_i^{(B)}$ into a \mathbf{G}_m -torsor (in other words, a line bundle) ξ_i . The fiber of the line bundle ξ_i at $(\mathcal{F}, l_1, \ldots, l_n)$ is the cotangent space to the projective line $(\mathcal{F}_{x_i})/B$ at l_i .

Consider the map $\mathcal{B}un_{qp}(G) \to \mu_2$ that sends $(\mathcal{F}, l_1, \ldots, l_n)$ to $\delta([\mathcal{F}])$, where $[\mathcal{F}] \in H^1(\mathbb{P}^1, PGL(2))$ is the isomorphism class of \mathcal{F} , and $\delta : H^1(\mathbb{P}^1, PGL(2)) \to \mu_2 = H^2(\mathbb{P}^1, \mu_2)$ is the coboundary map corresponding to

$$1 \to \mu_2 \to SL(2) \to PGL(2) \to 1.$$

Clearly, the map $\mathcal{B}un_{qp}(G) \to \mu_2$ is locally constant. Denote by $\mathcal{B}un_{qp}^{odd}(G) \subset \mathcal{B}un_{qp}(G)$ the preimage of $-1 \in \mu_2$.

Consider $\sum_i \lambda_i[\xi_i] \in (\operatorname{Pic} \mathcal{B}un_{\operatorname{qp}}(G)) \otimes_{\mathbb{Z}} \mathbb{C}$, where $[\xi_i] \in \operatorname{Pic} \mathcal{B}un_{\operatorname{qp}}(G)$ is the isomorphism class of ξ_i . Let $D(\mathcal{B}un_{\operatorname{qp}}(G))_{\lambda}$ be the corresponding TDO ring. A. Beilinson and V. Drinfeld explained that the geometric Langlands philosophy predicts a canonical equivalence between the derived category of $\mathcal{O}_{\mathcal{M}}$ -modules and the derived category of $D(\mathcal{B}un_{\operatorname{qp}}(G))_{\lambda}$ -modules such that $\mathcal{D}_{qc}(\mathcal{M})^-$ is mapped onto the derived category of $D(\mathcal{B}un_{\operatorname{qp}}^{\operatorname{odd}}(G))_{\lambda}$ -modules. Here $D(\mathcal{B}un_{\operatorname{qp}}^{\operatorname{odd}}(G))_{\lambda}$ is the restriction of $D(\mathcal{B}un_{\operatorname{qp}}^{\operatorname{odd}}(G))_{\lambda}$ to $\mathcal{B}un_{\operatorname{qp}}^{\operatorname{odd}}(G)$. Under assumption (1), one can replace $\mathcal{B}un_{\operatorname{qp}}(G)$ by a smaller stack:

A quasiparabolic bundle $(\mathcal{F}, l_1, \ldots, l_n)$ is *decomposable* if it admits a *T*-structure $\mathcal{F}_T \subset \mathcal{F}$ that agrees with l_i for $i = 1, \ldots, n$. Any decomposable quasiparabolic bundle clearly possesses a nontrivial automorphism. Actually, for quasiparabolic bundles on \mathbb{P}^1 the converse is also true (cf. [1, Proposition 3]).

Let $\mathcal{B}un'_{qp}(G) \subset \mathcal{B}un_{qp}(G)$ be the open substack formed by undecomposable quasiparabolic bundles $(\mathcal{F}, l_1, \ldots, l_n)$. One can check that, provided (1) holds, there are no nonzero $D(\mathcal{B}un_{qp}(G))_{\lambda}$ -modules M such that $M|_{\mathcal{B}un'_{qp}(G)} = 0$. In other words, the embedding $\mathcal{B}un'_{qp}(G) \hookrightarrow \mathcal{B}un_{qp}(G)$ induces an equivalence between the derived category of $D(\mathcal{B}un'_{qp}(G))_{\lambda}$ -modules and the derived category of $D(\mathcal{B}un_{qp}(G))_{\lambda}$ -modules.

From now on, we assume n = 4. In this case, one can easily construct an isomorphism between $\mathcal{B}un_{qp}^{\text{odd}}(G) := \mathcal{B}un_{qp}^{\text{odd}}(G) \cap \mathcal{B}un_{qp}^{\text{odd}}(G)$ and P. The image of $\sum_i \lambda_i[\xi_i] \in \operatorname{Pic} \mathcal{B}un_{qp}(G)_0 \otimes_{\mathbb{Z}} \mathbb{C}$ in $\operatorname{Pic} P \otimes_{\mathbb{Z}} \mathbb{C}$ via this isomorphism equals

$$\sum_{i=1}^{4} \lambda_i'([x_i^+] - [x_i^-]) \in \operatorname{Pic} P \otimes_{\mathbb{Z}} \mathbb{C}$$

Here $[x_i^{\pm}] \in \operatorname{Pic} P$ is the image of $x_i^{\pm} \in \operatorname{div} P$, and λ'_i are given by

$$\lambda_i' = \lambda_i - \frac{1}{2} \sum_{j=1}^4 \lambda_j$$

Note that if λ_i satisfy (1), then so do λ'_i , so Theorem 5 yields a canonical equivalence between the derived category of $D(\mathcal{B}un_{qp}^{odd}(\mathbf{G}))_{\lambda}$ -modules and $\mathcal{D}_{qc}(\mathcal{M}')^-$ (here \mathcal{M}' is the moduli stack of $(\lambda'_1, \ldots, \lambda'_4)$ -bundles). Let M (resp. M') be the coarse moduli space corresponding to \mathcal{M} (resp. \mathcal{M}'). Tensor multiplication by ξ_1 gives an equivalence between $\mathcal{D}_{qc}(\mathcal{M})$ and $\mathcal{D}_{qc}(\mathcal{M})^-$. Here ξ_1 is the line bundle on \mathcal{M} whose fiber at (L, ∇, φ) is $l_1 := \operatorname{Ker}(R_1 - \lambda_1) \subset L_{x_1}$. Similarly, we get an equivalence between $\mathcal{D}_{qc}(\mathcal{M}')$ and $\mathcal{D}_{qc}(\mathcal{M}')^-$. By [2, Theorem 1], there is a natural isomorphism $\mathcal{M} \xrightarrow{\rightarrow} \mathcal{M}'$; hence $\mathcal{D}_{qc}(\mathcal{M})^-$ is indeed equivalent to the derived category of $D(\mathcal{B}un_{qp}^{\mathrm{odd}}(\mathbf{G}))_{\lambda}$ -modules in our case.

Remark. It is also possible to construct the equivalence by first using Theorem 5 to get from $\mathcal{D}_{qc}(\mathcal{M})^-$ to the derived category of D_{λ} -modules on P, and then using a version of the Radon transform to prove the derived categories of D_{λ} -modules and $D(\mathcal{B}un_{qp}^{odd}(G))_{\lambda}$ -modules are equivalent. This approach gives a canonical equivalence between the categories, while our construction, rigorously speaking, depends on the choice of $x_1 \in \{x_1, \ldots, x_4\}$. Another way of dealing with this problem is to prove that the isomorphism $M \xrightarrow{\sim} M'$ lifts canonically to the line bundles $\xi_i \otimes \xi_j$ (the existence of such lifting is guaranteed by [2, Theorem 1]).

3. Completeness of $\overline{\mathcal{M}}$

Let $\mathcal{F}ib_2$ be the moduli stack of rank 2 vector bundles on \mathbb{P}^1 , $\mathcal{F}ib_2^k \subset \mathcal{F}ib_2$ the open substack formed by bundles L such that $H^1(\mathbb{P}^1, L(k)) = 0$ (k is an integer). It is well-known that $\mathcal{F}ib_2$ is an algebraic stack and $\mathcal{F}ib_2^k$ is an algebraic stack of finite type (cf. [14, Theorem 4.6.2.1]). Using the morphism $\mathcal{M} \to \mathcal{F}ib_2$ which sends $(L, \nabla, \varphi; E, \epsilon; l_1, \ldots, l_n)$ to L, it is easy to see \mathcal{M} is algebraic. Moreover, condition (iv) of Definition 2 guarantees the image of \mathcal{M} is contained in $\mathcal{F}ib_2^k$ for $k \gg 0$, so \mathcal{M} is of finite type.

It is easy to see the diagonal $\overline{\mathcal{M}} \to \overline{\mathcal{M}} \times \overline{\mathcal{M}}$ is unramified, so [14, Theorem 8.1] implies that $\overline{\mathcal{M}}$ is a Deligne–Mumford stack. Using the valuative criterion for Deligne–Mumford stacks (see [6, Theorems 2.2,2.3]) we derive the first statement of Theorem 1 from the following statement:

Proposition 1. Suppose A is a complete discrete valuation ring, K is the fraction field of A, $\eta := \operatorname{Spec}(K)$, $y^0 = (L^0, \nabla^0, \varphi^0; E^0, \epsilon^0; l_1^0, \ldots, l_n^0) \in \overline{\mathcal{M}}_{\eta}$.

(i) If an extension of y^0 to $y \in \overline{\mathcal{M}}_U$ exists, it is unique. Here $U := \operatorname{Spec} A$;

(ii) There is a finite extension $K' \supset K$ such that the inverse image of y^0 to $\eta' := \operatorname{Spec} K'$ can be extended to $y' \in \overline{\mathcal{M}}_{U'}$. Here $U' := \operatorname{Spec}(A')$, A' is the integral closure of A in K'.

Denote by $v: K \to \mathbb{R} \cup \{\infty\}$ the valuation, by $m \subset A$ the maximal ideal, by k := A/m the residue field of A. So Spec $k \in U$ is the special point. Let $\operatorname{Spec} \mathbb{C}(z) \in \mathbb{P}^1$ be the generic point, $\Omega_{\mathbb{C}(z)}$ the generic fiber of $\Omega_{\mathbb{P}^1}$. Denote by $\tilde{\eta} := \operatorname{Spec} K(z) \in U \times \mathbb{P}^1$ the generic point, by $\tilde{p} := \operatorname{Spec} k(z) \in \mathbb{P}^1_k \subset U \times \mathbb{P}^1$ the generic point of the special fiber, by $\tilde{A} \subset K(z)$ the local ring of \tilde{p} , and by $\tilde{m} \subset \tilde{A}$ the maximal ideal. \tilde{A} is a valuation ring. Let $\tilde{v}: K(z) \to \mathbb{R} \cup \{\infty\}$ be the corresponding valuation such that $\tilde{v}|_{K} = v$.

Lemma 1. Let X be a smooth scheme of dimension 2, $S \subset X$ a finite subscheme, F a locally free sheaf on $X_0 := X \setminus S$. Then j_*F is a locally free sheaf on X, where $j: X_0 \hookrightarrow X$ is the natural embedding.

Proof (communicated by B. Conrad). By [7, Proposition VIII.3.2], $\overline{F} := j_*F$ is a coherent O_X -module. Clearly \overline{F} is torsion-free. Besides, for any open subscheme $j_U: U \hookrightarrow X$ such that dim $X \setminus U = 0$ we have $\overline{F} = (j_U)_*(\overline{F}|_U)$, so \overline{F} is reflexive by [10, Proposition 1.6]. Now [10, Corollary 1.4] implies \overline{F} is locally free.

For a point $r \in U \times \mathbb{P}^1$ and an $O_{U \times \mathbb{P}^1}$ -module L we denote by L_r (resp. $L_{(r)}$) the fiber (resp. the stalk) of L over r as a module over the residue field (resp. the local ring) of r.

Lemma 2. Let C be the category of pairs (L,Q), where L is a vector bundle on $\eta \times \mathbb{P}^1 = \mathbb{P}^1_K, \ Q \subset L_{\tilde{\eta}} \ is \ an \ \tilde{A}$ -lattice (i.e., Q is a finitely generated \tilde{A} -submodule such that $L_{\tilde{\eta}} = K(z) \otimes_{\tilde{A}} Q$). Denote by Fib $(U \times \mathbb{P}^1)$ the category of vector bundles on $U \times \mathbb{P}^1$. The correspondence $L \mapsto (L|_{n \times \mathbb{P}^1}, L_{(\tilde{p})})$ defines an equivalence of categories $F: \operatorname{Fib}(U \times \mathbb{P}^1) \to \mathcal{C}.$

Proof. Clearly F is fully faithful. If $S \subset \mathbb{P}^1_k$ is a finite subscheme, any vector bundle on $(U \times \mathbb{P}^1) \setminus S$ has a unique extension to $U \times \mathbb{P}^1$ (Lemma 1). Hence F is essentially surjective.

Let us describe all extensions of $y^0 = (L^0, \nabla^0, \varphi^0; E^0, \epsilon^0; l_1^0, \dots, l_n^0) \in \overline{\mathcal{M}}_\eta$ to $y = (L, \nabla, \varphi; E, \epsilon; l_1, \ldots, l_n) \in \overline{\mathcal{M}}_U$. Fix y^0 . Denote by $\mathcal{E}x$ the category of all extensions $y \in \overline{\mathcal{M}}_U$. Clearly $\mathcal{E}x$ is a discrete category. Denote by Ex the set of isomorphism classes of extensions.

Consider pairs $(Q \subset (L^0)_{\tilde{\eta}}, E \subset E^0)$, where Q is an \tilde{A} -lattice, E is a free Asubmodule of rank 1 (i.e., $E \subset E^0$ is an A-lattice), $\epsilon \in E$. Let us introduce the following conditions:

- (a) $\nabla^0(Q) \subset Q \otimes_A E \otimes_{\mathbb{C}(z)} \Omega_{\mathbb{C}(z)};$ (b) $\varphi^0(\bigwedge_{\tilde{A}}^2 Q) = \tilde{A};$

- (c) The map $(\nabla^0 \mod \tilde{m}) : (Q/\tilde{m}Q) \to (Q/\tilde{m}Q) \otimes_k (E/mE) \otimes_{\mathbb{C}(z)} \Omega_{\mathbb{C}(z)}$ is irreducible (this map is well-defined if (a) holds), that is, there is no $(\nabla^0 \mod \tilde{m})$ -invariant subspace $V \subset Q/\tilde{m}Q$, $\dim_{k(z)} V = 1$.
- (c') If $\epsilon^0 \in mE$, then $(\nabla^0 \mod \tilde{m})$ is not nilpotent (in this case $(\nabla^0 \mod \tilde{m})$ is k(z)-linear).

Denote by Ex_1 (resp. Ex'_1) the set of all $(Q \subset (L^0)_{\tilde{\eta}}, E \subset E^0)$ that satisfy (a)–(c) (resp. (a), (b), and (c')). If (a) holds, then (c) implies (c'), so $Ex_1 \subset Ex'_1$.

Lemma 3. The map $F_{Ex} : [y] \mapsto (L_{(\tilde{p})} \subset (L^0)_{\tilde{\eta}}, E \subset E^0)$ gives an isomorphism $Ex \rightarrow Ex'_1 = Ex_1$. Here $y = (L, \nabla, \varphi; E, \epsilon; l_1, \ldots, l_n) \in \overline{\mathcal{M}}_U$, and $[y] \in Ex$ is the isomorphism class of y.

Proof. For $[y] \in Ex$ its image $F_{Ex}[y]$ clearly satisfies (a) and (b). Besides y satisfies the condition (iv) of Definition 2, so $F_{Ex}[y]$ satisfies (c). Hence $F_{Ex}(Ex) \subset Ex_1 \subset Ex'_1$. Lemma 2 implies F_{Ex} is injective.

Let us prove that $F_{Ex}: Ex \to Ex'_1$ is surjective. Fix $(Q \subset (L^0)_{\tilde{\eta}}, E \subset E^0) \in Ex'_1$. Using Lemma 2, we can extend L^0 to L. Then ∇^0 and φ^0 have unique extensions ∇ and φ . (a) (resp. (b)) implies that ∇ (resp. φ) has no poles. l_i^0 uniquely extends to free rank 1 submodule $l_i \subset L|_{U \times x_i}$. (i)–(iii) of Definition 2 are automatically satisfied. (c') implies condition (iv') of Remark 2. So $[(L, \nabla, \varphi; E, \epsilon = \epsilon^0; l_1, \ldots, l_n)] \in Ex$.

Remark. In this proof we used the equivalence (iv) \iff (iv'), which holds only for \mathbb{P}^1 , not for the curves of higher genus. Actually Proposition 1 holds only for \mathbb{P}^1 .

Proof of Proposition 1. (i) It is enough to prove the set Ex_1 has at most one element.

Let $(Q \subset (L^0)_{\tilde{\eta}}, E \subset E^0) \in Ex_1$. Denote by $v_Q : (L^0)_{\tilde{\eta}} \to \mathbb{R} \cup \{\infty\}$ (resp. $v_E : E^0 \to \mathbb{R} \cup \{\infty\}$) the valuation induced by $Q \subset (L^0)_{\tilde{\eta}}$ and \tilde{v} (resp. $E \subset E^0$ and v).

Fix $s_1 \in (L^0)_{\tilde{\eta}}$, $e \in E^0$, $s_1 \neq 0$, $e \neq 0$. Let us prove that Q and E are uniquely determined by $v_s := v_Q(s_1)$ and $v_e := v_E(e)$. Choose $f_s, f_e \in K$ such that $v(f_s) = -v_s$ and $v(f_e) = -v_e$. Then $E = Af_e e$ is determined by v_e . Fix $\omega \in \Omega_{\mathbb{C}(z)}, \omega \neq 0$. Then $\tilde{\nabla} := (\omega f_e e)^{-1} \nabla^0 : (L^0)_{\tilde{\eta}} \to (L^0)_{\tilde{\eta}}$ preserves Q and its reduction modulo \tilde{m} is irreducible. Since $v_Q(f_s s_1) = 0$, $f_s s_1$ and $\tilde{\nabla}(f_s s_1) = f_s f_e^{-1} s_2$ generate Q. Here $s_2 := f_e \tilde{\nabla} s_1 = (\omega e)^{-1} \nabla^0 s_1$ does not depend on v_s and v_e , so Q is uniquely determined.

Let us find v_s and v_e . Set $s_3 := ((\omega e)^{-1} \nabla^0)^2 s_1$. Since s_1 and s_2 are linearly independent over K(z), $s_3 = f_1 s_1 + f_2 s_2$ for some $f_1, f_2 \in K(z)$. Since $(\tilde{\nabla} \mod \tilde{m})$ is irreducible, $\tilde{\nabla} \tilde{\nabla} (f_s s_1) = f_s f_e^{-2} s_3 \in Q$ does not vanish modulo \tilde{m} . Since $f_s f_e^{-2} s_3 = f_e^{-2} f_1(f_s s_1) + f_e^{-1} f_2(f_s f_e^{-1} s_2)$ and $\{f_s s_1, f_s f_e^{-1} s_2\}$ is a basis in Q, we get $\min(\tilde{v}(f_e^{-2} f_1), \tilde{v}(f_e^{-1} f_2)) = 0$ and

$$v_e = -\min\left(\frac{1}{2}\tilde{v}(f_1), \tilde{v}(f_2)\right).$$
(2)

Besides, (b) implies $\tilde{v}(\varphi(f_s s_1 \wedge f_s f_e^{-1} s_2)) = 0$. This gives $\tilde{v}(f_s^2 f_e^{-1} \varphi(s_1 \wedge s_2)) = 0$ and finally

$$v_s = \frac{1}{2} \big(\tilde{v}(\varphi(s_1 \wedge s_2)) + v_e \big). \tag{3}$$

So v_s and v_e (and hence Q and E) are uniquely determined.

(ii) Let $e, \omega, \tilde{\nabla}, s_1, s_2$, and s_3 be the same as above. Since (L^0, ∇^0) is irreducible over $\tilde{\eta}, s_3 = f_1 s_1 + f_2 s_2$ for some $f_1, f_2 \in K(z)$, and equations (2) and (3) make sense. We take a finite extension $K' \supset K$ with a valuation $v' : K' \to \mathbb{R} \cup \{\infty\}$ such that $v'|_K = v$ and the equations (2) and (3) have a solution (v_s, v_e) in v'(K'). For the sake of simplicity let us assume K' = K.

Set $Q := \tilde{A}f_s s_1 \oplus \tilde{A}f_s f_e^{-1} s_1$, $E' := Af_e e$, where $f_s, f_e \in K$, $v(f_s) = -v_s$, $v(f_e) = -v_e$. If $\epsilon \notin E'$, we set $E := \tilde{A}\epsilon$, otherwise E := E'. Let us prove that $(Q \subset (L^0)_{\tilde{\eta}}, E \subset E^0) \in Ex'_1$. (2) implies that Q is $\tilde{\nabla}$ -invariant. Hence

$$\nabla^{0}(Q) \subset Q \otimes_{A} E \otimes_{\mathbb{C}(z)} \Omega_{\mathbb{C}(z)} \subset Q \otimes_{A} E' \otimes_{\mathbb{C}(z)} \Omega_{\mathbb{C}}$$

and (a) holds. (3) implies (b). Let us prove (c').

If $\epsilon \in mE$, then E = E'. Besides $\tilde{\nabla}\tilde{\nabla}(f_s s_1) = f_e^{-2} s_3 \notin \tilde{m}Q$, so $(\tilde{\nabla} \mod \tilde{m})$ (and hence $(\nabla^0 \mod \tilde{m})$) is not nilpotent.

Remark. Let us sketch another way to prove $\overline{\mathcal{M}}$ is separated.

Suppose there are two U-families of ϵ -bundles $(L^i, \nabla^i, \varphi^i; E^i, \epsilon^i; l_1^i, \dots, l_n^i)$ (i = 1, 2) which coincide on $\eta \times \mathbb{P}^1$. Without loss of generality we may assume $E^1 \subset E^2$. Since L^i are SL(2)-sheaves, either $L^1 = L^2$ or $L^1 \not\subset L^2$ and $L^1 \not\supset L^2$. Hence $L^1 \cap L^2 \subset L^2$ is a ∇ -invariant subsheaf and it does not vanish over the special fiber. So $L^1 \cap L^2 = L^2$ and $L^1 = L^2$ because L^2 is irreducible over any fiber. Then it is clear that $E^1 = E^2$.

4. Smoothness of $\overline{\mathcal{M}}$

Consider the quotient stack $\mathbf{G}_m \setminus \mathbb{A}^1$. Recall that $\mathbf{G}_m \setminus \mathbb{A}^1$ is the moduli stack of pairs (E, ϵ) , where E is a dimension 1 vector space, $\epsilon \in E$. Define $r : \overline{\mathcal{M}} \to \mathbf{G}_m \setminus \mathbb{A}^1$ by $(L, \nabla, \varphi; E, \epsilon; l_1, \ldots, l_n) \mapsto (E, \epsilon)$.

To complete the proof of Theorem 1, it is enough to show r is smooth. By [14, Proposition 4.15], we should check that r is formally smooth. Since $\mathbf{G}_m \setminus \mathbb{A}^1$ is Noetherian, it suffices to prove the following lemma (cf. [8, Proposition 17.4.2]):

Lemma 4. Suppose A is a local Artinian ring with a maximal ideal $m \subset A$, $A/m = \mathbb{C}$, $I \subset A$ is an ideal, mI = 0. Set $A_0 := A/I$, $U_0 := Spec(A_0) \subset U := Spec(A)$. For any $\epsilon \in A$ and $y^0 = (L^0, \nabla^0, \varphi^0; A_0, \epsilon + I; l_1^0, \ldots, l_n^0) \in \overline{\mathcal{M}}_{U_0}$, there exists an extension $y = (L, \nabla, \varphi; A, \epsilon; l_1, \ldots, l_n) \in \overline{\mathcal{M}}_U$.

Proof. Denote by $(L^1, \nabla^1, \varphi^1; A/m, \epsilon + m; l_1^1, \ldots, l_n^1) \in \overline{\mathcal{M}}_{\text{Spec }\mathbb{C}}$ the reduction of y_0 modulo m.

Clearly, one can always extend y^0 to y locally on \mathbb{P}^1 . Obstructions to a global extension lie in $H^2 := \mathbb{H}^2(\mathbb{P}^1, \mathcal{F}^{\bullet} \otimes_{\mathbb{C}} I)$. Here \mathcal{F}^{\bullet} is the complex of sheaves defined by $\mathcal{F}^i := 0$ for $i \neq 0, 1$,

$$\mathcal{F}^{0} := \left\{ s \in \mathcal{E}nd(L^{1}) | \operatorname{tr}(s) = 0; s(x_{i})(l_{i}^{1}) \subset l_{i}^{1} \right\},$$
$$\mathcal{F}^{1} := \left\{ s \in \mathcal{E}nd(L^{1}) \otimes \Omega_{\mathbb{P}^{1}}(x_{1} + \dots + x_{n}) | \operatorname{tr}(s) = 0; s(x_{i})|_{l^{1}} = 0 \right\}$$

and $d: \mathcal{F}^0 \to \mathcal{F}^1$ maps s to $s\nabla^1 - \nabla^1 s$. In other words, d is the ϵ -connection on \mathcal{F}^0 induced by ∇^1 .

Consider the dual map $d^* : (\mathcal{F}^1)^* \otimes \Omega_{\mathbb{P}^1} \to (\mathcal{F}^0)^* \otimes \Omega_{\mathbb{P}^1}$. The natural pairing $\mathcal{E}nd(L_1) \times \mathcal{E}nd(L_1) \to O_{\mathbb{P}^1}$ induces an isomorphism between complexes $(\mathcal{F}^1)^* \otimes \Omega_{\mathbb{P}^1} \to (\mathcal{F}^0)^* \otimes \Omega_{\mathbb{P}^1}$ and \mathcal{F}^{\bullet} . By Serre's duality, $H^2 = \operatorname{Coker}(H^1(\mathbb{P}^1, \mathcal{F}^0) \to H^1(\mathbb{P}^1, \mathcal{F}^1)) \otimes_{\mathbb{C}} I = \operatorname{Ker}(H^1(\mathbb{P}^1, \mathcal{F}^1)^* \to H^1(\mathbb{P}^1, \mathcal{F}^0)^*) \otimes_{\mathbb{C}} I = \operatorname{Ker}(H^0(\mathbb{P}^1, \mathcal{F}^0) \to H^0(\mathbb{P}^1, \mathcal{F}^1))^* \otimes_{\mathbb{C}} I$. So it suffices to prove that any $B \in \mathcal{E}ndL^1$ such that $\nabla^1 B = B\nabla^1$ is scalar.

For any $\lambda \in \mathbb{C}$, $\operatorname{Ker}(B - \lambda) \subset L^1$ is a ∇^1 -invariant subbundle. So either $\operatorname{Ker}(B - \lambda) = 0$ or $\operatorname{Ker}(B - \lambda) = L^1$. Since B has an eigenvalue $\lambda \in \mathbb{C}$, the statement easily follows.

5. Geometric description of \mathcal{M}_H and $\xi_x|_{\mathcal{M}_H}$

For the rest of the paper, we assume n = 4.

Recall that \mathcal{M}_H is the moduli stack of $(L, \nabla, \varphi; E, 0)$, where L is a rank 2 vector bundle on \mathbb{P}^1 , E is a dimension 1 vector space, $\varphi : \bigwedge^2 L \xrightarrow{\longrightarrow} O_{\mathbb{P}^1}$, $\nabla : L \rightarrow L \otimes \Omega_{\mathbb{P}^1}(x_1 + \cdots + x_4) \otimes E$ is an $O_{\mathbb{P}^1}$ -linear homomorphism, $\operatorname{tr} \nabla = 0$, $\det \nabla \neq 0$, and $\det \nabla \in H^0(\mathbb{P}^1, \Omega^{\otimes 2}(x_1 + \cdots + x_4)) \otimes E^{\otimes 2}$.

Remark. det ∇ defines a section of $(\mathcal{E}|_{\mathcal{M}_H})^{\otimes 2} \otimes H^0(\mathbb{P}^1, \Omega^{\otimes 2}(x_1 + \cdots + x_4))$ with no zeros. In particular, $(\mathcal{E}|_{\mathcal{M}_H})^{\otimes 2} \simeq O_{\mathcal{M}_H}$.

Let us fix $\mu \in H^0(\mathbb{P}^1, \Omega^{\otimes 2}(x_1 + \cdots + x_4)), \mu \neq 0$. One can choose an isomorphism $E \simeq \mathbb{C}$ such that det $\nabla = \mu$ (there are two choices for such $E \simeq \mathbb{C}$).

Denote by \mathcal{Y} the moduli stack of triples (L, ∇, φ) , where (L, φ) is an SL(2)bundle on \mathbb{P}^1 , $\nabla \in H^0(\mathbb{P}^1, \operatorname{End}(L) \otimes \Omega(x_1 + \cdots + x_4))$, tr $\nabla = 0$, det $\nabla = \mu$. We have proved the following statement:

Proposition 2. The correspondence $(L, \nabla, \varphi) \mapsto (L, \nabla, \varphi; \mathbb{C}, 0)$ yields a double cover $\pi_{(1)} : \mathcal{Y} \to \mathcal{M}_H$. Besides, \mathcal{M}_H is identified with the quotient stack $\mu_2 \setminus \mathcal{Y}$, where $\pm 1 \in \mu_2$ acts on \mathcal{Y} by $(L, \nabla, \varphi) \mapsto (L, \pm \nabla, \varphi)$.

It follows directly from the definition of \mathcal{Y} that $\pi^*_{(1)}(\mathcal{E}) = O_{\mathcal{Y}}$.

Set $\mathcal{A} := O_{\mathbb{P}^1} \oplus (\Omega_{\mathbb{P}^1}(x_1 + \dots + x_4))^{-1}$. \mathcal{A} is a sheaf of $O_{\mathbb{P}^1}$ -algebras with respect to the multiplication $(f_1, \tau_1) \times (f_2, \tau_2) := (f_1 f_2 - \mu \otimes \tau_1 \otimes \tau_2, f_1 \tau_2 + f_2 \tau_1)$. Set $\pi : Y := \mathcal{S}pec(\mathcal{A}) \to \mathbb{P}^1$. Denote by $y_i \in Y$ the preimage of $x_i \in \mathbb{P}^1$, and by $\sigma: Y \to Y$ the involution induced by $\sigma^*: \mathcal{A} \to \mathcal{A}: (f, \tau) \mapsto (f, -\tau).$

For an invertible sheaf l on Y, there is a natural action of σ on the sheaf $l \otimes \sigma^* l$. So there is a natural invertible sheaf norm(l) on \mathbb{P}^1 such that $l \otimes \sigma^* l = \pi^* \operatorname{norm}(l)$. Moreover, $\bigwedge^2(\pi_*l) = \bigwedge^2(\pi_*O_Y) \otimes \operatorname{norm}(l) = \bigwedge^2 \mathcal{A} \otimes \operatorname{norm}(l) = (\Omega_{\mathbb{P}^1}(x_1 + \cdots +$ $(x_4))^{-1} \otimes \operatorname{norm}(l).$

Proposition 3. \mathcal{Y} is the moduli stack of (l, ψ) , where l is a line bundle on Y, ψ : norm $(l) \rightarrow \Omega_{\mathbb{P}^1}(x_1 + \cdots + x_4).$

Proof. Let (L, ∇, φ) be a point of \mathcal{Y} . Then L is an \mathcal{A} -module with respect to the multiplication $(f, \tau)s := fs + \tau \otimes \nabla s$. Since L is a torsion-free A-module, L defines an invertible sheaf l on Y. φ induces ψ : norm $(l) \xrightarrow{\sim} \Omega_{\mathbb{P}^1}(x_1 + \cdots + x_4)$. The inverse construction is given by $l \mapsto L := \pi_* l$.

If (l, ψ) is a point of \mathcal{Y} , then deg l = 2. Conversely, if l is a degree 2 invertible sheaf on Y, then deg(norm(l)) = 2, so there is ψ : norm(l) $\rightarrow \Omega_{\mathbb{P}^1}(x_1 + \cdots + x_4)$. Hence the natural morphism $\mathcal{Y} \to \operatorname{Pic}^2(Y) := \{\gamma \in \operatorname{Pic} Y | \deg \gamma = 2\}$ that sends (l, ψ) to the class of l is a μ_2 -gerbe, which is actually neutral. Here PicY denotes the coarse moduli space of invertible sheaves on Y.

Denote by $\sigma_{(1)}: \mathcal{Y} \xrightarrow{\longrightarrow} \mathcal{Y}$ the involution defined by $(l, \psi) \mapsto (\sigma^* l, \psi')$, where ψ' is the composition

$$\operatorname{norm}(\sigma^* l) = \operatorname{norm}(l) \xrightarrow{\psi} \Omega_{\mathbb{P}^1}(x_1 + \dots + x_4) \xrightarrow{-1} \Omega_{\mathbb{P}^1}(x_1 + \dots + x_4).$$

Note that $\sigma_{(1)}$ coincides with the action of $-1 \in \mu_2$. Clearly, the corresponding involution of $\operatorname{Pic}^2 Y$ sends the class of l to the class of $\sigma^* l$.

Let ζ_y be the line bundle on \mathcal{Y} whose fiber over (l, ψ) is $l_y, y \in Y$.

Suppose $x \in \mathbb{P}^1 \setminus \{x_1, \dots, x_4\}, \pi^{-1}(x) = \{y_+, y_-\}$. Then $\pi^*_{(1)}(\xi_x) = \zeta_{y_+} \oplus \zeta_{y_-}$. For $x = x_i, y = y_i$ we have a natural injection $\zeta_y \to \pi^*_{(1)}(\xi_x)$ and its cokernel is isomorphic to ζ_y .

Define deg : Pic $\mathcal{Y} \to \frac{1}{2}\mathbb{Z}$ by $\gamma \mapsto \frac{1}{2} \operatorname{deg}(\gamma^{\otimes 2})$ $(\gamma^{\otimes 2} \text{ is a class of sheaves on } \mathbf{Pic}^2 Y,$ so the right hand side is well-defined). Actually deg : $\operatorname{Pic} \mathcal{Y} \to \mathbb{Z}$.

Lemma 5.

- (i) $\zeta_y^* = \zeta_{\sigma(y)} = \sigma_{(1)}^* \zeta_y;$ (ii) $\deg \zeta_y = 0 \text{ for } y \in Y;$ (iii) $\zeta_{y_1} \neq \zeta_{y_2} \text{ for } y_1 \neq y_2, y_1, y_2 \in Y.$

Proof. (i) Since $\bigwedge^2 \pi^*_{(1)}(\xi_x) = O_{\mathcal{Y}}$ (for $x = \pi(y)$), this statement is obvious.

(ii) The bundles ζ_y form a Y-family, so deg ζ_y does not depend on y. Now (ii) follows from (i).

(iii) Fix $y_0 \in Y$. Consider the invertible sheaf on $Y \times \operatorname{Pic}^2 Y$ whose fiber over (y, l) is $l_y \otimes (l_{y_0})^{-1}$. This is a universal $\operatorname{Pic}^2 Y$ -family of invertible sheaves of degree 2 on Y. It is well-known that this invertible sheaf can be viewed as a universal Y-family of invertible sheaves of degree 0 on $\operatorname{Pic}^2 Y$. In particular, two different sheaves in this Y-family are not isomorphic. Hence $\zeta_{y_1} \otimes (\zeta_{y_0})^{-1} \not\simeq \zeta_{y_2} \otimes (\zeta_{y_0})^{-1}$ for any $y_1, y_2 \in Y$.

Let γ be a sheaf on \mathcal{M}_H . Then $\pi^*_{(1)}\gamma$ is a sheaf on \mathcal{Y} with an action of μ_2 . Clearly $H^i(\mathcal{M}_H, \gamma) = (H^i(\mathcal{Y}, \pi^*_{(1)}\gamma))^{\mu_2}$, where $V^{\mu_2} \subset V$ is the subspace of μ_2 -invariants.

Corollary 1. If $x, y \in \mathbb{P}^1$, $x \neq y$, then $H^i(\mathcal{M}_H, \xi_x \otimes \xi_y \otimes \mathcal{E}^{\otimes k}) = 0$ for any i, k.

Proof. It is enough to prove that $H^i(\mathcal{Y}, \pi^*_{(1)}(\xi_x \otimes \xi_y \otimes \mathcal{E}^{\otimes k})) = 0$. Since $\pi^*_{(1)}\mathcal{E} = O_{\mathcal{Y}}$, we must prove $H^i(\mathcal{Y}, \pi^*_{(1)}(\xi_x) \otimes \pi^*_{(1)}(\xi_y)) = 0$. But $\pi^*_{(1)}(\xi_x) \otimes \pi^*_{(1)}(\xi_y)$ has a filtration with quotients $\zeta_{x_{\pm}} \otimes \zeta_{y_{\pm}}$, where $\pi(x_{\pm}) = x$, $\pi(y_{\pm}) = y$. Since \mathcal{Y} is a μ_2 -gerbe over an elliptic curve, Lemma 5 implies $H^i(\mathcal{Y}, \zeta_{x_{\pm}} \otimes \zeta_{y_{\pm}}) = 0$.

Proposition 4.

(i)
$$H^{i}(\mathcal{M}_{H}, O_{\mathcal{M}_{H}}) = \begin{cases} \mathbb{C}, & i = 0\\ 0, & i \neq 0; \end{cases}$$

(ii) $\dim H^{i}(\mathcal{M}_{H}, \mathcal{E}) = \begin{cases} 1, & i = 1\\ 0, & i \neq 1. \end{cases}$

Remark. If γ' is an invertible sheaf on \mathcal{Y} , deg $\gamma' = 0$, $\gamma' \neq O_{\mathcal{Y}}$, then $H^i(\mathcal{Y}, \gamma') = 0$ for all *i*. Hence if γ is an invertible sheaf on \mathcal{M}_H , deg $\pi^*_{(1)}\gamma = 0$, $\gamma \neq O_{\mathcal{M}_H}, \mathcal{E}|_{\mathcal{M}_H}$, then $H^i(\mathcal{M}_H, \gamma) = 0$ for all *i*.

Proof. (i) We have

$$H^{i}(\mathcal{M}_{H}, O_{\mathcal{M}_{H}}) = (H^{i}(\mathcal{Y}, O_{\mathcal{Y}}))^{\mu_{2}} = (H^{i}(\operatorname{Pic}^{2} Y, O_{\operatorname{Pic}^{2} Y}))^{\mu_{2}},$$

where the action of μ_2 on $O_{\mathcal{Y}}$ is trivial. Since $\operatorname{Pic}^2 Y$ is an elliptic curve,

$$\dim H^{i}(\operatorname{Pic}^{2} Y, O_{\operatorname{Pic}^{2} Y}) = \begin{cases} 1, & i = 0, 1 \\ 0, & \text{otherwise.} \end{cases}$$

It is easy to see that $-1 \in \mu_2$ acts on $H^1(\operatorname{Pic}^2 Y, O_{\operatorname{Pic}^2 Y})$ as -1. This completes the proof.

(ii) Clearly $\pi_{(1)}^* \mathcal{E} = O_{\mathcal{Y}}$, but $-1 \in \mu_2$ acts on $\pi_{(1)}^* \mathcal{E}$ as -1. So $H^i(\mathcal{Y}, O_{\mathcal{Y}}) = (H^i(\mathcal{Y}, \pi_{(1)}^* \mathcal{E}))^{\mu_2} \oplus (H^i(\mathcal{Y}, O_{\mathcal{Y}}))^{\mu_2}$. The statement follows immediately. \Box

6. Infinitesimal neighborhood of \mathcal{M}_H

Denote by $\mathcal{M}_{H(k)}$ the k-th infinitesimal neighborhood of \mathcal{M}_H . In other words, $\mathcal{M}_{H(k)} \subset \overline{\mathcal{M}}$ is the closed substack defined by the sheaf of ideals $O_{\overline{\mathcal{M}}}(-k\mathcal{M}_H) \subset O_{\overline{\mathcal{M}}}$. Let $\mathcal{M}_{H(\infty)} := \lim_{M \to \infty} \mathcal{M}_{H(k)}$ be the formal completion of $\overline{\mathcal{M}}$ along \mathcal{M}_H .

Since the étale topology does not depend on nilpotents in the structure sheaf, there is a unique extension of $\mathcal{Y} \to \mathcal{M}_H$ to a double cover $\pi_{(k)} : \mathcal{Y}_{(k)} \to \mathcal{M}_{H(k)}$. Besides, there is a unique extension of $\sigma : \mathcal{Y} \to \mathcal{Y}$ to $\sigma_{(k)} : \mathcal{Y}_{(k)} \to \mathcal{Y}_{(k)}$ such that $\pi_{(k)} = \pi_{(k)} \circ \sigma_{(k)}$. We identify $\mathcal{Y}_{(k)}$ with a closed substack of $\mathcal{Y}_{(l)}$ for l > k. Set $\mathcal{Y}_{(\infty)} := \varinjlim \mathcal{Y}_{(k)}$. Denote by $\sigma_{(\infty)} : \mathcal{Y}_{(\infty)} \to \mathcal{Y}_{(\infty)}$ the involution such that $\sigma_{(\infty)}|_{\mathcal{Y}_{(k)}} = \sigma_{(k)}$.

Set $C := Y \setminus \{y_1, \ldots, y_4\}$, $\mathcal{Y}_{(\infty)} \hat{\times} C := \lim_{\longrightarrow} (\mathcal{Y}_{(k)} \times C)$. Denote by $\xi_{(\infty)}$ the pullback of the natural bundle on $\overline{\mathcal{M}} \times \mathbb{P}^1$ to $\overline{\mathcal{Y}_{(\infty)}} \hat{\times} C$ and by $\mathcal{E}_{(\infty)}$ the pull-back of \mathcal{E} to $\mathcal{Y}_{(\infty)}$.

Let $\epsilon_{(\infty)} \in H^0(\mathcal{Y}_{(\infty)}, \mathcal{E}_{(\infty)})$ be the pull-back of $\epsilon \in H^0(\overline{\mathcal{M}}, \mathcal{E})$, and $\nabla : \xi_{(\infty)} \to \xi_{(\infty)} \otimes \Omega_C \otimes \mathcal{E}_{(\infty)}$ the natural $\epsilon_{(\infty)}$ -connection along C. There is a decomposition $\xi_{(\infty)}|_{\mathcal{Y}\times C} = \zeta \oplus \sigma^* \zeta$, where ζ is the family of bundles $\zeta_y, y \in C$. Let us extend this decomposition to $\mathcal{Y}_{(\infty)} \hat{\times} C$.

It is enough to show that locally on $\mathcal{Y}_{(\infty)}$ this decomposition has a unique ∇ -invariant extension. So we can use the following lemma:

Lemma 6. Let $C = \operatorname{Spec} A$ be a smooth curve, $Y_0 := \operatorname{Spec} B$ an affine scheme, $Y := \operatorname{Spec} B[[\epsilon]]$, L a rank 2 bundle on $C \times Y := \operatorname{Spec}(A \otimes B)[[\epsilon]]$, $\nabla : L \to L \otimes \Omega_C$ an ϵ -connection on L along C (i.e., ∇ is $B[[\epsilon]]$ -linear and $\nabla(fs) = f \nabla s + \epsilon s d_C f$, where $d_C f$ is the differential of f along C). Set $L_0 := L|_{C \times Y_0}$ and let $\nabla_0 \in$ $\operatorname{Hom}_{O_{C \times Y_0}}(L_0, L_0 \otimes \Omega_C)$ be the reduction of ∇ modulo ϵ . Suppose there exists a ∇_0 -invariant decomposition $L_0 = L_0^+ \oplus L_0^-$ such that the eigenvalues $\omega_0^{\pm} := \nabla_0|_{L_0^{\pm}}$ differ at any point of $C \times Y_0$. Then there is a unique ∇ -invariant decomposition $L = L^+ \oplus L^-$ such that $L^{\pm}|_{C \times Y_0} = L_0^{\pm}$.

This lemma is a bit generalized version of [5, Proposition 1.2] (see also [21, Theorem 25.2]) and can be proved by the same method.

Proposition 5. For $y \in Y \setminus \{y_1, \ldots, y_4\}$, there is a rank 1 subbundle $\zeta_y^{(\infty)} \subset \pi^*_{(\infty)} \xi_{\pi(y)}$ such that

- (i) $\zeta_y^{(\infty)}|_{\mathcal{Y}} = \zeta_y \subset \pi^*_{(1)}\xi_{\pi(y)};$
- (ii) The natural isomorphism $\pi^*_{(\infty)}\xi_{\pi(y)} = \sigma^*_{(\infty)}(\pi^*_{(\infty)}\xi_{\pi(y)})$ identifies $\zeta^{(\infty)}_{\sigma(y)}$ with $\sigma^*_{(\infty)}\zeta^{(\infty)}_y$.
- (iii) $\pi^*_{(\infty)}\xi_{\pi(y)} = \zeta^{(\infty)}_y \oplus \zeta^{(\infty)}_{\sigma(y)}.$

Proof. By Lemma 6, there is a ∇ -invariant decomposition $\xi_{(\infty)} = \zeta^+_{(\infty)} \oplus \zeta^-_{(\infty)}$ that extends $\zeta_{(\infty)}|_{\mathcal{Y}\times C} = \zeta \oplus \sigma^* \zeta$. Set $\zeta^{(\infty)}_y := \zeta^+_{(\infty)}|_{\mathcal{Y}_{(\infty)}\times \{y\}}$. Statement (i) is clear. Since this ∇ -invariant decomposition is unique, (ii) immediately follows. (iii) follows from (ii).

Consider $\mathcal{M}_{H(2)}$. Recall that \mathcal{M}_H is the zero set of $\epsilon \in H^0(\overline{\mathcal{M}}, \mathcal{E})$, so $O_{\overline{\mathcal{M}}}(\mathcal{M}_H) = \mathcal{E}$.

Lemma 7. Set $V := \operatorname{Ker}(\operatorname{Pic} \mathcal{M}_{H(2)} \to \operatorname{Pic} \mathcal{M}_{H})$. Then

- (i) V is torsion-free;
- (ii) Let γ be an invertible sheaf on $\mathcal{M}_{H(2)}$ such that $\gamma|_{\mathcal{M}_H} \simeq O_{\mathcal{M}_H}, \ \gamma \not\simeq O_{\mathcal{M}_H(2)}$. Then $H^i(\mathcal{M}_{H(2)}, \gamma) = 0$ for all *i*.

Proof. (i) Consider the exact sequence

$$0 \to \mathcal{E}|_{\mathcal{M}_H} \to O^*_{\mathcal{M}_{H(2)}} \to O^*_{\mathcal{M}_H} \to 1.$$

It yields an exact sequence

$$0 \to H^1(\mathcal{M}_H, \mathcal{E}) \to \operatorname{Pic} \mathcal{M}_{H(2)} \to \operatorname{Pic} \mathcal{M}_H \to 1.$$

So $V = H^1(\mathcal{M}_H, \mathcal{E}) \simeq \mathbb{C}$.

(ii) Consider the exact sequence

$$0 \to \gamma(-\mathcal{M}_H) \to \gamma \to \gamma/\gamma(-\mathcal{M}_H) \to 0$$

Clearly, $\gamma/\gamma(-\mathcal{M}_H)$ is the direct image of $\gamma|_{\mathcal{M}_H} \simeq O_{\mathcal{M}_H}$, so Proposition 4 implies

$$\dim H^i(\mathcal{M}_{H(2)}, \gamma/\gamma(-\mathcal{M}_H)) = \begin{cases} 1, & i = 0\\ 0, & i \neq 0. \end{cases}$$

Similarly, $\gamma(-\mathcal{M}_H)$ is equal to the direct image of $\gamma|_{\mathcal{M}_H} \otimes (O(-\mathcal{M}_H))|_{\mathcal{M}_H} \simeq \gamma|_{\mathcal{M}_H} \otimes \mathcal{E}|_{\mathcal{M}_H} \simeq \mathcal{E}|_{\mathcal{M}_H}$, so

$$\dim H^i(\mathcal{M}_{H(2)}, \gamma(-\mathcal{M}_H)) = \begin{cases} 1, & i = 1\\ 0, & i \neq 1. \end{cases}$$

Since $\gamma \neq O_{\mathcal{M}_{H(2)}}$, a nonzero section of $\gamma/\gamma(-\mathcal{M}_H)$ cannot be lifted to a section of γ . So the coboundary map

$$H^0(\mathcal{M}_{H(2)}, \gamma/\gamma(-\mathcal{M}_H)) \to H^1(\mathcal{M}_{H(2)}, \gamma(-\mathcal{M}_H))$$

is bijective, and the statement follows immediately.

Set $N_{\mathcal{M}_{H(2)}} := O(\mathcal{M}_{H(2)})|_{\mathcal{M}_{H(2)}} = \mathcal{E}^{\otimes 2}|_{\mathcal{M}_{H(2)}}.$

Proposition 6. The sheaf $N_{\mathcal{M}_{H(2)}}$ is not trivial.

Remark. Let $[N_{\mathcal{M}_{H(2)}}] \in \operatorname{Pic} \mathcal{M}_{H(2)}$ be the isomorphism class of $N_{\mathcal{M}_{H(2)}}$. Then $[N_{\mathcal{M}_{H(2)}}] \in V$.

Proof. Set $\mathcal{F}_k := O_{\overline{\mathcal{M}}}(k\mathcal{M}_H)$. Clearly $\mathcal{F}_k/\mathcal{F}_{k-1} = \iota_* N_{\mathcal{M}_H}^{\otimes k}$, where $N_{\mathcal{M}_H} \simeq \mathcal{E}|_{\mathcal{M}_H}$ is the normal bundle to $\mathcal{M}_H \subset \overline{\mathcal{M}}, \iota : \mathcal{M}_H \hookrightarrow \overline{\mathcal{M}}$ is the embedding. So Proposition 4 implies that

$$H^{i}(\overline{\mathcal{M}}, \mathcal{F}_{k}/\mathcal{F}_{k-1}) = \begin{cases} \mathbb{C}, i = 0 & \text{and } k \text{ is even}; \\ \mathbb{C}, i = 1 & \text{and } k \text{ is odd}; \\ 0, & \text{otherwise.} \end{cases}$$

Besides, $H^i(\mathcal{M}_{H(2)}, N_{\mathcal{M}_{H(2)}}) = H^i(\overline{\mathcal{M}}, \mathcal{F}_2/\mathcal{F}_0)$, so it is enough to prove that the coboundary map $H^0(\overline{\mathcal{M}}, \mathcal{F}_2/\mathcal{F}_1) \to H^1(\overline{\mathcal{M}}, \mathcal{F}_1/\mathcal{F}_0)$ does not vanish.

Let us construct a rational section $F \in \mathcal{E}^{\otimes 2} = \mathcal{F}_2$. Fix $x \in \mathbb{P}^1 \setminus \{x_1, \ldots, x_4\}$ and $\omega \in \Omega_x$. Let $(L, \nabla, \varphi; E, \epsilon)$ be an ϵ -bundle. Consider the map $F_1 : H^0(\mathbb{P}^1, L) \to L_x \otimes E : s \mapsto \omega^{-1}(\nabla s)(x)$ and the map $F_2 : H^0(\mathbb{P}^1, L) \to L_x : s \mapsto s(x)$. Set $F := \det(F_1)(\det(F_2))^{-1}$.

Now denote by δ the invertible sheaf on $\overline{\mathcal{M}}$ whose fiber at $(L, \nabla, \varphi; E, \epsilon)$ is $\bigwedge^2 H^0(\mathbb{P}^1, L) = \det \mathbb{R}\Gamma(\mathbb{P}^1, L)$. Then $\det(F_2)$ is naturally a section of δ^{-1} , and $\det(F_1)$ is a section of $\mathcal{E}^{\otimes 2} \otimes \delta^{-1}$. The zero divisor of $\det(F_2) \in H^0(\overline{\mathcal{M}}, \delta^{-1})$ is the closed reduced substack $\mathcal{M}_1 \subset \overline{\mathcal{M}}$ formed by ϵ -bundles $(L, \nabla, \varphi, E, \epsilon)$ with $L \simeq O_{\mathbb{P}^1}(-1) \oplus O_{\mathbb{P}^1}(1)$.

It is easy to see the restriction $\det(F_1)|_{\mathcal{M}_1} \in H^0(\mathcal{M}_1, \mathcal{E}^{\otimes 2} \otimes \delta^{-1})$ has a zero of order 1 at $\mathcal{M}_H \cap \mathcal{M}_1$. Clearly $F|_{\mathcal{M}_H} \in H^0(\mathcal{M}_H, \mathcal{E}^{\otimes 2})$ equals $\det(\nabla)(x)\omega^{-2}$ at $(L, \nabla, \varphi; E, \epsilon)$. So $F|_{\mathcal{M}_H}$ has no zero.

Hence any global section of $\mathcal{F}^2/\mathcal{F}^0$ has a form aF + G, where $a \in \mathbb{C}$, $G \in \mathcal{F}^1/\mathcal{F}^0 = \mathcal{E}|_{\mathcal{M}_H}$. More precisely, $G \in H^0(\mathcal{M}_H, \mathcal{E}(\mathcal{M}_1 \cap \mathcal{M}_H))$. But it follows from the explicit description of \mathcal{M}_H (see Section 4) that $H^0(\mathcal{M}_H, \mathcal{E}(\mathcal{M}_1 \cap \mathcal{M}_H)) = 0$. Since F has a pole of order 1 along \mathcal{M}_1 , a = 0 (otherwise aF is not regular). \Box

Remark. There is another way to prove this proposition. Let us sketch the proof. Assume the converse. Then

$$H^{0}(\overline{\mathcal{M}}, \mathcal{F}_{2}/\mathcal{F}_{0}) = H^{0}(\overline{\mathcal{M}}, \mathcal{F}_{2}/\mathcal{F}_{1}) = H^{0}(\mathcal{M}_{H}, O_{\mathcal{M}_{H}}).$$

Let $\tilde{f} \in H^0(\overline{\mathcal{M}}, \mathcal{F}_2/\mathcal{F}_0)$ correspond to $1 \in H^0(\mathcal{M}_H, O_{\mathcal{M}_H})$. Since $H^1(\overline{\mathcal{M}}, O_{\overline{\mathcal{M}}}) = 0$ (see Proposition 7) one can lift \tilde{f} to $f \in H^0(\overline{\mathcal{M}}, O_{\overline{\mathcal{M}}}(2\mathcal{M}_H)) \setminus H^0(\overline{\mathcal{M}}, O_{\overline{\mathcal{M}}})$. Clearly f has no zero on \mathcal{M}_H . Since $f^{-1} \notin H^0(\overline{\mathcal{M}}, O_{\overline{\mathcal{M}}})$, the divisor $(f)_0$ of zeros of fis not empty. Then $(f)_0 \subset \mathcal{M}$ is a complete substack and its image in the coarse moduli space M corresponding to \mathcal{M} is a projective curve. By the Riemann-Hilbert correspondence M is analytically isomorphic to an affine variety, so M contains no projective curve.

The following statements are used in Section 8.

Corollary 2. $H^{i}(\mathcal{M}_{H(2)}, (N_{\mathcal{M}_{H(2)}})^{\otimes k}) = 0$ for any $i \geq 0, k \neq 0$.

Proof. Let $[N_{\mathcal{M}_{H(2)}}] \in V \subset \operatorname{Pic} \mathcal{M}_{H(2)}$ be the isomorphism class of $N_{\mathcal{M}_{H(2)}}$. By Proposition 6, we have $[N_{\mathcal{M}_{H(2)}}] \neq 0$. By Lemma 7(i), $[N_{\mathcal{M}_{H(2)}}^{\otimes k}] \neq 0$. Lemma 7(ii) completes the proof.

Corollary 3. Set $\mathcal{F} := \operatorname{Sym}^2 \xi_x \otimes \mathcal{E}|_{\mathcal{M}_{H(2)}}$. Then $H^i(\mathcal{M}_{H(2)}, \mathcal{F} \otimes N_{\mathcal{M}_{H(2)}}^{\otimes k}) = 0$ for any *i*, *k*, and $x \in \mathbb{P}^1 \setminus \{x_1, \ldots, x_4\}$.

Proof. For the sake of simplicity, we write ζ_y for $\zeta_y^{(\infty)}|_{\mathcal{Y}_{(2)}}, y \in Y \setminus \{y_1, \ldots, y_4\}.$

Clearly, the inverse image of $\operatorname{Sym}^2 \xi_x$ to $\mathcal{Y}_{(2)}$ is $\operatorname{Sym}^2(\zeta_{y_+} \oplus \zeta_{y_-}) = O_{\mathcal{Y}_{(2)}} \oplus (\zeta_{y_+}^{\otimes 2} \oplus \zeta_{y_-}^{\otimes 2})$. Here $\{y_+, y_-\} = \pi^{-1}(x)$. $O_{\mathcal{Y}_{(2)}} \subset \operatorname{Sym}^2(\zeta_{y_+} \oplus \zeta_{y_-})$ is μ_2 -invariant and $-1 \in \mu_2$ acts on this sheaf as -1. Denote by $O_{\mathcal{M}_{H(2)}}^- \subset \operatorname{Sym}^2 \xi_x|_{\mathcal{M}_{H(2)}}$ the corresponding $O_{\mathcal{M}_{H(2)}}$ -submodule. The same arguments as in the proof of Corollary 1 show that

$$H^{i}(\mathcal{Y}_{(2)}, (\zeta_{y_{+}}^{\otimes 2} \oplus \zeta_{y_{-}}^{\otimes 2}) \otimes \mathcal{E} \otimes N_{\mathcal{M}_{H(2)}}^{\otimes k}) = 0,$$

 \mathbf{so}

$$H^{i}(\mathcal{M}_{H(2)}, \mathcal{F} \otimes N_{\mathcal{M}_{H(2)}}^{\otimes k}) = H^{i}(\mathcal{M}_{H(2)}, O_{\mathcal{M}_{H(2)}}^{-} \otimes \mathcal{E} \otimes N_{\mathcal{M}_{H(2)}}^{\otimes k})$$

But $(O_{\mathcal{M}_{H(2)}}^{-} \otimes \mathcal{E})^{\otimes 2} = \mathcal{E}^{\otimes 2}$, so the class of $O_{\mathcal{M}_{H(2)}}^{-} \otimes \mathcal{E} \otimes N_{\mathcal{M}_{H(2)}}^{\otimes k}$ in Pic $\mathcal{M}_{H(2)}$ is $[N_{\mathcal{M}_{H(2)}}](k + \frac{1}{2}) \neq 0$. Lemma 7 completes the proof.

7. Bundles ξ_x on $\overline{\mathcal{M}}$

Proposition 7. $H^i(\overline{\mathcal{M}}, O_{\overline{\mathcal{M}}}) = \begin{cases} \mathbb{C}, & i = 0\\ 0, & i \neq 0 \end{cases}$

Proof. Consider the four points on \mathcal{M}_H that correspond to the classes $[\gamma] \in \operatorname{Pic}^2 Y$ such that $\gamma \simeq \sigma^* \gamma$. Denote by $\overline{\mathcal{M}}^? \to \overline{\mathcal{M}}$ the blow-up in these four points. Then the coarse moduli space $\overline{\mathcal{M}}^?$ corresponding to $\overline{\mathcal{M}}^?$ is a smooth rational projective scheme (note that the coarse moduli space corresponding to $\overline{\mathcal{M}}$ is not smooth). So $H^i(\overline{\mathcal{M}}, O_{\overline{\mathcal{M}}}) = H^i(\overline{\mathcal{M}}^?, O_{\overline{\mathcal{M}}^?}) = H^i(\overline{\mathcal{M}}^?, O_{\overline{\mathcal{M}}^?}) = \begin{cases} \mathbb{C}, & i = 0\\ 0, & i \neq 0 \end{cases}$

Remark. Denote by M the coarse moduli space corresponding to \mathcal{M} . The variety M has the least smooth compactification $\overline{M} \supset M$ (see [1]). Hence there is a natural map $\overline{M}^? \to \overline{M}$. Actually $\overline{M}^? = \overline{M}$.

Suppose $(L, \nabla, \varphi; E, \epsilon)$ is an ϵ -bundle. Set $L' := \{s \in L | s(x_1) \in l_1\} \subset L$, where $l_1 := \operatorname{Ker}(R_1 - \lambda_1 \otimes \epsilon) \subset L_{x_1}$ is the eigenspace of the residue of ∇ . Condition (iv) of Definition 2 implies $(L', \nabla|_{L'})$ is irreducible. Hence $L' \simeq O_{\mathbb{P}^1} \oplus O_{\mathbb{P}^1}(-1)$, so dim $H^0(\mathbb{P}^1, L') = 1$. Denote by ξ_+ the line bundle on $\overline{\mathcal{M}}$ whose fiber over $(L, \nabla, \varphi; E, \epsilon)$ equals $H^0(\mathbb{P}^1, L')$.

Lemma 8. For $i \geq 0$,

- (i) $H^i(\overline{\mathcal{M}}, O_{\overline{\mathcal{M}}}(-\mathcal{M}_H)) = 0;$
- (i) $H^{i}(\overline{\mathcal{M}}, (\xi_{+})^{\otimes 2}(-\mathcal{M}_{H})) = 0;$ (ii) $H^{i}(\overline{\mathcal{M}}, ((\xi_{+})^{*})^{\otimes 2}(-\mathcal{M}_{H})) = 0.$

Proof. (i) Consider the exact sequence

$$0 \to O_{\overline{\mathcal{M}}}(-\mathcal{M}_H) \to O_{\overline{\mathcal{M}}} \to O_{\overline{\mathcal{M}}}/O_{\overline{\mathcal{M}}}(-\mathcal{M}_H) \to 0$$

By Propositions 7 and 4 the natural map

$$H^{i}(\overline{\mathcal{M}}, O_{\overline{\mathcal{M}}}) \to H^{i}(\overline{\mathcal{M}}, O_{\overline{\mathcal{M}}}/O_{\overline{\mathcal{M}}}(-\mathcal{M}_{H})) = H^{i}(\mathcal{M}_{H}, O_{\mathcal{M}_{H}})$$

is bijective. So the first statement is obvious.

(ii) Let $(L, \nabla, \varphi; E, \epsilon)$ be an ϵ -bundle, $L' := \{s \in L | s(x_1) \in l_1\} \subset L$. Take $s \in H^0(\mathbb{P}^1, L'), s \neq 0$. Then $\nabla s \in H^0(\mathbb{P}^1, L' \otimes \Omega_{\mathbb{P}^1}(x_1 + \cdots + x_4) \otimes E)$, so $\nabla(s) \wedge s \in \mathbb{P}^1$ $H^0(\mathbb{P}^1, \Omega_{\mathbb{P}^1}((x_1 + \dots + x_4) - x_1)) \otimes E, \nabla(s) \wedge s \neq 0.$ Let $z \in \mathbb{P}^1$ be the unique zero of $\nabla(s) \wedge s$. Clearly z does not depend on the choice of s. Define $q: \overline{\mathcal{M}} \to \mathbb{P}^1$ by $(L, \nabla, \varphi; E, \epsilon) \mapsto z.$

Fix $x_0 \in \mathbb{P}^1 \setminus \{x_1\}, \ \omega \in \Omega(x_1 + \dots + x_4)_{x_0}, \ \omega \neq 0$. The correspondence $s \mapsto (\nabla(s) \wedge s)(x_0)\omega^{-1} \in \bigwedge^2 L_{x_0} \otimes E$ defines a map $(\xi_+)^{\otimes 2} \to \mathcal{E}$. This map induces an isomorphism $(\xi_+)^{\otimes 2} \xrightarrow{\sim} q^*(O_{\mathbb{P}^1}(-1)) \otimes \mathcal{E}$. So $(\xi_+)^{\otimes 2}(-\mathcal{M}_H) \simeq q^*(O_{\mathbb{P}^1}(-1))$.

Set $\overline{\mathcal{M}}_x := q^{-1}(x)$ for $x \in \mathbb{P}^1$. Clearly $\overline{\mathcal{M}}_x$ is a μ_2 -gerbe over some algebraic space for $x \neq x_1, \ldots, x_4$. [1, Theorem 3] implies that $\overline{\mathcal{M}}_x \cap \mathcal{M}$ is a μ_2 -gerbe over \mathbb{A}^1 for $x \neq x_1, \ldots, x_4$. So, there is $x \in \mathbb{P}^1$ such that $\overline{\mathcal{M}}_x$ is a μ_2 -gerbe over \mathbb{P}^1 and $x' := \overline{\mathcal{M}}_x \cap \mathcal{M}_H$ is a μ_2 -gerbe over a point.

Since $(\xi_+)^{\otimes 2}(-\mathcal{M}_H) \simeq q^*(O_{\mathbb{P}^1}(-1)) \simeq O_{\overline{\mathcal{M}}}(-\overline{\mathcal{M}}_x)$, it is enough to prove $H^{i}(\overline{\mathcal{M}}, O_{\overline{\mathcal{M}}}(-\overline{\mathcal{M}}_{x})) = 0.$ Consider the exact sequence

$$0 \to O_{\overline{\mathcal{M}}}(-\overline{\mathcal{M}}_x) \to O_{\overline{\mathcal{M}}} \to O_{\overline{\mathcal{M}}}/O_{\overline{\mathcal{M}}}(-\overline{\mathcal{M}}_x) \to 0.$$

Clearly

$$H^{i}(\overline{\mathcal{M}}, O_{\overline{\mathcal{M}}}/O_{\overline{\mathcal{M}}}(-\overline{\mathcal{M}}_{x})) = H^{i}(\overline{\mathcal{M}}_{x}, O_{\overline{\mathcal{M}}_{x}}) = \begin{cases} \mathbb{C}, & i = 0\\ 0, & i \neq 0. \end{cases}$$

Now Proposition 7 completes the proof.

(iii) Let $x, \overline{\mathcal{M}}_x$, and x' have the same meaning as above. Clearly

$$(\xi_+^*)^{\otimes 2}(-\mathcal{M}_H) \simeq (q^*O_{\mathbb{P}^1}(1))(-2\mathcal{M}_H) \simeq O_{\overline{\mathcal{M}}}(-2\mathcal{M}_H + \overline{\mathcal{M}}_x).$$

Let $\iota_1 : \overline{\mathcal{M}}_x \hookrightarrow \overline{\mathcal{M}}$ and $\iota_2 : \mathcal{M}_H \hookrightarrow \overline{\mathcal{M}}$ be the natural embeddings, $\mathcal{F}_1 :=$ $\iota_1^* O_{\overline{\mathcal{M}}}(\overline{\mathcal{M}}_x - \mathcal{M}_H), \ \mathcal{F}_2 := \iota_2^* O_{\overline{\mathcal{M}}}(\overline{\mathcal{M}}_x - \mathcal{M}_H).$ Consider the exact sequences

$$0 \to O_{\overline{\mathcal{M}}}(-\mathcal{M}_H) \to O_{\overline{\mathcal{M}}}(\overline{\mathcal{M}}_x - \mathcal{M}_H) \to (\iota_1)_* \mathcal{F}_1 \to 0$$

$$0 \to O_{\overline{\mathcal{M}}}(\overline{\mathcal{M}}_x - 2\mathcal{M}_H) \to O_{\overline{\mathcal{M}}}(\overline{\mathcal{M}}_x - \mathcal{M}_H) \to (\iota_2)_* \mathcal{F}_2 \to 0.$$

By (i), $H^i(\overline{\mathcal{M}}, O_{\overline{\mathcal{M}}}(-\mathcal{M}_H)) = 0$, so it is enough to prove that $H^i(\overline{\mathcal{M}}_x, \mathcal{F}_1) =$ $H^i(\mathcal{M}_H, \mathcal{F}_2) = 0$. Note that $\overline{\mathcal{M}}_x$ is a fiber of q, so $\iota_1^* O_{\overline{\mathcal{M}}}(\overline{\mathcal{M}}_x) \simeq O_{\overline{\mathcal{M}}_x}$ and $\mathcal{F}_1 \simeq O_{\overline{\mathcal{M}}_x}(-x')$. Since $\overline{\mathcal{M}}_x$ is a μ_2 -gerbe over a projective line,

$$H^{i}(\overline{\mathcal{M}}_{x},\mathcal{F}_{1}) \simeq H^{i}(\overline{\mathcal{M}}_{x},O_{\overline{\mathcal{M}}_{x}}(-x')) = 0.$$

Finally, we have $\mathcal{F}_2 = (\mathcal{E}|_{\mathcal{M}_H})(x')$. The pull-back of $(\mathcal{E}|_{\mathcal{M}_H})(x')$ to \mathcal{Y} is of degree 2, so

$$H^{1}(\mathcal{Y}, \pi^{*}_{(1)}((\mathcal{E}|_{\mathcal{M}_{H}})(x'))) = 0.$$

Hence $H^1(\mathcal{M}_H, (\mathcal{E}|_{\mathcal{M}_H}))(x') = 0$. Proposition 4 implies $\chi((\mathcal{E}|_{\mathcal{M}_H})(x')) = 1 + \chi(\mathcal{E}|_{\mathcal{M}_H}) = 0$, so $H^0(\mathcal{M}_H, (\mathcal{E}|_{\mathcal{M}_H}))(x') = 0$.

Proposition 8. Suppose $x, y \in \mathbb{P}^1$. For any *i*,

- (i) $H^{i}(\overline{\mathcal{M}}, \xi_{x} \otimes \xi_{y}(-\mathcal{M}_{H})) = 0;$ (ii) $H^{i}(\overline{\mathcal{M}}, \operatorname{Sym}^{2} \xi_{x}(-\mathcal{M}_{H})) = 0.$

Proof. Without loss of generality we may assume that $x \neq x_1, y \neq y_1$. Then the natural maps $\xi_+ \to \xi_x, \xi_+ \to \xi_y$ are injective and their cokernels are isomorphic to $(\xi_+)^*$. We use these maps to identify ξ_+ with subbundles of ξ_x , ξ_y .

Consider the filtration $\mathcal{F}_0 := 0 \subset \mathcal{F}_1 := \xi_+ \otimes \xi_+ \subset \mathcal{F}_2 := (\xi_+ \otimes \xi_y) + (\xi_x \otimes \xi_+) \subset \mathcal{F}_1$ $\mathcal{F}_4 := \xi_x \otimes \xi_y$. It follows from Lemma 8 that $H^i(\overline{\mathcal{M}}, (\mathcal{F}_k/\mathcal{F}_{k-1})(-\mathcal{M}_H)) = 0$. This implies (i). Since $\xi_x^{\otimes 2} = \text{Sym}^2 \xi_x \oplus O_{\overline{\mathcal{M}}}$, (ii) follows from (i).

8. Proof of Theorem 2

Denote by $j: \mathcal{M} \hookrightarrow \overline{\mathcal{M}}$ and $i_{(2)}: \mathcal{M}_{H(2)} \hookrightarrow \overline{\mathcal{M}}$ the natural embeddings. For a vector bundle \mathcal{F} on $\overline{\mathcal{M}}$ we consider the filtration

$$\mathcal{F}_0 := \mathcal{F} \subset \cdots \subset \mathcal{F}_k := \mathcal{F}(k\mathcal{M}_{H(2)}) \subset \cdots \subset \mathcal{F}_\infty := j^* j_* \mathcal{F}.$$

This yields $H^{\bullet}(\mathcal{M}, \mathcal{F}|_{\mathcal{M}}) = H^{\bullet}(\overline{\mathcal{M}}, \mathcal{F}_{\infty}) = \lim H^{\bullet}(\overline{\mathcal{M}}, \mathcal{F}_{k})$. Besides, $\mathcal{F}_{k}/\mathcal{F}_{k-1} =$ $(i_{(2)})_*(\mathcal{F}_k|_{\mathcal{M}_{H(2)}}) = (i_{(2)})_*(\mathcal{F}|_{\mathcal{M}_{H(2)}} \otimes (N_{\mathcal{M}_{H(2)}})^{\otimes k})$. The following lemma is clear.

Lemma 9. Suppose \mathcal{F} is a vector bundle on $\overline{\mathcal{M}}$ such that

$$H^{\bullet}(\mathcal{M}_{H(2)},\mathcal{F}|_{\mathcal{M}_{H(2)}}\otimes(N_{\mathcal{M}_{H(2)}})^{\otimes k})=0$$

for any k > 0. Then the natural maps $H^{\bullet}(\overline{\mathcal{M}}, \mathcal{F}) \to H^{\bullet}(\mathcal{M}, \mathcal{F}|_{\mathcal{M}})$ are isomorphisms. \Box

Proof of Theorem 2.

- (i) Set $\mathcal{F} := \xi_x \otimes \xi_y(-\mathcal{M}_H)$. Using Corollary 1 and Lemma 9, we get $H^{\bullet}(\overline{\mathcal{M}}, \mathcal{F}) = H^{\bullet}(\mathcal{M}, \mathcal{F})$. Now Proposition 8 (i) completes the proof.
- (ii) Set $\mathcal{F} := O_{\overline{\mathcal{M}}}$. Combining Lemma 9 with Corollary 2 and Proposition 7, we obtain the required formula.
- (iii) Set $\mathcal{F} := \operatorname{Sym}^2 \xi_x(-\mathcal{M}_H)$. Corollary 3, Proposition 8 (ii), and Lemma 9 imply $H^{\bullet}(\mathcal{M}, \mathcal{F}) = H^{\bullet}(\overline{\mathcal{M}}, \mathcal{F}) = 0$.

Remark. There is another way to prove Theorem 2 without Lemma 8. Let us sketch the proof.

Set $\mathcal{F}_{xy} := \xi_x \otimes \xi_y(-\mathcal{M}_H)$. Suppose $x \neq y$. Corollary 1 implies

$$H^{i}(\overline{\mathcal{M}}, \mathcal{F}_{xy}(k\mathcal{M}_{H(2)})/\mathcal{F}_{xy}((k-1)\mathcal{M}_{H(2)})) = 0.$$

So $H^i(\overline{\mathcal{M}}, \mathcal{F}_{xy}(k\mathcal{M}_{H(2)})) = H^i(\mathcal{M}, \mathcal{F}_{xy})$. But $H^0(\overline{\mathcal{M}}, \mathcal{F}_{xy}(k\mathcal{M}_{H(2)})) = 0$ for $k \ll 0$. Besides, $H^2(\mathcal{M}, \mathcal{F}_{xy}) = 0$ (see [1, Theorem 1]). Hence $H^i(\overline{\mathcal{M}}, \mathcal{F}_{xy}) = 0$ for $i \neq 1$.

In the same way, $H^i(\overline{\mathcal{M}}, \operatorname{Sym}^2 \xi_x(-\mathcal{M}_H)) = 0$ for $i \neq 1, x \neq x_1, \ldots, x_4$. Since $H^i(\overline{\mathcal{M}}, O_{\overline{\mathcal{M}}}(-\mathcal{M}_H)) = 0$, we have $H^i(\overline{\mathcal{M}}, \mathcal{F}_{xy}) = H^i(\mathcal{M}, \mathcal{F}_{xy}) = 0$ for $i \neq 1$, $(x, y) \neq (x_j, x_j)$. But [1, Theorem 2] implies $H^i(\mathcal{M}, \mathcal{F}_{x_1x_2}) = 0$ for all *i*. Since \mathcal{F}_{xy} form a $\mathbb{P}^1 \times \mathbb{P}^1$ -family of coherent $O_{\overline{\mathcal{M}}}$ -modules, we have $\chi(\mathcal{F}_{xy}) = 0$ for any (x, y). Hence $H^i(\overline{\mathcal{M}}, \mathcal{F}_{xy}) = 0$ for $(x, y) \neq (x_j, x_j)$ $(j = 1, \ldots, 4)$. This part of Proposition 8 is enough for Theorem 2.

9. Orthogonality for families: Theorem 3

Recall that $p: P \to \mathbb{P}^1$ is the projective line with doubled points x_1, \ldots, x_4 , $p^{-1}(x_i) = \{x_i^+, x_i^-\}, [\lambda] := \sum_{i=1}^4 \lambda_i (x_i^+ - x_i^-)$ is a \mathbb{C} -divisor on P, D_{λ} is the corresponding TDO. For a $(\lambda_1, \ldots, \lambda_4)$ -bundle L, the D_{λ} -module L_{λ} is defined by $L_{\lambda} := j_{*!}(L|_U)$, where $U := \mathbb{P}^1 \setminus \{x_1, \ldots, x_4\}, j : U \hookrightarrow P$ is the natural embedding. We identify U with j(U). Clearly, $(L_{\lambda})_x = L_x$ for $x \in U$, and $(L_{\lambda})_x = l_i^{\mp} := \operatorname{Ker}(R_i \pm \lambda_i) \subset L_{x_i}$ for $x = x_i^{\pm}$.

Theorem 2 and [1, Theorem 2] imply the following proposition.

Proposition 9. Let $y \in P \times P$ be a point. Then

- (i) $H^i(\{y\} \times \mathcal{M}, \mathcal{F}_P) = 0$ for $i \neq 0$;
- (ii) $H^0(\{y\} \times \mathcal{M}, \mathcal{F}_P) = \begin{cases} 0, & y \notin \Delta' \\ \mathbb{C}, & y \in \Delta'; \end{cases}$ (iii) Let $y = (y_1, y_2) \in \Delta', x = p(y_1) = p(y_2) \in \mathbb{P}^1$. Then the map $\mathbb{C} \to \mathbb{C}$ $\bigwedge^2 L_x \to (L_x)^{\otimes 2} = (p^*L)_{y_1} \otimes (p^*L)_{y_2} \to (L_\lambda)_{y_1} \otimes (L_\lambda)_{y_2} \text{ for an } \epsilon\text{-bundle}$ L defines a morphism $O_{\mathcal{M}} \to \mathcal{F}_P|_{\{y\} \times \mathcal{M}}$ such that the corresponding map $\mathbb{C} = H^0(\mathcal{M}, O_{\mathcal{M}}) \to H^0(\{y\} \times \mathcal{M}, \mathcal{F}_P) \text{ is bijective.}$

It is easy to see that this proposition is valid for all (not necessarily closed) points $y \in P \times P$.

Let Z be a scheme. Consider the derived category of quasicoherent O_Z -modules $\mathcal{D}_{qc}^{-}(Z).$

We need the following lemma:

Lemma 10.

- (i) Let $V \subset Z$ be a closed subscheme that locally can be defined by one equation, $\mathcal{F} \in \mathcal{D}^{-}_{ac}(Z)$. Suppose $Li^*\mathcal{F} = 0$, where $i: Z \hookrightarrow X$ is the natural embedding. Then the natural mapping $\mathcal{F} \to j_* j^* \mathcal{F}$ is an isomorphism. Here $j: Z \setminus V \hookrightarrow J$ Z (note that both j_* and j^* are exact).
- (ii) Suppose Z is Noetherian. Let $\mathcal{F} \in \mathcal{D}_{qc}^{-}(Z)$ satisfy $(Li_{y}^{*})\mathcal{F} = 0$ for all (not necessarily closed) points $i_{y} : y \hookrightarrow Z$. Then $\mathcal{F} = 0$.

Remark. Statement (i) still holds in the case of a closed subscheme $V \subset Z$ that locally can be defined by a finite number of equations. In this situation, $Li^*\mathcal{F}=0$ implies that $\mathcal{F} \to (Rj_*)j^*\mathcal{F}$ is an isomorphism.

Proof. (i) The statement is local, so we assume $Z = \operatorname{Spec} A$, $V = \operatorname{Spec} A/(f)$, $Z \setminus V = \operatorname{Spec} A_f$. Set $\operatorname{Ann}(f) := \operatorname{Ker}(A \xrightarrow{f} A)$. Since $\mathcal{F} \otimes^L_A (A/(f)) = 0$, we have

$$\mathcal{F} \otimes^{L}_{A} \operatorname{Ann}(f) = (\mathcal{F} \otimes^{L}_{A} (A/(f))) \otimes^{L}_{A/(f)} \operatorname{Ann}(f) = 0.$$

Consider the exact sequence

$$0 \to \operatorname{Ann}(f) \to A \to A \to A/(f) \to 0$$

where the map $A \to A$ is multiplication by f. Multiplying it by \mathcal{F} , we see that $\mathcal{F} \xrightarrow{f} \mathcal{F}$ is a quasi-isomorphism. Hence $H^i(\mathcal{F}) \xrightarrow{f} H^i(\mathcal{F})$ is an isomorphism and $H^{i}(\mathcal{F}) = H^{i}(\mathcal{F}) \otimes A_{f} = H^{i}(\mathcal{F} \otimes A_{f}).$

(ii) The statement is local, so we suppose $Z = \operatorname{Spec} A$. Assume $\mathcal{F} \neq 0$. Consider all closed subschemes $i_Y: Y \hookrightarrow Z$ such that $(Li_Y^*)\mathcal{F} \neq 0$. Since Z is Noetherian,

there is a minimal subscheme Y with this property. Without loss of generality, we assume Y = Z.

Statement (i) implies that multiplication by any $f \in A$, $f \neq 0$ induces an isomorphism $f : H^i(\mathcal{F}) \to H^i(\mathcal{F})$. If A is not integral, we take $f, g \in A$ such that $f \neq 0, g \neq 0, fg = 0$. The composition $H^i(\mathcal{F}) \xrightarrow{f} H^i(\mathcal{F}) \xrightarrow{g} H^i(\mathcal{F})$ is zero, so $H^i(\mathcal{F}) = 0$ for all *i*.

If A is integral, we get $H^i(\mathcal{F}) = H^i(\mathcal{F}) \otimes_A K$, where K is the fraction field of A. Since K is a flat A-module, the assumptions of the lemma imply $H^i(\mathcal{F}) =$ $H^i(\mathcal{F}) \otimes_A K = H^i(\mathcal{F} \otimes_A K) = 0.$

Proof of Theorem 3. Set $\mathcal{F} := Rp_{12,*}\mathcal{F}_P$ (as before, $p_{12} : P \times P \times \mathcal{M} \to P \times P$ is the projection).

Step 1. Set $V := P \times P \setminus \overline{\Delta}$, where $\overline{\Delta}$ is the closure of $\Delta' \subset P \times P$. Lemma 10 and Proposition 9 imply $\mathcal{F}|_V = 0$.

By Kashiwara's theorem ([4, Theorem 7.13]), $\mathcal{F} = \overline{i}_+(L\overline{i}^*\mathcal{F})[-1]$, where \overline{i} : $\overline{\Delta} \hookrightarrow P \times P$ is the embedding, \overline{i}^* is the *O*-module pull-back. So it is enough to prove that $L\overline{i}^*\mathcal{F} = O_{\Delta'}$.

Step 2. Clearly $\overline{\Delta} \setminus \Delta'$ consists of eight points (x_i^{\pm}, x_i^{\pm}) . By Proposition 9, the inverse image of \mathcal{F} to this points is quasi-isomorphic to 0. So, by Lemma 10, it is enough to prove that $Li^*\mathcal{F} = O_{\Delta'}$, where $i : \Delta' \hookrightarrow P \times P$ is the natural embedding.

Step 3. There is a natural embedding $O_{\Delta' \times \mathcal{M}} \to \mathcal{F}_P|_{\Delta' \times \mathcal{M}}$. By Proposition 9 and Lemma 10, $R(p_{12})_*((\mathcal{F}_P|_{\Delta' \times \mathcal{M}})/O_{\Delta' \times \mathcal{M}}) = 0$. Hence

$$Li^*\mathcal{F} = R(p_{12})_*(\mathcal{F}_P|_{\Delta'\times\mathcal{M}}) = R(p_{12})_*(O_{\Delta'\times\mathcal{M}}) = O_{\Delta'}\otimes_{\mathbb{C}} \mathrm{R}\Gamma(\mathcal{M},O_{\mathcal{M}}).$$

By Theorem 2 (ii), $\mathrm{R}\Gamma(\mathcal{M}, O_{\mathcal{M}}) = \mathbb{C}$, so $Li^*\mathcal{F} = O_{\Delta'}$.

10. Orthogonality for families: Theorem 4

We will need the following easy (and well-known) statement:

Lemma 11. Let t be a local parameter at $x_i \in \mathbb{P}^1$, (L, ∇, φ) a λ -bundle. The restriction of (L, ∇) to the formal neighborhood of x is isomorphic to $\mathbb{C}[[t]] \oplus \mathbb{C}[[t]]$ with $\nabla : \mathbb{C}[[t]] \oplus \mathbb{C}[[t]] \to (\mathbb{C}[[t]] \oplus \mathbb{C}[[t]]) dt$ given by $\nabla(f, g) = (df + f\lambda_i t^{-1} dt, dg - g\lambda_i t^{-1} dt)$.

Let $(L_1, \nabla_1, \varphi_1)$ and $(L_2, \nabla_2, \varphi_2)$ be λ -bundles. Consider the D_P -module $\sigma^*((L_1)_{\lambda}) \otimes_{O_P} (L_2)_{\lambda}$. Set $L_{12} := \mathcal{H}om_{O_{\mathbb{P}^1}}(L_1, L_2)$. The natural connection $\nabla : L_{12} \to L_{12} \otimes \Omega_{\mathbb{P}^1}(x_1 + \dots + x_4)$ gives a D_U -module structure on $L_{12}|_U$. Set $V_i := \operatorname{Im}(\operatorname{res}_{x_i} \nabla : (L_{12})_{x_i} \to (L_{12})_{x_i})$. Denote by \widetilde{L}_{12} the modification of L_{12} whose sheaf of sections is $\{s \in L_{12} : s(x_i) \in V_i \subset (L_{12})_{x_i}; i = 1, \dots, 4\}$.

Lemma 11 implies the following two statements.

Lemma 12. The identification

$$L_{12}|_U \widetilde{\rightarrow} j^*(\sigma^*((L_1)_\lambda) \otimes_{O_P} (L_2)_\lambda) = j^*(L_1) \otimes_{O_U} j^*(L_2)$$

extends to an isomorphism $j_{!*}(L_{12}|_U) \xrightarrow{\sim} Rp_*(\sigma^*((L_1)_\lambda) \otimes_{O_P} (L_2)_\lambda)$.

Lemma 13. The map $L_{12} \hookrightarrow j_{!*}(L_{12})$ induces a quasi-isomorphism

$$(L_{12} \xrightarrow{\vee} \widetilde{L}_{12} \otimes \Omega_{\mathbb{P}^1}(x_1 + \dots + x_4)) \to \mathbb{DR}(j_{!*}(L_{12})).$$

All the above constructions are still valid for families of λ -bundles. In particular, since the complex $(L_{12} \to \tilde{L}_{12} \otimes \Omega_{\mathbb{P}^1}(x_1 + \cdots + x_4))$ is formed by coherent sheaves, Lemmas 12 and 13 imply $R^i p_{12,*} \mathbb{DR}(\mathcal{F}_{\mathcal{M}})$ is coherent for any i (here $p_{12} : \mathcal{M} \times \mathcal{M} \times \mathcal{P} \to \mathcal{M} \times \mathcal{M}$).

Set $\mathbb{H}^i := \mathbb{H}^i(\mathbb{P}^1, (L_{12} \xrightarrow{\nabla} \widetilde{L}_{12} \otimes \Omega_{\mathbb{P}^1}(x_1 + \cdots + x_4)))$. The following proposition computes dim \mathbb{H}^i .

Proposition 10.

- (i) If L_1 and L_2 are not isomorphic, $\mathbb{H}^i = 0$ for any *i*;
- (ii) If L_1 and L_2 are isomorphic,

$$\dim \mathbb{H}^{i} = \begin{cases} 1, & \text{if } i = 0, 2\\ 2, & \text{if } i = 1\\ 0, & \text{otherwise} \end{cases}$$

(iii) Suppose $L_1 = L_2 = L$ (so $L_{12} = \mathcal{E}nd_{O_{\mathbb{P}^1}}(L)$). Consider the map of complexes

$$(O_{\mathbb{P}^1} \overset{d}{\to} \Omega_{\mathbb{P}^1}) \hookrightarrow (L_{12} \overset{\nabla}{\to} \widetilde{L}_{12} \otimes \Omega_{\mathbb{P}^1}(x_1 + \dots + x_4))$$

induced by $O_{\mathbb{P}^1} \to L_{12} : f \mapsto f \operatorname{Id}_L$. Then the induced map $H^i_{DR}(\mathbb{P}^1, \mathbb{C}) := \mathbb{H}^i(\mathbb{P}^1, O \xrightarrow{d} \Omega_{\mathbb{P}^1}) \to \mathbb{H}^i$ is an isomorphism for i = 0, 2.

Proof. The Riemann-Roch Theorem implies dim $\mathbb{H}^0 + \dim \mathbb{H}^2 - \dim \mathbb{H}^1 = \deg(L_{12}) - \deg(\widetilde{L}_{12} \otimes \Omega_{\mathbb{P}^1}(x_1 + \cdots + x_4)) = 0$. Since $\mathbb{H}^0 = \{A \in \operatorname{Hom}(L_1, L_2) : \nabla A = A \nabla\}, \mathbb{H}^0$ has the required dimension. On the other hand, by Serre's duality,

$$(\mathbb{H}^2)^* = \mathbb{H}^0(\mathbb{P}^1, (\widetilde{L}_{12}(x_1 + \dots + x_4))^* \xrightarrow{\nabla^*} L_{12}^* \otimes \Omega_{\mathbb{P}^1}).$$

The SL(2)-structure on L_1 and L_2 yields a canonical paring $L_{12} \times L_{12} \to O_{\mathbb{P}^1}$. Since the pairing agrees with ∇ , $((\widetilde{L}_{12}(x_1 + \cdots + x_4))^* \xrightarrow{\nabla^*} L_{12}^* \otimes \Omega_{\mathbb{P}^1})$ is naturally a subcomplex of $(L_{12} \xrightarrow{\nabla} \widetilde{L}_{12}(x_1 + \dots + x_4) \otimes \Omega_{\mathbb{P}^1})$, and $(\mathbb{H}^2)^*$ is naturally a subspace of \mathbb{H}^0 . In particular, dim $\mathbb{H}^2 \leq \dim \mathbb{H}^0$. This proves (i).

Note that $(O_{\mathbb{P}^1} \xrightarrow{d} \Omega_{\mathbb{P}^1})$ is a direct summand in $(L_{12} \xrightarrow{\nabla} \widetilde{L}_{12} \otimes \Omega_{\mathbb{P}^1}(x_1 + \dots + x_4))$ if $L_1 = L_2$. This implies (iii). (ii) follows from (iii).

The map $(\mathbb{H}^2)^* \to \mathbb{H}^0$ constructed above still makes sense for S-points over an arbitrary scheme S. Since we are going to need the result, let us give a precise statement.

Lemma 14. Let S be a locally Noetherian scheme, $i: S \to \mathcal{M} \times \mathcal{M}$. Set $\mathcal{F}_{(S)} := Rp_{1,*}(\mathbb{DR}((i \times id_P)^*\mathcal{F}_{\mathcal{M}}))$ (here $p_1: S \times P \to S$). Then $\mathcal{H}om(H^2(\mathcal{F}_{(S)}), O_S)$ is isomorphic to a subsheaf of $H^0(\mathcal{F}_{(S)})$.

Proof. The proof repeats that of Proposition 10, the only difference is that Serre's duality should be replaced by an appropriate "relative" result, e.g., [11, Theorem 21] or [9, Theorem III.5.1] (or [9, Corollary VII.3.4(c)] for a general statement). \Box

Remark. Actually, it is easy to see that $\mathcal{H}om(H^2(\mathcal{F}_{(S)}), O_S) = H^0(\mathcal{F}_{(S)}).$

Clearly, diag : $\mathcal{M} \to \mathcal{M} \times \mathcal{M}$ is a μ_2 -torsor over diag(\mathcal{M}). Denote by Hom the line bundle (i.e., a \mathbf{G}_m -torsor) on diag(\mathcal{M}) obtained by applying $\mu_2 \hookrightarrow \mathbf{G}_m$ to this torsor. Note that the fiber of Hom over $((L_1, \nabla_1, \varphi_1), (L_2, \nabla_2, \varphi_2))$ equals $\{A \in \operatorname{Hom}_{O_{\mathbb{P}^1}}(L_1, L_2) : A \nabla_1 = \nabla_2 A\}.$

Proposition 10 still holds for all (not necessarily closed) points of $\mathcal{M} \times \mathcal{M}$ (that is, L_1 and L_2 can be Spec K-families of λ -bundles for a field K). The following corollary is obvious (p_{12} stands for the projection $\mathcal{M} \times \mathcal{M} \times P \to \mathcal{M} \times \mathcal{M}$).

Corollary 4.

- (i) $Rp_{12,*} \mathbb{DR}(\mathcal{F}_{\mathcal{M}})$ vanishes if restricted to $\mathcal{M} \times \mathcal{M} \setminus \text{diag}(\mathcal{M})$.
- (ii) The map $(p_{12}^* \operatorname{Hom}) \to \mathcal{F}_{\mathcal{M}}|_{\operatorname{diag}(\mathcal{M}) \times P}$ induces an isomorphism Hom = Hom $\otimes \mathbb{H}^2(\mathbb{P}^1, (O_{\mathbb{P}^1} \to \Omega_{\mathbb{P}^1})) \to R^2 p_{12,*}(\mathbb{DR}(\mathcal{F}_{\mathcal{M}})|_{\operatorname{diag}(\mathcal{M})}).$

Now let us prove Theorem 4. The proof is based on the following observation (cf. [16, Lemma in §13])

Lemma 15. Let Z be a locally Noetherian scheme, $V \subset Z$ a closed subscheme that is locally a complete intersection of pure codimension n. Denote by $i: V \hookrightarrow Z$ and $j: Z \setminus V \hookrightarrow Z$ the natural embeddings.

- (i) Let F be a quasicoherent sheaf on Z such that $F|_{Z\setminus V} = 0$, $L_n i^* F = 0$. Then F = 0.
- (ii) Let $F^{\bullet} = (F^0 \to F^1 \to ...)$ be a complex of flat O_Z -modules such that $H^i(F^{\bullet})|_{Z \setminus V} = 0$ for all i < n. Then $H^i(F^{\bullet}) = 0$ for i < n.

Proof. (i) Using the Koszul resolution, one easily sees that ([9, Corollary III.7.3])

$$L_n i^* F = \mathcal{H}om_{O_Z}(\omega_{V/Z}^{-1}, F).$$

Here $\omega_{V/Z}^{-1}$ is the determinant of the normal bundle of $V \subset Z$. On the other hand, the kernel of the natural map $F \to (R^0 j_*) j^*(F)$ is

$$F^{(V_{\infty})} := \bigcup_{k=1}^{\infty} \{ f \in F : O_Z(-kV) f = 0 \}$$

Since $\{f \in F : O_Z(-V)f = 0\} = 0$, we have $F^{(V_\infty)} = 0$, so $F \to (R^0 j_*)j^*(F)$ is an injection.

(ii) Consider the spectral sequence

$$E_2^{pq} = L_{-p}i^*H^q(F^{\bullet}) \Rightarrow H^{p+q}(i^*F^{\bullet})$$

(note that \mathcal{F}^{\bullet} is a complex of flat modules, so $Li^*F^{\bullet} = i^*F^{\bullet}$). Clearly $H^k(i^*F^{\bullet}) = 0$ for k < 0. The spectral sequence implies $L_n i^* H^0(F^{\bullet}) = 0$, so by (i), $H^0(F^{\bullet}) = 0$. In a similar way, now we see $L_n i^* H^1(F^{\bullet}) = 0$, and so on.

Lemma 15 (ii) and Corollary 4 (i) imply $R^i p_{12,*} \mathbb{DR}(\mathcal{F}_{\mathcal{M}}) = 0$ for $i \neq 2$. Set $\mathcal{F}^{(2)} := R^2 p_{12,*} \mathbb{DR}(\mathcal{F}_{\mathcal{M}})$. Corollary 4 (ii) implies Hom $= \mathcal{F}^{(2)}|_{\text{diag}(\mathcal{M})}$. To complete the proof, it is enough to check $\mathcal{F}^{(2)}$ is concentrated on $\text{diag}(\mathcal{M})$, which follows from Lemma 14.

Acknowledgments

I am very grateful to V. Drinfeld for stating problems and for his constant attention to this work. I would also like to thank S. Lysenko for valuable discussions and for his permission to publish his proof of Theorem 4.

References

- [1] D. Arinkin and S. Lysenko. On the moduli of SL(2)-bundles with connections on $\mathbb{P}^1 \setminus \{x_1, \ldots, x_4\}$. Internat. Math. Res. Notices **19** (1997), 983–999.
- [2] D. Arinkin and S. Lysenko. Isomorphisms between moduli spaces of SL(2)-bundles with connections on $\mathbb{P}^1 \setminus \{x_1, \ldots, x_4\}$. Math. Res. Lett. 4/2–3 (1997), 181–190.
- [3] A. Beilinson and J. Bernstein. A proof of Jantzen conjectures. I. M. Gelfand seminar, 1–50, Adv. Soviet Math., 16, Part 1. Amer. Math. Soc., Providence, 1993.
- [4] A. Borel, P. -P. Grivel, B. Kaup, A. Haefliger, B. Malgrange and F. Ehlers. Algebraic D-modules. Perspectives in Mathematics, 2. Academic Press, Inc., Boston, 1987.
- [5] V. Drinfeld and V. Sokolov. Lie algebras and equations of Korteweg-de Vries type. Current problems in mathematics, Vol. 24, 81–180, *Itogi Nauki i Tekhniki*. Akad. Nauk SSSR, Vsesouyz. Inst. Nauchn. i Tekhn. Inform., Moscow, 1984. (Russian)

- [6] D. Edidin. Notes on the construction of the moduli space of curves. Preprint math. AG/ 9805101.
- [7] A. Grothendieck. Cohomologie Locale des Faisceaux Cohérents et Théorèmes de Lefschetz Locaux et Globaux (SGA 2). Augmenté d'un exposé par Michèle Raynaud. Séminaire de Géométrie Algébrique du Bois-Marie, 1962. Advanced Studies in Pure Mathematics, Vol. 2.
 [8] A. Grothendieck. Éléments de géométrie algébrique. IV.. Étude locale des schémas et des
- [6] A. Grothendieck. Elements de geometrie algebrique. IV.: Etude locale des schemas et des morphismes des schémas IV. *IHES Publ. Math.* **32** (1967).
- [9] R. Hartshorne. Residues and Duality. Lecture Notes in Mathematics, No. 20. Springer-Verlag, 1966.
- [10] R. Hartshorne. Stable reflexive sheaves. Math. Ann. 254 (1980), 121–176.
- [11] S. Kleiman. Relative duality for quasicoherent sheaves. Compositio Math. 41 (1980), 39–60.
- [12] G. Laumon. Transformation de Fourier généralisée. Preprint alg-geom/9603004.
- [13] G. Laumon. Transformation de Fourier géométrique. Preprint IHES/85/M/52 (1985).
 [14] G. Laumon and L. Moret-Bailly. *Champs Algébriques*. Ergebnisse der Matematik und ihrer
- Grenzgebiete. 3.Folge. A Series of Modern Surveys in Mathematics, 39.. Springer-Verlag, Berlin, 2000.
- [15] S. Lysenko. Orthogonality relations for two kinds of local systems on \mathbb{P}^1 . unpublished notes.
- [16] D. Mumford. Abelian Varieties. Tata Institute of Fundamental Research Studies in Mathematics, no. 5. Oxford University Press, London, 1970.
- [17] M. Rothstein. Corrections to: "Sheaves with connection on abelian varieties". Duke Math. J. 87 (1997), 205–211.
- [18] M. Rothstein. Sheaves with connection on abelian varieties. Duke Math. J. 84 (1996), 565–598.
- [19] C. Simpson. Nonabelian Hodge theory. Proceedings ICM-90 Kyoto. Math. Soc. Japan, Tokyo (1991), 747–756.
- [20] C. Simpson. The Hodge filtration on nonabelian cohomology. Algebraic geometry, Santa Cruz 1995, 217–281, Proc. Sympos. Pure Math., 62, Part 2. Amer. Math. Soc., Providence, RI, 1997.
- [21] W. Wasow. Asymptotic Expansions for Ordinary Differential Equations. Pure and Applied Mathematics, Vol. XIV Interscience. Publishers John Wiley & Sons, Inc., New York– London–Sydney, 1965.

D. Arinkin Department of Mathematics Harvard University Cambridge, MA 02138 USA e-mail: arinkin@math.harvard.edu

To access this journal online: http://www.birkhauser.ch