On the Moduli of SL(2)**-bundles with Connections on** $\mathbf{P}^1 \setminus \{x_1,\ldots,x_4\}$

D. Arinkin and S. Lysenko

Introduction

The moduli spaces of bundles with connections on algebraic curves have been studied from various points of view (see $[6]$, $[10]$). Our interest in this subject was motivated by its relation with the Painlevé equations, and also by the important role of bundles with connections in the geometric Langlands program [\[4\]](#page-16-2) (for more details see the remarks at the end of the introduction).

In this work, we consider $SL(2)$ -bundles on \mathbb{P}^1 with connections. These connections are supposed to have poles of order 1 at fixed n points, and the eigenvalues $\pm \lambda_i$ of the residues are fixed. We call these bundles $(\lambda_1,\ldots,\lambda_n)$ -bundles. Our aim is to find all invertible sheaves on the moduli space of $(\lambda_1,\ldots,\lambda_n)$ -bundles and to compute the cohomology of these sheaves for $n = 4$.

In this work, the ground field is C , that is, 'space' means ' C -space', P^1 means P^1_C , and so on.

Let us formulate the main results of this work.

Fix $x_1, \ldots, x_n \in \mathbf{P}^1(\mathbf{C}), n \geq 4, x_i \neq x_j \text{ for } i \neq j, \text{ and } \lambda_1, \ldots, \lambda_n \in \mathbf{C}.$

Definition 1. A $(\lambda_1,\ldots,\lambda_n)$ -*bundle* on \mathbf{P}^1 is a triple (L, ∇, φ) such that L is a rank 2 vector bundle on \mathbf{P}^1 , $\nabla: L \to L \otimes \Omega_{\mathbf{P}^1}(x_1 + \cdots + x_n)$ is a connection, $\varphi: \Lambda^2 L \widetilde{\to} O_{\mathbf{P}^1}$ is a horizontal isomorphism, and the residue R_i of the connection ∇ at x_i has eigenvalues $\pm \lambda_i$, $1 \le i \le n$.

Received 16 September 1997.

Communicated by Yu. I. Manin.

In the sequel, we suppose that

$$
\sum_{i=1}^{n} \epsilon_i \lambda_i \notin \mathbf{Z}
$$
 (1)

for any (ϵ_i) , $\epsilon_i \in \mu_2 := \{1, -1\}.$

Denote by M the moduli stack of $(\lambda_1,\ldots,\lambda_n)$ -bundles, and by M the corresponding coarse moduli space.

Theorem 1. Suppose that (1) holds and $\lambda_1, \ldots, \lambda_n \neq 0$. Then

(i) M is a smooth irreducible separated scheme, dim $M = 2n - 6$, and M is a μ_2 -gerbe over M;

(ii) $H^{i}(M, \mathcal{F}) = 0$ for $i > n - 3$ for any quasicoherent O_M-module \mathcal{F} ;

(iii) Pic M is the free abelian group with generators $\delta, \xi_1, \ldots, \xi_n$. Here δ (resp. ξ_i) is the invertible sheaf on M whose fiber over (L, ∇, φ) equals detRΓ(**P**¹, L) (resp. l_i := $Ker(R_i - \lambda_i) \subset L_{x_i}, R_i: L_{x_i} \to L_{x_i}$ is the residue of ∇ at x_i);

(iv) Pic M \subset Pic M is an index 2 subgroup, $\xi_1,\ldots,\xi_n \notin$ Pic M, $\delta \in$ Pic M;

(v) the cohomology class $[\alpha] \in H^2_{\text{\'et}}(M, \mu_2)$ corresponding to the μ_2 -gerbe $M \to$ M is the image of the nonzero element of 2 Pic $M/2$ Pic M via the canonical embedding Pic M/2 Pic M \rightarrow $\mathsf{H}_{\mathrm{\acute{e}t}}^2(\mathsf{M},\mu_2)$. In particular, [α] \neq 0. \Box

Theorem 2. Let $n = 4$. Suppose that (1) holds and $2\lambda_i \notin \mathbb{Z}$, $1 \le i \le 4$. Define deg: Pic M $\rightarrow \mathbb{Z}$ by deg(a $\delta + \sum_{i=1}^4 a_i \xi_i$) := $-a$. Let γ be an invertible sheaf on M.

(i) If deg $\gamma > 0$, then dim $H^0(M, \gamma) = \infty$, $H^i(M, \gamma) = 0$ for $i \neq 0$.

(ii) If deg $\gamma < 0$, then dim $H^1(M, \gamma) = \infty$, $H^i(M, \gamma) = 0$ for $i \neq 1$.

(iii) If $\gamma \simeq O_M$, then dim $H^0(M, \gamma) = 1$, $H^i(M, \gamma) = 0$ for $i \neq 0$.

(iv) If $\deg \gamma = 0$ and $\gamma \not\simeq O_M$, then $\dim \mathrm{H}^1(M,\gamma) = -[\langle \gamma, \gamma \rangle/2] - 1$, $\mathrm{H}^i(M,\gamma) = 0$ for

 $i \neq 1$. Here the bilinear form $\langle \cdot, \cdot \rangle$ is defined by

$$
\left\langle \sum_{i=1}^4\, \alpha_i \xi_i, \sum_{i=1}^4\, b_i \xi_i \right\rangle := -\frac{\sum_{i=1}^4\, \alpha_i b_i}{2},
$$

and [a] is the integral part of a.

Let us describe the general plan of this work.

In the first part (Sections [1–](#page-2-0)[3\)](#page-8-0), we study $(\lambda_1,\ldots,\lambda_n)$ -bundles for arbitrary n.

In Section 1, we prove the basic properties of $(\lambda_1, \ldots, \lambda_n)$ -bundles. We prove that M is a separated algebraic space. All the results of this section are still valid for any curve.

In Section 2, we construct an affine bundle $M \rightarrow N$, where N is the coarse moduli space of quasiparabolic bundles of a certain kind. We use this construction to prove that

 \Box

M is a smooth scheme of dimension 2n−6 and to show that the cohomological dimension of M is at most $n - 3$.

Section 3 contains the calculation of the Picard group of M. This calculation uses the ideas of [\[3\]](#page-16-3). We also compute the cohomology class of the gerbe $M \rightarrow M$.

In Sections 4 and 5, we assume that $n = 4$.

In Section 4, we give an explicit geometric description of M. This description goes back to Okamoto $([7], [9])$ $([7], [9])$ $([7], [9])$ $([7], [9])$ $([7], [9])$ who studied M as the space of initial conditions of the Painlevé equation P_{VI} rather than the moduli space of bundles with connections.

In Section 5, we compute the cohomology of invertible sheaves on M.

Remarks. (1) The description of PicM from Theorem [1](#page-1-0) was used in [\[2\]](#page-16-6) to describe all the isomorphisms between the varieties M for $n = 4$, and thereby to give a geometric explanation of the mysterious symmetries of the P_{VI} equation found by Okamoto [\[8\]](#page-16-7).

(2) Theorem [2](#page-1-1) was used by one of the authors (D. Arinkin) to prove the following orthogonality relations: if $n = 4$ and $x, y \in \mathbf{P}^1 \setminus \{x_1, \ldots, x_4\}$, then

 $H^{i}(\mathcal{M}, \xi_{x} \otimes \xi_{y}) = 0$ unless $x = y, i = 0$, and

 $H^0(\mathcal{M}, \xi_x \otimes \xi_x) = \mathbf{C}$

where ξ_x is the vector bundle on M whose fiber at (L, ∇, φ) equals L_x . These formulas can be interpreted in terms of the geometric Langlands program.

(3) The results of this paper were announced in [\[1\]](#page-16-8).

1 $(\lambda_1, \ldots, \lambda_n)$ -bundles

1.1 Basic properties of $(\lambda_1, \ldots, \lambda_n)$ -bundles

Let (L, ∇, φ) be a $(\lambda_1, \ldots, \lambda_n)$ -bundle.

Proposition 1. (L, ∇) is irreducible (i.e., there is no rank 1 ∇ -invariant subbundle L₁ \subset L). \Box

Proof. Suppose there is an invariant rank 1 subbundle $L_1 \subset L$. Then $\nabla_1 := \nabla|_{L_1}$ is a connection on L₁. (L₁)_{x_i} ⊂ L_{x_i} is an eigenspace of R_i := res_{x_i}(∇). Hence res_{x_i}(∇ ₁) is an $eigenvalue of R_i, that is, res_{x_i}(V_1) = \pm \lambda_i$. But $\sum_{i=1}^n res_{x_i}(V_1) = -\deg L_1 \in \mathbf{Z}$. This contradicts (1). \blacksquare

Remark 4. Denote by V the fiber of L over the generic point of P^1 . V is a 2-dimensional vector space over $C(z)$ (here Spec $C(z) \in P^1$ is the generic point); 1-dimensional subspaces of V correspond to rank 1 subbundles of L. ∇ induces a C-linear morphism $V \to V \otimes_{C(z)}$

 $\Omega_{\text{Spec}(C(z))}$. So the proposition implies that V is irreducible (as a $C(z)$ -space) with respect to this morphism.

Corollary 1. The only automorphisms of (L, ∇, φ) are 1 and -1 (in other words, the group of automorphisms of (L, ∇, φ) is μ_2). \Box

Proof. Let A be any automorphism of (L, ∇, φ) . Clearly it has an eigenvalue $e \in \mathbb{C}$. Then Ker($A - e$) ⊂ L is an invariant subbundle, Ker($A - e$) ≠ 0, so Ker($A - e$) = L and $A = e$. But $det(A) = 1$, so $A = \pm 1$.

Corollary 2. Let $L_1 \subset L$ be a rank 1 subbundle. Then deg $L_1 \leq (n-2)/2$. \Box

Proof. By Proposition [1](#page-2-1), the map $L_1 \rightarrow (L/L_1) \otimes \Omega_{\mathbf{p}1}(x_1 + \cdots + x_n)$ induced by ∇ is not zero. So deg $L_1 < deg(L/L_1) + n - 2$. The corollary easily follows. \blacksquare

Remark. Let us consider $(\lambda_1,\ldots,\lambda_n)$ -bundles on a curve of genus $g > 0$. Then Proposition [1](#page-2-1) is still true, and Corollary [2](#page-3-0) has the form

$$
deg\,L_1\leq \frac{n+2g-2}{2}.
$$

1.2 Moduli space of $(\lambda_1, \ldots, \lambda_n)$ -bundles

The notion of a family of $(\lambda_1,\ldots,\lambda_n)$ -bundles on \mathbf{P}^1 is defined in the usual way. $(\lambda_1,\ldots,\lambda_n)$ bundles on $P¹$ form a stack M. So M_S (the category of 1-morphisms from S to M) is the category of families of $(\lambda_1,\ldots,\lambda_n)$ -bundles parametrized by a scheme S.

 \Box

Proposition 2. M is a separated algebraic stack.

Proof. Denote by $Buns_{1(2)}P^1$ the moduli stack of $SL(2)$ -bundles on P^1 . It is well known ([\[5](#page-16-9), Theorem 4.14.2.1]) that $Bun_{SL(2)}P¹$ is an algebraic stack. Clearly the natural map $M \rightarrow$ Bun_{SI(2)} $P¹$ is a representable (and even affine) 1-morphism of stacks. Hence M is algebraic.

Using the valuative criterion for algebraic stacks ([\[5](#page-16-9), Theorem 3.19, Remark 3.20.2]), one can derive from Lemma [1](#page-3-1) that M is separated. \blacksquare

Lemma 1. Let A be a discrete valuation ring, K the fraction field of A, $\eta :=$ Spec(K), $y_0 = (L_0, \nabla_0, \varphi_0) \in Ob(\mathcal{M}_n)$ (i.e., y_0 is a family of $(\lambda_1, \ldots, \lambda_n)$ -bundles parametrized by η). If an extension of y_0 to $y \in Ob(M_U)$, $U := Spec(A)$ exists, it is unique. \Box

Proof. Let $y_i = (L_i, \nabla_i, \varphi_i) \in Ob(\mathcal{M}_{1i}), i = 1, 2$ be two extensions of y_0 . Denote by \mathcal{F}_i the sheaf of sections of L_i , $i = 0, 1, 2$. Let $\widetilde{\mathcal{F}}_0$ be the direct image of \mathcal{F}_0 to $U \times \mathbf{P}^1$. Then ∇_0 (resp. φ_0) induces a connection $\nabla: \mathcal{F}_0 \to \mathcal{F}_0 \otimes \Omega_{\mathbf{P}^1}(x_1 + \cdots + x_n)$ (resp. a horizontal isomorphism

 $\varphi: \ \Lambda^2 \widetilde{\mathcal{F}_0} \widetilde{\to} O_{\eta \times \mathbf{P}^1}$). Since y_i is an extension of y_0, \mathcal{F}_i is identified with a subsheaf of $\widetilde{\mathcal{F}_0}$; this identification agrees with ∇ and φ . Set $\mathfrak{F} := \mathfrak{F}_1 \cap \mathfrak{F}_2$.

Denote by k the residue field of A (so Spec $k \in U$ is the special point), and by $p \in \mathbf{P}^1_k \subset U \times \mathbf{P}^1$ the generic point of the special fiber $\mathbf{P}^1_k \subset U \times \mathbf{P}^1$.

There is $i \in \{1, 2\}$ such that $\mathfrak{F}(\mathbf{P}^1_k) \not\subset \mathfrak{F}_i$. We may assume that $i = 1$.

Denote by V_1 the fiber of L_1 over p, and by $V \subset V_1$ the image of $\mathcal{F} \subset \mathcal{F}_1$. Since $\mathcal{F} \not\subset \mathcal{F}_1(-\mathbf{P}_{k}^1)$, we have $V \neq 0$.

 $\nabla(\mathcal{F}_i) \subset \mathcal{F}_i \otimes \Omega_{\mathbf{p}1}(\mathbf{x}_1 + \cdots + \mathbf{x}_n)$, so $\nabla(\mathcal{F}) \subset \mathcal{F} \otimes \Omega_{\mathbf{p}1}(\mathbf{x}_1 + \cdots + \mathbf{x}_n)$. Therefore $V \subset V_1$ is ∇ -invariant and, by Remark 4, $V = V_1$.

 $\mathcal{F} \subset \mathcal{F}_1$ is locally free so $\mathcal{F} = \mathcal{F}_1$ and $\mathcal{F}_2 \supset \mathcal{F}_1$. But $\varphi(\Lambda^2 \mathcal{F}_1) = \varphi(\Lambda^2 \mathcal{F}_2)$, so $\mathcal{F}_2 = \mathcal{F}_1$.

For a scheme S, denote by $M(S)$ the set of isomorphism classes of families of $(\lambda_1,\ldots,\lambda_n)$ -bundles parametrized by S. Denote by M the sheaf for the fppf-topology associated with the presheaf M.

By Corollary [1](#page-3-2), M is a μ_2 -gerbe over M. In particular, the 1-morphism $M \to M$ is smooth, surjective, and proper. This implies that M is a separated algebraic space (M is the coarse moduli space of $(\lambda_1,\ldots,\lambda_n)$ -bundles).

2 Structure of affine bundle on M

2.1 Quasiparabolic bundles

A quasiparabolic SL(2)-bundle on \mathbf{P}^1 is a collection $(L, \varphi, l_1, \ldots, l_n)$ such that L is a rank 2 vector bundle on \mathbf{P}^1 , φ : $\Lambda^2 L \widetilde{\to} O_{\mathbf{P}^1}$, and $l_i \subset L_{x_i}$ is a 1-dimensional subspace. Quasi-parabolic SL([2](#page-3-3))-bundles form a stack \overline{N} . Using the same arguments as in Proposition 2, one can prove that \overline{N} is algebraic.

Suppose that $\lambda_1,\ldots,\lambda_n\neq 0$. For a $(\lambda_1,\ldots,\lambda_n)$ -bundle (L, ∇ , φ), we construct a quasiparabolic SL(2)-bundle (L, φ , l_1,\ldots,l_n) by setting $l_i := \text{Ker}(R_i - \lambda_i)$, where $R_i: L_{x_i} \to L_{x_i}$ is the residue of ∇ at x_i . This yields a morphism \overline{f} : $\mathcal{M} \to \overline{\mathcal{N}}$. Let us give an explicit description of the image of \overline{f} .

Proposition 3. For a quasiparabolic SL(2)-bundle $(L, \varphi, l_1, \ldots, l_n)$, the following conditions are equivalent:

(i) $(L, \varphi, l_1, \ldots, l_n)$ belongs to the image of \overline{f} : $\mathcal{M} \to \overline{\mathcal{N}}$;

(ii) $Aut(L, \varphi, l_1, \ldots, l_n) = \mu_2;$

(ii') $End(L, l_1, ..., l_n) = C;$

(iii) $(L, \varphi, l_1, \ldots, l_n)$ is indecomposable; that is, there are no $L_1, L_2 \neq 0$ such that $L = L_1 \oplus L_2$, and for any i, either $l_i = (L_1)_{x_i}$ or $l_i = (L_2)_{x_i}$. \Box Proof (i) \Rightarrow (iii). Suppose $(L, \varphi, l_1, \ldots, l_n)$ belongs to the image of \overline{f} ; that is, there is a $\nabla: L \to L \otimes \Omega_{\mathbf{P}^1}(x_1 + \cdots + x_n)$ such that (L, ∇, φ) is a $(\lambda_1, \ldots, \lambda_n)$ -bundle and $l_i = \text{Ker}(R_i - \lambda_i)$. $\text{Suppose } L = L_1 \oplus L_2 \text{ for } L_1, L_2 \neq 0. \text{ The composition } \nabla_1: L_1 \to L \to L \otimes \Omega_{\mathbf{P}^1}(x_1 + \cdots + x_n) \to 0.$ $L_1 \otimes \Omega_{\mathbf{p}1}(\mathsf{x}_1 + \cdots + \mathsf{x}_n)$ is a connection on L_1 . (1) implies that res_x, $\nabla_1 \neq \pm \lambda_i$ for some i. It is easy to prove that $l_i \neq (L_1)_{x_i}$, $(L_2)_{x_i}$ for this i.

(iii) \Rightarrow (ii'). Suppose A ∈ End(L, l₁, ..., l_n). Denote by $e_1, e_2 \in \mathbf{C}$ the eigenvalues of A. If $e_1 \neq e_2$, L can be decomposed to the direct sum of the eigenspaces of A.

Assume that $e_1 = e_2$. Replacing A by $A - e_1$, we can assume that $e_1 = e_2 = 0$. Let us prove that $A = 0$. Assume the converse. Then $L_1 := \text{Ker}(A) \subset L$ is a rank 1 subbundle. Set $T := \{i | l_i \neq (L_1)_{x_i}\}$. Locally on \mathbf{P}^1 we can construct L_2 such that $L_1 \oplus L_2 = L$, $(L_2)_{x_i} = l_i$ for i ∈ T. Obstructions to global existence of L₂ lie in H¹(\mathbf{P}^1 , Hom(L/L₁, L₁)(- $\sum_{i\in\text{T}} x_i$)). Since (L, l_1, \ldots, l_n) is indecomposable, this space is not zero. So $deg(\mathcal{H}om(L/L_1, L_1)(-\sum_{i\in T} x_i)) < \infty$ -1 , and ${A_1 \in Hom(L/L_1, L_1)|A_1(x_i) = 0 \text{ for } i \in T} = H^0(\mathbf{P}^1, \text{Hom}(L/L_1, L_1)(-\sum_{i \in T} x_i)) = 0.$ Clearly A induces a map $A_1: L/L_1 \rightarrow L_1$ such that $A_1(x_i) = 0$ for $i \in T$. Hence $A_1 = 0$ and $A = 0.$

(ii') \Rightarrow (i). Let us construct a connection $\nabla: L \to L \otimes \Omega_{\mathbf{P}^1}(\mathbf{x}_1 + \cdots + \mathbf{x}_n)$ such that (L, ∇, φ) is a $(\lambda_1, \ldots, \lambda_n)$ -bundle, and $l_i = \text{Ker}(R_i - \lambda_i)$. This can be done locally on \mathbf{P}^1 . The obstructions to global construction lie in H¹(\mathbf{P}^1 , \mathcal{E}), where $\mathcal{E} := {\mathcal{A} \in \mathcal{E} nd_0(L) \otimes \Omega_{\mathbf{P}^1}(x_1 + \cdots + x_n)}$ x_n)|(res_{xi} A)(l_i) = 0}. Here $\mathcal{E}nd_0(L) := \{A \in \mathcal{E}nd(L) | \text{tr } A = 0\}$. By Serre's duality theorem, H¹(**P**¹, $\&$) is dual to H⁰(**P**¹, {A ∈ $\&$ nd₀(L)|A(x_i)(l_i) ⊂ l_i}) = {A ∈ End(L, l₁, ...,l_n)|tr(A) = 0} = 0. So there is a global ∇ with such properties.

(ii') \Rightarrow (ii). This implication is obvious since Aut(L, $\varphi, l_1, \ldots, l_n$) = { $A \in End(L, l_1, l_2)$..., l_n)| det(A) = 1}.

(not (iii)) \Rightarrow (not (ii)). Let L = L₁ \oplus L₂ be a decomposition of L. Then $\alpha \oplus \alpha^{-1} \in$ Aut(L, φ , l_1, \ldots, l_n) for $a \in \mathbb{C}^*$. П

Remark. The proof of the implication (iii) \Rightarrow (ii') does not work for curves of genus $g > 0$, because it uses the following property of P^1 : for every line bundle $\mathcal F$ on P^1 , either $H^0(\mathbf{P}^1, \mathcal{F}) = 0$ or $H^1(\mathbf{P}^1, \mathcal{F}) = 0$.

If $(L, \varphi, l_1, \ldots, l_n)$ satisfies the equivalent conditions of Proposition [3](#page-4-0), the fiber of \overline{f} over $(L, \varphi, l_1, \ldots, l_n)$ consists of all $(\lambda_1, \ldots, \lambda_n)$ -bundles (L, ∇, φ) such that $l_i = \text{Ker}(R_i - \lambda_i)$. Such ∇ form an affine space of dimension $n-3$ because the corresponding vector space is dual to $H^1(\mathbf{P}^1, \mathcal{E}nd_0(L, l_1, \ldots, l_n))$, and the Euler characteristic of $\mathcal{E}nd_0(L, l_1, \ldots, l_n)$ equals $\chi(\mathcal{E}nd_0 L) - n = 3 - n.$

Denote by $\mathcal{N} \subset \overline{\mathcal{N}}$ the open substack defined by condition (ii') from Proposition [3.](#page-4-0) \overline{f} induces the morphism f: $\mathcal{M} \to \mathcal{N}$, which is a locally trivial affine bundle with fibers of dimension $n - 3$.

Denote by N the coarse moduli space of indecomposable quasiparabolic SL(2) bundles on \mathbb{P}^1 . The construction of the algebraic space N is similar to that of M (see Section [1.2\)](#page-3-4). N is a μ_2 -gerbe over N.

2.2 Modifications

Suppose L is a rank 2 bundle on \mathbf{P}^1 , $x \in \mathbf{P}^1$, and $l \subset L_x$ is a dimension 1 subspace. Denote by $\mathcal L$ the sheaf of sections of L. The *lower (resp. upper)* (x, l) *-modification of* L is the rank 2 bundle on \mathbb{P}^1 whose sheaf of sections is $\widetilde{\mathcal{L}} := \{s \in \mathcal{L} | s(x) \in \mathcal{L} \mid (resp. \widetilde{\mathcal{L}}(x)) \text{ if } \widetilde{\mathcal{L}} \text{ is the lower } \}$ (x, l)-modification of L, the image of the natural map $\tilde{L}_x \to L_x$ is l. Denote by $\tilde{l} \subset \tilde{L}_x$ the kernel of this map. Then L is the upper (x, \tilde{l}) -modification of \tilde{l} .

Suppose (L, l_1, \ldots, l_n) is a *quasiparabolic bundle on* \mathbf{P}^1 (i.e., L is a rank 2 bundle on **P**¹, and l_i ⊂ L_{x_i} is a dimension 1 subspace). Then the lower (x_i, l_i) -modification \widetilde{L} of L has a natural structure of a quasiparabolic bundle, namely, $(L, l_1, \ldots, l_i, \ldots, l_n)$, where $l_i :=$ $Ker(\widetilde{L}_{x_i}\to L_{x_i}).\; Similarly,\, the\, upper\, (x_i, l_i)\text{-modification of (L, l_1, \ldots, l_n) is a quasiparabolic.}$ bundle.

Clearly $(\widetilde{L}, l_1, \ldots, \widetilde{l}_i, \ldots, l_n)$ is indecomposable if and only if (L, l_1, \ldots, l_n) is indecomposable.

Lemma 2. Suppose (L, l_1, \ldots, l_n) is an indecomposable quasiparabolic bundle on \mathbb{P}^1 . Then making (x_i, l_i) -modifications in some of the points x_i , one can transform (L, l_1, \ldots, l_n) to (L', l'_1, \ldots, l'_n) such that $L' \simeq O_{\mathbf{P}^1}(k')^2$ for some k'. \Box

Proof. Since L is a rank 2 bundle on \mathbf{P}^1 , $L \simeq O_{\mathbf{P}^1}(k) \oplus O_{\mathbf{P}^1}(l)$ for some k, $l \in \mathbf{Z}$, $k \geq l$. The proof is given by induction on $k - l$.

For $k - l = 0$, there is nothing to prove.

Suppose k – l > 0. Denote by $L_1 \subset L$ the rank 1 subbundle of degree k. Since (L, l_1,\ldots, l_n) is indecomposable, $l_i \neq (L_1)_{x_i}$ for some i. Let \widetilde{L} be the lower (x_i, l_i) -modification of L. Then L₁ defines a rank 1 subbundle $\widetilde{L}_1 \subset \widetilde{L}$ of degree k – 1. Clearly $\widetilde{L}/\widetilde{L}_1 = L/L_1$, so $deg(\widetilde{L}/\widetilde{L}_1) = 1$. Hence $\widetilde{L} \simeq O_{\mathbf{P}^1}(k-1) \oplus O_{\mathbf{P}^1}(l)$. By the induction hypothesis, \widetilde{L} can be modified to (L', l'_1, \ldots, l'_n) such that $L' \simeq O_{\mathbf{P}^1}(k')^2$ for some $k' \in \mathbf{Z}$.

Let us return to the case of SL(2)-bundles.

Let $(L, \varphi, l_1, \ldots, l_n)$ be a quasiparabolic SL(2)-bundle, $T \subset \{1, \ldots, n\}$. Denote by (L', l'_1, \ldots, l'_n) the lower modification of (L, l_1, \ldots, l_n) at (x_i, l_i) for all $i \in \mathcal{T}$ (clearly, modifications at different points commute). Then φ induces an isomorphism φ' : Λ^2 L' $\widetilde{\to}$ $O_{\mathbf{P}^1}(-\sum_{i\in\mathcal{I}} x_i)$. Suppose that Card T = 2k, where Card T is the number of elements of the set T. We choose an isomorphism s: $O_{\mathbf{P}^1}(2kx_1 - \sum_{i \in \text{I}} x_i) \widetilde{\rightarrow} O_{\mathbf{P}^1}$. s $\circ \varphi'$ gives a structure

of quasiparabolic SL(2)-bundle on L′(kx₁). This defines an automorphism $\overline{f}_\mathsf{T}\colon\overline{\mathbb{N}}\widetilde{\to}\overline{\mathbb{N}}.$ Since $\overline{f}_{T}(N) = N$, this gives f_{T} : N $\widetilde{\rightarrow}$ N. Obviously, f_{T} does not depend on s.

Denote by Γ the set of all $\Gamma \subset \{1,\ldots,n\}$ such that Card T is even. Γ is an abelian group with respect to the product $T_1 \triangle T_2 := (T_1 \cup T_2) \setminus (T_1 \cap T_2)$.

Proposition 4. (i) $f_{T_1} \circ f_{T_2} = f_{T_1 \triangle T_2}$ $(T_1, T_2 \in \Gamma)$.

(ii) Denote by $N_0 \subset N$ the open subspace formed by trivial SL(2)-bundles (i.e., $(L, \varphi, l_1, \ldots, l_n) \in N_0$ if and only if $L \simeq O_{\mathbf{P}^1}^2$). Then $\bigcup_{T \in \Gamma} f_T(N_0) = N$. \Box

 \blacksquare

Proof. Statement (i) is obvious. Statement (ii) follows from Lemma [2.](#page-6-0)

2.3 Geometry of N

Let N_0 have the same meaning as in Proposition [4\(](#page-7-0)ii).

Lemma 3. N₀ is a smooth irreducible nonseparated scheme of dimension $n - 3$. \Box

Proof. Denote by U the set of $(l_1,\ldots,l_n)\in (\mathbf{P}^1)^n$ such that there are at least three different points among l_1,\ldots,l_n . Then $N_0 = PGL(2) \setminus U$. Set $U_{ijk} := \{(l_1,\ldots,l_n) \in (\mathbf{P}^1)^n | l_i \neq l_j, l_j \neq j \}$ $l_k, l_i \neq l_k$ $\subset U$, where $1 \leq i < j < k \leq n$. Then $U_{ijk} \subset U$ is open, $\bigcup_{i,j,k} U_{ijk} = U$, and $\bigcap_{i,j,k} U_{ijk} = \{(l_1,\ldots,l_n) \in (\mathbf{P}^1)^n | l_i \neq l_j \text{ for } i \neq j\} \neq \emptyset$. So N_0 is covered by pairwise $\text{intersecting open subsets }\text{PGL}(2)\setminus \text{U}_{\text{ijk}}. \text{ Finally, }\text{PGL}(2)\setminus \text{U}_{\text{ijk}}\simeq (\textbf{P}^{1})^{n-3}.$ П

Proposition 5. N is a smooth irreducible nonseparated scheme of dimension $n - 3$. \Box

Proof. Since N is covered by $f_T(N_0)$, $T \in \Gamma$ (Proposition [4\)](#page-7-0), and N_0 is a smooth irreducible nonseparated scheme (Lemma [3\)](#page-7-1), it is enough to prove that $f_T(N_0) \cap N_0 \neq \emptyset$.

Any T can be represented as a product of $T_{ij} = \{i, j\} \in \Gamma$, $i \neq j$. Since N₀ is irreducible, it is enough to prove that $N_0 \cap f_{T_{i,i}}(N_0) \neq \emptyset$. Clearly, $N_0 \cap f_{T_{i,i}}(N_0) = PGL(2) \setminus$ $\{(l_1,\ldots,l_n) \in U | l_i \neq l_j \} \neq \emptyset.$ Е

Using the affine bundle f: $M \rightarrow N$, one derives statements (i) and (ii) of Theorem [1](#page-1-0) from Proposition [5.](#page-7-2)

Remark. In the special case $n = 4$, one can prove the following explicit description of N:

There is a map $N \to \mathbf{P}^1$ that identifies N and 'the projective line with doubled points x_1, \ldots, x_4 .' In other words, N can be obtained by glueing two copies of \mathbb{P}^1 outside x_1,\ldots,x_4 .

3 Invertible sheaves on M

3.1 Calculation of Pic \overline{N}

Denote by ξ_i (resp. δ) the invertible sheaf on \overline{N} whose fiber over $(L, \varphi, l_1, \ldots, l_n)$ is l_i (resp. $det R\Gamma(P^1, L)$.

Notation. For the sake of simplicity, we write ξ _i (resp. δ) for the inverse image of ξ _i (resp. δ) to M.

The following proposition is an easy, special case of the general theorem due to Y. Laszlo and C. Sorger in [\[3](#page-16-3), Theorem 1.1].

Proposition 6. Pic \overline{N} is the free abelian group with basis δ , ξ_i (i = 1,..., n).

 \Box

 \Box

Remark. The proof by Y. Laszlo and C. Sorger is based on the techniques of affine Grassmanianns. In our situation, Proposition 6 for $n = 0$ follows from the well-known description of the isomorphism classes of $SL(2)$ -bundles on $P¹$, and the case of an arbitrary n is easily reduced to $n = 0$.

3.2 Calculation of PicM

Lemma 4. $\operatorname{codim}(\overline{N} \setminus \mathcal{N}) \geq 2$.

Proof. Denote by \mathcal{N}_d the moduli stack of decompositions. In other words, \mathcal{N}_d parametrizes $(L = L_1 \oplus L_2, \varphi; l_1, \ldots, l_n)$ such that $(L, \varphi, l_1, \ldots, l_n)$ is a quasiparabolic SL(2)-bundle, rk $L_1 =$ $rk L_2 = 1$, and for any $i = 1, ..., n$, either $l_i = (L_1)_{x_i}$ or $l_i = (L_2)_{x_i}$. Connected components of \mathcal{N}_d are parametrized by (deg L₁, {i|l_i = (L₁)_{x_i}}); hence the set of these components is countable. Besides, each component is of dimension −1.

Consider the natural map $\mathcal{N}_d \to \overline{\mathcal{N}}$. Its image is $\overline{\mathcal{N}} \setminus \mathcal{N}$, so dim $\overline{\mathcal{N}} \setminus \mathcal{N} \le -1$. On the other hand, dim $\overline{N} = n - 3 > 1$. \blacksquare

Corollary 3. Pic $\mathcal{M} = \text{Pic } \overline{\mathcal{N}}$ is the free abelian group with basis $\xi_1, \ldots, \xi_n, \delta$. \Box

Proof. Since $M \to N$ is an affine bundle, Pic $M = Pic N$. Since \overline{N} is a smooth stack, Lemma [4](#page-8-1) implies Pic $N = Pic \overline{N}$. Now the corollary follows from Proposition [6.](#page-8-2) \blacksquare

Proposition 7. Pic $M \subset Pic\mathcal{M}$ is the subgroup of index 2 such that $\delta \in Pic\mathcal{M}$, $\xi_i \notin Pic\mathcal{M}$. \Box

Proof. Since M is a μ_2 -gerbe over M, any O_M-module has a natural action of μ_2 . An O_Mmodule is an O_M -module if and only if this action is trivial. It follows from the definitions that -1 ∈ μ ₂ acts as -1 on ξ _i and acts as 1 on δ. П

We have proved statements (iii) and (iv) of Theorem [1.](#page-1-0) Statement (v) is a particular case of the following lemma.

Lemma 5. Let X be an algebraic space, i: $\mathcal{X} \to X$ a μ_2 -gerbe, $[\alpha] \in H^2_{\acute{e}t}(X, \mu_2)$ the corresponding cohomology class, and $\gamma \in \text{Pic } \mathfrak{X}$ the isomorphism class of a sheaf $\mathcal E$ such that $-1 \in \mu_2$ acts on $\mathcal E$ as -1 . Then $[\alpha] = c_1(\gamma^{\otimes 2})$, where c_1 : Pic $X \to H^2_{\acute{e}t}(X, \mu_2)$ is the Chern class. \Box

Proof. Fix a sheaf $\mathcal F$ in the class $\gamma^{\otimes 2} \in \text{Pic } X$. Denote by $\mathcal Sqr \mathcal F$ the μ_2 -gerbe of square roots of $\mathcal F$ defined by $(\mathcal Sqr\mathcal F)_S := \{ (f\colon S \to X, \mathcal E', \psi) | \mathcal E' \text{ is an invertible sheaf on } S, \psi \colon (\mathcal E')^{\otimes 2} \widetilde{\to} f^*(\mathcal F) \}.$

An isomorphism ^E[⊗]²→fⁱ [∗]F yields a 1-morphism X → S*qr* F. Since −1 ∈ µ² acts on $ε$ as -1, this is a $μ$ ₂-gerbe morphism. So $μ$ ₂-gerbes X and $SqrF$ are isomorphic.

Let $T := Isom(O_X, \mathcal{F})$ be the G_m -torsor corresponding to \mathcal{F} . Consider the exact sequence $0 \to \mu_2 \to G_m \stackrel{x \mapsto x^2}{\to} G_m \to 0$. The corresponding map $H^1_{\acute{e}t}(X, G_m) = \text{Pic } X \to$ $H^2_{\acute{e}t}(X,\mu_2)$ is c_1 . Now it is enough to notice that $\mathcal{S}qr\mathcal{F}$ is the gerbe of liftings of T with respect to

$$
\mathbf{G_m} \stackrel{\times \mapsto \times^2}{\rightarrow} \mathbf{G_m}.
$$

This completes the proof of Theorem [1.](#page-1-0)

4 Geometric description of M

Suppose that $n = 4$, $\lambda_i \neq 0$ (i = 1,..., 4), and $\lambda_1 \neq 1/2$. Recall that M is the coarse moduli space of $(\lambda_1,\ldots,\lambda_4)$ -bundles. The aim of this section is to prove the following statement:

Set K := $V((\Omega_{P1}(x_1 + \cdots + x_4))^*)$ (i.e., K is the vector bundle whose sheaf of sections is $\Omega_{\mathbf{P}^1}(x_1 + \cdots + x_4)$). Denote by $b_i \subset K$ the fiber over $x_i \subset \mathbf{P}^1$. Since $(\Omega_{\mathbf{P}^1}(x_1 + \cdots + x_4))_{x_i} = \mathbf{C}$, there is a natural isomorphism r_i : $b_i \widetilde{\rightarrow} \mathbf{A}^1$. Set $\lambda_i^{\pm} := \pm \lambda_i$ for $i \neq 1$, $\lambda_1^{\pm} := \lambda_1$, $\lambda_1^- := 1 - \lambda_1$, $c_i^{\pm} := r_i^{-1}(\lambda_i^{\pm}) \in b_i$. For every i, one has $\lambda_i^+ \neq \lambda_i^-$, so $c_i^+ \neq c_i^-$.

Theorem 3. Denote by \widetilde{M} the blow-up of K in c_i^\pm . Then there is an open embedding $M{\hookrightarrow}\widetilde{M}$ such that $\widetilde{M} \setminus M$ is the union of the proper preimages of $b_i \subset K$, $i = 1, \ldots, 4$. \Box

4.1 Construction of $M \rightarrow K$

Denote by M₁ the coarse moduli space of triples $(\widetilde{L}, \nabla, \varphi)$ such that \widetilde{L} is a rank 2 vector bundle on \mathbf{P}^1 , $\nabla: \widetilde{L} \to \widetilde{L} \otimes \Omega_{\mathbf{P}^1}(\chi_1 + \cdots + \chi_4)$ is a connection, $\varphi: \Lambda^2 \widetilde{L} \widetilde{\to} \Omega_{\mathbf{P}^1}(-\chi_1)$ is a horizontal isomorphism, and the residue \widetilde{R}_i of ∇ at x_i has eigenvalues λ_i^{\pm} . For any $(\lambda_1,\ldots,\lambda_n)$ -bundle (L, ∇, φ) , consider the lower (x_1, l_1) -modification L of L. Here $l_1 := \text{Ker}(R_1 - \lambda_1) \subset L_{x_1}$. The

triple $(L, \nabla|_{\widetilde{L}}, \varphi|_{\widetilde{L}})$ corresponds to a point of M_1 . This gives us a map $M \to M_1$. The upper modification of $(\widetilde{L}, \nabla, \varphi)$ defines the inverse map, so $M \simeq M_1$.

Since (\widetilde{L}, ∇) is irreducible, $\widetilde{L} \simeq O_{\mathbf{P}^1} \oplus O_{\mathbf{P}^1}(-1)$ (see Corollary [2\)](#page-3-0). So there is a unique subsheaf $\widetilde{L}_0 \subset \widetilde{L}$ such that $\widetilde{L}_0 \simeq O_{\mathbf{p}1}$. There is a unique connection d: $\widetilde{L}_0 \to \widetilde{L}_0 \otimes \Omega_{\mathbf{p}1}$. The correspondence $(L, \nabla, \varphi) \mapsto (L_0 \subset L, \nabla|_{\widetilde{L}_0} - d, \varphi)$ gives a map $M_1 \to K_1$, where K_1 is the coarse moduli space of collections $(\widetilde{L}_0 \subset \widetilde{L}, A, \varphi)$ such that $(\widetilde{L}_0 \subset \widetilde{L}) \simeq (O_{\mathbf{P}^1} \subset O_{\mathbf{P}^1} \oplus O_{\mathbf{P}^1}(-1)),$ $\phi: \ \Lambda^2 \widetilde{L} \widetilde{\rightarrow} O_{\mathbf{P}^1}(-x_1), \ A \in \text{Hom}(\widetilde{L}_0, \widetilde{L} \otimes \Omega_{\mathbf{P}^1}(x_1 + \cdots + x_4)), \text{ and } \text{Im}\ A \not\subset \widetilde{L}_0 \otimes \Omega_{\mathbf{P}^1}(x_1 + \cdots + x_4).$

Proposition 8. K_1 is isomorphic to K.

 \Box

 \Box

Proof. Set $\Omega':=\Omega_{\mathbf{P}^1}(\mathsf{x}_1+\cdots+\mathsf{x}_4)$. Denote by K_2 the moduli space of $(\mathsf{O}_{\mathbf{P}^1}\subset \widetilde{\mathsf{L}},\mathsf{B})$ such that $\widetilde{L}/O_{\mathbf{P}^1} \simeq O_{\mathbf{P}^1}(-1)$, B: $(\Omega')^{-1} \to \widetilde{L}$, and Im B $\notsubset O_{\mathbf{P}^1}$. Suppose $(\widetilde{L}_0 \subset \widetilde{L}, A, \varphi)$ corresponds to a point of K₁. A induces a morphism B: $(\Omega')^{-1} = (\Omega' \otimes \widetilde{L}_0)^{-1} \otimes \widetilde{L}_0 \to (\Omega' \otimes \widetilde{L}_0)^{-1} \otimes (\widetilde{L} \otimes \Omega') =$ \widetilde{L}_0^{-1} ⊗ \widetilde{L} . Clearly (O_P₁ = \widetilde{L}_0^{-1} ⊗ \widetilde{L}_0 ⊂ \widetilde{L}_0^{-1} ⊗ \widetilde{L} , B) corresponds to a point of K₂. This yields a morphism $K_1 \rightarrow K_2$. It is not hard to check that this is an isomorphism. Using B, we consider $O_{\mathbf{P}^1} \oplus (\Omega')^{-1}$ as a subsheaf of L. So K₂ is isomorphic to the moduli space of locally free sheaves $\widetilde{L} \supset O_{\mathbf{P}^1} \oplus (\Omega')^{-1}$ such that $O_{\mathbf{P}^1}$ is a subbundle (not only a subsheaf) of \widetilde{L} , and $\widetilde{L}/(\mathrm{O}_{\mathbf{P}^1} \oplus (\Omega')^{-1})$ is a sky-scraper sheaf with 1-dimensional space of sections. Such \widetilde{L} are the upper (x, l) -modifications of $O_{\mathbf{P}^1} \oplus (\Omega')^{-1}$ for $x \in \mathbf{P}^1$, $l \subset \mathbf{C} \oplus ((\Omega')^{-1})_x$, $l \neq \mathbf{C}$. The space of such pairs (x, l) is identified with K. Hence $K_1 = K_2 = K$.

This yields a map $M \rightarrow K_1 = K$.

4.2 Local calculations

Lemma 6. Suppose ($\widetilde{L}_0 \subset \widetilde{L}$, A, φ) corresponds to a point of K_1 , \widetilde{R}_i is an operator $\widetilde{L}_{x_i} \to \widetilde{L}_{x_i}$ such that the eigenvalues of \widetilde{R}_i are λ_i^{\pm} , and $\widetilde{R}_i|_{(\widetilde{L}_0)_{x_i}}$ coincides with the residue of A at x_i . Then there is a unique connection ∇ such that the following conditions hold:

(i) $\nabla|_{\widetilde{L}_0} = A + d$, where d: $\widetilde{L}_0 \to \widetilde{L}_0 \otimes \Omega_{\mathbf{P}^1}$ is the unique connection; (ii) $\widetilde{R}_i = \text{res}_{x_i} \nabla$; (iii) $(\widetilde{L}, \nabla, \varphi)$ corresponds to a point of M_1 .

Proof. It is easy to see that such a ∇ exists locally on \mathbf{P}^1 . Let ∇_1 , ∇_2 be two connections defined on some open set $U \subset \mathbf{P}^1$ such that (i)–(iii) are satisfied. Set $E := \nabla_1 - \nabla_2$. Then we have:

 $(i') E \in H^0(U, \mathcal{H}om(L, L \otimes \Omega_{\mathbf{P}^1}))$; (ii') $E|_{L_0} = 0;$ (iii') $tr E = 0$.

Conversely, if a connection ∇ on U satisfies (i)–(iii), and E satisfies (i')–(iii'), then the connection $\nabla + E$ on U satisfies (i)–(iii). Denote by C(U) the set of all connections on

U satisfying (i)–(iii), and denote by $E(U)$ the set of all E satisfying (i')–(iii'). $C(U)$ form a sheaf of sets C , and $E(U)$ form a sheaf of abelian groups E . Clearly, C is an E -torsor and $\mathcal{E} = \{E \in \mathcal{H}om(L, L \otimes \Omega_{\mathbf{P}1})\colon E|_{L_0} = 0; \text{tr } E = 0\} = \mathcal{H}om(L/L_0, L_0 \otimes \Omega_{\mathbf{P}1})$. deg $\mathcal{E} = -1$, so any E-torsor is trivial and has a unique global section. Hence there is a unique $\nabla \in \mathcal{C}(\mathbf{P}^1)$ that satisfies (i)–(iii) on **P**1. ۰

We need the following simple lemma from linear algebra.

Lemma 7. Suppose V is a vector space, dim_c $V = 2$, $V_0 \subset V$, dim_c $V_0 = 1$, $R_0 \in \text{Hom}_{\mathcal{C}}(V_0, V)$, λ^{\pm} ∈ **C**, $\lambda^{+} \neq \lambda^{-}$. Set $\mathcal{R} := \{R \in \text{End}_{\mathbb{C}}(V): R|_{V_0} = R_0$, the eigenvalues of R are λ^{+}, λ^{-} } and $\mathcal{L} := \{ (l^+, l^-) | l^{\pm} \subset V, \dim_{\mathbb{C}} l^{\pm} = 1, l^{\pm} \supset (R_0 - \lambda^{\mp}) V_0, l^+ \neq l^- \}.$

The map F: $\mathcal{R} \to \mathcal{L}$: $R \mapsto (Ker(R - \lambda^+) = Im(R - \lambda^-)$, $Ker(R - \lambda^-)$) is bijective. \Box

Proof. F is clearly injective. Let us prove surjectivity.

For $(l^+, l^-) \in \mathcal{L}$, denote by P^{\pm} the projector $V \to V/l^{\mp} \tilde{\to} l^{\pm}$ (so $P^+ + P^- =$ Id). The condition $l^{\pm} \supset (R_0 - \lambda^{\mp})V_0$ implies $P^{\mp}(R_0 - \lambda^{\mp})V_0 = 0$. So $(P^{\mp}(R_0 - \lambda^{\pm}) + P^{\mp}(R_0 - \lambda^{\pm}))V_0 = 0$, or equivalently, $R_0 = (\lambda^+ P^+ + \lambda^- P^-)|_{V_0}$. Hence $R := (\lambda^+ P^+ + \lambda^- P^-) \in \mathcal{R}$ and $F(R) = (l^+, l^-)$.

Lemmas [6](#page-10-0) and [7](#page-11-0) imply the following corollary.

Corollary 4. M_1 is identified with the coarse moduli space of $((\widetilde{L}_0 \subset \widetilde{L}, A, \varphi); \widetilde{l}_1^+, \widetilde{l}_1^-, \ldots, \widetilde{l}_4^+, \widetilde{l}_4^-)$ such that:

(i) ($\widetilde{L}_0 \subset \widetilde{L}$, A, φ) corresponds to a point of K₁; (ii) $\widetilde{\mathfrak{l}}^{\pm}_i\subset \widetilde{\mathfrak{l}}_{x_i}$ is a subspace such that $\dim \widetilde{\mathfrak{l}}^{\pm}_i=1$, (res $_{x_i}$ $A-\lambda^{\mp}_i) (\widetilde{\mathfrak{l}}_0)_{x_i}\subset \widetilde{\mathfrak{l}}^{\pm}_i;$ $(iii) \widetilde{l}_i^+ \neq \widetilde{l}_i^-$. \Box

Denote by \widetilde{M}_1 the coarse moduli space of $((\widetilde{L}_0\subset \widetilde{L},A,\phi);\widetilde{l}_1^+,\widetilde{l}_1^-,\ldots,\widetilde{l}_4^+,\widetilde{l}_4^-)$ such that conditions (i)–(ii) of Corollary [4](#page-11-1) are satisfied. Then M_1 is identified with the open subset of \widetilde{M}_1 defined by (iii).

Denote by $\widetilde{\xi}_{x_i}$ (resp. $\widetilde{\delta}$) the bundle on K₁ whose fiber over $(\widetilde{L}, A, \varphi)$ is \widetilde{L}_{x_i} (resp. $(\widetilde{L}_0)_{x_i} = det R\Gamma(\mathbf{P}^1, \widetilde{L})$. The map (res_{x_i} A – λ_i^{\mp}): $(\widetilde{L}_0)_{x_i} \to \widetilde{L}_{x_i}$ for variable $(\widetilde{L}, A, \varphi)$ defines a morphism $\widetilde{\delta}\to \widetilde{\xi}_{\mathsf{x}_\mathsf{i}}.$ This morphism $\widetilde{\delta}\to \widetilde{\xi}_{\mathsf{x}_\mathsf{i}}$ has a unique simple zero in $\mathsf{c}_\mathsf{i}^{\mp}.$ This proves that the natural map $\widetilde{M}_1 \to K_1$ is the blow-up at c_i^{\pm} , $i = 1, ..., 4$. It is easy to see that the closed subset of \widetilde{M}_1 defined by the equation $\widetilde{l}_i^+ = \widetilde{l}_i^-$ is the proper preimage of b_i , so $M_1 \setminus M_1$ is the union of these proper preimages.

This completes the proof of Theorem [3.](#page-9-0)

П

4.3 Description of invertible sheaves on M

Denote by $\mathfrak{b}_i^{\pm} \subset M_1$ the preimages of $\mathfrak{c}_i^{\pm} \subset \mathsf{K}.$

Proposition 9. The group Pic M $_1$ is the abelian group generated by the classes [b $_1^\pm$] with the defining relations

$$
[b1+] + [b1-] = [b2+] + [b2-] = [b3+] + [b3-] = [b4+] + [b4-]. \square
$$

Proof. Consider the composition $\pi_1: M_1 \to K_1 = K \to \mathbf{P}^1$. Set $U := \mathbf{P}^1 \setminus \{x_1, \ldots, x_4\}$, $U' := \pi_1^{-1}(U)$. Denote by Γ the group of divisors D on M_1 such that supp $D \cap U' = \emptyset$. By Theorem [3](#page-9-0), U' \simeq U \times A¹, so Pic U' = 0, and the map $H^0(U, O^*_U) \to H^0(U', O^*_{U'})$ is an isomorphism. Therefore, the morphism $\Gamma \to \mathrm{Pic}\, M_1$ is surjective and its kernel Γ_0 consists of the inverse images of principal divisors Δ on \mathbf{P}^1 such that supp $\Delta \cap U = \emptyset$. Γ is the free abelian group generated by b_i^{\pm} , and Γ_0 is generated by $\pi_1^*(x_i - x_j) = (b_i^+ + b_i^-) - (b_j^+ + b_j^-)$.

Proposition 10. Let δ , $\xi_i^{\otimes 2}$ be the line bundles on M defined in Section [3.](#page-8-0) Then

$$
\begin{array}{l} \delta \simeq O_M(-b_1^-), \\ \\ \xi_i^{\otimes 2} \simeq O_M(b_i^- - b_i^+). \end{array}
$$

 \Box

Proof. Denote by $\widetilde{\xi}_{x_i}$ (resp. $\widetilde{\xi}_i^\pm$, $\widetilde{\delta}$) the locally free sheaf on \mathcal{M}_1 (the moduli stack of ($\widetilde{\mathsf{L}},\nabla,\varphi$)) whose fiber over $(\widetilde{\mathsf{L}}, \nabla, \varphi)$ is $\widetilde{\mathsf{L}}_{\mathsf{x}_i}$ (resp. $\widetilde{\mathsf{l}}_i^{\pm} = \mathrm{Ker}(\widetilde{\mathsf{R}}_i - \lambda_i^{\pm}), \, \mathrm{detR}\Gamma(\mathbf{P}^1, \widetilde{\mathsf{L}}) = \mathsf{H}^0(\mathbf{P}^1, \widetilde{\mathsf{L}}) = (\widetilde{\mathsf{L}}_0)_{\mathsf{x}_i}$. Then $\widetilde{\xi}^{\pm}_{i}$ and $\widetilde{\delta}$ are subsheaves of $\widetilde{\xi}_{x_{i}}$.

Let $(\widetilde{\mathsf{L}}, \nabla, \varphi)$ be a point of \mathcal{M}_1 . Consider the map $(\widetilde{\mathsf{R}}_\mathsf{i} - \lambda_\mathsf{i}^{\mp})$: $(\widetilde{\mathsf{L}}_0)_{\mathsf{x}_\mathsf{i}} \to \widetilde{\mathsf{l}}_\mathsf{i}^{\pm}$. As $(\widetilde{\mathsf{L}}, \nabla, \varphi)$ varies, it yields a morphism of $O_{\mathcal{M} _1}$ -modules $\widetilde{\delta} \to \widetilde{\xi}^{\pm}_i.$ It follows from the results of the previous subsection that this morphism identifies $\widetilde{\xi}^\pm_i$ with $\widetilde{\delta}(\mathrm{b}_i^\mp)$. Since $\widetilde{\xi}_{\mathrm{x}_\mathrm{i}} = \widetilde{\xi}^+_i \oplus \widetilde{\xi}^-_i$ and $\Lambda^2 \widetilde{\xi}_{x_i} \simeq \mathcal{O}_{\mathcal{M}_1},$ we have $\widetilde{\xi}_i^- \simeq (\widetilde{\xi}_i^+)^*$. Hence $(\widetilde{\delta})^{\otimes 2} \simeq \mathcal{O}_{\mathcal{M}_1}(-b_i^+ - b_i^-)$ and $(\widetilde{\xi}_i^{\pm})^{\otimes 2} \simeq \mathcal{O}_{\mathcal{M}_1}(b_i^\mp - b_i^\pm)$. But $\widetilde{\xi}_i^+$ (resp. $\widetilde{\delta}$) corresponds to ξ_i (resp. $\delta\otimes \xi_1$) via the identification $\mathcal{M}_1=\mathcal{M}$. The statement follows immediately.

5 Cohomology of invertible sheaves on M

In this section, we prove Theorem [2.](#page-1-1)

5.1 The least smooth compactification $\overline{M} \supset M$

Set $\overline{K} := P(O_{\mathbf{P}^1} \oplus \Omega_{\mathbf{P}^1}(\mathsf{x}_1 + \cdots + \mathsf{x}_4))$. K is the open subscheme $\overline{K} \setminus \mathsf{s}_{\infty}$, where s_{∞} is 'the infinite section.' Blowing up $c_i^{\pm} \subset \overline{K}$, we obtain a variety \overline{M} , which is a smooth compactification

of $\widetilde{M}_1 \supset M_1 = M$. $\overline{M} \setminus M$ consists of the five irreducible components $s'_\infty, b'_1, \ldots, b'_4$ (the proper preimages of $s_{\infty}, b_1, \ldots, b_4 \subset \overline{K}$). Clearly on \overline{K} we have $(s_{\infty}, \overline{b}_i) = 1$, $(\overline{b}_i, \overline{b}_j) = 0$, and $(s_{\infty}, s_{\infty}) = -2$. This implies

$$
(s'_{\infty}, s'_{\infty}) = (b'_i, b'_i) = -2, \qquad (s'_{\infty}, b'_i) = 1.
$$
 (2)

Corollary 5. \overline{M} is the least smooth compactification of M (i.e., any smooth compactification of M dominates \overline{M}). \Box

Proof. $\;$ Let $\overline{\mathcal{M}}'$ be another smooth compactification of M. Then there is a smooth compactification $\overline{\sf M}''$ that dominates $\overline{\sf M}$ and $\overline{\sf M}'$. The morphisms f: $\overline{\sf M}''\to\overline{\sf M}$ and f': $\overline{\sf M}''\to\overline{\sf M}'$ are compositions of σ-processes, and we may assume that the number of these σ-processes is minimal. Let us prove that f' is an isomorphism.

Assume the converse. Then there is an exceptional curve $C'\subset \overline{\mathcal{M}}''$ of the first kind such that dim $f'(C') = 0$. Clearly $C' \cap M = \emptyset$.

 $\overline{\mathsf{M}}''\setminus\mathsf{M}$ has the following irreducible components: $\mathfrak{b}_\mathfrak{i}'',$ \mathfrak{s}_∞'' (the proper preimages of b'_i , s'_∞), and curves C such that dim $f(C) = 0$. $(b''_i)^2 \le (b'_i)^2 < -1$ and $(s''_\infty)^2 \le (s'_\infty)^2 < -1$, so dim $f(C') = 0$. But this contradicts the hypothesis that the number of σ -processes is minimal. ٦

Remark. Let us interpret \overline{K} and \overline{M} as moduli spaces. Denote by \overline{K}_1 the coarse moduli space of $(\tilde{L}_0 \subset \tilde{L}, A, \varphi)$ such that \tilde{L}_0 is an invertible sheaf of degree 0 on \mathbf{P}^1 , \tilde{L} is a rank 2 locally free sheaf of degree -1 on \mathbf{P}^1 , A: $\widetilde{L}_0 \to \widetilde{L} \otimes \Omega_{\mathbf{P}^1}(\mathbf{x}_1 + \cdots + \mathbf{x}_4)$, Im $A \cap \widetilde{L}_0 = 0$, and $\varphi: \Lambda^2 \widetilde{\mathsf{L}} \widetilde{\to} \mathsf{O}_{\mathsf{P}^1}(-\chi_1)$. The isomorphism K₁ $\widetilde{\to}$ K from Proposition [8](#page-10-1) can be extended to $\overline{\mathsf{K}}_1 \widetilde{\to} \overline{\mathsf{K}}$.

Denote by \overline{M}_1 the coarse moduli space of $((\widetilde{L}_0 \subset \widetilde{L}, A, \varphi); \widetilde{l}_1^+, \widetilde{l}_1^-, \ldots, \widetilde{l}_4^+, \widetilde{l}_4^-)$ such that $(\widetilde{L}_0 \subset \widetilde{L}, A, \varphi)$ corresponds to a point of $\overline{K}_1, \widetilde{L}_i^{\pm} \subset \widetilde{L}_{x_i}$ is a 1-dimensional subspace, and $\widetilde{l}_i^{\pm} \supset (\text{res } A - \lambda_i^{\mp}) (\widetilde{l}_0)_{x_i}$. Then there is an isomorphism $\overline{M}_1 \widetilde{\rightarrow} \overline{M}$ such that the two compositions $\overline{M}_1 \widetilde{\rightarrow} \overline{M} \rightarrow \overline{K}$ and $\overline{M}_1 \rightarrow \overline{K}_1 \widetilde{\rightarrow} \overline{K}$ coincide.

5.2 The geometry of $\overline{M} \setminus M$

Set $D := 2s'_{\infty} + b'_1 + \cdots + b'_4$. Then

$$
(D, D) = (D, s'_{\infty}) = (D, b'_i) = 0.
$$
\n(3)

Since $\Omega_{\overline{\text{K}}}^2 \simeq \text{O}_{\overline{\text{K}}}(-4\bar{\text{b}}_{\text{i}} - 2 s_{\infty})$, we have $\Omega_{\overline{\text{M}}}^2 \simeq \text{O}_{\overline{\text{M}}}(-\text{D})$.

Notation. For a positive divisor C, we denote the corresponding subscheme by the same letter C.

Consider D \subset $\overline{\sf M}$ as a reducible nonreduced subscheme. Then \mathfrak{b}_i' , \mathfrak{s}'_∞ , and $2\mathfrak{s}'_\infty$ are closed subschemes of D.

By the Riemann-Roch theorem, $\chi(O_D) = -D(D + K)/2$, where K = -D is the canonical class of \overline{M} . So $\chi(O_{\overline{D}}) = 0$. This implies the following statement.

Proposition 11. Let $\mathcal E$ be a locally free sheaf on D. Then $\chi(\mathcal E) = 2\deg(\mathcal E|_{s_\infty'}) + \sum_{i=1}^4 \deg(\mathcal E|_{b_i'}).$ \Box

Lemma 8. Let $\mathcal E$ be a nontrivial invertible sheaf on D such that $\deg \mathcal E|_{\mathsf{s}_\infty'} = 0,$ and either $\deg \mathcal{E}|_{b_i'} = 0$ for all i, or one of the numbers $\deg \mathcal{E}|_{b_i'}$ is -1 , another one is 1, and the remaining two equal zero. Then $H^k(D, \mathcal{E}) = 0$ for all k. \Box

Proof. By Proposition [11](#page-14-0), $\chi(\mathcal{E}) = 0$. So it is enough to prove that $H^0(D, \mathcal{E}) = 0$.

Assume the converse. Let $f \in H^0(D, \mathcal{E}), f \neq 0$. $\chi(\mathcal{E}) = \chi(O_D), \mathcal{E} \not\cong O_D$, so f is zero on one of the irreducible components of D.

We may assume that $\deg \mathcal{E}|_{b_i'} \leq 0$ for $i \neq 1$. The closed subscheme $D_1 := s_\infty' + b$ $\sum_{i\neq 1}$ b_i ⊂ D is reduced and connected. Besides, $\mathcal{E}|_{D_1}$ has nonpositive degree on any irreducible component of D₁. So either f $|_{D_1} = 0$, or f $|_{D_1}$ has no zero. In the second case, f $|_{C} \neq 0$, where C \subset D is any irreducible component. Therefore $f \in \text{Ker}(H^0(D, \mathcal{E}) \to H^0(D_1, \mathcal{E}))$. In other words, $f \in H^0(D, \mathcal{E} \otimes I_{D_1})$, where $I_{D_1} := \{ \tilde{f} \in O_D : \tilde{f}|_{D_1} = 0 \}$ is the sheaf of ideals of $D_1 \subset D$.

We have $I_{D_1} = O_{\overline{M}}(-D_1)/O_{\overline{M}}(-D)$, supp $I_{D_1} = s_\infty' + b_1'$. So deg $I_{D_1}|_{b_1'} = \deg O(-D_1)|_{b_1'} =$ -1 . Therefore deg($E \otimes I_{D_1}$)|_{b'₁} = deg $E|_{b'_1} - 1 \le 0$. In the same way, deg($E \otimes I_{D_1}$)|_{s'∞} = deg $\mathcal{E}|_{s_\infty'}-1=-1.$ Since $\mathcal{E}\otimes I_{\mathsf{D}_1}$ is an invertible sheaf on the connected reduced scheme $s'_{\infty} + b'_{1}$, this implies $f \in H^{0}(D, \mathcal{E} \otimes I_{D_{1}}) = 0$.

 $\operatorname{Set}\operatorname{Pic}^0\operatorname{D}:=\{\mathcal{E}\in\operatorname{Pic}\operatorname{D}|\deg(\mathcal{E}|_{s_\infty'})=0,\deg(\mathcal{E}|_{b_1'})=0\text{ for all i}\}.$

Proposition 12. Pic⁰ D \simeq **A**¹.

 $\text{Proof.}\quad \text{Set}\ \mathsf{D}_{\text{red}}\coloneqq s_\infty'+\sum_{i=1}^4\mathsf{b}_i'\subset\mathsf{D}. \text{ Then }\text{Pic}^0\,\mathsf{D}=\text{Ker}(\text{Pic}\,\mathsf{D}\rightarrow\text{Pic}\,\mathsf{D}_{\text{red}}).$

Set $O':=\text{Ker}(O_D^*\rightarrow O_{D_{red}}^*)$. Then the exact sequence $0\rightarrow O'\rightarrow O_D^*\rightarrow O_{D_{red}}^*\rightarrow 1$ defines an isomorphism $\mathsf{H}^1(\mathsf{D},\mathsf{O}')\to \operatorname{Pic}^0\mathsf{D}.$ But O' is a locally free $\mathsf{O}_{\mathsf{s}'_\infty}.$ module of degree $-(s'_{\infty}, D_{red}) = -2$. Hence Pic⁰ D is a 1-dimensional **C**-space. \blacksquare

Lemma 9. If $2\lambda_i \notin \mathbf{Z}$ for any i, then M contains no projective curve.

Proof. Fix a point $x \in \mathbf{P}^1 \setminus \{x_1,\ldots,x_4\}$. Consider the fundamental group $G := \pi_1(x,\mathbf{P}^1 \setminus \mathbf{P}^1)$ $\{x_1,\ldots,x_4\}$. G is generated by the loops γ_i around x_i with the relation $\gamma_1 \times \cdots \times \gamma_4$ e. Denote by W the moduli space of representations $\rho: G \to SL(2)$ such that $\rho(\gamma_i)$ has eigenvalues $\exp(\pm 2\pi\sqrt{-1}\lambda_i)$. Clearly W is an affine scheme.

 \Box

 \Box

The Riemann-Hilbert correspondence gives an analytic isomorphism $M_{an} \widetilde{\rightarrow} W_{an}$. But W_{an} contains no compact curve, so M contains no projective curve.

Remark. Consider the case of n points on any curve for any n. Then one can prove in the same way that the only projective subvarieties in M are finite sets.

Lemma 10. The sheaf $N_D := O_{\overline{M}}(D)|_D$ is not trivial.

Proof. Assume the converse. Let σ be a global section of N_D with no zeros. M is a smooth rational projective variety, $H^1(\overline{M}, O_{\overline{M}}) = 0$, and therefore $\sigma \in H^0(D, N_D) = H^0(\overline{M}, O_{\overline{M}}(D)/O_{\overline{M}})$ can be lifted to $s \in H^0(\overline{M}, O_{\overline{M}}(D))$. Then (s) is an effective divisor equivalent to D, and supp(s) $\subset M$. This contradicts Lemma [9.](#page-14-1)

Remark. One can give a direct (but more complicated) proof of this lemma.

Corollary 6. $H^i(D, (\mathcal{N}_D)^{\otimes k}) = 0$ for $k \neq 0$.

Proof. By [\(3\)](#page-13-0), $\mathcal{N}_\mathrm{D}\in\mathrm{Pic}^0\,\mathrm{D}.$ Lemma [10](#page-15-0) and Proposition [12](#page-14-2) imply $(\mathcal{N}_\mathrm{D})^{\otimes k}\not\cong\mathrm{O}_\mathrm{D}$ for $\mathrm{k}\not=0.$ Lemma [8](#page-14-3) completes the proof.

5.3 Calculation of cohomology

Let $\mathcal E$ be an invertible sheaf on M. We set deg $\mathcal E := (\overline{\mathcal E}, \mathsf D)$, where $\overline{\mathcal E}$ is an extension of $\mathcal E$ to an invertible sheaf on \overline{M} . [\(3\)](#page-13-0) implies that deg $\mathcal E$ is well defined. Besides, it follows from Proposition [10](#page-12-0) that deg: Pic $M \rightarrow Z$ coincides with deg from Theorem [2.](#page-1-1)

If $\overline{\mathcal{E}}$ is an invertible sheaf on \overline{M} , $\mathcal{E} = \overline{\mathcal{E}}|_M$, then $H^j(M, \mathcal{E}) = \lim_{\rightarrow} H^j(\overline{M}, \mathcal{E}(kD))$. But $\mathrm{H}^*(\overline{\textsf{M}},\textsf{O}_{\overline{\textsf{M}}}(\textsf{kD})/\textsf{O}_{\overline{\textsf{M}}}(\textsf{k}-1)\textsf{D})\textsf{)}=0$ for $\mathrm{k}\neq 0$ (see Corollary [6\)](#page-15-1). Hence $\mathrm{H}^{\mathrm{j}}(\textsf{M},\textsf{O}_{\textsf{M}})=\mathrm{H}^{\mathrm{j}}(\overline{\textsf{M}},\textsf{O}_{\overline{\textsf{M}}}),$ and the statement (iii) of Theorem [2](#page-1-1) follows from the rationality of \overline{M} .

If deg $E = 0$, one can choose an extension \overline{E} such that $(\overline{E}, s'_\infty) = 0$ and either $(\overline{\mathcal{E}}, b'_i) = 0$ for all i, or one of the numbers $(\overline{\mathcal{E}}, b'_i)$ is 1, another one is -1 , and the remaining two are zero. Then Lemmas [8](#page-14-3) and [10](#page-15-0) and Proposition [12](#page-14-2) imply that for all $k \in \mathbb{Z}$, maybe except for one value, $\mathsf{H}^*(\overline{\mathsf{M}},\overline{\mathcal{E}}(k\mathsf{D})/\overline{\mathcal{E}}((k-1)\mathsf{D}))=0.$ Hence, $\dim \mathsf{H}^j(\mathsf{M},\mathcal{E})<\infty$ and

$$
\chi(\mathcal{E}) = \chi(\overline{\mathcal{E}}) = 1 + \frac{(\overline{\mathcal{E}}, \overline{\mathcal{E}}(D))}{2} = 1 + \frac{(\overline{\mathcal{E}}, \overline{\mathcal{E}})}{2}.
$$

One can check that $(\overline{\mathcal{E}}, \overline{\mathcal{E}})/2 = [\langle \mathcal{E}, \mathcal{E} \rangle / 2]$, where \langle, \rangle is the bilinear form from Theorem [2.](#page-1-1) So statement (iv) of Theorem [2](#page-1-1) follows from Lemma [11.](#page-15-2)

Lemma 11. If
$$
\deg \mathcal{E} \leq 0
$$
, $\mathcal{E} \not\simeq O_M$, then $H^0(M, \mathcal{E}) = 0$.

Proof. Suppose $H^0(M, \mathcal{E}) \neq 0$, $\mathcal{E} \not\simeq O_M$. Then $\mathcal{E} \simeq O_M(C)$, $C>0$. So deg $\mathcal{E} = (\overline{C}, D)$, where \overline{C} is the closure of C in \overline{M} . Hence by Lemma [9](#page-14-1), deg $\mathcal{E} > 0$.

 \Box

Now we prove statement (i) of Theorem [2.](#page-1-1) Suppose deg $\mathcal{E} > 0$, $\overline{\mathcal{E}}$ is an extension of $\mathcal E$ to \overline{M} . Then $\chi(\overline{\mathcal E}(kD)) \to \infty$ as $k \to \infty$. Since $H^2(\overline{M}, \overline{\mathcal E}(kD)) = 0$ for $k \gg 0$, we have $\dim H^0(\overline{M}, \overline{\mathcal{E}}(kD)) \to \infty$ as $k \to \infty$, that is, $\dim H^0(M, \mathcal{E}) = \infty$. Since $H^0(M, \mathcal{E}) \neq 0$, $\mathcal{E} \simeq O_M(C)$ for some $C > 0$. But $H^1(M, O_M) = 0$, and C is affine (see Lemma [9\)](#page-14-1), so $H^1(M, \mathcal{E}) = 0$.

To complete the proof of Theorem [2](#page-1-1), we should check that if deg $\mathcal{E} < 0$, then dim $H^1(M, \mathcal{E}) = \infty$. Since $H^0(M, \mathcal{E}^{-1}) \neq 0$, $\mathcal{E} \simeq O_M(-C)$ for some C > 0. Since C is affine and H⁰(M, O_M) is finite-dimensional, it is enough to use the exact sequence $0 \to O_M(-C) \to$ $O_M \rightarrow O_M/O_M(-C) \rightarrow 0.$

Acknowledgments

We are very grateful to V. Drinfeld for stating problems and for numerous stimulating discussions. The authors were partially supported by INTAS grant 94-4720.

References

- [1] D. Arinkin and S. Lysenko, *Invertible sheaves on moduli spaces of* SL(2)*-bundles with connections on* **P**¹, Dokl. Akad. Nauk. Ukraine **6** (1997), 7–11 (in Russian).
- $[2]$ ---, *Isomorphisms between moduli spaces of* SL(2)*-bundles with connections on* $P¹$ {x1,...,x4}, Math. Res. Lett. **4** (1997), 181–190.
- [3] Y. Laszlo and C. Sorger, *The line bundles on the moduli of parabolic* G*-bundles over curves and their sections*, Ann. Sci. Ecole Norm. Sup. (4) ´ **30** (1997), 499–525.
- [4] G. Laumon, *Correspondance de Langlands géométrique pour les corps de fonctions*, Duke Math. J. **54** (1987), 309–359.
- [5] G. Laumon and L. Moret-Bailly, *Champs algébriques*, preprint, Université Paris 11 (Orsay), 1992.
- [6] N. Nitsure, *Moduli of semistable logarithmic connections*, J. Amer. Math. Soc. **6** (1993), 597–609.
- [7] K. Okamoto, *Isomonodromic deformation and Painlev´e equations*, *and the Garnier system*, J. Fac. Sci. Univ. Tokyo Sect. IA Math. **33** (1986), 575–618.
- [8] , *Studies on the Painlev´e equations*, *I: Sixth Painlev´e equation PVI*, Ann. Mat. Pura Appl. **146** (1987), 337–381.
- [9] \longrightarrow , *Sur les feuilletages associés aux équation du second ordre à points critiques fixes de P. Painlev´e. Espaces de conditions initiales*, Japan J. Math. **5** (1979), 1–79.
- [10] C. Simpson, "Nonabelian Hodge theory" in *Proc. Internat. Cong. Math.*, *Vol. I*, *II (Kyoto*, *1990)*, Math. Soc. Japan, Tokyo, 1991, 747–756.

Physico-Technical Institute of Lower Temperatures, Mathematical Division, Lenin Avenue 47, Kharkov-164, 310164, Ukraine.

Current address of D. Arinkin: Department of Mathematics, Harvard University, Cambridge, Massachusetts 02138, USA; arinkin@math.harvard.edu