On the Moduli of SL(2)-bundles with Connections on $\mathbf{P}^1 \setminus \{x_1, \dots, x_4\}$

D. Arinkin and S. Lysenko

Introduction

The moduli spaces of bundles with connections on algebraic curves have been studied from various points of view (see [6], [10]). Our interest in this subject was motivated by its relation with the Painlevé equations, and also by the important role of bundles with connections in the geometric Langlands program [4] (for more details see the remarks at the end of the introduction).

In this work, we consider SL(2)-bundles on \mathbf{P}^1 with connections. These connections are supposed to have poles of order 1 at fixed n points, and the eigenvalues $\pm \lambda_i$ of the residues are fixed. We call these bundles $(\lambda_1, \ldots, \lambda_n)$ -bundles. Our aim is to find all invertible sheaves on the moduli space of $(\lambda_1, \ldots, \lambda_n)$ -bundles and to compute the cohomology of these sheaves for n = 4.

In this work, the ground field is C, that is, 'space' means 'C-space', P^1 means $P^1_C,$ and so on.

Let us formulate the main results of this work.

Fix $x_1, \ldots, x_n \in \mathbf{P}^1(\mathbf{C})$, $n \ge 4$, $x_i \ne x_j$ for $i \ne j$, and $\lambda_1, \ldots, \lambda_n \in \mathbf{C}$.

Definition 1. A $(\lambda_1, \ldots, \lambda_n)$ -bundle on \mathbf{P}^1 is a triple (L, ∇, ϕ) such that L is a rank 2 vector bundle on \mathbf{P}^1 , $\nabla: L \to L \otimes \Omega_{\mathbf{P}^1}(x_1 + \cdots + x_n)$ is a connection, $\phi: \Lambda^2 L \xrightarrow{\sim} O_{\mathbf{P}^1}$ is a horizontal isomorphism, and the residue R_i of the connection ∇ at x_i has eigenvalues $\pm \lambda_i$, $1 \le i \le n$.

Received 16 September 1997.

Communicated by Yu. I. Manin.

In the sequel, we suppose that

$$\sum_{i=1}^{n} \epsilon_{i} \lambda_{i} \notin \mathbf{Z}$$
(1)

for any $(\varepsilon_i), \varepsilon_i \in \mu_2 := \{1, -1\}.$

Denote by M the moduli stack of $(\lambda_1, \ldots, \lambda_n)$ -bundles, and by M the corresponding coarse moduli space.

Theorem 1. Suppose that (1) holds and $\lambda_1, \ldots, \lambda_n \neq 0$. Then

(i) M is a smooth irreducible separated scheme, dim M = 2n - 6, and M is a μ_2 -gerbe over M;

(ii) $H^{i}(M, \mathcal{F}) = 0$ for i > n - 3 for any quasicoherent O_{M} -module \mathcal{F} ;

(iii) Pic \mathcal{M} is the free abelian group with generators $\delta, \xi_1, \ldots, \xi_n$. Here δ (resp. ξ_i) is the invertible sheaf on \mathcal{M} whose fiber over (L, ∇, ϕ) equals detR $\Gamma(\mathbf{P}^1, L)$ (resp. $l_i := \text{Ker}(R_i - \lambda_i) \subset L_{x_i}, R_i$: $L_{x_i} \rightarrow L_{x_i}$ is the residue of ∇ at x_i);

(iv) Pic $M \subset Pic \mathcal{M}$ is an index 2 subgroup, $\xi_1, \ldots, \xi_n \notin Pic \mathcal{M}, \delta \in Pic \mathcal{M}$;

(v) the cohomology class $[\alpha] \in H^2_{\acute{e}t}(M,\mu_2)$ corresponding to the μ_2 -gerbe $\mathcal{M} \to M$ is the image of the nonzero element of $2 \operatorname{Pic} \mathcal{M}/2 \operatorname{Pic} M$ via the canonical embedding $\operatorname{Pic} \mathcal{M}/2 \operatorname{Pic} \mathcal{M} \to H^2_{\acute{e}t}(\mathcal{M},\mu_2)$. In particular, $[\alpha] \neq 0$.

Theorem 2. Let n = 4. Suppose that (1) holds and $2\lambda_i \notin \mathbb{Z}$, $1 \le i \le 4$. Define deg: Pic $M \to \mathbb{Z}$ by deg($a\delta + \sum_{i=1}^{4} a_i \xi_i$) := -a. Let γ be an invertible sheaf on M.

(i) If deg $\gamma > 0$, then dim $H^0(M, \gamma) = \infty$, $H^i(M, \gamma) = 0$ for $i \neq 0$.

(ii) If deg $\gamma < 0$, then dim $H^1(M, \gamma) = \infty$, $H^i(M, \gamma) = 0$ for $i \neq 1$.

(iii) If $\gamma \simeq O_M$, then dim $H^0(M, \gamma) = 1$, $H^i(M, \gamma) = 0$ for $i \neq 0$.

(iv) If deg $\gamma = 0$ and $\gamma \neq O_M$, then dim $H^1(M, \gamma) = -[\langle \gamma, \gamma \rangle/2] - 1$, $H^i(M, \gamma) = 0$ for

 $\mathfrak{i}\neq 1.$ Here the bilinear form $\langle\cdot,\cdot\rangle$ is defined by

$$\left\langle \sum_{i=1}^4 a_i \xi_i, \sum_{i=1}^4 b_i \xi_i \right\rangle := -\frac{\sum_{i=1}^4 a_i b_i}{2},$$

and [a] is the integral part of a.

Let us describe the general plan of this work.

In the first part (Sections 1–3), we study $(\lambda_1, \ldots, \lambda_n)$ -bundles for arbitrary n.

In Section 1, we prove the basic properties of $(\lambda_1, \ldots, \lambda_n)$ -bundles. We prove that M is a separated algebraic space. All the results of this section are still valid for any curve.

In Section 2, we construct an affine bundle $M \rightarrow N$, where N is the coarse moduli space of quasiparabolic bundles of a certain kind. We use this construction to prove that

M is a smooth scheme of dimension 2n-6 and to show that the cohomological dimension of M is at most n-3.

Section 3 contains the calculation of the Picard group of M. This calculation uses the ideas of [3]. We also compute the cohomology class of the gerbe $\mathcal{M} \to \mathcal{M}$.

In Sections 4 and 5, we assume that n = 4.

In Section 4, we give an explicit geometric description of M. This description goes back to Okamoto ([7], [9]) who studied M as the space of initial conditions of the Painlevé equation P_{VI} rather than the moduli space of bundles with connections.

In Section 5, we compute the cohomology of invertible sheaves on M.

Remarks. (1) The description of Pic M from Theorem 1 was used in [2] to describe all the isomorphisms between the varieties M for n = 4, and thereby to give a geometric explanation of the mysterious symmetries of the P_{VI} equation found by Okamoto [8].

(2) Theorem 2 was used by one of the authors (D. Arinkin) to prove the following orthogonality relations: if n = 4 and $x, y \in \mathbf{P}^1 \setminus \{x_1, \ldots, x_4\}$, then

 $H^i(\mathcal{M},\xi_x\otimes\xi_y)=0 \text{ unless } x=y,i=0, \text{ and }$

 $\mathrm{H}^{0}(\mathcal{M},\xi_{x}\otimes\xi_{x})=\mathbf{C}$

where ξ_x is the vector bundle on \mathcal{M} whose fiber at (L, ∇, ϕ) equals L_x . These formulas can be interpreted in terms of the geometric Langlands program.

(3) The results of this paper were announced in [1].

1 $(\lambda_1, \ldots, \lambda_n)$ -bundles

1.1 Basic properties of $(\lambda_1, \ldots, \lambda_n)$ -bundles

Let (L, ∇, ϕ) be a $(\lambda_1, \ldots, \lambda_n)$ -bundle.

Proposition 1. (L, ∇) is irreducible (i.e., there is no rank 1 ∇ -invariant subbundle $L_1 \subset L$).

Proof. Suppose there is an invariant rank 1 subbundle $L_1 \subset L$. Then $\nabla_1 := \nabla|_{L_1}$ is a connection on L_1 . $(L_1)_{x_i} \subset L_{x_i}$ is an eigenspace of $R_i := \operatorname{res}_{x_i}(\nabla)$. Hence $\operatorname{res}_{x_i}(\nabla_1)$ is an eigenvalue of R_i , that is, $\operatorname{res}_{x_i}(\nabla_1) = \pm \lambda_i$. But $\sum_{i=1}^n \operatorname{res}_{x_i}(\nabla_1) = - \deg L_1 \in \mathbb{Z}$. This contradicts (1).

Remark 4. Denote by V the fiber of L over the generic point of \mathbf{P}^1 . V is a 2-dimensional vector space over $\mathbf{C}(z)$ (here Spec $\mathbf{C}(z) \in \mathbf{P}^1$ is the generic point); 1-dimensional subspaces of V correspond to rank 1 subbundles of L. ∇ induces a **C**-linear morphism $V \to V \otimes_{\mathbf{C}(z)}$

 $\Omega_{\text{Spec}(C(z))}$. So the proposition implies that V is irreducible (as a C(z)-space) with respect to this morphism.

Corollary 1. The only automorphisms of (L, ∇, φ) are 1 and -1 (in other words, the group of automorphisms of (L, ∇, φ) is μ_2).

Proof. Let A be any automorphism of (L, ∇, φ) . Clearly it has an eigenvalue $e \in \mathbf{C}$. Then $\operatorname{Ker}(A - e) \subset L$ is an invariant subbundle, $\operatorname{Ker}(A - e) \neq 0$, so $\operatorname{Ker}(A - e) = L$ and A = e. But $\det(A) = 1$, so $A = \pm 1$.

Corollary 2. Let $L_1 \subset L$ be a rank 1 subbundle. Then deg $L_1 \leq (n-2)/2$.

Proof. By Proposition 1, the map $L_1 \rightarrow (L/L_1) \otimes \Omega_{\mathbf{P}^1}(x_1 + \cdots + x_n)$ induced by ∇ is not zero. So deg $L_1 \leq \deg(L/L_1) + n - 2$. The corollary easily follows.

Remark. Let us consider $(\lambda_1, \ldots, \lambda_n)$ -bundles on a curve of genus g > 0. Then Proposition 1 is still true, and Corollary 2 has the form

$$deg\,L_1 \leq \frac{n+2g-2}{2}.$$

1.2 Moduli space of $(\lambda_1, \ldots, \lambda_n)$ -bundles

The notion of a family of $(\lambda_1, \ldots, \lambda_n)$ -bundles on \mathbf{P}^1 is defined in the usual way. $(\lambda_1, \ldots, \lambda_n)$ bundles on \mathbf{P}^1 form a stack \mathcal{M} . So \mathcal{M}_S (the category of 1-morphisms from S to \mathcal{M}) is the category of families of $(\lambda_1, \ldots, \lambda_n)$ -bundles parametrized by a scheme S.

Proposition 2. \mathcal{M} is a separated algebraic stack.

Proof. Denote by $\operatorname{Bun}_{SL(2)} \mathbf{P}^1$ the moduli stack of SL(2)-bundles on \mathbf{P}^1 . It is well known ([5, Theorem 4.14.2.1]) that $\operatorname{Bun}_{SL(2)} \mathbf{P}^1$ is an algebraic stack. Clearly the natural map $\mathcal{M} \to \operatorname{Bun}_{SL(2)} \mathbf{P}^1$ is a representable (and even affine) 1-morphism of stacks. Hence \mathcal{M} is algebraic.

Using the valuative criterion for algebraic stacks ([5, Theorem 3.19, Remark 3.20.2]), one can derive from Lemma 1 that \mathcal{M} is separated.

Lemma 1. Let A be a discrete valuation ring, K the fraction field of A, $\eta := \text{Spec}(K)$, $y_0 = (L_0, \nabla_0, \varphi_0) \in Ob(\mathcal{M}_{\eta})$ (i.e., y_0 is a family of $(\lambda_1, \ldots, \lambda_n)$ -bundles parametrized by η). If an extension of y_0 to $y \in Ob(\mathcal{M}_U)$, U := Spec(A) exists, it is unique.

Proof. Let $y_i = (L_i, \nabla_i, \phi_i) \in Ob(\mathcal{M}_U)$, i = 1, 2 be two extensions of y_0 . Denote by \mathcal{F}_i the sheaf of sections of L_i , i = 0, 1, 2. Let $\widetilde{\mathcal{F}}_0$ be the direct image of \mathcal{F}_0 to $U \times P^1$. Then ∇_0 (resp. ϕ_0) induces a connection $\nabla: \widetilde{\mathcal{F}}_0 \to \widetilde{\mathcal{F}}_0 \otimes \Omega_{P^1}(x_1 + \dots + x_n)$ (resp. a horizontal isomorphism

 $\varphi: \Lambda^2 \widetilde{\mathfrak{F}_0} \widetilde{\to} O_{\eta \times \mathbf{P}^1}$). Since y_i is an extension of y_0, \mathfrak{F}_i is identified with a subsheaf of $\widetilde{\mathfrak{F}_0}$; this identification agrees with ∇ and φ . Set $\mathfrak{F} := \mathfrak{F}_1 \cap \mathfrak{F}_2$.

Denote by k the residue field of A (so Spec $k \in U$ is the special point), and by $p \in \mathbf{P}_k^1 \subset U \times \mathbf{P}^1$ the generic point of the special fiber $\mathbf{P}_k^1 \subset U \times \mathbf{P}^1$.

There is $i \in \{1, 2\}$ such that $\mathcal{F}(\mathbf{P}_k^1) \not\subset \mathcal{F}_i$. We may assume that i = 1.

Denote by V_1 the fiber of L_1 over p, and by $V \subset V_1$ the image of $\mathcal{F} \subset \mathcal{F}_1$. Since $\mathcal{F} \not\subset \mathcal{F}_1(-\mathbf{P}^1_k)$, we have $V \neq 0$.

 $\nabla(\mathfrak{F}_{\mathfrak{i}}) \subset \mathfrak{F}_{\mathfrak{i}} \otimes \Omega_{\mathbf{P}^{1}}(x_{1} + \dots + x_{n}), \text{ so } \nabla(\mathfrak{F}) \subset \mathfrak{F} \otimes \Omega_{\mathbf{P}^{1}}(x_{1} + \dots + x_{n}).$ Therefore $V \subset V_{1}$ is ∇ -invariant and, by Remark 4, $V = V_{1}$.

 $\mathfrak{F} \subset \mathfrak{F}_1$ is locally free so $\mathfrak{F} = \mathfrak{F}_1$ and $\mathfrak{F}_2 \supset \mathfrak{F}_1$. But $\varphi(\Lambda^2 \mathfrak{F}_1) = \varphi(\Lambda^2 \mathfrak{F}_2)$, so $\mathfrak{F}_2 = \mathfrak{F}_1$.

For a scheme S, denote by $\underline{M}(S)$ the set of isomorphism classes of families of $(\lambda_1, \ldots, \lambda_n)$ -bundles parametrized by S. Denote by M the sheaf for the fppf-topology associated with the presheaf \underline{M} .

By Corollary 1, \mathcal{M} is a μ_2 -gerbe over \mathcal{M} . In particular, the 1-morphism $\mathcal{M} \to \mathcal{M}$ is smooth, surjective, and proper. This implies that \mathcal{M} is a separated algebraic space (\mathcal{M} is the coarse moduli space of $(\lambda_1, \ldots, \lambda_n)$ -bundles).

2 Structure of affine bundle on M

2.1 Quasiparabolic bundles

A quasiparabolic SL(2)-bundle on \mathbf{P}^1 is a collection $(L, \varphi, l_1, \ldots, l_n)$ such that L is a rank 2 vector bundle on \mathbf{P}^1 , $\varphi: \Lambda^2 L \cong O_{\mathbf{P}^1}$, and $l_i \subset L_{x_i}$ is a 1-dimensional subspace. Quasiparabolic SL(2)-bundles form a stack $\overline{\mathcal{N}}$. Using the same arguments as in Proposition 2, one can prove that $\overline{\mathcal{N}}$ is algebraic.

Suppose that $\lambda_1, \ldots, \lambda_n \neq 0$. For a $(\lambda_1, \ldots, \lambda_n)$ -bundle (L, ∇, ϕ) , we construct a quasiparabolic SL(2)-bundle $(L, \phi, l_1, \ldots, l_n)$ by setting $l_i := \text{Ker}(R_i - \lambda_i)$, where $R_i: L_{x_i} \to L_{x_i}$ is the residue of ∇ at x_i . This yields a morphism $\overline{f}: \mathcal{M} \to \overline{\mathcal{N}}$. Let us give an explicit description of the image of \overline{f} .

Proposition 3. For a quasiparabolic SL(2)-bundle $(L, \varphi, l_1, ..., l_n)$, the following conditions are equivalent:

(i) $(L, \varphi, l_1, \ldots, l_n)$ belongs to the image of $\overline{f}: \mathcal{M} \to \overline{\mathcal{N}};$

(ii) Aut(L, φ , l_1 , ..., l_n) = μ_2 ;

(ii') End(L, l_1, \ldots, l_n) = **C**;

(iii) $(L, \varphi, l_1, \dots, l_n)$ is indecomposable; that is, there are no $L_1, L_2 \neq 0$ such that $L = L_1 \oplus L_2$, and for any i, either $l_i = (L_1)_{x_i}$ or $l_i = (L_2)_{x_i}$.

Proof (i) \Rightarrow (iii). Suppose $(L, \varphi, l_1, ..., l_n)$ belongs to the image of \overline{f} ; that is, there is a $\nabla: L \rightarrow L \otimes \Omega_{\mathbf{P}^1}(x_1 + \cdots + x_n)$ such that (L, ∇, φ) is a $(\lambda_1, ..., \lambda_n)$ -bundle and $l_i = \operatorname{Ker}(R_i - \lambda_i)$. Suppose $L = L_1 \oplus L_2$ for $L_1, L_2 \neq 0$. The composition $\nabla_1: L_1 \rightarrow L \xrightarrow{\nabla} L \otimes \Omega_{\mathbf{P}^1}(x_1 + \cdots + x_n) \rightarrow L_1 \otimes \Omega_{\mathbf{P}^1}(x_1 + \cdots + x_n)$ is a connection on L_1 . (1) implies that $\operatorname{res}_{x_i} \nabla_1 \neq \pm \lambda_i$ for some i. It is easy to prove that $l_i \neq (L_1)_{x_i}$, $(L_2)_{x_i}$ for this i.

(iii) \Rightarrow (ii'). Suppose $A \in \text{End}(L, l_1, ..., l_n)$. Denote by $e_1, e_2 \in \mathbf{C}$ the eigenvalues of A. If $e_1 \neq e_2$, L can be decomposed to the direct sum of the eigenspaces of A.

Assume that $e_1 = e_2$. Replacing A by $A - e_1$, we can assume that $e_1 = e_2 = 0$. Let us prove that A = 0. Assume the converse. Then $L_1 := \text{Ker}(A) \subset L$ is a rank 1 subbundle. Set $T := \{i | l_i \neq (L_1)_{x_i}\}$. Locally on \mathbf{P}^1 we can construct L_2 such that $L_1 \oplus L_2 = L$, $(L_2)_{x_i} = l_i$ for $i \in T$. Obstructions to global existence of L_2 lie in $H^1(\mathbf{P}^1, \mathcal{H}om(L/L_1, L_1)(-\sum_{i\in T} x_i))$. Since (L, l_1, \ldots, l_n) is indecomposable, this space is not zero. So deg $(\mathcal{H}om(L/L_1, L_1)(-\sum_{i\in T} x_i)) < -1$, and $\{A_1 \in \text{Hom}(L/L_1, L_1)|A_1(x_i) = 0 \text{ for } i \in T\} = H^0(\mathbf{P}^1, \mathcal{H}om(L/L_1, L_1)(-\sum_{i\in T} x_i)) = 0$. Clearly A induces a map A_1 : $L/L_1 \to L_1$ such that $A_1(x_i) = 0$ for $i \in T$. Hence $A_1 = 0$ and A = 0.

 $(ii') \Rightarrow (i)$. Let us construct a connection $\nabla: L \rightarrow L \otimes \Omega_{\mathbf{P}^1}(x_1 + \dots + x_n)$ such that (L, ∇, φ) is a $(\lambda_1, \dots, \lambda_n)$ -bundle, and $\mathfrak{l}_i = \operatorname{Ker}(\mathsf{R}_i - \lambda_i)$. This can be done locally on \mathbf{P}^1 . The obstructions to global construction lie in $H^1(\mathbf{P}^1, \mathcal{E})$, where $\mathcal{E} := \{A \in \mathcal{E}nd_0(L) \otimes \Omega_{\mathbf{P}^1}(x_1 + \dots + x_n) | (\operatorname{res}_{x_i} A)(\mathfrak{l}_i) = 0\}$. Here $\mathcal{E}nd_0(L) := \{A \in \mathcal{E}nd(L) | \operatorname{tr} A = 0\}$. By Serre's duality theorem, $H^1(\mathbf{P}^1, \mathcal{E})$ is dual to $H^0(\mathbf{P}^1, \{A \in \mathcal{E}nd_0(L) | A(x_i)(\mathfrak{l}_i) \subset \mathfrak{l}_i\}) = \{A \in \operatorname{End}(L, \mathfrak{l}_1, \dots, \mathfrak{l}_n) | \operatorname{tr}(A) = 0\} = 0$. So there is a global ∇ with such properties.

 $(ii') \Rightarrow (ii). This implication is obvious since Aut(L, \phi, l_1, \dots, l_n) = \{A \in End(L, l_1, \dots, l_n) | det(A) = 1\}.$

 $(not (iii)) \Rightarrow (not (ii)). Let L = L_1 \oplus L_2 be a decomposition of L. Then a \oplus a^{-1} \in Aut(L, \phi, l_1, \dots, l_n) \text{ for } a \in \mathbf{C}^*.$

Remark. The proof of the implication (iii) \Rightarrow (ii') does not work for curves of genus g > 0, because it uses the following property of \mathbf{P}^1 : for every line bundle \mathcal{F} on \mathbf{P}^1 , either $\mathrm{H}^0(\mathbf{P}^1, \mathcal{F}) = 0$ or $\mathrm{H}^1(\mathbf{P}^1, \mathcal{F}) = 0$.

If $(L, \varphi, l_1, \ldots, l_n)$ satisfies the equivalent conditions of Proposition 3, the fiber of \overline{f} over $(L, \varphi, l_1, \ldots, l_n)$ consists of all $(\lambda_1, \ldots, \lambda_n)$ -bundles (L, ∇, φ) such that $l_i = \text{Ker}(R_i - \lambda_i)$. Such ∇ form an affine space of dimension n-3 because the corresponding vector space is dual to $H^1(\mathbf{P}^1, \mathcal{E}nd_0(L, l_1, \ldots, l_n))$, and the Euler characteristic of $\mathcal{E}nd_0(L, l_1, \ldots, l_n)$ equals $\chi(\mathcal{E}nd_0 L) - n = 3 - n$.

Denote by $\mathcal{N} \subset \overline{\mathcal{N}}$ the open substack defined by condition (ii') from Proposition 3. \overline{f} induces the morphism f: $\mathcal{M} \to \mathcal{N}$, which is a locally trivial affine bundle with fibers of dimension n-3. Denote by N the coarse moduli space of indecomposable quasiparabolic SL(2)bundles on \mathbf{P}^1 . The construction of the algebraic space N is similar to that of M (see Section 1.2). N is a μ_2 -gerbe over N.

2.2 Modifications

Suppose L is a rank 2 bundle on \mathbf{P}^1 , $x \in \mathbf{P}^1$, and $l \subset L_x$ is a dimension 1 subspace. Denote by \mathcal{L} the sheaf of sections of L. The *lower (resp. upper)* (x, l)-modification of L is the rank 2 bundle on \mathbf{P}^1 whose sheaf of sections is $\widetilde{\mathcal{L}} := \{s \in \mathcal{L} | s(x) \in l\}$ (resp. $\widetilde{\mathcal{L}}(x)$). If \widetilde{L} is the lower (x, l)-modification of L, the image of the natural map $\widetilde{L}_x \to L_x$ is l. Denote by $\widetilde{l} \subset \widetilde{L}_x$ the kernel of this map. Then L is the upper (x, \widetilde{l}) -modification of \widetilde{L} .

Suppose $(L, l_1, ..., l_n)$ is a *quasiparabolic bundle on* \mathbf{P}^1 (i.e., L is a rank 2 bundle on \mathbf{P}^1 , and $l_i \subset L_{x_i}$ is a dimension 1 subspace). Then the lower (x_i, l_i) -modification \widetilde{L} of L has a natural structure of a quasiparabolic bundle, namely, $(\widetilde{L}, l_1, ..., \widetilde{l}_i, ..., l_n)$, where $\widetilde{l}_i := \text{Ker}(\widetilde{L}_{x_i} \to L_{x_i})$. Similarly, the upper (x_i, l_i) -modification of $(L, l_1, ..., l_n)$ is a quasiparabolic bundle.

Clearly $(\widetilde{L}, l_1, \ldots, \widetilde{l}_i, \ldots, l_n)$ is indecomposable if and only if (L, l_1, \ldots, l_n) is indecomposable.

Lemma 2. Suppose (L, l_1, \ldots, l_n) is an indecomposable quasiparabolic bundle on \mathbf{P}^1 . Then making (x_i, l_i) -modifications in some of the points x_i , one can transform (L, l_1, \ldots, l_n) to (L', l'_1, \ldots, l'_n) such that $L' \simeq O_{\mathbf{P}^1}(k')^2$ for some k'.

Proof. Since L is a rank 2 bundle on \mathbf{P}^1 , $L \simeq O_{\mathbf{P}^1}(k) \oplus O_{\mathbf{P}^1}(l)$ for some $k, l \in \mathbf{Z}, k \ge l$. The proof is given by induction on k - l.

For k - l = 0, there is nothing to prove.

Suppose k - l > 0. Denote by $L_1 \subset L$ the rank 1 subbundle of degree k. Since (L, l_1, \ldots, l_n) is indecomposable, $l_i \neq (L_1)_{x_i}$ for some i. Let \widetilde{L} be the lower (x_i, l_i) -modification of L. Then L_1 defines a rank 1 subbundle $\widetilde{L}_1 \subset \widetilde{L}$ of degree k - 1. Clearly $\widetilde{L}/\widetilde{L}_1 = L/L_1$, so $deg(\widetilde{L}/\widetilde{L}_1) = l$. Hence $\widetilde{L} \simeq O_{\mathbf{P}^1}(k-1) \oplus O_{\mathbf{P}^1}(l)$. By the induction hypothesis, \widetilde{L} can be modified to (L', l'_1, \ldots, l'_n) such that $L' \simeq O_{\mathbf{P}^1}(k')^2$ for some $k' \in \mathbf{Z}$.

Let us return to the case of SL(2)-bundles.

Let $(L, \varphi, l_1, \ldots, l_n)$ be a quasiparabolic SL(2)-bundle, $T \subset \{1, \ldots, n\}$. Denote by (L', l'_1, \ldots, l'_n) the lower modification of (L, l_1, \ldots, l_n) at (x_i, l_i) for all $i \in T$ (clearly, modifications at different points commute). Then φ induces an isomorphism $\varphi': \Lambda^2 L' \xrightarrow{\rightarrow} O_{\mathbf{P}^1}(-\sum_{i\in T} x_i)$. Suppose that Card T = 2k, where Card T is the number of elements of the set T. We choose an isomorphism s: $O_{\mathbf{P}^1}(2kx_1 - \sum_{i\in T} x_i) \xrightarrow{\rightarrow} O_{\mathbf{P}^1}$. s $\circ \varphi'$ gives a structure

of quasiparabolic SL(2)-bundle on L'(kx₁). This defines an automorphism $\overline{f}_T: \overline{N} \cong \overline{N}$. Since $\overline{f}_T(N) = N$, this gives $f_T: N \cong N$. Obviously, f_T does not depend on s.

Denote by Γ the set of all $T \subset \{1, \dots, n\}$ such that Card T is even. Γ is an abelian group with respect to the product $T_1 \triangle T_2 := (T_1 \cup T_2) \setminus (T_1 \cap T_2)$.

Proposition 4. (i) $f_{T_1} \circ f_{T_2} = f_{T_1 riangle T_2}$ ($T_1, T_2 \in \Gamma$).

(ii) Denote by $N_0 \subset N$ the open subspace formed by trivial SL(2)-bundles (i.e., $(L, \phi, l_1, \ldots, l_n) \in N_0$ if and only if $L \simeq O_{p1}^2$). Then $\bigcup_{T \in \Gamma} f_T(N_0) = N$.

Proof. Statement (i) is obvious. Statement (ii) follows from Lemma 2.

2.3 Geometry of N

Let N_0 have the same meaning as in Proposition 4(ii).

Lemma 3. N₀ is a smooth irreducible nonseparated scheme of dimension n - 3.

Proof. Denote by U the set of $(l_1, \ldots, l_n) \in (\mathbf{P}^1)^n$ such that there are at least three different points among l_1, \ldots, l_n . Then $N_0 = PGL(2) \setminus U$. Set $U_{ijk} := \{(l_1, \ldots, l_n) \in (\mathbf{P}^1)^n | l_i \neq l_j, l_j \neq l_k, l_i \neq l_k\} \subset U$, where $1 \leq i < j < k \leq n$. Then $U_{ijk} \subset U$ is open, $\bigcup_{i,j,k} U_{ijk} = U$, and $\bigcap_{i,j,k} U_{ijk} = \{(l_1, \ldots, l_n) \in (\mathbf{P}^1)^n | l_i \neq l_j \text{ for } i \neq j\} \neq \emptyset$. So N_0 is covered by pairwise intersecting open subsets $PGL(2) \setminus U_{ijk}$. Finally, $PGL(2) \setminus U_{ijk} \simeq (\mathbf{P}^1)^{n-3}$.

Proposition 5. N is a smooth irreducible nonseparated scheme of dimension n - 3.

Proof. Since N is covered by $f_T(N_0)$, $T \in \Gamma$ (Proposition 4), and N_0 is a smooth irreducible nonseparated scheme (Lemma 3), it is enough to prove that $f_T(N_0) \cap N_0 \neq \emptyset$.

Any T can be represented as a product of $T_{ij} = \{i, j\} \in \Gamma, i \neq j$. Since N_0 is irreducible, it is enough to prove that $N_0 \cap f_{T_{ij}}(N_0) \neq \emptyset$. Clearly, $N_0 \cap f_{T_{ij}}(N_0) = PGL(2) \setminus \{(l_1, \ldots, l_n) \in U | l_i \neq l_j\} \neq \emptyset$.

Using the affine bundle f: $M \rightarrow N$, one derives statements (i) and (ii) of Theorem 1 from Proposition 5.

Remark. In the special case n = 4, one can prove the following explicit description of N:

There is a map $N \to \mathbf{P}^1$ that identifies N and 'the projective line with doubled points x_1, \ldots, x_4 .' In other words, N can be obtained by glueing two copies of \mathbf{P}^1 outside x_1, \ldots, x_4 .

3 Invertible sheaves on M

3.1 Calculation of Pic $\overline{\mathcal{N}}$

Denote by ξ_i (resp. δ) the invertible sheaf on \overline{N} whose fiber over $(L, \varphi, l_1, ..., l_n)$ is l_i (resp. detR $\Gamma(\mathbf{P}^1, L)$).

Notation. For the sake of simplicity, we write ξ_i (resp. δ) for the inverse image of ξ_i (resp. δ) to \mathcal{M} .

The following proposition is an easy, special case of the general theorem due to Y. Laszlo and C. Sorger in [3, Theorem 1.1].

Proposition 6. Pic \overline{N} is the free abelian group with basis δ , ξ_i (i = 1, ..., n).

Remark. The proof by Y. Laszlo and C. Sorger is based on the techniques of affine Grassmanianns. In our situation, Proposition 6 for n = 0 follows from the well-known description of the isomorphism classes of SL(2)-bundles on \mathbf{P}^1 , and the case of an arbitrary n is easily reduced to n = 0.

3.2 Calculation of Pic M

Lemma 4. $\operatorname{codim}(\overline{\mathbb{N}} \setminus \mathbb{N}) \geq 2$.

Proof. Denote by \mathcal{N}_d the moduli stack of decompositions. In other words, \mathcal{N}_d parametrizes $(L = L_1 \oplus L_2, \varphi; l_1, \ldots, l_n)$ such that $(L, \varphi, l_1, \ldots, l_n)$ is a quasiparabolic SL(2)-bundle, rk $L_1 =$ rk $L_2 = 1$, and for any $i = 1, \ldots, n$, either $l_i = (L_1)_{x_i}$ or $l_i = (L_2)_{x_i}$. Connected components of \mathcal{N}_d are parametrized by $(\deg L_1, \{i|l_i = (L_1)_{x_i}\})$; hence the set of these components is countable. Besides, each component is of dimension -1.

Consider the natural map $\mathcal{N}_d \to \overline{\mathcal{N}}$. Its image is $\overline{\mathcal{N}} \setminus \mathcal{N}$, so dim $\overline{\mathcal{N}} \setminus \mathcal{N} \leq -1$. On the other hand, dim $\overline{\mathcal{N}} = n - 3 \geq 1$.

Corollary 3. Pic $\mathcal{M} = \text{Pic } \mathcal{N} = \text{Pic } \overline{\mathcal{N}}$ is the free abelian group with basis $\xi_1, \ldots, \xi_n, \delta$.

Proof. Since $\mathcal{M} \to \mathcal{N}$ is an affine bundle, $\operatorname{Pic} \mathcal{M} = \operatorname{Pic} \mathcal{N}$. Since $\overline{\mathcal{N}}$ is a smooth stack, Lemma 4 implies $\operatorname{Pic} \mathcal{N} = \operatorname{Pic} \overline{\mathcal{N}}$. Now the corollary follows from Proposition 6.

Proposition 7. Pic $M \subset Pic \mathcal{M}$ is the subgroup of index 2 such that $\delta \in Pic \mathcal{M}, \xi_i \notin Pic \mathcal{M}$.

Proof. Since \mathcal{M} is a μ_2 -gerbe over \mathcal{M} , any $\mathcal{O}_{\mathcal{M}}$ -module has a natural action of μ_2 . An $\mathcal{O}_{\mathcal{M}}$ -module is an $\mathcal{O}_{\mathcal{M}}$ -module if and only if this action is trivial. It follows from the definitions that $-1 \in \mu_2$ acts as -1 on ξ_i and acts as 1 on δ .

We have proved statements (iii) and (iv) of Theorem 1. Statement (v) is a particular case of the following lemma.

Lemma 5. Let X be an algebraic space, i: $\mathcal{X} \to X$ a μ_2 -gerbe, $[\alpha] \in H^2_{d+}(X, \mu_2)$ the corresponding cohomology class, and $\gamma \in \text{Pic } \mathfrak{X}$ the isomorphism class of a sheaf \mathcal{E} such that $-1 \in \mu_2$ acts on \mathcal{E} as -1. Then $[\alpha] = c_1(\gamma^{\otimes 2})$, where $c_1: \operatorname{Pic} X \to H^2_{\acute{e}t}(X, \mu_2)$ is the Chern class.

Proof. Fix a sheaf \mathcal{F} in the class $\gamma^{\otimes 2} \in \operatorname{Pic} X$. Denote by $\Im qr \mathcal{F}$ the μ_2 -gerbe of square roots of \mathcal{F} defined by $(Sqr \mathcal{F})_S := \{(f: S \to X, \mathcal{E}', \psi) | \mathcal{E}' \text{ is an invertible sheaf on } S, \psi: (\mathcal{E}')^{\otimes 2} \xrightarrow{\sim} f^*(\mathcal{F})\}.$

An isomorphism $\mathcal{E}^{\otimes 2} \cong \mathfrak{i}^* \mathcal{F}$ yields a 1-morphism $\mathfrak{X} \to \operatorname{Spr} \mathcal{F}$. Since $-1 \in \mu_2$ acts on \mathcal{E} as -1, this is a μ_2 -gerbe morphism. So μ_2 -gerbes \mathcal{X} and $\mathcal{S}qr \mathcal{F}$ are isomorphic.

Let $T := \text{Isom}(O_{\chi}, \mathcal{F})$ be the G_m -torsor corresponding to \mathcal{F} . Consider the exact sequence $0 \rightarrow \mu_2 \rightarrow \mathbf{G}_m \stackrel{x \mapsto \chi^2}{\rightarrow} \mathbf{G}_m \rightarrow 0$. The corresponding map $H^1_{\acute{e}t}(X, \mathbf{G}_m) = \operatorname{Pic} X \rightarrow \mathbf{G}_m \stackrel{x \mapsto \chi^2}{\rightarrow} \mathbf{G}_m \mathbf{G$ $H^2_{\delta +}(X, \mu_2)$ is c_1 . Now it is enough to notice that $Sqr \mathcal{F}$ is the gerbe of liftings of T with respect to

$$\mathbf{G}_{\mathbf{m}} \stackrel{\mathbf{x}\mapsto\mathbf{x}^2}{\to} \mathbf{G}_{\mathbf{m}}.$$

This completes the proof of Theorem 1.

4 Geometric description of M

Suppose that n = 4, $\lambda_i \neq 0$ (i = 1, ..., 4), and $\lambda_1 \neq 1/2$. Recall that M is the coarse moduli space of $(\lambda_1, \ldots, \lambda_4)$ -bundles. The aim of this section is to prove the following statement:

Set $K := \mathbf{V}((\Omega_{\mathbf{P}^1}(x_1 + \cdots + x_4))^*)$ (i.e., K is the vector bundle whose sheaf of sections is $\Omega_{\mathbf{P}^1}(x_1 + \cdots + x_4)$). Denote by $b_i \subset K$ the fiber over $x_i \subset \mathbf{P}^1$. Since $(\Omega_{\mathbf{P}^1}(x_1 + \cdots + x_4))_{x_i} = \mathbf{C}$, there is a natural isomorphism r_i : $b_i \xrightarrow{\sim} A^1$. Set $\lambda_i^{\pm} := \pm \lambda_i$ for $i \neq 1, \lambda_1^+ := \lambda_1, \lambda_1^- := 1 - \lambda_1$, $c_i^{\pm} := r_i^{-1}(\lambda_i^{\pm}) \in b_i$. For every i, one has $\lambda_i^+ \neq \lambda_i^-$, so $c_i^+ \neq c_i^-$.

Theorem 3. Denote by \widetilde{M} the blow-up of K in c_i^{\pm} . Then there is an open embedding $M \hookrightarrow \widetilde{M}$ such that $\widetilde{M} \setminus M$ is the union of the proper preimages of $b_i \subset K$, i = 1, ..., 4.

4.1 Construction of $M \rightarrow K$

Denote by M_1 the coarse moduli space of triples $(\widetilde{L}, \nabla, \varphi)$ such that \widetilde{L} is a rank 2 vector bundle on \mathbf{P}^1 , $\nabla: \widetilde{L} \to \widetilde{L} \otimes \Omega_{\mathbf{P}^1}(x_1 + \dots + x_4)$ is a connection, $\varphi: \Lambda^2 \widetilde{L} \to \mathcal{O}_{\mathbf{P}^1}(-x_1)$ is a horizontal isomorphism, and the residue \widetilde{R}_i of ∇ at x_i has eigenvalues λ_i^{\pm} . For any $(\lambda_1, \ldots, \lambda_n)$ -bundle (L, ∇, φ) , consider the lower (x_1, l_1) -modification \widetilde{L} of L. Here $l_1 := \text{Ker}(R_1 - \lambda_1) \subset L_{x_1}$. The

triple $(\widetilde{L}, \nabla|_{\widetilde{L}}, \phi|_{\widetilde{L}})$ corresponds to a point of M_1 . This gives us a map $M \to M_1$. The upper modification of $(\widetilde{L}, \nabla, \phi)$ defines the inverse map, so $M \simeq M_1$.

Since (\widetilde{L}, ∇) is irreducible, $\widetilde{L} \simeq O_{\mathbf{P}^1} \oplus O_{\mathbf{P}^1}(-1)$ (see Corollary 2). So there is a unique subsheaf $\widetilde{L}_0 \subset \widetilde{L}$ such that $\widetilde{L}_0 \simeq O_{\mathbf{P}^1}$. There is a unique connection d: $\widetilde{L}_0 \to \widetilde{L}_0 \otimes \Omega_{\mathbf{P}^1}$. The correspondence $(\widetilde{L}, \nabla, \phi) \mapsto (\widetilde{L}_0 \subset \widetilde{L}, \nabla|_{\widetilde{L}_0} - d, \phi)$ gives a map $M_1 \to K_1$, where K_1 is the coarse moduli space of collections ($\widetilde{L}_0 \subset \widetilde{L}, A, \phi$) such that ($\widetilde{L}_0 \subset \widetilde{L}$) $\simeq (O_{\mathbf{P}^1} \subset O_{\mathbf{P}^1} \oplus O_{\mathbf{P}^1}(-1))$, $\phi: \Lambda^2 \widetilde{L} \xrightarrow{\sim} O_{\mathbf{P}^1}(-x_1), A \in \operatorname{Hom}(\widetilde{L}_0, \widetilde{L} \otimes \Omega_{\mathbf{P}^1}(x_1 + \dots + x_4))$, and $\operatorname{Im} A \not\subset \widetilde{L}_0 \otimes \Omega_{\mathbf{P}^1}(x_1 + \dots + x_4)$.

Proposition 8. K_1 is isomorphic to K.

Proof. Set $\Omega' := \Omega_{\mathbf{P}^1}(x_1 + \dots + x_4)$. Denote by K_2 the moduli space of $(O_{\mathbf{P}^1} \subset \widetilde{L}, B)$ such that $\widetilde{L}/O_{\mathbf{P}^1} \simeq O_{\mathbf{P}^1}(-1)$, B: $(\Omega')^{-1} \to \widetilde{L}$, and Im B $\not\subset O_{\mathbf{P}^1}$. Suppose $(\widetilde{L}_0 \subset \widetilde{L}, A, \varphi)$ corresponds to a point of K_1 . A induces a morphism B: $(\Omega')^{-1} = (\Omega' \otimes \widetilde{L}_0)^{-1} \otimes \widetilde{L}_0 \to (\Omega' \otimes \widetilde{L}_0)^{-1} \otimes (\widetilde{L} \otimes \Omega') = \widetilde{L}_0^{-1} \otimes \widetilde{L}$. Clearly $(O_{\mathbf{P}^1} = \widetilde{L}_0^{-1} \otimes \widetilde{L}_0 \subset \widetilde{L}_0^{-1} \otimes \widetilde{L}, B)$ corresponds to a point of K_2 . This yields a morphism $K_1 \to K_2$. It is not hard to check that this is an isomorphism. Using B, we consider $O_{\mathbf{P}^1} \oplus (\Omega')^{-1}$ as a subsheaf of \widetilde{L} . So K_2 is isomorphic to the moduli space of locally free sheaves $\widetilde{L} \supset O_{\mathbf{P}^1} \oplus (\Omega')^{-1}$ such that $O_{\mathbf{P}^1}$ is a subbundle (not only a subsheaf) of \widetilde{L} , and $\widetilde{L}/(O_{\mathbf{P}^1} \oplus (\Omega')^{-1})$ is a sky-scraper sheaf with 1-dimensional space of sections. Such \widetilde{L} are the upper (x, l)-modifications of $O_{\mathbf{P}^1} \oplus (\Omega')^{-1}$ for $x \in \mathbf{P}^1$, $l \subset \mathbf{C} \oplus ((\Omega')^{-1})_x$, $l \neq \mathbf{C}$. The space of such pairs (x, l) is identified with K. Hence $K_1 = K_2 = K$.

This yields a map $M \rightarrow K_1 = K$.

4.2 Local calculations

Lemma 6. Suppose $(\widetilde{L}_0 \subset \widetilde{L}, A, \varphi)$ corresponds to a point of K_1 , \widetilde{R}_i is an operator $\widetilde{L}_{x_i} \to \widetilde{L}_{x_i}$ such that the eigenvalues of \widetilde{R}_i are λ_i^{\pm} , and $\widetilde{R}_i|_{(\widetilde{L}_0)_{x_i}}$ coincides with the residue of A at x_i . Then there is a unique connection ∇ such that the following conditions hold:

(i) ∇_{L₀} = A + d, where d: L₀ → L₀ ⊗ Ω_{P¹} is the unique connection;
(ii) R_i = res_{xi} ∇;
(iii) (L̃, ∇, φ) corresponds to a point of M₁.

Proof. It is easy to see that such a ∇ exists locally on \mathbf{P}^1 . Let ∇_1 , ∇_2 be two connections defined on some open set $U \subset \mathbf{P}^1$ such that (i)–(iii) are satisfied. Set $E := \nabla_1 - \nabla_2$. Then we have:

$$\begin{split} (i') & \mathsf{E} \in \mathsf{H}^0(\mathsf{U}, \mathcal{H}\textit{om}(\mathsf{L}, \mathsf{L} \otimes \Omega_{\mathbf{P}^1})); \\ (ii') & \mathsf{E}|_{\mathsf{L}_0} = 0; \\ (iii') & tr \, \mathsf{E} = 0. \end{split}$$

Conversely, if a connection ∇ on U satisfies (i)–(iii), and E satisfies (i')–(iii'), then the connection $\nabla + E$ on U satisfies (i)–(iii). Denote by $\mathcal{C}(U)$ the set of all connections on U satisfying (i)–(iii), and denote by $\mathcal{E}(U)$ the set of all E satisfying (i')–(iii'). $\mathcal{C}(U)$ form a sheaf of sets \mathcal{C} , and $\mathcal{E}(U)$ form a sheaf of abelian groups \mathcal{E} . Clearly, \mathcal{C} is an \mathcal{E} -torsor and $\mathcal{E} = \{E \in \mathcal{H}om(L, L \otimes \Omega_{\mathbf{P}^1}): E|_{L_0} = 0; tr E = 0\} = \mathcal{H}om(L/L_0, L_0 \otimes \Omega_{\mathbf{P}^1}). deg \mathcal{E} = -1$, so any \mathcal{E} -torsor is trivial and has a unique global section. Hence there is a unique $\nabla \in \mathcal{C}(\mathbf{P}^1)$ that satisfies (i)–(iii) on \mathbf{P}^1 .

We need the following simple lemma from linear algebra.

Lemma 7. Suppose V is a vector space, dim_C V = 2, $V_0 \subset V$, dim_C $V_0 = 1$, $R_0 \in Hom_C(V_0, V)$, $\lambda^{\pm} \in C$, $\lambda^+ \neq \lambda^-$. Set $\mathcal{R} := \{R \in End_C(V): R|_{V_0} = R_0$, the eigenvalues of R are $\lambda^+, \lambda^-\}$ and $\mathcal{L} := \{(l^+, l^-)|l^{\pm} \subset V, \dim_C l^{\pm} = 1, l^{\pm} \supset (R_0 - \lambda^{\mp})V_0, l^+ \neq l^-\}.$

The map F: $\Re \to \mathcal{L}$: $\mathbb{R} \mapsto (\text{Ker}(\mathbb{R} - \lambda^+) = \text{Im}(\mathbb{R} - \lambda^-), \text{Ker}(\mathbb{R} - \lambda^-))$ is bijective. \Box

Proof. F is clearly injective. Let us prove surjectivity.

For $(l^+, l^-) \in \mathcal{L}$, denote by P^{\pm} the projector $V \to V/l^{\mp} \xrightarrow{\sim} l^{\pm}$ (so $P^+ + P^- = Id$). The condition $l^{\pm} \supset (R_0 - \lambda^{\mp})V_0$ implies $P^{\mp}(R_0 - \lambda^{\mp})V_0 = 0$. So $(P^-(R_0 - \lambda^-) + P^+(R_0 - \lambda^+))V_0 = 0$, or equivalently, $R_0 = (\lambda^+P^+ + \lambda^-P^-)|_{V_0}$. Hence $R := (\lambda^+P^+ + \lambda^-P^-) \in \mathcal{R}$ and $F(R) = (l^+, l^-)$.

Lemmas 6 and 7 imply the following corollary.

Corollary 4. M_1 is identified with the coarse moduli space of $((\widetilde{L}_0 \subset \widetilde{L}, A, \phi); \widetilde{l}_1^+, \widetilde{l}_1^-, \ldots, \widetilde{l}_4^+, \widetilde{l}_4^-)$ such that:

(i) $(\widetilde{L}_0 \subset \widetilde{L}, A, \phi)$ corresponds to a point of K_1 ; (ii) $\widetilde{l}_i^{\pm} \subset \widetilde{L}_{x_i}$ is a subspace such that $\dim \widetilde{l}_i^{\pm} = 1$, $(\operatorname{res}_{x_i} A - \lambda_i^{\mp})(\widetilde{L}_0)_{x_i} \subset \widetilde{l}_i^{\pm}$; (iii) $\widetilde{l}_i^{+} \neq \widetilde{l}_i^{-}$.

Denote by \widetilde{M}_1 the coarse moduli space of $((\widetilde{L}_0 \subset \widetilde{L}, A, \phi); \widetilde{\iota}_1^+, \widetilde{\iota}_1^-, \ldots, \widetilde{\iota}_4^+, \widetilde{\iota}_4^-)$ such that conditions (i)–(ii) of Corollary 4 are satisfied. Then M_1 is identified with the open subset of \widetilde{M}_1 defined by (iii).

Denote by $\tilde{\xi}_{x_i}$ (resp. $\tilde{\delta}$) the bundle on K_1 whose fiber over (\tilde{L}, A, ϕ) is \tilde{L}_{x_i} (resp. $(\tilde{L}_0)_{x_i} = \det R\Gamma(\mathbf{P}^1, \tilde{L}))$. The map $(\operatorname{res}_{x_i} A - \lambda_i^{\mp})$: $(\tilde{L}_0)_{x_i} \to \tilde{L}_{x_i}$ for variable (\tilde{L}, A, ϕ) defines a morphism $\tilde{\delta} \to \tilde{\xi}_{x_i}$. This morphism $\tilde{\delta} \to \tilde{\xi}_{x_i}$ has a unique simple zero in c_i^{\mp} . This proves that the natural map $\tilde{M}_1 \to K_1$ is the blow-up at c_i^{\pm} , $i = 1, \ldots, 4$. It is easy to see that the closed subset of \tilde{M}_1 defined by the equation $\tilde{l}_i^+ = \tilde{l}_i^-$ is the proper preimage of b_i , so $\tilde{M}_1 \setminus M_1$ is the union of these proper preimages.

This completes the proof of Theorem 3.

4.3 Description of invertible sheaves on M

Denote by $b_i^{\pm} \subset M_1$ the preimages of $c_i^{\pm} \subset K$.

Proposition 9. The group $\operatorname{Pic} M_1$ is the abelian group generated by the classes $[b_i^{\pm}]$ with the defining relations

$$[b_1^+] + [b_1^-] = [b_2^+] + [b_2^-] = [b_3^+] + [b_3^-] = [b_4^+] + [b_4^-].$$

Proof. Consider the composition $\pi_1: M_1 \to K_1 = K \to \mathbf{P}^1$. Set $U := \mathbf{P}^1 \setminus \{x_1, \dots, x_4\}$, $U' := \pi_1^{-1}(U)$. Denote by Γ the group of divisors D on M_1 such that $\operatorname{supp} D \cap U' = \emptyset$. By Theorem 3, $U' \simeq U \times \mathbf{A}^1$, so Pic U' = 0, and the map $H^0(U, O_U^*) \to H^0(U', O_{U'}^*)$ is an isomorphism. Therefore, the morphism $\Gamma \to \operatorname{Pic} M_1$ is surjective and its kernel Γ_0 consists of the inverse images of principal divisors Δ on \mathbf{P}^1 such that $\operatorname{supp} \Delta \cap U = \emptyset$. Γ is the free abelian group generated by b_i^{\pm} , and Γ_0 is generated by $\pi_1^*(x_i - x_j) = (b_i^+ + b_i^-) - (b_j^+ + b_j^-)$.

Proposition 10. Let δ , $\xi_i^{\otimes 2}$ be the line bundles on M defined in Section 3. Then

$$\begin{split} &\delta\simeq O_M(-b_1^-),\\ &\xi_i^{\otimes 2}\simeq O_M(b_i^--b_i^+). \end{split}$$

Proof. Denote by $\widetilde{\xi}_{x_i}$ (resp. $\widetilde{\xi}_i^{\pm}, \widetilde{\delta}$) the locally free sheaf on \mathcal{M}_1 (the moduli stack of $(\widetilde{L}, \nabla, \phi)$) whose fiber over $(\widetilde{L}, \nabla, \phi)$ is \widetilde{L}_{x_i} (resp. $\tilde{l}_i^{\pm} = \text{Ker}(\widetilde{R}_i - \lambda_i^{\pm})$, $\det R\Gamma(\mathbf{P}^1, \widetilde{L}) = H^0(\mathbf{P}^1, \widetilde{L}) = (\widetilde{L}_0)_{x_i}$). Then $\widetilde{\xi}_i^{\pm}$ and $\widetilde{\delta}$ are subsheaves of $\widetilde{\xi}_{x_i}$.

Let $(\widetilde{L}, \nabla, \varphi)$ be a point of \mathcal{M}_1 . Consider the map $(\widetilde{R}_i - \lambda_i^{\mp})$: $(\widetilde{L}_0)_{x_i} \to \widetilde{l}_i^{\pm}$. As $(\widetilde{L}, \nabla, \varphi)$ varies, it yields a morphism of $O_{\mathcal{M}_1}$ -modules $\widetilde{\delta} \to \widetilde{\xi}_i^{\pm}$. It follows from the results of the previous subsection that this morphism identifies $\widetilde{\xi}_i^{\pm}$ with $\widetilde{\delta}(b_i^{\mp})$. Since $\widetilde{\xi}_{x_i} = \widetilde{\xi}_i^{+} \oplus \widetilde{\xi}_i^{-}$ and $\Lambda^2 \widetilde{\xi}_{x_i} \simeq O_{\mathcal{M}_1}$, we have $\widetilde{\xi}_i^{-} \simeq (\widetilde{\xi}_i^{+})^*$. Hence $(\widetilde{\delta})^{\otimes 2} \simeq O_{\mathcal{M}_1}(-b_i^{+}-b_i^{-})$ and $(\widetilde{\xi}_i^{\pm})^{\otimes 2} \simeq O_{\mathcal{M}_1}(b_i^{\mp}-b_i^{\pm})$. But $\widetilde{\xi}_i^+$ (resp. $\widetilde{\delta}$) corresponds to ξ_i (resp. $\delta \otimes \xi_1$) via the identification $\mathcal{M}_1 = \mathcal{M}$. The statement follows immediately.

5 Cohomology of invertible sheaves on M

In this section, we prove Theorem 2.

5.1 The least smooth compactification $\overline{M} \supset M$

Set $\overline{K} := \mathbf{P}(O_{\mathbf{P}^1} \oplus \Omega_{\mathbf{P}^1}(x_1 + \dots + x_4))$. K is the open subscheme $\overline{K} \setminus s_{\infty}$, where s_{∞} is 'the infinite section.' Blowing up $c_i^{\pm} \subset \overline{K}$, we obtain a variety \overline{M} , which is a smooth compactification

of $\widetilde{M}_1 \supset M_1 = M$. $\overline{M} \setminus M$ consists of the five irreducible components $s'_{\infty}, b'_1, \ldots, b'_4$ (the proper preimages of $s_{\infty}, b_1, \ldots, b_4 \subset \overline{K}$). Clearly on \overline{K} we have $(s_{\infty}, \overline{b}_i) = 1$, $(\overline{b}_i, \overline{b}_j) = 0$, and $(s_{\infty}, s_{\infty}) = -2$. This implies

$$(s'_{\infty}, s'_{\infty}) = (b'_{i}, b'_{i}) = -2,$$
 $(s'_{\infty}, b'_{i}) = 1.$ (2)

Corollary 5. \overline{M} is the least smooth compactification of M (i.e., any smooth compactification of M dominates \overline{M}).

Proof. Let \overline{M}' be another smooth compactification of M. Then there is a smooth compactification \overline{M}'' that dominates \overline{M} and \overline{M}' . The morphisms $f: \overline{M}'' \to \overline{M}$ and $f': \overline{M}'' \to \overline{M}'$ are compositions of σ -processes, and we may assume that the number of these σ -processes is minimal. Let us prove that f' is an isomorphism.

Assume the converse. Then there is an exceptional curve $C' \subset \overline{M}''$ of the first kind such that dim f'(C') = 0. Clearly $C' \cap M = \emptyset$.

 $\overline{M}'' \setminus M$ has the following irreducible components: b_i'', s_{∞}'' (the proper preimages of b_i', s_{∞}'), and curves C such that dim f(C) = 0. $(b_i'')^2 \le (b_i')^2 < -1$ and $(s_{\infty}'')^2 \le (s_{\infty}')^2 < -1$, so dim f(C') = 0. But this contradicts the hypothesis that the number of σ -processes is minimal.

Remark. Let us interpret \overline{K} and \overline{M} as moduli spaces. Denote by \overline{K}_1 the coarse moduli space of $(\widetilde{L}_0 \subset \widetilde{L}, A, \varphi)$ such that \widetilde{L}_0 is an invertible sheaf of degree 0 on \mathbf{P}^1 , \widetilde{L} is a rank 2 locally free sheaf of degree -1 on \mathbf{P}^1 , A: $\widetilde{L}_0 \to \widetilde{L} \otimes \Omega_{\mathbf{P}^1}(x_1 + \cdots + x_4)$, Im $A \cap \widetilde{L}_0 = 0$, and $\varphi: \Lambda^2 \widetilde{L} \cong O_{\mathbf{P}^1}(-x_1)$. The isomorphism $K_1 \cong K$ from Proposition 8 can be extended to $\overline{K}_1 \cong \overline{K}$.

Denote by \overline{M}_1 the coarse moduli space of $((\widetilde{L}_0 \subset \widetilde{L}, A, \phi); \widetilde{l}_1^+, \widetilde{l}_1^-, \ldots, \widetilde{l}_4^+, \widetilde{l}_4^-)$ such that $(\widetilde{L}_0 \subset \widetilde{L}, A, \phi)$ corresponds to a point of $\overline{K}_1, \widetilde{l}_i^\pm \subset \widetilde{L}_{x_i}$ is a 1-dimensional subspace, and $\widetilde{l}_i^\pm \supset$ (res $A - \lambda_i^{\mp})(\widetilde{L}_0)_{x_i}$. Then there is an isomorphism $\overline{M}_1 \xrightarrow{\sim} \overline{M}$ such that the two compositions $\overline{M}_1 \xrightarrow{\sim} \overline{M} \rightarrow \overline{K}$ and $\overline{M}_1 \rightarrow \overline{K}_1 \xrightarrow{\sim} \overline{K}$ coincide.

5.2 The geometry of $\overline{M} \setminus M$

Set $D := 2s'_{\infty} + b'_1 + \cdots + b'_4$. Then

$$(D, D) = (D, s'_{\infty}) = (D, b'_i) = 0.$$
 (3)

Since $\Omega_{\overline{K}}^2 \simeq O_{\overline{K}}(-4\bar{b}_i - 2s_\infty)$, we have $\Omega_{\overline{M}}^2 \simeq O_{\overline{M}}(-D)$.

Notation. For a positive divisor C, we denote the corresponding subscheme by the same letter C.

 $\label{eq:consider} \text{Consider} \ D \subset \overline{M} \ \text{as a reducible nonreduced subscheme. Then} \ b_i', \ s_\infty', \ \text{and} \ 2s_\infty' \ \text{are closed subschemes of } D.$

By the Riemann-Roch theorem, $\chi(O_D) = -D(D + K)/2$, where K = -D is the canonical class of \overline{M} . So $\chi(O_D) = 0$. This implies the following statement.

Proposition 11. Let \mathcal{E} be a locally free sheaf on D. Then $\chi(\mathcal{E}) = 2 \deg(\mathcal{E}|_{s'_{\infty}}) + \sum_{i=1}^{4} \deg(\mathcal{E}|_{b'_{i}})$.

Lemma 8. Let \mathcal{E} be a nontrivial invertible sheaf on D such that deg $\mathcal{E}|_{s'_{\infty}} = 0$, and either deg $\mathcal{E}|_{b'_{i}} = 0$ for all i, or one of the numbers deg $\mathcal{E}|_{b'_{i}}$ is -1, another one is 1, and the remaining two equal zero. Then $H^{k}(D, \mathcal{E}) = 0$ for all k.

Proof. By Proposition 11, $\chi(\mathcal{E}) = 0$. So it is enough to prove that $H^0(D, \mathcal{E}) = 0$.

Assume the converse. Let $f \in H^0(D, \mathcal{E})$, $f \neq 0$. $\chi(\mathcal{E}) = \chi(O_D)$, $\mathcal{E} \not\simeq O_D$, so f is zero on one of the irreducible components of D.

We may assume that deg $\mathcal{E}|_{b_i'} \leq 0$ for $i \neq 1$. The closed subscheme $D_1 := s_{\infty}' + \sum_{i \neq 1} b_i \subset D$ is reduced and connected. Besides, $\mathcal{E}|_{D_1}$ has nonpositive degree on any irreducible component of D_1 . So either $f|_{D_1} = 0$, or $f|_{D_1}$ has no zero. In the second case, $f|_C \neq 0$, where $C \subset D$ is any irreducible component. Therefore $f \in \text{Ker}(H^0(D,\mathcal{E}) \to H^0(D_1,\mathcal{E}))$. In other words, $f \in H^0(D,\mathcal{E} \otimes I_{D_1})$, where $I_{D_1} := \{\tilde{f} \in O_D : |\tilde{f}|_{D_1} = 0\}$ is the sheaf of ideals of $D_1 \subset D$.

We have $I_{D_1} = O_{\overline{M}}(-D_1)/O_{\overline{M}}(-D)$, supp $I_{D_1} = s'_{\infty} + b'_1$. So deg $I_{D_1}|_{b'_1} = deg O(-D_1)|_{b'_1} = -1$. Therefore $deg(\mathcal{E} \otimes I_{D_1})|_{b'_1} = deg \mathcal{E}|_{b'_1} - 1 \leq 0$. In the same way, $deg(\mathcal{E} \otimes I_{D_1})|_{s'_{\infty}} = deg \mathcal{E}|_{s'_{\infty}} - 1 = -1$. Since $\mathcal{E} \otimes I_{D_1}$ is an invertible sheaf on the connected reduced scheme $s'_{\infty} + b'_1$, this implies $f \in H^0(D, \mathcal{E} \otimes I_{D_1}) = 0$.

 $\operatorname{Set}\operatorname{Pic}^0\mathsf{D}:=\{\mathcal{E}\in\operatorname{Pic}\mathsf{D}|\operatorname{deg}(\mathcal{E}|_{s'_{\infty}})=0,\operatorname{deg}(\mathcal{E}|_{b'_i})=0 \text{ for all } i\}.$

Proposition 12. $Pic^0 D \simeq A^1$.

 $\text{Proof.} \quad \text{Set } D_{\text{red}} := s_\infty' + \textstyle\sum_{i=1}^4 b_i' \subset D. \text{ Then } \operatorname{Pic}^0 D = \text{Ker}(\operatorname{Pic} D \to \operatorname{Pic} D_{\text{red}}).$

Set $O' := \text{Ker}(O_D^* \to O_{D_{red}}^*)$. Then the exact sequence $0 \to O' \to O_D^* \to O_{D_{red}}^* \to 1$ defines an isomorphism $H^1(D, O') \to \text{Pic}^0 D$. But O' is a locally free $O_{s'_{\infty}}$ -module of degree $-(s'_{\infty}, D_{red}) = -2$. Hence $\text{Pic}^0 D$ is a 1-dimensional C-space.

Lemma 9. If $2\lambda_i \notin \mathbf{Z}$ for any i, then M contains no projective curve.

Proof. Fix a point $x \in \mathbf{P}^1 \setminus \{x_1, \ldots, x_4\}$. Consider the fundamental group $G := \pi_1(x, \mathbf{P}^1 \setminus \{x_1, \ldots, x_4\})$. G is generated by the loops γ_i around x_i with the relation $\gamma_1 \times \cdots \times \gamma_4 = e$. Denote by W the moduli space of representations ρ : $G \to SL(2)$ such that $\rho(\gamma_i)$ has eigenvalues $\exp(\pm 2\pi\sqrt{-1}\lambda_i)$. Clearly W is an affine scheme.

The Riemann-Hilbert correspondence gives an analytic isomorphism $M_{an} \xrightarrow{\sim} W_{an}$. But W_{an} contains no compact curve, so M contains no projective curve.

Remark. Consider the case of n points on any curve for any n. Then one can prove in the same way that the only projective subvarieties in M are finite sets.

Lemma 10. The sheaf $\mathcal{N}_D := O_{\overline{M}}(D)|_D$ is not trivial.

Proof. Assume the converse. Let σ be a global section of \mathcal{N}_D with no zeros. \overline{M} is a smooth rational projective variety, $H^1(\overline{M}, O_{\overline{M}}) = 0$, and therefore $\sigma \in H^0(D, \mathcal{N}_D) = H^0(\overline{M}, O_{\overline{M}}(D)/O_{\overline{M}})$ can be lifted to $s \in H^0(\overline{M}, O_{\overline{M}}(D))$. Then (s) is an effective divisor equivalent to D, and supp(s) $\subset M$. This contradicts Lemma 9.

Remark. One can give a direct (but more complicated) proof of this lemma.

Corollary 6. $H^{i}(D, (\mathcal{N}_{D})^{\otimes k}) = 0$ for $k \neq 0$.

Proof. By (3), $\mathcal{N}_D \in \text{Pic}^0 D$. Lemma 10 and Proposition 12 imply $(\mathcal{N}_D)^{\otimes k} \not\simeq O_D$ for $k \neq 0$. Lemma 8 completes the proof.

5.3 Calculation of cohomology

Let \mathcal{E} be an invertible sheaf on \mathcal{M} . We set deg $\mathcal{E} := (\overline{\mathcal{E}}, D)$, where $\overline{\mathcal{E}}$ is an extension of \mathcal{E} to an invertible sheaf on $\overline{\mathcal{M}}$. (3) implies that deg \mathcal{E} is well defined. Besides, it follows from Proposition 10 that deg: Pic $\mathcal{M} \to \mathbf{Z}$ coincides with deg from Theorem 2.

If $\overline{\mathcal{E}}$ is an invertible sheaf on \overline{M} , $\mathcal{E} = \overline{\mathcal{E}}|_{M}$, then $H^{j}(M, \mathcal{E}) = \lim_{\to} H^{j}(\overline{M}, \mathcal{E}(kD))$. But $H^{*}(\overline{M}, O_{\overline{M}}(kD)/O_{\overline{M}}((k-1)D)) = 0$ for $k \neq 0$ (see Corollary 6). Hence $H^{j}(M, O_{M}) = H^{j}(\overline{M}, O_{\overline{M}})$, and the statement (iii) of Theorem 2 follows from the rationality of \overline{M} .

If deg $\mathcal{E} = 0$, one can choose an extension $\overline{\mathcal{E}}$ such that $(\overline{\mathcal{E}}, s'_{\infty}) = 0$ and either $(\overline{\mathcal{E}}, b'_i) = 0$ for all i, or one of the numbers $(\overline{\mathcal{E}}, b'_i)$ is 1, another one is -1, and the remaining two are zero. Then Lemmas 8 and 10 and Proposition 12 imply that for all $k \in \mathbb{Z}$, maybe except for one value, $H^*(\overline{M}, \overline{\mathcal{E}}(kD)/\overline{\mathcal{E}}((k-1)D)) = 0$. Hence, dim $H^j(M, \mathcal{E}) < \infty$ and

$$\chi(\mathcal{E}) = \chi(\overline{\mathcal{E}}) = 1 + \frac{(\overline{\mathcal{E}}, \overline{\mathcal{E}}(\mathsf{D}))}{2} = 1 + \frac{(\overline{\mathcal{E}}, \overline{\mathcal{E}})}{2}.$$

One can check that $(\overline{\mathcal{E}}, \overline{\mathcal{E}})/2 = [\langle \mathcal{E}, \mathcal{E} \rangle/2]$, where \langle , \rangle is the bilinear form from Theorem 2. So statement (iv) of Theorem 2 follows from Lemma 11.

Lemma 11. If deg
$$\mathcal{E} \leq 0$$
, $\mathcal{E} \not\simeq O_M$, then $H^0(M, \mathcal{E}) = 0$.

Proof. Suppose $H^0(M, \mathcal{E}) \neq 0$, $\mathcal{E} \not\simeq O_M$. Then $\mathcal{E} \simeq O_M(C)$, C > 0. So deg $\mathcal{E} = (\overline{C}, D)$, where \overline{C} is the closure of C in \overline{M} . Hence by Lemma 9, deg $\mathcal{E} > 0$.

Now we prove statement (i) of Theorem 2. Suppose deg $\mathcal{E} > 0$, $\overline{\mathcal{E}}$ is an extension of \mathcal{E} to \overline{M} . Then $\chi(\overline{\mathcal{E}}(kD)) \to \infty$ as $k \to \infty$. Since $H^2(\overline{M}, \overline{\mathcal{E}}(kD)) = 0$ for $k \gg 0$, we have dim $H^0(\overline{M}, \overline{\mathcal{E}}(kD)) \to \infty$ as $k \to \infty$, that is, dim $H^0(M, \mathcal{E}) = \infty$. Since $H^0(M, \mathcal{E}) \neq 0$, $\mathcal{E} \simeq O_M(C)$ for some C > 0. But $H^1(M, O_M) = 0$, and C is affine (see Lemma 9), so $H^1(M, \mathcal{E}) = 0$.

To complete the proof of Theorem 2, we should check that if deg $\mathcal{E} < 0$, then dim $H^1(M, \mathcal{E}) = \infty$. Since $H^0(M, \mathcal{E}^{-1}) \neq 0$, $\mathcal{E} \simeq O_M(-C)$ for some C > 0. Since C is affine and $H^0(M, O_M)$ is finite-dimensional, it is enough to use the exact sequence $0 \rightarrow O_M(-C) \rightarrow O_M \rightarrow O_M/O_M(-C) \rightarrow 0$.

Acknowledgments

We are very grateful to V. Drinfeld for stating problems and for numerous stimulating discussions. The authors were partially supported by INTAS grant 94-4720.

References

- D. Arinkin and S. Lysenko, *Invertible sheaves on moduli spaces of* SL(2)-bundles with connections on P¹, Dokl. Akad. Nauk. Ukraine 6 (1997), 7–11 (in Russian).
- [2] —, Isomorphisms between moduli spaces of SL(2)-bundles with connections on $\mathbf{P}^1 \setminus \{x_1, \ldots, x_4\}$, Math. Res. Lett. **4** (1997), 181–190.
- [3] Y. Laszlo and C. Sorger, The line bundles on the moduli of parabolic G-bundles over curves and their sections, Ann. Sci. École Norm. Sup. (4) 30 (1997), 499–525.
- [4] G. Laumon, Correspondance de Langlands géométrique pour les corps de fonctions, Duke Math. J. 54 (1987), 309–359.
- [5] G. Laumon and L. Moret-Bailly, *Champs algébriques*, preprint, Université Paris 11 (Orsay), 1992.
- [6] N. Nitsure, Moduli of semistable logarithmic connections, J. Amer. Math. Soc. 6 (1993), 597–609.
- [7] K. Okamoto, Isomonodromic deformation and Painlevé equations, and the Garnier system, J. Fac. Sci. Univ. Tokyo Sect. IA Math. 33 (1986), 575–618.
- [8] —, Studies on the Painlevé equations, I: Sixth Painlevé equation PVI, Ann. Mat. Pura Appl. 146 (1987), 337–381.
- [9] ——, Sur les feuilletages associés aux équation du second ordre à points critiques fixes de P. Painlevé. Espaces de conditions initiales, Japan J. Math. 5 (1979), 1–79.
- [10] C. Simpson, "Nonabelian Hodge theory" in Proc. Internat. Cong. Math., Vol. I, II (Kyoto, 1990), Math. Soc. Japan, Tokyo, 1991, 747–756.

Physico-Technical Institute of Lower Temperatures, Mathematical Division, Lenin Avenue 47, Kharkov-164, 310164, Ukraine.

Current address of D. Arinkin: Department of Mathematics, Harvard University, Cambridge, Massachusetts 02138, USA; arinkin@math.harvard.edu