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On the Moduli of SL(2)-bundles with Connections on

P1 \ {x1, . . . , x4}

D. Arinkin and S. Lysenko

Introduction

The moduli spaces of bundles with connections on algebraic curves have been studied

from various points of view (see [6], [10]). Our interest in this subject was motivated by

its relation with the Painlevé equations, and also by the important role of bundles with

connections in the geometric Langlands program [4] (for more details see the remarks at

the end of the introduction).

In this work, we consider SL(2)-bundles on P1 with connections. These connec-

tions are supposed to have poles of order 1 at fixed n points, and the eigenvalues ±λi
of the residues are fixed. We call these bundles (λ1, . . . , λn)-bundles. Our aim is to find

all invertible sheaves on the moduli space of (λ1, . . . , λn)-bundles and to compute the

cohomology of these sheaves for n = 4.

In this work, the ground field is C, that is, ‘space’ means ‘C-space’, P1 means P1
C,

and so on.

Let us formulate the main results of this work.

Fix x1, . . . , xn ∈ P1(C), n ≥ 4, xi 6= xj for i 6= j, and λ1, . . . , λn ∈ C.

Definition 1. A (λ1, . . . , λn)-bundle on P1 is a triple (L,∇, ϕ) such that L is a rank 2 vector

bundle on P1, ∇: L→ L⊗ΩP1 (x1 + · · · + xn) is a connection, ϕ: Λ2L→̃OP1 is a horizontal

isomorphism, and the residue Ri of the connection ∇ at xi has eigenvalues ±λi, 1 ≤ i ≤ n.
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In the sequel, we suppose that

n∑
i=1

εiλi /∈ Z (1)

for any (εi), εi ∈ µ2 := {1,−1}.
Denote by M the moduli stack of (λ1, . . . , λn)-bundles, and byM the corresponding

coarse moduli space.

Theorem 1. Suppose that (1) holds and λ1, . . . , λn 6= 0. Then

(i) M is a smooth irreducible separated scheme, dimM = 2n − 6, and M is a

µ2-gerbe over M;

(ii) Hi(M,F) = 0 for i > n− 3 for any quasicoherent OM-module F;

(iii) Pic M is the free abelian group with generators δ, ξ1, . . . , ξn. Here δ (resp.

ξi) is the invertible sheaf on M whose fiber over (L,∇, ϕ) equals detRΓ (P1, L) (resp. li :=
Ker(Ri − λi) ⊂ Lxi , Ri: Lxi → Lxi is the residue of ∇ at xi);

(iv) PicM ⊂ Pic M is an index 2 subgroup, ξ1, . . . , ξn /∈ PicM, δ ∈ PicM;

(v) the cohomology class [α] ∈ H2
ét

(M,µ2) corresponding to the µ2-gerbe M →
M is the image of the nonzero element of 2 Pic M/2 PicM via the canonical embedding

PicM/2 PicM→ H2
ét

(M,µ2). In particular, [α] 6= 0.

Theorem 2. Letn = 4. Suppose that (1) holds and 2λi /∈ Z, 1 ≤ i ≤ 4. Define deg: PicM→ Z

by deg(aδ+∑4
i=1 aiξi) := −a. Let γ be an invertible sheaf on M.

(i) If degγ > 0, then dimH0(M,γ) = ∞, Hi(M,γ) = 0 for i 6= 0.

(ii) If degγ < 0, then dimH1(M,γ) = ∞, Hi(M,γ) = 0 for i 6= 1.

(iii) If γ ' OM, then dimH0(M,γ) = 1, Hi(M,γ) = 0 for i 6= 0.

(iv) If degγ = 0 and γ 6' OM, then dimH1(M,γ) = −[〈γ, γ〉/2]− 1, Hi(M,γ) = 0 for

i 6= 1. Here the bilinear form 〈·, ·〉 is defined by〈
4∑
i=1

aiξi,

4∑
i=1

biξi

〉
:= −

∑4
i=1 aibi

2
,

and [a] is the integral part of a.

Let us describe the general plan of this work.

In the first part (Sections 1–3), we study (λ1, . . . , λn)-bundles for arbitrary n.

In Section 1, we prove the basic properties of (λ1, . . . , λn)-bundles. We prove that

M is a separated algebraic space. All the results of this section are still valid for any

curve.

In Section 2,we construct an affine bundleM→ N,whereN is the coarse moduli

space of quasiparabolic bundles of a certain kind. We use this construction to prove that
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M is a smooth scheme of dimension 2n−6 and to show that the cohomological dimension

of M is at most n− 3.

Section 3 contains the calculation of the Picard group ofM. This calculation uses

the ideas of [3]. We also compute the cohomology class of the gerbe M→M.

In Sections 4 and 5, we assume that n = 4.

In Section 4,we give an explicit geometric description ofM. This description goes

back to Okamoto ([7], [9]) who studiedM as the space of initial conditions of the Painlevé

equation PVI rather than the moduli space of bundles with connections.

In Section 5, we compute the cohomology of invertible sheaves on M.

Remarks. (1) The description of PicM from Theorem 1 was used in [2] to describe all

the isomorphisms between the varieties M for n = 4, and thereby to give a geometric

explanation of the mysterious symmetries of the PVI equation found by Okamoto [8].

(2) Theorem 2 was used by one of the authors (D. Arinkin) to prove the following

orthogonality relations: if n = 4 and x, y ∈ P1 \ {x1, . . . , x4}, then

Hi(M, ξx ⊗ ξy) = 0 unless x = y, i = 0, and

H0(M, ξx ⊗ ξx) = C

where ξx is the vector bundle on M whose fiber at (L,∇, ϕ) equals Lx. These formulas can

be interpreted in terms of the geometric Langlands program.

(3) The results of this paper were announced in [1].

1 (λ1, . . . , λn)-bundles

1.1 Basic properties of (λ1, . . . , λn)-bundles

Let (L,∇, ϕ) be a (λ1, . . . , λn)-bundle.

Proposition 1. (L,∇) is irreducible (i.e., there is no rank 1 ∇-invariant subbundle L1 ⊂ L).

Proof. Suppose there is an invariant rank 1 subbundle L1 ⊂ L. Then ∇1 := ∇|L1 is a

connection on L1. (L1)xi ⊂ Lxi is an eigenspace of Ri := resxi (∇). Hence resxi (∇1) is an

eigenvalue ofRi, that is, resxi (∇1) = ±λi. But
∑n

i=1 resxi (∇1) = −degL1 ∈ Z. This contradicts

(1).

Remark 4. Denote by V the fiber of L over the generic point of P1. V is a 2-dimensional

vector space over C(z) (here Spec C(z) ∈ P1 is the generic point); 1-dimensional subspaces

of V correspond to rank 1 subbundles of L. ∇ induces a C-linear morphism V → V ⊗C(z)



986 Arinkin and Lysenko

ΩSpec(C(z)). So the proposition implies that V is irreducible (as a C(z)-space) with respect

to this morphism.

Corollary 1. The only automorphisms of (L,∇, ϕ) are 1 and −1 (in other words, the group

of automorphisms of (L,∇, ϕ) is µ2).

Proof. Let A be any automorphism of (L,∇, ϕ). Clearly it has an eigenvalue e ∈ C. Then

Ker(A− e) ⊂ L is an invariant subbundle, Ker(A− e) 6= 0, so Ker(A− e) = L and A = e. But

det(A) = 1, so A = ±1.

Corollary 2. Let L1 ⊂ L be a rank 1 subbundle. Then degL1 ≤ (n− 2)/2.

Proof. By Proposition 1, the map L1 → (L/L1) ⊗ ΩP1 (x1 + · · · + xn) induced by ∇ is not

zero. So degL1 ≤ deg(L/L1)+ n− 2. The corollary easily follows.

Remark. Let us consider (λ1, . . . , λn)-bundles on a curve of genus g > 0. Then Proposition

1 is still true, and Corollary 2 has the form

degL1 ≤ n+ 2g− 2

2
.

1.2 Moduli space of (λ1, . . . , λn)-bundles

The notion of a family of (λ1, . . . , λn)-bundles on P1 is defined in the usual way. (λ1, . . . , λn)-

bundles on P1 form a stack M. So MS (the category of 1-morphisms from S to M) is the

category of families of (λ1, . . . , λn)-bundles parametrized by a scheme S.

Proposition 2. M is a separated algebraic stack.

Proof. Denote by BunSL(2)P1 the moduli stack of SL(2)-bundles on P1. It is well known

([5, Theorem 4.14.2.1]) that BunSL(2)P1 is an algebraic stack. Clearly the natural map M→
BunSL(2)P1 is a representable (and even affine) 1-morphism of stacks. Hence M is algebraic.

Using the valuative criterion for algebraic stacks ([5,Theorem 3.19,Remark 3.20.2]),

one can derive from Lemma 1 that M is separated.

Lemma 1. Let A be a discrete valuation ring, K the fraction field of A, η := Spec(K),

y0 = (L0,∇0, ϕ0) ∈ Ob(Mη) (i.e., y0 is a family of (λ1, . . . , λn)-bundles parametrized by η). If

an extension of y0 to y ∈ Ob(MU), U := Spec(A) exists, it is unique.

Proof. Let yi = (Li,∇i, ϕi) ∈ Ob(MU), i = 1, 2 be two extensions of y0. Denote by Fi the

sheaf of sections of Li, i = 0, 1, 2. Let F̃0 be the direct image of F0 to U×P1. Then ∇0 (resp.

ϕ0) induces a connection ∇: F̃0 → F̃0⊗ΩP1 (x1+ · · · + xn) (resp. a horizontal isomorphism
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ϕ: Λ2F̃0→̃Oη×P1 ). Since yi is an extension of y0, Fi is identified with a subsheaf of F̃0; this

identification agrees with ∇ and ϕ. Set F := F1 ∩ F2.

Denote by k the residue field of A (so Spec k ∈ U is the special point), and by

p ∈ P1
k ⊂ U× P1 the generic point of the special fiber P1

k ⊂ U× P1.

There is i ∈ {1, 2} such that F(P1
k) 6⊂ Fi. We may assume that i = 1.

Denote by V1 the fiber of L1 over p, and by V ⊂ V1 the image of F ⊂ F1. Since

F 6⊂ F1(−P1
k), we have V 6= 0.

∇(Fi) ⊂ Fi ⊗ΩP1 (x1 + · · · + xn), so ∇(F) ⊂ F ⊗ΩP1 (x1 + · · · + xn). Therefore V ⊂ V1

is ∇-invariant and, by Remark 4, V = V1.

F ⊂ F1 is locally free so F = F1 and F2 ⊃ F1. But ϕ(Λ2F1) = ϕ(Λ2F2), so F2 = F1.

For a scheme S, denote by M(S) the set of isomorphism classes of families of

(λ1, . . . , λn)-bundles parametrized by S. Denote by M the sheaf for the fppf-topology as-

sociated with the presheaf M.

By Corollary 1,M is a µ2-gerbe over M. In particular, the 1-morphism M→M is

smooth, surjective, and proper. This implies that M is a separated algebraic space (M is

the coarse moduli space of (λ1, . . . , λn)-bundles).

2 Structure of affine bundle on M

2.1 Quasiparabolic bundles

A quasiparabolic SL(2)-bundle on P1 is a collection (L,ϕ, l1, . . . , ln) such that L is a rank

2 vector bundle on P1, ϕ: Λ2L→̃OP1 , and li ⊂ Lxi is a 1-dimensional subspace. Quasi-

parabolic SL(2)-bundles form a stack N. Using the same arguments as in Proposition 2,

one can prove that N is algebraic.

Suppose that λ1, . . . , λn 6= 0. For a (λ1, . . . , λn)-bundle (L,∇, ϕ),we construct a quasi-

parabolic SL(2)-bundle (L,ϕ, l1, . . . , ln) by setting li := Ker(Ri−λi),where Ri: Lxi → Lxi is the

residue of ∇ at xi. This yields a morphism f: M→ N. Let us give an explicit description

of the image of f.

Proposition 3. For a quasiparabolic SL(2)-bundle (L,ϕ, l1, . . . , ln), the following condi-

tions are equivalent:

(i) (L,ϕ, l1, . . . , ln) belongs to the image of f: M→ N;

(ii) Aut(L,ϕ, l1, . . . , ln) = µ2;

(ii′) End(L, l1, . . . , ln) = C;

(iii) (L,ϕ, l1, . . . , ln) is indecomposable; that is, there are no L1, L2 6= 0 such that

L = L1 ⊕ L2, and for any i, either li = (L1)xi or li = (L2)xi .
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Proof (i)⇒ (iii). Suppose (L,ϕ, l1, . . . , ln) belongs to the image of f; that is, there is a

∇: L→ L⊗ΩP1 (x1+· · ·+xn) such that (L,∇, ϕ) is a (λ1, . . . , λn)-bundle and li = Ker(Ri−λi).
Suppose L = L1 ⊕ L2 for L1, L2 6= 0. The composition ∇1: L1 → L

∇→L⊗ΩP1 (x1 + · · · + xn)→
L1 ⊗ΩP1 (x1 + · · · + xn) is a connection on L1. (1) implies that resxi ∇1 6= ±λi for some i. It

is easy to prove that li 6= (L1)xi , (L2)xi for this i.

(iii) ⇒ (ii′). Suppose A ∈ End(L, l1, . . . , ln). Denote by e1, e2 ∈ C the eigenvalues of

A. If e1 6= e2, L can be decomposed to the direct sum of the eigenspaces of A.

Assume that e1 = e2. Replacing A by A− e1, we can assume that e1 = e2 = 0. Let

us prove that A = 0. Assume the converse. Then L1 := Ker(A) ⊂ L is a rank 1 subbundle.

Set T := {i|li 6= (L1)xi}. Locally on P1 we can construct L2 such that L1⊕L2 = L, (L2)xi = li for

i ∈ T . Obstructions to global existence of L2 lie in H1(P1,Hom(L/L1, L1)(−∑i∈T xi)). Since

(L, l1, . . . , ln) is indecomposable, this space is not zero. So deg(Hom(L/L1, L1)(−∑i∈T xi)) <

−1, and {A1 ∈ Hom(L/L1, L1)|A1(xi) = 0 for i ∈ T } = H0(P1,Hom(L/L1, L1)(−∑i∈T xi)) = 0.

Clearly A induces a map A1: L/L1 → L1 such that A1(xi) = 0 for i ∈ T . Hence A1 = 0 and

A = 0.

(ii′) ⇒ (i). Let us construct a connection ∇: L → L ⊗ΩP1 (x1 + · · · + xn) such that

(L,∇, ϕ) is a (λ1, . . . , λn)-bundle, and li = Ker(Ri − λi). This can be done locally on P1. The

obstructions to global construction lie inH1(P1,E),where E := {A ∈ End0(L)⊗ΩP1 (x1+· · ·+
xn)|(resxi A)(li) = 0}. Here End0(L) := {A ∈ End(L)| trA = 0}. By Serre’s duality theorem,

H1(P1,E) is dual to H0(P1, {A ∈ End0(L)|A(xi)(li) ⊂ li}) = {A ∈ End(L, l1, . . . , ln)| tr(A) = 0} =
0. So there is a global ∇ with such properties.

(ii′) ⇒ (ii). This implication is obvious since Aut(L,ϕ, l1, . . . , ln) = {A ∈ End(L, l1,

. . . , ln)|det(A) = 1}.
(not (iii)) ⇒ (not (ii)). Let L = L1 ⊕ L2 be a decomposition of L. Then a ⊕ a−1 ∈

Aut(L,ϕ, l1, . . . , ln) for a ∈ C∗.

Remark. The proof of the implication (iii) ⇒ (ii′) does not work for curves of genus

g > 0, because it uses the following property of P1: for every line bundle F on P1, either

H0(P1,F) = 0 or H1(P1,F) = 0.

If (L,ϕ, l1, . . . , ln) satisfies the equivalent conditions of Proposition 3, the fiber of

f over (L,ϕ, l1, . . . , ln) consists of all (λ1, . . . , λn)-bundles (L,∇, ϕ) such that li = Ker(Ri−λi).
Such ∇ form an affine space of dimension n−3 because the corresponding vector space is

dual to H1(P1,End0(L, l1, . . . , ln)), and the Euler characteristic of End0(L, l1, . . . , ln) equals

χ(End0 L)− n = 3− n.

Denote by N ⊂ N the open substack defined by condition (ii′) from Proposition 3.

f induces the morphism f: M→ N, which is a locally trivial affine bundle with fibers of

dimension n− 3.
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Denote by N the coarse moduli space of indecomposable quasiparabolic SL(2)-

bundles on P1. The construction of the algebraic space N is similar to that of M (see

Section 1.2). N is a µ2-gerbe over N.

2.2 Modifications

Suppose L is a rank 2 bundle on P1, x ∈ P1, and l ⊂ Lx is a dimension 1 subspace. Denote

by L the sheaf of sections of L. The lower (resp. upper) (x, l)-modification of L is the rank

2 bundle on P1 whose sheaf of sections is L̃ := {s ∈ L|s(x) ∈ l} (resp. L̃(x)). If L̃ is the lower

(x, l)-modification of L, the image of the natural map L̃x → Lx is l. Denote by l̃ ⊂ L̃x the

kernel of this map. Then L is the upper (x, l̃)-modification of L̃.

Suppose (L, l1, . . . , ln) is a quasiparabolic bundle on P1 (i.e., L is a rank 2 bundle on

P1, and li ⊂ Lxi is a dimension 1 subspace). Then the lower (xi, li)-modification L̃ of L has

a natural structure of a quasiparabolic bundle, namely, (̃L, l1, . . . , l̃i, . . . , ln), where l̃i :=
Ker(̃Lxi → Lxi ). Similarly, the upper (xi, li)-modification of (L, l1, . . . , ln) is a quasiparabolic

bundle.

Clearly (̃L, l1, . . . , l̃i, . . . , ln) is indecomposable if and only if (L, l1, . . . , ln) is inde-

composable.

Lemma 2. Suppose (L, l1, . . . , ln) is an indecomposable quasiparabolic bundle on P1. Then

making (xi, li)-modifications in some of the points xi, one can transform (L, l1, . . . , ln) to

(L′, l′1, . . . , l
′
n) such that L′ ' OP1 (k′)2 for some k′.

Proof. Since L is a rank 2 bundle on P1, L ' OP1 (k)⊕OP1 (l) for some k, l ∈ Z, k ≥ l. The

proof is given by induction on k− l.
For k− l = 0, there is nothing to prove.

Suppose k − l > 0. Denote by L1 ⊂ L the rank 1 subbundle of degree k. Since

(L, l1, . . . , ln) is indecomposable, li 6= (L1)xi for some i. Let L̃ be the lower (xi, li)-modification

of L. Then L1 defines a rank 1 subbundle L̃1 ⊂ L̃ of degree k − 1. Clearly L̃/̃L1 = L/L1, so

deg(̃L/̃L1) = l. Hence L̃ ' OP1 (k−1)⊕OP1 (l). By the induction hypothesis, L̃ can be modified

to (L′, l′1, . . . , l
′
n) such that L′ ' OP1 (k′)2 for some k′ ∈ Z.

Let us return to the case of SL(2)-bundles.

Let (L,ϕ, l1, . . . , ln) be a quasiparabolic SL(2)-bundle, T ⊂ {1, . . . , n}. Denote by

(L′, l′1, . . . , l
′
n) the lower modification of (L, l1, . . . , ln) at (xi, li) for all i ∈ T (clearly, mod-

ifications at different points commute). Then ϕ induces an isomorphism ϕ′: Λ2L′→̃
OP1 (−∑i∈T xi). Suppose that Card T = 2k, where Card T is the number of elements of

the set T . We choose an isomorphism s: OP1 (2kx1 −
∑

i∈T xi)→̃OP1 . s ◦ϕ′ gives a structure
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of quasiparabolic SL(2)-bundle on L′(kx1). This defines an automorphism fT : N→̃N. Since

fT (N) = N, this gives fT : N→̃N. Obviously, fT does not depend on s.

Denote by Γ the set of all T ⊂ {1, . . . , n} such that Card T is even. Γ is an abelian

group with respect to the product T14T2 := (T1 ∪ T2) \ (T1 ∩ T2).

Proposition 4. (i) fT1 ◦ fT2 = fT14T2 (T1, T2 ∈ Γ ).

(ii) Denote by N0 ⊂ N the open subspace formed by trivial SL(2)-bundles (i.e.,

(L,ϕ, l1, . . . , ln) ∈ N0 if and only if L ' O2
P1 ). Then

⋃
T∈Γ fT (N0) = N.

Proof. Statement (i) is obvious. Statement (ii) follows from Lemma 2.

2.3 Geometry of N

Let N0 have the same meaning as in Proposition 4(ii).

Lemma 3. N0 is a smooth irreducible nonseparated scheme of dimension n− 3.

Proof. Denote byU the set of (l1, . . . , ln) ∈ (P1)n such that there are at least three different

points among l1, . . . , ln. Then N0 = PGL(2) \ U. Set Uijk := {(l1, . . . , ln) ∈ (P1)n|li 6= lj, lj 6=
lk, li 6= lk} ⊂ U, where 1 ≤ i < j < k ≤ n. Then Uijk ⊂ U is open,

⋃
i, j,k Ui jk = U,

and
⋂
i, j,k Ui jk = {(l1, . . . , ln) ∈ (P1)n|li 6= lj for i 6= j} 6= ∅. So N0 is covered by pairwise

intersecting open subsets PGL(2) \Uijk. Finally, PGL(2) \Uijk ' (P1)n−3.

Proposition 5. N is a smooth irreducible nonseparated scheme of dimension n− 3.

Proof. SinceN is covered by fT (N0), T ∈ Γ (Proposition 4), andN0 is a smooth irreducible

nonseparated scheme (Lemma 3), it is enough to prove that fT (N0) ∩N0 6= ∅.
Any T can be represented as a product of Ti j = {i, j} ∈ Γ , i 6= j. Since N0 is

irreducible, it is enough to prove that N0 ∩ fTi j (N0) 6= ∅. Clearly, N0 ∩ fTi j (N0) = PGL(2) \
{(l1, . . . , ln) ∈ U|li 6= lj} 6= ∅.

Using the affine bundle f: M→ N, one derives statements (i) and (ii) of Theorem

1 from Proposition 5.

Remark. In the special case n = 4, one can prove the following explicit description of

N:

There is a map N → P1 that identifies N and ‘the projective line with doubled

points x1, . . . , x4.’ In other words, N can be obtained by glueing two copies of P1 outside

x1, . . . , x4.
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3 Invertible sheaves on M

3.1 Calculation of Pic N

Denote by ξi (resp. δ) the invertible sheaf on N whose fiber over (L,ϕ, l1, . . . , ln) is li (resp.

detRΓ (P1, L)).

Notation. For the sake of simplicity, we write ξi (resp. δ) for the inverse image of ξi

(resp. δ) to M.

The following proposition is an easy, special case of the general theorem due to

Y. Laszlo and C. Sorger in [3, Theorem 1.1].

Proposition 6. Pic N is the free abelian group with basis δ, ξi (i = 1, . . . , n).

Remark. The proof by Y. Laszlo and C. Sorger is based on the techniques of affine Grass-

manianns. In our situation, Proposition 6 for n = 0 follows from the well-known descrip-

tion of the isomorphism classes of SL(2)-bundles on P1, and the case of an arbitrary n is

easily reduced to n = 0.

3.2 Calculation of PicM

Lemma 4. codim(N \N) ≥ 2.

Proof. Denote by Nd the moduli stack of decompositions. In other words,Nd parametrizes

(L = L1⊕L2, ϕ; l1, . . . , ln) such that (L,ϕ, l1, . . . , ln) is a quasiparabolic SL(2)-bundle, rkL1 =
rkL2 = 1, and for any i = 1, . . . , n, either li = (L1)xi or li = (L2)xi . Connected components

of Nd are parametrized by (degL1, {i|li = (L1)xi}); hence the set of these components is

countable. Besides, each component is of dimension −1.

Consider the natural map Nd → N. Its image is N \N, so dim N \N ≤ −1. On the

other hand, dim N = n− 3 ≥ 1.

Corollary 3. Pic M = Pic N = Pic N is the free abelian group with basis ξ1, . . . , ξn, δ.

Proof. Since M → N is an affine bundle, Pic M = Pic N. Since N is a smooth stack,

Lemma 4 implies Pic N = Pic N. Now the corollary follows from Proposition 6.

Proposition 7. PicM ⊂ Pic M is the subgroup of index 2 such that δ ∈ PicM, ξi /∈ PicM.

Proof. Since M is a µ2-gerbe overM, any OM-module has a natural action of µ2. An OM-

module is anOM-module if and only if this action is trivial. It follows from the definitions

that −1 ∈ µ2 acts as −1 on ξi and acts as 1 on δ.
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We have proved statements (iii) and (iv) of Theorem 1. Statement (v) is a particular

case of the following lemma.

Lemma 5. Let X be an algebraic space, i: X → X a µ2-gerbe, [α] ∈ H2
ét

(X, µ2) the corre-

sponding cohomology class, and γ ∈ Pic X the isomorphism class of a sheaf E such that

−1 ∈ µ2 acts on E as −1. Then [α] = c1(γ⊗2), where c1: PicX → H2
ét

(X, µ2) is the Chern

class.

Proof. Fix a sheaf F in the class γ⊗2 ∈ PicX. Denote by Sqr F the µ2-gerbe of square roots

of F defined by (Sqr F)S := {(f: S→ X,E′, ψ)|E′ is an invertible sheaf on S,ψ: (E′)⊗2→̃f∗(F)}.
An isomorphism E⊗2→̃i∗F yields a 1-morphism X→ Sqr F. Since −1 ∈ µ2 acts on

E as −1, this is a µ2-gerbe morphism. So µ2-gerbes X and Sqr F are isomorphic.

Let T := Isom(OX,F) be the Gm-torsor corresponding to F. Consider the exact

sequence 0 → µ2 → Gm
x7→x2→ Gm → 0. The corresponding map H1

ét
(X,Gm) = PicX →

H2
ét

(X, µ2) is c1. Now it is enough to notice that Sqr F is the gerbe of liftings of T with

respect to

Gm
x7→x2→ Gm.

This completes the proof of Theorem 1.

4 Geometric description of M

Suppose that n = 4, λi 6= 0 (i = 1, . . . , 4), and λ1 6= 1/2. Recall that M is the coarse moduli

space of (λ1, . . . , λ4)-bundles. The aim of this section is to prove the following statement:

Set K := V((ΩP1 (x1+ · · ·+ x4))∗) (i.e., K is the vector bundle whose sheaf of sections

isΩP1 (x1+· · ·+x4)). Denote by bi ⊂ K the fiber over xi ⊂ P1. Since (ΩP1 (x1+· · ·+x4))xi = C,

there is a natural isomorphism ri: bi→̃A1. Set λ±i := ±λi for i 6= 1, λ+1 := λ1, λ
−
1 := 1− λ1,

c±i := r−1
i (λ±i ) ∈ bi. For every i, one has λ+i 6= λ−i , so c+i 6= c−i .

Theorem 3. Denote by M̃ the blow-up ofK in c±i . Then there is an open embeddingM↪→M̃
such that M̃ \M is the union of the proper preimages of bi ⊂ K, i = 1, . . . , 4.

4.1 Construction of M→ K

Denote by M1 the coarse moduli space of triples (̃L,∇, ϕ) such that L̃ is a rank 2 vector

bundle on P1,∇: L̃→ L̃⊗ΩP1 (x1+· · ·+x4) is a connection, ϕ: Λ2L̃→̃OP1 (−x1) is a horizontal

isomorphism, and the residue R̃i of ∇ at xi has eigenvalues λ±i . For any (λ1, . . . , λn)-bundle

(L,∇, ϕ), consider the lower (x1, l1)-modification L̃ of L. Here l1 := Ker(R1 − λ1) ⊂ Lx1 . The
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triple (̃L,∇|̃
L
, ϕ|̃

L
) corresponds to a point of M1. This gives us a map M→M1. The upper

modification of (̃L,∇, ϕ) defines the inverse map, so M 'M1.

Since (̃L,∇) is irreducible, L̃ ' OP1 ⊕OP1 (−1) (see Corollary 2). So there is a unique

subsheaf L̃0 ⊂ L̃ such that L̃0 ' OP1 . There is a unique connection d: L̃0 → L̃0 ⊗ΩP1 . The

correspondence (̃L,∇, ϕ) 7→ (̃L0 ⊂ L̃,∇|̃L0
− d,ϕ) gives a map M1 → K1, where K1 is the

coarse moduli space of collections (̃L0 ⊂ L̃, A,ϕ) such that (̃L0 ⊂ L̃) ' (OP1 ⊂ OP1⊕OP1 (−1)),

ϕ: Λ2L̃→̃OP1 (−x1), A ∈ Hom(̃L0, L̃⊗ΩP1 (x1 + · · · + x4)), and ImA 6⊂ L̃0 ⊗ΩP1 (x1 + · · · + x4).

Proposition 8. K1 is isomorphic to K.

Proof. SetΩ′ := ΩP1 (x1+· · ·+x4). Denote by K2 the moduli space of (OP1 ⊂ L̃, B) such that

L̃/OP1 ' OP1 (−1), B: (Ω′)−1 → L̃, and ImB 6⊂ OP1 . Suppose (̃L0 ⊂ L̃, A,ϕ) corresponds to a

point of K1. A induces a morphism B: (Ω′)−1 = (Ω′ ⊗ L̃0)−1 ⊗ L̃0 → (Ω′ ⊗ L̃0)−1 ⊗ (̃L⊗Ω′) =
L̃−1

0 ⊗ L̃. Clearly (OP1 = L̃−1
0 ⊗ L̃0 ⊂ L̃−1

0 ⊗ L̃, B) corresponds to a point of K2. This yields

a morphism K1 → K2. It is not hard to check that this is an isomorphism. Using B, we

considerOP1⊕ (Ω′)−1 as a subsheaf of L̃. So K2 is isomorphic to the moduli space of locally

free sheaves L̃ ⊃ OP1 ⊕ (Ω′)−1 such that OP1 is a subbundle (not only a subsheaf) of L̃, and

L̃/(OP1 ⊕ (Ω′)−1) is a sky-scraper sheaf with 1-dimensional space of sections. Such L̃ are

the upper (x, l)-modifications of OP1 ⊕ (Ω′)−1 for x ∈ P1, l ⊂ C⊕ ((Ω′)−1)x, l 6= C. The space

of such pairs (x, l) is identified with K. Hence K1 = K2 = K.

This yields a map M→ K1 = K.

4.2 Local calculations

Lemma 6. Suppose (̃L0 ⊂ L̃, A,ϕ) corresponds to a point of K1, R̃i is an operator L̃xi → L̃xi

such that the eigenvalues of R̃i are λ±i , and R̃i|(̃L0)xi
coincides with the residue of A at xi.

Then there is a unique connection ∇ such that the following conditions hold:

(i) ∇|̃
L0
= A+ d, where d: L̃0 → L̃0 ⊗ΩP1 is the unique connection;

(ii) R̃i = resxi ∇ ;

(iii) (̃L,∇, ϕ) corresponds to a point of M1.

Proof. It is easy to see that such a ∇ exists locally on P1. Let ∇1, ∇2 be two connections

defined on some open set U ⊂ P1 such that (i)–(iii) are satisfied. Set E := ∇1−∇2. Then we

have:

(i′) E ∈ H0(U,Hom(L, L⊗ΩP1 ));

(ii′) E|L0 = 0;

(iii′) trE = 0.

Conversely, if a connection ∇ on U satisfies (i)–(iii), and E satisfies (i′)–(iii′), then

the connection ∇ + E on U satisfies (i)–(iii). Denote by C(U) the set of all connections on
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U satisfying (i)–(iii), and denote by E(U) the set of all E satisfying (i′)–(iii′). C(U) form a

sheaf of sets C, and E(U) form a sheaf of abelian groups E. Clearly, C is an E-torsor and

E = {E ∈ Hom(L, L ⊗ΩP1 ): E|L0 = 0; trE = 0} = Hom(L/L0, L0 ⊗ΩP1 ). deg E = −1, so any

E-torsor is trivial and has a unique global section. Hence there is a unique ∇ ∈ C(P1) that

satisfies (i)–(iii) on P1.

We need the following simple lemma from linear algebra.

Lemma 7. SupposeV is a vector space,dimC V = 2, V0 ⊂ V,dimC V0 = 1, R0 ∈ HomC(V0, V ),

λ± ∈ C, λ+ 6= λ−. Set R := {R ∈ EndC(V): R|V0 = R0, the eigenvalues of R are λ+, λ−} and

L := {(l+, l−)|l± ⊂ V,dimC l
± = 1, l± ⊃ (R0 − λ∓)V0, l

+ 6= l−}.
The map F: R→ L: R 7→ (Ker(R− λ+) = Im(R− λ−),Ker(R− λ−)) is bijective.

Proof. F is clearly injective. Let us prove surjectivity.

For (l+, l−) ∈ L, denote by P± the projector V → V/l∓→̃l± (so P+ + P− = Id). The

condition l± ⊃ (R0 − λ∓)V0 implies P∓(R0 − λ∓)V0 = 0. So (P−(R0 − λ−)+ P+(R0 − λ+))V0 = 0,

or equivalently, R0 = (λ+P+ + λ−P−)|V0 . Hence R := (λ+P+ + λ−P−) ∈ R and F(R) = (l+, l−).

Lemmas 6 and 7 imply the following corollary.

Corollary 4. M1 is identified with the coarse moduli space of ((̃L0 ⊂ L̃, A,ϕ); l̃+1 , l̃
−
1 , . . . , l̃

+
4 , l̃
−
4 )

such that:

(i) (̃L0 ⊂ L̃, A,ϕ) corresponds to a point of K1;

(ii) l̃±i ⊂ L̃xi is a subspace such that dim l̃±i = 1, (resxi A− λ∓i )(̃L0)xi ⊂ l̃±i ;

(iii) l̃+i 6= l̃−i .

Denote by M̃1 the coarse moduli space of ((̃L0 ⊂ L̃, A,ϕ); l̃+1 , l̃
−
1 , . . . , l̃

+
4 , l̃
−
4 ) such that

conditions (i)–(ii) of Corollary 4 are satisfied. Then M1 is identified with the open subset

of M̃1 defined by (iii).

Denote by ξ̃xi (resp. δ̃) the bundle on K1 whose fiber over (̃L,A,ϕ) is L̃xi (resp.

(̃L0)xi = detRΓ (P1, L̃)). The map (resxi A − λ∓i ): (̃L0)xi → L̃xi for variable (̃L,A,ϕ) defines a

morphism δ̃ → ξ̃xi . This morphism δ̃ → ξ̃xi has a unique simple zero in c∓i . This proves

that the natural map M̃1 → K1 is the blow-up at c±i , i = 1, . . . , 4. It is easy to see that

the closed subset of M̃1 defined by the equation l̃+i = l̃−i is the proper preimage of bi, so

M̃1 \M1 is the union of these proper preimages.

This completes the proof of Theorem 3.

4.3 Description of invertible sheaves on M

Denote by b±i ⊂M1 the preimages of c±i ⊂ K.
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Proposition 9. The group PicM1 is the abelian group generated by the classes [b±i ] with

the defining relations

[b+1 ]+ [b−1 ] = [b+2 ]+ [b−2 ] = [b+3 ]+ [b−3 ] = [b+4 ]+ [b−4 ].

Proof. Consider the composition π1: M1 → K1 = K → P1. Set U := P1 \ {x1, . . . , x4},
U′ := π−1

1 (U). Denote by Γ the group of divisors D on M1 such that suppD ∩ U′ = ∅.
By Theorem 3, U′ ' U × A1, so PicU′ = 0, and the map H0(U,O∗U) → H0(U′, O∗

U′ ) is an

isomorphism. Therefore, the morphism Γ → PicM1 is surjective and its kernel Γ0 consists

of the inverse images of principal divisors ∆ on P1 such that supp∆∩U = ∅. Γ is the free

abelian group generated by b±i , and Γ0 is generated by π∗1(xi − xj) = (b+i + b−i )− (b+j + b−j ).

Proposition 10. Let δ, ξ⊗2
i be the line bundles on M defined in Section 3. Then

δ ' OM(−b−1 ),

ξ⊗2
i ' OM(b−i − b+i ).

Proof. Denote by ξ̃xi (resp. ξ̃±i , δ̃) the locally free sheaf on M1 (the moduli stack of (̃L,∇, ϕ))

whose fiber over (̃L,∇, ϕ) is L̃xi (resp. l̃±i = Ker(̃Ri − λ±i ), detRΓ (P1, L̃) = H0(P1, L̃) = (̃L0)xi ).

Then ξ̃±i and δ̃ are subsheaves of ξ̃xi .

Let (̃L,∇, ϕ) be a point of M1. Consider the map (̃Ri − λ∓i ): (̃L0)xi → l̃±i . As (̃L,∇, ϕ)

varies, it yields a morphism of OM1-modules δ̃ → ξ̃±i . It follows from the results of the

previous subsection that this morphism identifies ξ̃±i with δ̃(b∓i ). Since ξ̃xi = ξ̃+i ⊕ ξ̃−i and

Λ2ξ̃xi ' OM1 , we have ξ̃−i ' (̃ξ+i )∗. Hence (̃δ)⊗2 ' OM1 (−b+i − b−i ) and (̃ξ±i )⊗2 ' OM1 (b∓i − b±i ).

But ξ̃+i (resp. δ̃) corresponds to ξi (resp. δ⊗ξ1) via the identification M1 =M. The statement

follows immediately.

5 Cohomology of invertible sheaves on M

In this section, we prove Theorem 2.

5.1 The least smooth compactification M ⊃M

Set K := P(OP1⊕ΩP1 (x1+· · ·+x4)). K is the open subscheme K\s∞,where s∞ is ‘the infinite

section.’ Blowing up c±i ⊂ K, we obtain a variety M, which is a smooth compactification
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of M̃1 ⊃ M1 = M. M \M consists of the five irreducible components s′∞, b
′
1, . . . , b

′
4 (the

proper preimages of s∞, b1, . . . , b4 ⊂ K). Clearly on K we have (s∞, b̄i) = 1, (b̄i, b̄j) = 0, and

(s∞, s∞) = −2. This implies

(s′∞, s
′
∞) = (b′i, b

′
i) = −2, (s′∞, b

′
i) = 1. (2)

Corollary 5. M is the least smooth compactification ofM (i.e., any smooth compactifica-

tion of M dominates M).

Proof. LetM
′
be another smooth compactification ofM. Then there is a smooth compact-

ification M
′′

that dominates M and M
′
. The morphisms f: M

′′ →M and f′: M
′′ →M

′
are

compositions of σ-processes, and we may assume that the number of these σ-processes

is minimal. Let us prove that f′ is an isomorphism.

Assume the converse. Then there is an exceptional curve C′ ⊂M′′ of the first kind

such that dim f′(C′) = 0. Clearly C′ ∩M = ∅.
M
′′ \M has the following irreducible components: b′′i , s

′′
∞ (the proper preimages

of b′i, s
′
∞), and curves C such that dim f(C) = 0. (b′′i )

2 ≤ (b′i)
2 < −1 and (s′′∞)2 ≤ (s′∞)2 < −1,

so dim f(C′) = 0. But this contradicts the hypothesis that the number of σ-processes is

minimal.

Remark. Let us interpret K and M as moduli spaces. Denote by K1 the coarse moduli

space of (̃L0 ⊂ L̃, A,ϕ) such that L̃0 is an invertible sheaf of degree 0 on P1, L̃ is a rank 2

locally free sheaf of degree −1 on P1, A: L̃0 → L̃ ⊗ΩP1 (x1 + · · · + x4), ImA ∩ L̃0 = 0, and

ϕ: Λ2L̃→̃OP1 (−x1). The isomorphism K1→̃K from Proposition 8 can be extended to K1→̃K.

Denote by M1 the coarse moduli space of ((̃L0 ⊂ L̃, A,ϕ); l̃+1 , l̃
−
1 , . . . , l̃

+
4 , l̃
−
4 ) such

that (̃L0 ⊂ L̃, A,ϕ) corresponds to a point of K1, l̃
±
i ⊂ L̃xi is a 1-dimensional subspace,

and l̃±i ⊃ (resA − λ∓i )(̃L0)xi . Then there is an isomorphism M1→̃M such that the two

compositions M1→̃M→ K and M1 → K1→̃K coincide.

5.2 The geometry of M \M

Set D := 2s′∞ + b′1 + · · · + b′4. Then

(D,D) = (D, s′∞) = (D,b′i) = 0. (3)

Since Ω2
K
' O

K
(−4b̄i − 2s∞), we have Ω2

M
' O

M
(−D).

Notation. For a positive divisor C,we denote the corresponding subscheme by the same

letter C.
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Consider D ⊂M as a reducible nonreduced subscheme. Then b′i, s
′
∞, and 2s′∞ are

closed subschemes of D.

By the Riemann-Roch theorem, χ(OD) = −D(D+ K)/2,whereK = −D is the canon-

ical class of M. So χ(OD) = 0. This implies the following statement.

Proposition 11. Let E be a locally free sheaf onD. Then χ(E) = 2 deg(E|s′∞ )+∑4
i=1 deg(E|b′

i
).

Lemma 8. Let E be a nontrivial invertible sheaf on D such that deg E|s′∞ = 0, and either

deg E|b′
i
= 0 for all i, or one of the numbers deg E|b′

i
is −1, another one is 1, and the

remaining two equal zero. Then Hk(D,E) = 0 for all k.

Proof. By Proposition 11, χ(E) = 0. So it is enough to prove that H0(D,E) = 0.

Assume the converse. Let f ∈ H0(D,E), f 6= 0. χ(E) = χ(OD), E 6' OD, so f is zero on

one of the irreducible components of D.

We may assume that deg E|b′
i
≤ 0 for i 6= 1. The closed subscheme D1 := s′∞ +∑

i6=1 bi ⊂ D is reduced and connected. Besides, E|D1 has nonpositive degree on any irre-

ducible component ofD1. So either f|D1 = 0, or f|D1 has no zero. In the second case, f|C 6= 0,

where C ⊂ D is any irreducible component. Therefore f ∈ Ker(H0(D,E) → H0(D1,E)). In

other words, f ∈ H0(D,E ⊗ ID1 ), where ID1 := {f̃ ∈ OD: f̃|D1 = 0} is the sheaf of ideals of

D1 ⊂ D.

We have ID1 = OM(−D1)/O
M

(−D), supp ID1 = s′∞+b′1. So deg ID1 |b′1 = degO(−D1)|b′1 =
−1. Therefore deg(E ⊗ ID1 )|b′1 = deg E|b′1 − 1 ≤ 0. In the same way, deg(E ⊗ ID1 )|s′∞ =
deg E|s′∞ − 1 = −1. Since E⊗ ID1 is an invertible sheaf on the connected reduced scheme

s′∞ + b′1, this implies f ∈ H0(D,E⊗ ID1 ) = 0.

Set Pic0
D := {E ∈ PicD|deg(E|s′∞ ) = 0,deg(E|b′

i
) = 0 for all i}.

Proposition 12. Pic0
D ' A1.

Proof. Set Dred := s′∞ +
∑4

i=1 b
′
i ⊂ D. Then Pic0

D = Ker(PicD→ PicDred).

Set O′ := Ker(O∗D → O∗Dred ). Then the exact sequence 0 → O′ → O∗D → O∗Dred → 1

defines an isomorphism H1(D,O′)→ Pic0
D. But O′ is a locally free Os′∞-module of degree

−(s′∞, Dred) = −2. Hence Pic0
D is a 1-dimensional C-space.

Lemma 9. If 2λi /∈ Z for any i, then M contains no projective curve.

Proof. Fix a point x ∈ P1 \ {x1, . . . , x4}. Consider the fundamental group G := π1(x,P1 \
{x1, . . . , x4}). G is generated by the loops γi around xi with the relation γ1 × · · · × γ4 =
e. Denote by W the moduli space of representations ρ: G → SL(2) such that ρ(γi) has

eigenvalues exp(±2π
√−1λi). Clearly W is an affine scheme.
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The Riemann-Hilbert correspondence gives an analytic isomorphismMan→̃Wan.

But Wan contains no compact curve, so M contains no projective curve.

Remark. Consider the case of n points on any curve for any n. Then one can prove in

the same way that the only projective subvarieties in M are finite sets.

Lemma 10. The sheaf ND := O
M

(D)|D is not trivial.

Proof. Assume the converse. Let σ be a global section of ND with no zeros.M is a smooth

rational projective variety, H1(M,O
M

) = 0, and thereforeσ ∈ H0(D,ND) = H0(M,O
M

(D)/O
M

)

can be lifted to s ∈ H0(M,O
M

(D)). Then (s) is an effective divisor equivalent to D, and

supp(s) ⊂M. This contradicts Lemma 9.

Remark. One can give a direct (but more complicated) proof of this lemma.

Corollary 6. Hi(D, (ND)⊗k) = 0 for k 6= 0.

Proof. By (3), ND ∈ Pic0
D. Lemma 10 and Proposition 12 imply (ND)⊗k 6' OD for k 6= 0.

Lemma 8 completes the proof.

5.3 Calculation of cohomology

Let E be an invertible sheaf on M. We set deg E := (E, D), where E is an extension of E to

an invertible sheaf on M. (3) implies that deg E is well defined. Besides, it follows from

Proposition 10 that deg: PicM→ Z coincides with deg from Theorem 2.

If E is an invertible sheaf on M, E = E|M, then Hj(M,E) = lim→ Hj(M,E(kD)). But

H∗(M,O
M

(kD)/O
M

((k−1)D)) = 0 for k 6= 0 (see Corollary 6). HenceHj(M,OM) = Hj(M,O
M

),

and the statement (iii) of Theorem 2 follows from the rationality of M.

If deg E = 0, one can choose an extension E such that (E, s′∞) = 0 and either

(E, b′i) = 0 for all i, or one of the numbers (E, b′i) is 1, another one is −1, and the remaining

two are zero. Then Lemmas 8 and 10 and Proposition 12 imply that for all k ∈ Z, maybe

except for one value, H∗(M,E(kD)/E((k− 1)D)) = 0. Hence, dimHj(M,E) <∞ and

χ(E) = χ(E) = 1+ (E,E(D))

2
= 1+ (E,E)

2
.

One can check that (E,E)/2 = [〈E,E〉/2],where 〈, 〉 is the bilinear form from Theorem 2. So

statement (iv) of Theorem 2 follows from Lemma 11.

Lemma 11. If deg E ≤ 0, E 6' OM, then H0(M,E) = 0.

Proof. Suppose H0(M,E) 6= 0, E 6' OM. Then E ' OM(C), C > 0. So deg E = (C,D), where

C is the closure of C in M. Hence by Lemma 9, deg E > 0.
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Now we prove statement (i) of Theorem 2. Suppose deg E > 0, E is an extension

of E to M. Then χ(E(kD)) → ∞ as k → ∞. Since H2(M,E(kD)) = 0 for k À 0, we have

dimH0(M,E(kD))→∞ as k→∞, that is,dimH0(M,E) = ∞. SinceH0(M,E) 6= 0,E ' OM(C)

for some C > 0. But H1(M,OM) = 0, and C is affine (see Lemma 9), so H1(M,E) = 0.

To complete the proof of Theorem 2, we should check that if deg E < 0, then

dimH1(M,E) = ∞. Since H0(M,E−1) 6= 0, E ' OM(−C) for some C > 0. Since C is affine and

H0(M,OM) is finite-dimensional, it is enough to use the exact sequence 0 → OM(−C) →
OM→ OM/OM(−C)→ 0.
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