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Introduction

The moduli spaces of bundles with connections on algebraic curves have been studied
from various points of view (see [6], [10]). Our interest in this subject was motivated by
its relation with the Painlevé equations, and also by the important role of bundles with
connections in the geometric Langlands program [4] (for more details see the remarks at
the end of the introduction).

In this work, we consider SL(2)-bundles on P! with connections. These connec-
tions are supposed to have poles of order 1 at fixed n points, and the eigenvalues +A;
of the residues are fixed. We call these bundles (A;,...,A,)-bundles. Our aim is to find
all invertible sheaves on the moduli space of (Af,...,A)-bundles and to compute the
cohomology of these sheaves for n = 4.

In this work, the ground field is C, that is, ‘space’ means ‘C-space’, P! means P¢,
and so on.

Let us formulate the main results of this work.

FiX x1,...,Xn € P1(C),n > 4, x; #x; fori # j, and Ay, ..., A, € C.

Definition 1. A (A1,...,A,)-bundle on P! is a triple (L, V, ¢) such that L is a rank 2 vector
bundle on P!, V: L — L ® Qpi(x; + --- + x,) is a connection, ¢: A2L= Oy is a horizontal

isomorphism, and the residue R; of the connection V at x; has eigenvalues +A;, 1 <i < n.
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In the sequel, we suppose that

D eh¢z (1)
i=1

for any (e3), €; € up := {1, —1}.
Denote by M the moduli stack of (Ay,...,Ay)-bundles, and by M the corresponding
coarse moduli space.

Theorem 1. Suppose that (1) holds and Ay, ...,A, # 0. Then

(i) M is a smooth irreducible separated scheme, dimM = 2n — 6, and M is a
uz-gerbe over M,

(ii) H(M, F) = 0 for i > n — 3 for any quasicoherent Oyp-module JF;

(iii) PicM is the free abelian group with generators 6, ¢&;,...,&,. Here & (resp.
&;) is the invertible sheaf on M whose fiber over (L, V, ¢) equals detRI'(P!, L) (resp. 1; :=
Ker(Ri — Ay) C Ly, Rit Ly, — Ly, is the residue of V at x;);

(iv) PicM C Pic M is an index 2 subgroup, &,,...,&, ¢ PicM, 6 € Pic M,

(v) the cohomology class [a] € Hét(M, up) corresponding to the py-gerbe M —
M is the image of the nonzero element of 2Pic M/2Pic M via the canonical embedding
PicM/2PicM — HZ (M, up). In particular, [«] # 0. O

Theorem 2. Letn = 4. Suppose that (1) holdsand 2\; ¢ Z,1 <1i < 4. Definedeg: PicM — Z
by degl(ad + Zil aié;) := —a. Let v be an invertible sheaf on M.

(i) If degy > 0, then dim H°(M,y) = oo, H'(M,y) = 0 for i # 0.

(ii) If degy < 0, then dim H!(M,y) = oo, H(M,y) = 0 fori # 1.

(iii) If vy ~ Om, then dim H°(M,y) = 1, H'(M,y) = 0 for i # 0.

(iv) If degy = 0 and y % Owm, then dim H!(M,y) = —[(y,v)/2] — 1, H(M,y) = 0 for
i # 1. Here the bilinear form (-, -) is defined by

4 4 4
. 2oy Gibi
<Z 0151, Z b1£1> = _T>
i=1 i=1
and [a] is the integral part of a. O

Let us describe the general plan of this work.

In the first part (Sections 1-3), we study (Ay, ..., Ay)-bundles for arbitrary n.

In Section 1, we prove the basic properties of (Aq,...,A,)-bundles. We prove that
M is a separated algebraic space. All the results of this section are still valid for any
curve.

In Section 2, we construct an affine bundle M — N, where N is the coarse moduli

space of quasiparabolic bundles of a certain kind. We use this construction to prove that
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M is a smooth scheme of dimension 2n—6 and to show that the cohomological dimension
of M is at most n — 3.

Section 3 contains the calculation of the Picard group of M. This calculation uses
the ideas of [3]. We also compute the cohomology class of the gerbe M — M.

In Sections 4 and 5, we assume that n = 4.

In Section 4, we give an explicit geometric description of M. This description goes
back to Okamoto ([7], [9]) who studied M as the space of initial conditions of the Painlevé
equation Pyj rather than the moduli space of bundles with connections.

In Section 5, we compute the cohomology of invertible sheaves on M.

Remarks. (1) The description of Pic M from Theorem 1 was used in [2] to describe all
the isomorphisms between the varieties M for n = 4, and thereby to give a geometric
explanation of the mysterious symmetries of the Py; equation found by Okamoto [8].

(2) Theorem 2 was used by one of the authors (D. Arinkin) to prove the following

orthogonality relations: if n = 4 and x,y € P! \ {x1,...,x4}, then
H'OM, & ® &) =0unless x =y,i=0, and
HO(M) va ® va) = C

where &, is the vector bundle on M whose fiber at (L, V, @) equals L. These formulas can
be interpreted in terms of the geometric Langlands program.

(3) The results of this paper were announced in [1].

1 (Aq,...,A.)-bundles
1.1 Basic properties of (A1,...,Ay)-bundles
Let (L, V, @) be a (A1,...,A)-bundle.

Proposition 1. (L, V) is irreducible (i.e., there is no rank 1 V-invariant subbundle L; C L).

O
Proof. Suppose there is an invariant rank 1 subbundle L; C L. Then V; := V|, is a
connection on L;. (L), C L, is an eigenspace of R; := res,, (V). Hence res,,(V;) is an
eigenvalue of R;, that is, res,, (Vi) = +A;. But Z{‘zl res,, (V1) = —degL; € Z. This contradicts
(1). [ |

Remark 4. Denote by V the fiber of L over the generic point of P!. V is a 2-dimensional
vector space over C(z) (here Spec C(z) € P! is the generic point); 1-dimensional subspaces

of V correspond to rank 1 subbundles of L. V induces a C-linear morphism V — V ®c(y
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Qgpeciclz)- So the proposition implies that V is irreducible (as a C(z)-space) with respect

to this morphism.

Corollary 1. The only automorphisms of (L, V, ¢) are 1 and —1 (in other words, the group
of automorphisms of (L, V, @) is us). O

Proof. Let A be any automorphism of (L, V, ¢). Clearly it has an eigenvalue e € C. Then
Ker(A — e) C L is an invariant subbundle, Ker(A — e) ## 0, so Ker(A —e) = L and A = e. But
det(A) =1,s0 A = £1. [ ]

Corollary 2. Let L; C L be a rank 1 subbundle. Then degl; < (n — 2)/2. O

Proof. By Proposition 1, the map L; — (L/Li) @ Qpi(x; + --- + x,) induced by V is not
zero. So deg; < deg(L/L;) + n — 2. The corollary easily follows. [ |

Remark. Letusconsider(A,...,A,)-bundles on a curve of genus g > 0. Then Proposition

1 is still true, and Corollary 2 has the form

deng S M_

1.2 Moduli space of (A1,...,A,)-bundles

The notion of a family of (A1, ...,A,)-bundles on P! is defined in the usual way. (A;, ..., An)-
bundles on P! form a stack M. So Ms (the category of 1-morphisms from S to M) is the

category of families of (A1, ...,Ay)-bundles parametrized by a scheme S.

Proposition 2. M is a separated algebraic stack. O

Proof. Denote by Bung; P! the moduli stack of SL(2)-bundles on P!. It is well known

([5, Theorem 4.14.2.1]) that Bung P! is an algebraic stack. Clearly the natural map M —

Bung (P! is a representable (and even affine) 1-morphism of stacks. Hence M is algebraic.
Using the valuative criterion for algebraic stacks ([5, Theorem 3.19, Remark 3.20.2]),

one can derive from Lemma 1 that M is separated. ]

Lemma 1. Let A be a discrete valuation ring, K the fraction field of A, n := Spec(K),
Yo = (Lo, Vo, ®o) € Ob(M,) (i.e., yo is a family of (A;,...,A,)-bundles parametrized by n). If
an extension of yg toy € Ob(My), U := Spec(A) exists, it is unique. O

Proof. Lety; = (Li, Vi, i) € Ob(My), i = 1,2 be two extensions of yo. Denote by JF; the
sheaf of sections of L;,1 =0, 1, 2. Let C% be the direct image of F, to U x P!, Then Vj (resp.

o) induces a connection V: fﬁ) — % ® Qpi(x; + - -+ + Xy) (resp. a horizontal isomorphism
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©: /\25;(/)3 O, xp1). Since y; is an extension of yo, F; is identified with a subsheaf of é;(/); this
identification agrees with V and ¢. Set ¥ := F; N F,.

Denote by k the residue field of A (so Speck € U is the special point), and by
p € PL C U x P! the generic point of the special fiber P} C U x P'.

There is i € {1, 2} such that F(P;) ¢ F;. We may assume that i = 1.

Denote by V; the fiber of L; over p, and by V C V; the image of ¥ C ;. Since
F ¢ F1(—P}), we have V # 0.

V(F) CFQQpilx; + -+ xn), 50 VIF) C F® Qpi(x; + -+ - + Xx,). Therefore V C V;
is V-invariant and, by Remark 4, V = V.

JF C F, is locally free so F = F; and F, O F,. But @(A%T)) = @(A%F,), so T = T.

|

For a scheme S, denote by M(S) the set of isomorphism classes of families of
(A1,...,An)-bundles parametrized by S. Denote by M the sheaf for the fppf-topology as-
sociated with the presheaf M.

By Corollary 1, M is a p;-gerbe over M. In particular, the 1-morphism M — M is
smooth, surjective, and proper. This implies that M is a separated algebraic space (M is

the coarse moduli space of (Aq,...,A,)-bundles).

2 Structure of affine bundle on M
2.1 Quasiparabolic bundles

A quasiparabolic SL(2)-bundle on P! is a collection (L, @, 1;,...,1,) such that L is a rank
2 vector bundle on P!, ¢: A2L=Op1, and |; C Ly, is a 1-dimensional subspace. Quasi-
parabolic SL(2)-bundles form a stack N. Using the same arguments as in Proposition 2,
one can prove that N is algebraic.

SupposethatA;,..., A, # 0.Fora(Ay,...,A,)-bundle (L, V, @), we construct a quasi-
parabolic SL(2)-bundle (L, @, 11, ..., 1,) by setting l; := Ker(R;—A;), where R;: L, — L, isthe
residue of V at x;. This yields a morphism f: M — N. Let us give an explicit description

of the image of f.

Proposition 3. For a quasiparabolic SL(2)-bundle (L, @,1,,...,1,), the following condi-
tions are equivalent:

() (L, ,11,...,1,) belongs to the image of f: M — N;

(ii) Aut(L, @, 1,..., 1) = uz;

(ii') End(L, 1,..., ) =C;

({iii) (L, ¢,11,...,1,) is indecomposable; that is, there are no L;,L, # 0 such that
L =1, ® Ly, and for any i, either ; = (L;)y, or ; = (Ly),,. O
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Proof (i) = (iii). Suppose (L, @,1,...,1,) belongs to the image of f; that is, there is a
V:L—> L®Qp(x;+---+x,) such that (L, V, @) isa (A1,...,Ay)-bundle and l; = Ker(R; — A;).
Suppose L =1; & L, for L;, L, # 0. The composition V;: [; — L5 ® Qpilx; + -+ +xn) >
Ly ® Qpi(x; + - - 4+ x,) is a connection on L,. (1) implies that res,, V; # *+A; for some i. It
is easy to prove that ; # (L;)y,, (L2)y, for this i.

(iii) = (ii’). Suppose A € End(L,1,,...,1,). Denote by ej, e; € C the eigenvalues of
A.If e; # e, L can be decomposed to the direct sum of the eigenspaces of A.

Assume that e; = e;. Replacing A by A — e;, we can assume that e; = e, = 0. Let
us prove that A = 0. Assume the converse. Then [; := Ker(A) C L is a rank 1 subbundle.
Set T := {i|l; # (Ly)y,}. Locally on P! we can construct L, suchthatL; ®L, =L, (Lz)y, =1 for
i € T. Obstructions to global existence of L, lie in H*(P*, Hom(L/L;, L;)(— }_; .1 xi)). Since
(L,1,..., 1) is indecomposable, this space is not zero. So deg(Hom(L/L;,Li)(— Y ;.1 xi)) <
—1, and {A; € Hom(L/L;,L;)|A;(x;) = 0fori e T} = HO(P!, Hom(L/L;,L1)(— Y ;y xi)) = O.
Clearly A induces a map A;: L/L; — L; such that A;(x;) =0 fori e T. Hence A; = 0 and
A=0.

(ii’) = (i). Let us construct a connection V: L — L ® Qpi(x; + --- + x,) such that
(L,V,@)isa (A,...,A\)-bundle, and |; = Ker(R; — A;). This can be done locally on P'. The
obstructions to global construction lie in H! (P!, €), where € := {A € Endo(L)®@Qp1 (x; +-- -+
xn)|(resy, A)(l) = 0}. Here Endp(L) := {A € End(L)|tr A = 0}. By Serre’s duality theorem,
H(P!, €) is dual to HO(P!, {A € Endo(D)|AKX)(L) C L)) = {A € End(L, 1,...,1,)|tr(A) = 0} =
0. So there is a global V with such properties.

(i) = (ii). This implication is obvious since Aut(L, ¢,1;,...,1,) = {A € End(L,1;,
..o L)l det(A) = 13

(not (iii)) = (not (ii)). Let L = L, ® L, be a decomposition of L. Then a ® a™! €
Aut(L, ¢,1,...,1,) for a € C*. u

Remark. The proof of the implication (iii) = (ii’) does not work for curves of genus
g > 0, because it uses the following property of P!: for every line bundle F on P!, either
HO(P!,F) = 0 or H!(P!,F) = 0.

If (L, o, 1y,...,1,) satisfies the equivalent conditions of Proposition 3, the fiber of
fover (L, @,l,...,1,) consists of all (A;,...,An)-bundles (L, V, @) such that |; = Ker(R; — A;).
Such V form an affine space of dimension n— 3 because the corresponding vector space is
dual to H} (P!, Endy(L, 14,..., 1), and the Euler characteristic of Endy(L,1;,...,1,) equals
x(€ndol) —m =3 —n.

Denote by N C N the open substack defined by condition (ii’) from Proposition 3.
f induces the morphism f: M — N, which is a locally trivial affine bundle with fibers of

dimension n — 3.
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Denote by N the coarse moduli space of indecomposable quasiparabolic SL(2)-
bundles on P!. The construction of the algebraic space N is similar to that of M (see

Section 1.2). N is a py-gerbe over N.

2.2 Modifications

Suppose L is a rank 2 bundle on P!, x € P!, and | C L, is a dimension 1 subspace. Denote
by L the sheaf of sections of L. The lower (resp. upper) (x,1)-modification of L is the rank
2 bundle on P! whose sheaf of sections is £ := {s € L|s(x) € 1} (resp. L£(x)). If L is the lower
(x, )-modification of L, the image of the natural map tx — L, is 1. Denote byT - Ex the
kernel of this map. Then L is the upper (x,T)—modiﬁcation of L.

Suppose (L, 1;,...,1,) is a quasiparabolic bundle on P! (i.e., L is a rank 2 bundle on
P! and l; C Ly, is a dimension 1 subspace). Then the lower (x;, l;)-modification T of L has
a natural structure of a quasiparabolic bundle, namely, (t, l,... ,Ti, ..., L), where Ti =
Ker(fXi — Ly,). Similarly, the upper (x;, li)-modification of (L, 1, ...,1,) is a quasiparabolic
bundle.

Clearly (t, l,... ,Ti, ..., ly) is indecomposable if and only if (L, 1,,...,1,) is inde-

composable.

Lemma 2. Suppose (L, 1;,...,1,) is an indecomposable quasiparabolic bundle on P!. Then
making (xi, l;)-modifications in some of the points x;, one can transform (L, 1;,...,1,) to
(L',1,...,1) such that L' ~ Op:(k')? for some k' O

Proof. Since L is a rank 2 bundle on P!, L ~ Op1(k) ® Op:1 (1) for some k,1 € Z, k > L. The
proof is given by induction on k — 1.

For k — 1 = 0, there is nothing to prove.

Suppose k — 1 > 0. Denote by L; C L the rank 1 subbundle of degree k. Since
(L, 1,...,ly)isindecomposable, 1; # (L), for somei. Let L be the lower (xi, lj)-modification
of L. Then L; defines a rank 1 subbundle tl c Lof degree k — 1. Clearly f/fl =L/L;, so
deg(t/tl) = 1. Hence L ~ Op1(k—1)® Op1(1). By the induction hypothesis, L can be modified
to (L', 1},..., 1)) such that L' ~ Opi (K')? for some k' € Z. [ |

Let us return to the case of SL(2)-bundles.

Let (L, @,1;,...,1,) be a quasiparabolic SL(2)-bundle, T c {1,...,n}. Denote by
(L',13,..., 1) the lower modification of (L,1;,...,1,) at (x;,1;) for all i € T (clearly, mod-
ifications at different points commute). Then ¢ induces an isomorphism ¢’: A?L'S
Opi(— ) ;o7 xi). Suppose that Card T = 2k, where CardT is the number of elements of

the set T. We choose an isomorphism s: Op1(2kx; — > . 1+ %)= Op1. s 0 @’ gives a structure

ieT
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of quasiparabolic SL(2)-bundle on L'(kx,). This defines an automorphism fr: N=>N. Since
fr(N) = N, this gives fr: N3 N. Obviously, fr does not depend on s.

Denote by I' the set of all T C {1,...,n} such that CardT is even. I'" is an abelian
group with respect to the product T; AT, := (T; UTy) \ (T N Ty).

Proposition 4. (i) fr, o fr, = fra7, (T, T2 € T).
(ii) Denote by Ny € N the open subspace formed by trivial SL(2)-bundles (i.e.,
(L,,1l1,...,1) € Ng if and only if L ~ Of,l). Then . fr(Ng) = N. O

Proof. Statement (i) is obvious. Statement (ii) follows from Lemma 2. [ |

2.3 Geometry of N

Let Np have the same meaning as in Proposition 4(ii).

Lemma 3. Ny is a smooth irreducible nonseparated scheme of dimension n — 3. O

Proof. Denoteby Uthesetof(li,...,1,) € (P!)" such that there are at least three different
points among ly,...,L,. Then Ng = PGL(2) \ U. Set Wi := {(l,..., L) € YL # L, | #
b, # Ik} € U, wherel < i < j < k < n. Then W C U is open, Ui‘j)kui]’k = U,
and (5 Uik = {(L1,..., 1) € (P # 1y fori # j} # ¥. So Ng is covered by pairwise
intersecting open subsets PGL(2) \ Uijx. Finally, PGL(2) \ Uyj, =~ (P})"3. [ |

Proposition 5. N is a smooth irreducible nonseparated scheme of dimensionn —3. O

Proof. Since N is covered by fr(Ng), T € I' (Proposition 4), and Ny is a smooth irreducible
nonseparated scheme (Lemma 3), it is enough to prove that fr(Ng) N Ng # @.

Any T can be represented as a product of T;; = {i,j} € I, i # j. Since Ny is
irreducible, it is enough to prove that Ny N fTij(No) # (. Clearly, Ng N fTU.(NO) = PGL(2) \
{(Ly,..., L) e Ully # 4} # 0. ]

Using the affine bundle f: M — N, one derives statements (i) and (ii) of Theorem

1 from Proposition 5.

Remark. In the special case n = 4, one can prove the following explicit description of
N:

There is a map N — P! that identifies N and ‘the projective line with doubled
points x;,...,xs.” In other words, N can be obtained by glueing two copies of P! outside

X1y...,X4.
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3 Invertible sheaves on M
3.1 Calculation of PicN

Denote by &; (resp. ) the invertible sheaf on N whose fiber over (L, ¢, 1;,...,1,,) is ; (resp.
detRI'(P!, 1)).

Notation. For the sake of simplicity, we write &; (resp. 3) for the inverse image of &;
(resp. 8) to M.

The following proposition is an easy, special case of the general theorem due to

Y. Laszlo and C. Sorger in [3, Theorem 1.1].

Proposition 6. PicN is the free abelian group with basis §, & (i=1,...,n). O

Remark. The proof by Y. Laszlo and C. Sorger is based on the techniques of affine Grass-
manianns. In our situation, Proposition 6 for n = 0 follows from the well-known descrip-
tion of the isomorphism classes of SL(2)-bundles on P!, and the case of an arbitrary n is

easily reduced to n = 0.

3.2 Calculation of PicM
Lemma 4. codim(N \ N) > 2. O

Proof. Denoteby N4 the moduli stack of decompositions. In other words, Ny parametrizes
(L=L®Ly, 9;1y,...,1) such that (L, @, 1;,...,1,) is a quasiparabolic SL(2)-bundle, rkL; =
rkl; =1, and forany i = 1,...,n, either |; = (L), or l; = (Ly),,. Connected components
of N4 are parametrized by (degL;, {i|lli = (L;),,}); hence the set of these components is
countable. Besides, each component is of dimension —1.

Consider the natural map Nq — N. Its image is N\ N, so dimN \ N < —1. On the
other hand, dimN=n—-3> 1. ]

Corollary 3. Pic M = PicN = PicN is the free abelian group with basis &;,...,&,,6. O

Proof. Since M — N is an affine bundle, PicM = PicN. Since N is a smooth stack,

Lemma 4 implies Pic N = Pic N. Now the corollary follows from Proposition 6. ]

Proposition 7. PicM C PicM is the subgroup of index 2 such that 6 € Pic M, §&; ¢ Pic M.
O

Proof. Since M is a py-gerbe over M, any Ox-module has a natural action of ;. An Ogy-
module is an Oy -module if and only if this action is trivial. It follows from the definitions

that —1 € u, acts as —1 on &; and acts as 1 on 6. [ |
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We have proved statements (iii) and (iv) of Theorem 1. Statement (v) is a particular

case of the following lemma.

Lemma 5. Let X be an algebraic space, i: X — X a pu,-gerbe, [«] € Hét(X, uz) the corre-
sponding cohomology class, and y € Pic X the isomorphism class of a sheaf € such that
—1 € yy acts on € as —1. Then [a] = c;(y®?), where c;: PicX — Hgt(X,uz) is the Chern

class. O

Proof. Fix asheaf J in the class y®2 € Pic X. Denote by Sgr J the u,-gerbe of square roots
of F defined by (8qr F)s := {(f: S — X, &',)|€' is an invertible sheaf on S,\: (£)®25*(F)}.
An isomorphism £®251*F yields a 1-morphism X — 8qrJ. Since —1 € p, acts on
€ as —1, this is a y,-gerbe morphism. So p,-gerbes X and SqrF are isomorphic.
Let T := Isom(Ox, J) be the Gy-torsor corresponding to ¥. Consider the exact
sequence 0 — U, — Gsz)Xsz — 0. The corresponding map Hét(X, Gmn) = PicX —
HE

respect to

(X, n2) is c;. Now it is enough to notice that 8qrJ is the gerbe of liftings of T with

X=X

2
Gm — Gn. ]

This completes the proof of Theorem 1.

4 Geometric description of M

Supposethatn =4, A; 201 =1,...,4), and A; # 1/2. Recall that M is the coarse moduli

space of (A1, ...,A4)-bundles. The aim of this section is to prove the following statement:

Set K := V((Qp1(x; + - - - +x4))*) (i.e., K is the vector bundle whose sheaf of sections

is Qp1(x1 + - - - +x4)). Denote by b; C K the fiber over x; C P. Since (Qpi(x; + - - - +x4))x, = C,

there is a natural isomorphism 1;: b;=5A!. Set )\ii = A fori#1, )\;r =AL A =1 = A,
+

¢ :=17'(A\F) € b;. For every i, one has A\ # A, so ¢ # ¢} .

Theorem 3. Denote by M the blow-up of K in . Then there is an open embedding M— M
such that M \ M is the union of the proper preimages of b; C K,i=1,...,4. O

4.1 Construction of M — K

Denote by M; the coarse moduli space of triples (f, V, @) such that L is a rank 2 vector
bundle on P!, V: [ f@Qpl (x1+- - -+x4) is a connection, @: A Op1 (—x1) is a horizontal
isomorphism, and the residue ﬁi of V at x; has eigenvalues )\ii. For any (Aq,...,Aq)-bundle
(L, V, @), consider the lower (x;, l;)-modification T of L. Here l; ;= Ker(R; — Ay) C Ly,. The
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triple (f, VI, ) corresponds to a point of M;. This gives us a map M — M,. The upper
modification of (t, V, @) defines the inverse map, so M >~ M.

Since (L, V) is irreducible, L ~ Op1 @ Op1(—1) (see Corollary 2). So there is a unique
subsheaf fo c L such that to =~ Op1. There is a unique connection d: to — fo ® Qpi. The
correspondence (f, V, ) — (to - t,V|~L*0 —d, ¢) gives a map M; — Kj, where K; is the
coarse moduli space of collections (Lo C L, A, @) such that (Lo C L) >~ (Op1 C Op1 ®Op1(—1)),
©: A2LS0p1(—x1), A € Hom(Ly, L ® Qpi(x1 + -+ + x4)), and Im A ¢ Lo ® Qp1(x1 + - - - + xa).

Proposition 8. K; is isomorphic to K. O

Proof. Set ) := Qgpi(x;+---+x4). Denote by K, the moduli space of (Op1 C t, B) such that
E/Opl ~ Op(—1), B: ()7 — [,and ImB ¢ Op1. Suppose Lo c LA, @) corresponds to a
point of K;. A induces a morphism B: () = (Q' ®Lo) ! ®Ly - (Q @ L)' ®([L®Q) =
;' ® L Clearly (Op = ;' ® Iy C L' ® L, B) corresponds to a point of K,. This yields
a morphism K; — K. It is not hard to check that this is an isomorphism. Using B, we
consider Op ®(Q')~! as a subsheaf of L. So K; is isomorphic to the moduli space of locally
free sheaves L O Op1 @ (Q')7! such that Op: is a subbundle (not only a subsheaf) of t, and
f/(Opl @ (Q')7}) is a sky-scraper sheaf with 1-dimensional space of sections. Such L are
the upper (x, 1)-modifications of Op1 @ (Q')~! forx e P, 1 C C @ ((Q)7Y)y, 1 # C. The space
of such pairs (x,1) is identified with K. Hence K; = K; = K. [ |

This yields a map M — K; =K.

4.2 Local calculations

Lemma 6. Suppose (Lo C f, A, @) corresponds to a point of Kj, Riis an operator fxi — txi
such that the eigenvalues of ﬁi are 7\?, and §i| ol coincides with the residue of A at x;.
Then there is a unique connection V such that the following conditions hold:

(i) V|T0 = A+ d, where d: to — to ® Qp1 is the unique connection;

(ii) Ry = resy, V;

(iii) (t, V, @) corresponds to a point of M. O

Proof. It is easy to see that such a V exists locally on P!. Let V;, V, be two connections
defined on some open set U C P! such that (i)-(iii) are satisfied. Set E := V; — V,. Then we
have:

(i') E e HO(U, Hom(L, L ® Qp1));

(ii') Elry = 05

(iii') trE = 0.

Conversely, if a connection V on U satisfies (i)—(iii), and E satisfies (i')-(iii’), then

the connection V + E on U satisfies (i)—(iii). Denote by C(U) the set of all connections on
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U satisfying (i)-(iii), and denote by £(U) the set of all E satisfying (i')-(iii’). C(U) form a
sheaf of sets €, and £(U) form a sheaf of abelian groups £. Clearly, C is an £-torsor and
€ ={E € Hom(L,L ® Qp): E|i, = 0;trE = 0} = Homl(L/Ly,Lo ® Qp1). deg€ = —1, so any
&-torsor is trivial and has a unique global section. Hence there is a unique V € G(P!) that

satisfies (i)—(iii) on P?. [
We need the following simple lemma from linear algebra.

Lemma 7. Suppose Visavectorspace,dim¢V = 2,V C V,dim¢ Vo = 1,Rg € Homc(Vy, V),
A* € C, AT # A, Set R := {R € Endc(V): R|y, = Ro, the eigenvalues of R are A*,A~} and
L= {5, 1)1* € V,dime 1F = 1,1 D (Rg — AF)Vp, 1+ £ 171,

The map F: R — L: R~ (Ker(R — A*) = Im(R — A7), Ker(R — A7) is bijective. O

Proof. Fis clearly injective. Let us prove surjectivity.

For (1*,17) € L, denote by P* the projector V — V/IFS1* (so P* + P~ = Id). The
condition 1* O (Rg — AF)V; implies PF(Rg — AT)Vy = 0. So (P (Rg — A7) + PT(Rg —AT))Vy =0,
or equivalently, Ry = AW*PT +A"P7)|y,. Hence R := ATPT +A"P7) € R and F(R) = (I*,17).

Lemmas 6 and 7 imply the following corollary.

~ ~ o~

Corollary 4. M, isidentified with the coarse moduli space of (Lo L, A, (p);T]L, | b by
such that:
(1) (to C i,A, @) corresponds to a point of Ky;

(ii) Tf C txi is a subspace such that dimTijE =1, (resy, A — 7\fF)(fo)x<1 C Tii;

({i) T # 17 O
Denote by M; the coarse moduli space of (Lo c L, A, (p);Tf,Tl_, ... ,TI,T;) such that

conditions (i)-(ii) of Corollary 4 are satisfied. Then M, is identified with the open subset
of M; defined by (iii).

Denote by Exi (resp. %) the bundle on K; whose fiber over (t,A, @) is txi (resp.
(to)xi = detRF(Pl,f)). The map (resy, A — A]): (fo)xi — txi for variable (t,A, ) defines a
morphism 5 — Exi. This morphism 5 — Exi has a unique simple zero in c. This proves
that the natural map T\~/l1 — Kj is the blow-up at cf, i=1,...,4. It is easy to see that
the closed subset of M; defined by the equation Tj’ = Ti_ is the proper preimage of b;, so
M, \ M; is the union of these proper preimages.

This completes the proof of Theorem 3. ]

4.3 Description of invertible sheaves on M

Denote by bii C M, the preimages of cii C K.
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Proposition 9. The group Pic M, is the abelian group generated by the classes [b{"] with

the defining relations
[b71+ [b71=[bF1+ [b;] = [b3]1+ [b3] = [by]+ [b]. O

Proof. Consider the composition m;: M; — K; = K — P! Set U := P\ {x1,...,%4},
W := ;' (U). Denote by T the group of divisors D on M, such that suppD N U = f.
By Theorem 3, U >~ U x A', so PicU’ = 0, and the map H°(U,Of) — H(UW,O;)) is an
isomorphism. Therefore, the morphism I' — Pic M, is surjective and its kernel Iy consists
of the inverse images of principal divisors A on P! such that supp ANU = ¢. I is the free

abelian group generated by bii, and Iy is generated by 7} (x; — x;) = (b + b]) — (b;r + b;).

|
Proposition 10. Let d, 5?2 be the line bundles on M defined in Section 3. Then
d = Om(=b7),
£8% ~ Opm(b; — b)).
O

Proof. Denote by Exi (resp. Zf,g) the locally free sheaf on M; (the moduli stack of (E, V, )
whose fiber over ([, V, @) is L, (resp. ¥ = Ker(R; — AY), detRI'(P!, 1) = HO(P', 1) = (Lo)y,).
Then zli and § are subsheaves of in.

Let (t, V, ¢) be a point of M;. Consider the map (ﬁi - A (to)Xi — Tli As (f, vV, )
varies, it yields a morphism of Oy -modules 5 — Ef[ It follows from the results of the
previous subsection that this morphism identifies Zf with E(bf). Since Exi = Zf ® E{ and
AZE,. ~ Oy, we have & ~ (£F)*. Hence (5)%2 ~ O, (—b;" — b)) and (£5)®2 ~ O, (b7 — b5).
But Ef (resp. 3) corresponds to &; (resp. 0®&;) via the identification M; = M. The statement

follows immediately. ]

5 Cohomology of invertible sheaves on M

In this section, we prove Theorem 2.

5.1 The least smooth compactification M > M

Set K := P(Op1 ® Qp1(x; +- - - +x4)). Kis the open subscheme K\ s, where s, is ‘the infinite

section.” Blowing up cii c K, we obtain a variety M, which is a smooth compactification
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of I\~/11 O M; = M. M\ M consists of the five irreducible components si.,bl,..., by (the
proper preimages of sy, by, ..., bs C K). Clearly on K we have (s, b;) = 1, (b;, b;) = 0, and
(Sooy Soo) = —2. This implies

(85, So) = by, b) = =2, (sh, b}) = 1. (2)

Corollary 5. M is the least smooth compactification of M (i.e., any smooth compactifica-
tion of M dominates M). O

Proof. LetM beanother smooth compactification of M. Then there is a smooth compact-
ification M that dominates M and M. The morphisms f: M’ — M and f: M’ — M are
compositions of o-processes, and we may assume that the number of these o-processes
is minimal. Let us prove that f' is an isomorphism.

Assume the converse. Then there is an exceptional curve C’' C M of the first kind
such that dim f'(C’) = 0. Clearly C' "M = @.

M"\ M has the following irreducible components: b, s

"

(the proper preimages

oo
of b!, s/ ), and curves C such that dim f(C) = 0. (b/)? < (b})?* < —1 and (s )* < (s )* < —1,
so dim f(C’) = 0. But this contradicts the hypothesis that the number of o-processes is
minimal. ]

Remark. Let us interpret K and M as moduli spaces. Denote by K; the coarse moduli
space of (to C t, A, @) such that to is an invertible sheaf of degree 0 on P!, L is a rank 2
locally free sheaf of degree —1 on P!, A: fo S1® Qpilx; + -+ x4), INnAN to = 0, and
o AL Op1(—x,). The isomorphism K; 5K from Proposition 8 can be extended to K; SK.

Denote by M; the coarse moduli space of ([, c L A, @);TT,TI,...,TI,T;) such
that (to C i,A, @) corresponds to a point of K;, E‘E C fxi is a 1-dimensional subspace,
and Tf D (resA — AT)(to)xi- Then there is an isomorphism M;3M such that the two

compositions M;5M — K and M; — K; XK coincide.
5.2 The geometry of M\ M
Set D :=2s + b} +---+bj. Then
(D,D) = (D,s,) = (D, b)) = 0. 3)

Since Q% ~ Og(—4b; — 2s4), we have sz ~ Og(—D).

Notation. For a positive divisor C, we denote the corresponding subscheme by the same
letter C.
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Consider D C M as a reducible nonreduced subscheme. Then b}, s/, and 2s,_ are
closed subschemes of D.
By the Riemann-Roch theorem, x(Op) = —D(D + K)/2, where K = —D is the canon-

ical class of M. So x(Op) = 0. This implies the following statement.

Proposition 11. Let £ be a locally free sheaf on D. Then x(€) = 2 deg(8|s/oo)+Zf:1 deg(Ely ).
O

Lemma 8. Let & be a nontrivial invertible sheaf on D such that deg €|y = 0, and either
deg €|,y = O for all i, or one of the numbers deg €|,y is —1, another one is 1, and the

remaining two equal zero. Then H*(D, €) = 0 for all k. O

Proof. By Proposition 11, x(€) = 0. So it is enough to prove that H°(D, €) = 0.

Assume the converse. Let f € HO(D, &), f # 0. x(€) = x(Op), € 2 Op, so f is zero on
one of the irreducible components of D.

We may assume that deg 8|b{ < 0 for i # 1. The closed subscheme D; := s/ +
2 i1 bi C D is reduced and connected. Besides, |p, has nonpositive degree on any irre-
ducible component of D;. So either f|p, = 0, or f|p, has no zero. In the second case, f|c # 0,
where C C D is any irreducible component. Therefore f € Ker(H%(D, &) — H%(D, &)). In
other words, f € HY(D, € ® Ip,), where Ip, = {f € Op: 'F|D1 = 0} is the sheaf of ideals of
D, c D.

We have Ip, = Og;(=D1)/Ogz(~D), supp Ip, = s_,+b}.SodegIp, |y, = deg O(—D1)ly,
—1. Therefore deg(€é ® IDl)lb/1 = degElb/1 — 1 < 0. In the same way, deg(€ ® Ip))ly, =

deg €|y — 1= —1. Since £ ® Ip, is an invertible sheaf on the connected reduced scheme
s, + b}, this implies f € HY(D, € ® Ip,) = 0. [ ]

Set Pic’ D := {& € PicD| deg(8|5fm) = 0,deg(&|y) = 0 for all i}.
Proposition 12. Pic’D ~ A!. O

Proof. Set Dyeq := s, + Y i, b; C D. Then Pic’ D = Ker(Pic D — Pic Dcq).
Set 0" := Ker(Op, — Op, ). Then the exact sequence 0 — O" — Op — Op,  — 1

defines an isomorphism H!(D, 0’) — Pic® D. But O’ is a locally free Oy, -module of degree

—(sl, Drea) = —2. Hence Pic’ D is a 1-dimensional C-space. [ |
Lemma 9. If 2); ¢ Z for any i, then M contains no projective curve. O
Proof. Fix a point x € P!\ {x1,...,x4}. Consider the fundamental group G := m (x, P! \
{x1,...,%xa}). G is generated by the loops y; around x; with the relation y; x -+ x y4 =

e. Denote by W the moduli space of representations p: G — SL(2) such that p(y;) has
eigenvalues exp(4+27m+/—1A;). Clearly W is an affine scheme.
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The Riemann-Hilbert correspondence gives an analytic isomorphism M= Wq,,.

But W, contains no compact curve, so M contains no projective curve. [ ]

Remark. Consider the case of n points on any curve for any n. Then one can prove in

the same way that the only projective subvarieties in M are finite sets.
Lemma 10. The sheaf Np := O(D)|p is not trivial. O

Proof. Assume the converse. Let o be a global section of Np with no zeros. M is a smooth
rational projective variety, H! (M, Og;) = 0, and therefore o € H%(D, Np) = H(M, O3;(D)/Ox7)
can be lifted to s € HO(M, O37(D)). Then (s) is an effective divisor equivalent to D, and

supp(s) C M. This contradicts Lemma 9. ]
Remark. One can give a direct (but more complicated) proof of this lemma.
Corollary 6. H{(D, (Np)®¥) = 0 for k # 0. O

Proof. By (3), Np € Pic’ D. Lemma 10 and Proposition 12 imply (Np)®* 2 Op for k # 0.

Lemma 8 completes the proof. ]

5.3 Calculation of cohomology

Let & be an invertible sheaf on M. We set deg € := (€, D), where & is an extension of € to
an invertible sheaf on M. (3) implies that deg & is well defined. Besides, it follows from
Proposition 10 that deg: PicM — Z coincides with deg from Theorem 2.

If € is an invertible sheaf on M, € = €|y, then HI(M, &) = lim HI(M, £(kD)). But
H*(M, Ox;(kD)/Ox;((k—1)D)) = 0 for k # O (see Corollary 6). Hence H'(M, Om) = HI(M, O5),
and the statement (iii) of Theorem 2 follows from the rationality of M.

If deg€ = 0, one can choose an extension & such that (€, s.,) = 0 and either
(€, b;) = 0 for all i, or one of the numbers (€, b}) is 1, another one is —1, and the remaining
two are zero. Then Lemmas 8 and 10 and Proposition 12 imply that for all k € Z, maybe
except for one value, H*(M, £(kD)/E((k — 1)D)) = 0. Hence, dim H/(M, €) < co and

(€,€(D)) N (€8
2 2

One can check that (€, &)/2 = [(8, 8)/2], where (,) is the bilinear form from Theorem 2. So

statement (iv) of Theorem 2 follows from Lemma 11.

x@€ =x@ =1+ =1

Lemma 11. If deg€ < 0, € 2 O, then HO(M, €) = 0. O

Proof. Suppose HO(M, &) # 0, € 2 Om. Then & ~ Opm(C), C > 0. So deg & = (C, D), where
C is the closure of C in M. Hence by Lemma 9, deg & > 0. |



On the Moduli of SL(2)-bundles 999

Now we prove statement (i) of Theorem 2. Suppose deg& > 0, € is an extension
of & to M. Then x(E(kD)) — oo as k — oo. Since H%(M, (kD)) = 0 for k > 0, we have
dim H°(M, &(kD)) — oo as k — oo, thatis, dim H%(M, &) = co. Since H(M, €) # 0, & ~ Om(C)
for some C > 0. But H!(M, Opm) = 0, and C is affine (see Lemma 9), so H!(M, &) = 0.

To complete the proof of Theorem 2, we should check that if degé < 0, then
dim H!(M, &) = oo. Since HO(M, €71) # 0, €& ~ Om(—C) for some C > 0. Since C is affine and
H%(M, Ow) is finite-dimensional, it is enough to use the exact sequence 0 — Opm(—C) —
Om = Om/Om(=C) — 0.
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