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ON λ-CONNECTIONS ON A CURVE WHERE λ IS A FORMAL
PARAMETER

D. Arinkin

Abstract. We study GL2-bundles with connections with a small parameter on a
smooth projective curve. We describe an open subset in the moduli space of such
bundles. The description degenerates into the Hitchin fibration as the parameter
tends to zero.

1. Introduction

1.1. The moduli space of Higgs bundles on a curve admits a well-known de-
scription in terms of spectral curves (the Hitchin fibration). On the other hand,
Higgs bundles can be viewed as a degeneration of bundles with connections:
P. Deligne introduced the notion of ‘λ-connections’, and Higgs fields (resp. con-
nections) are λ-connections for λ = 0 (resp. λ = 1). It is natural to ask whether
spectral curves can be used to describe the moduli space of λ-connections for
λ �= 0.

The simplest case is when λ ∈ C[[λ]] is a formal parameter; that is, the λ-
connections considered are formal deformations of Higgs bundles. This case has
the following advantage: if a λ-connection is a formal deformation of a Higgs
bundle, we can try using the spectral curve corresponding to the Higgs bundle
to describe the λ-connection. Informally, if λ is an actual number rather than a
formal parameter (for instance, λ = 1), we would not know which spectral curve
to use.

Let Connλ be the moduli space of λ-connections: Connλ parametrizes triples
(L,∇, λ), where L is a G-bundle on X, λ ∈ C, and ∇ is a λ-connection on L.
Here X is a smooth curve and G is a reductive group. The moduli stack of Higgs
bundles is the closed substack Higgs ⊂ Connλ given by λ = 0. Making λ a
formal parameter corresponds to working with the formal completion Connform

of Connλ along Higgs instead of Connλ itself. The problem simplifies further
if we consider only those Higgs bundles that are non-degenerate in some sense.
Geometrically, this corresponds to taking an open substack Higgs′ ⊂ Higgs
(parametrizing non-degenerate bundles) and studying the formal completion
Conn′

form of Connλ along Higgs′.
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In this paper, we set G = GL2 and consider Higgs bundles whose spectral
curves are smooth, but possibly ramified. We use spectral curves to describe
λ-connections that are formal deformations of such Higgs bundles (Theorem A),
and then derive a description of Conn′

form if X is projective (Theorem B). The
results can be generalized to arbitrary reductive group (see Section 2.3). An
expanded version of this paper is available online [1].

Remark. Although λ-connections are interesting geometric objects in their own
right, they are particularly important because they can be used to compactify the
moduli stack Conn of ordinary connections ([6], [7]). We hope that studying
Connform can improve our understanding of Conn (which is important, for
instance, in the geometric Langlands program). One case (SL2-connections on P1

with four simple poles) appears in [2]: a result about Connform ([2, Proposition
6]) is used to compute the cohomology groups Hi(Conn, F ) for some natural
coherent sheaves F .

1.2. Conventions and notation. In this work, the ground field is C, that
is, ‘scheme’ means ‘C-scheme’, GL2 means GL2(C), and so on. However, our
methods are purely algebraic, so C can be replaced by any algebraically closed
field of characteristic zero.

For a scheme (or a formal scheme, or a stack) S, the words ‘groupoid of vector
bundles on S’ refer to the category whose objects are vector bundles on S and
whose arrows are isomorphisms of vector bundles. The same convention applies
to vector bundles with additional structures (e.g., connections).

2. Main results

2.1. Let X be a smooth (not necessarily projective) curve over C. Our first
result describes C[[λ]]-families of λ-connections on X using spectral curves.

Definition 2.1. Let L be a vector bundle on X, λ ∈ C. A λ-connection on L
is a C-linear map ∇ : L → L ⊗ ΩX such that

∇(fs) = f∇(s) + λs ⊗ df(2.1)

for any f ∈ OX , s ∈ L. A Higgs field is a λ-connection for λ = 0.

Definition 2.2. A C[[λ]]-family of vector bundles with λ-connections on X is a
pair (L,∇), where L is a vector bundle on the formal scheme X[[λ]] := lim−→X ×
Spec C[λ]/(λi), and ∇ : L → L ⊗OX

ΩX is a C[[λ]]-linear λ-connection.
The reduction of (L,∇) modulo λ is the Higgs bundle (that is, a bundle

equipped with a Higgs field) (L0,∇0) on X, where L0 := L/λL is the restriction
of L to X, and ∇0 : L0 → L0 ⊗ ΩX is induced by ∇.

Definition 2.3. A subscheme X̃ ⊂ T ∗X is a spectral curve (for GL2) if the
projection pX̃ := p|X̃ : X̃ → X is flat and finite of degree 2. Here p : T ∗X →
X is the cotangent bundle. The natural 1-form µ = µX̃ ∈ H0(X̃, p∗

X̃
ΩX) ⊂

H0(X̃, ΩX̃) is the restriction of the natural 1-form µT∗X ∈ H0(T ∗X, p∗ΩX).
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Fix a smooth spectral curve X̃ ⊂ T ∗X. Denote by Connλ(X̃) the groupoid
of C[[λ]]-families (L,∇) of rank 2 bundles with λ-connections on X such that X̃
equals the spectral curve of (L0,∇0), where (L0,∇0) is the reduction of (L,∇)
modulo λ. (The notion of the spectral curve of a Higgs bundle is recalled in
Theorem 5.1.)

Denote by C̃onnλ(X̃) the groupoid of C[[λ]]-families (l, δ) of rank 1 bundles
with λ-connections on X̃ such that δ : l → l ⊗ ΩX̃(x̃1 + · · · + x̃n) has first order
poles at x̃1, . . . , x̃n (the ramification locus of pX̃ : X̃ → X), the residue of δ at
x̃i equals −λ/2 (the notion of residue of a λ-connection is straightforward), and
the reduction δ0 of δ modulo λ equals µX̃ . Notice that δ0 is a Higgs field on the
line bundle l/λl, and a Higgs field on a line bundle is simply a 1-form.

The following theorem goes back to W. Wasow; it is a slightly generalized
version of [4, Proposition 1.2] (see also [8, Theorem 25.2]) and can be proved by
the same method:

Theorem 2.4. Suppose X is a smooth curve and pX̃ : X̃ → X is an unram-
ified spectral curve. The functor C̃onnλ(X̃) → Connλ(X̃) that sends (l, δ) to
((pX̃)∗(l), (pX̃)∗(δ)) is an equivalence of groupoids.

Let now X̃ be a smooth (but possibly ramified) spectral curve. (Notice that
X̃ is always ramified if X is a projective curve of genus at least 2.) We claim
that the groupoids C̃onnλ(X̃) and Connλ(X̃) are still equivalent in this case;
however, the equivalence is not as explicit as that in Theorem 2.4.

Set X̃u := X̃ − {x̃1, . . . , x̃n}, where x̃i ∈ X̃ are the ramification points of
X̃ → X, and Xu := pX̃(X̃u) ⊂ X. There are natural functors Connλ(X̃) →
Connλ(X̃u) (restriction to Xu ⊂ X) and C̃onnλ(X̃) → C̃onnλ(X̃u) (restriction
to X̃u ⊂ X̃).

Theorem A. Let X be a smooth curve and X̃ ⊂ T ∗X a smooth spectral curve.
1. The functor Connλ(X̃) → Connλ(X̃u) is fully faithful (so that Connλ(X̃)

is equivalent to a full subcategory of Connλ(X̃u)).
2. The functor C̃onnλ(X̃) → C̃onnλ(X̃u) is fully faithful.
3. For a groupoid G, let [G] be the set of isomorphism classes of objects of

G. Note that Theorem 2.4 gives an equivalence C̃onnλ(X̃u)→̃Connλ(X̃u),
which induces an isomorphism [C̃onnλ(X̃u)]→̃[Connλ(X̃u)]. We claim that
the isomorphism identifies [C̃onnλ(X̃)] ⊂ [C̃onnλ(X̃u)] and [Connλ(X̃)] ⊂
[Connλ(X̃u)].

Corollary 2.5. In the assumptions of Theorem A, there is an equivalence of
groupoids F : C̃onnλ(X̃)→̃Connλ(X̃) that makes the diagram

C̃onnλ(X̃) →̃ Connλ(X̃)
↓ ↓

C̃onnλ(X̃u) →̃ Connλ(X̃u)
(2.2)
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commute (by definition, this means that there exists an isomorphism φ between
the two composition functors given by the diagram). The pair (F , φ) is unique
up to a canonical isomorphism.

We prove Theorem A by direct calculations: we first reduce λ-connections to
a standard form, and then construct F essentially by writing formal solutions
to the corresponding differential equation. Another (slightly longer, but less
calculative) proof of the theorem is presented in [1].

Remark. C̃onnλ(X̃) has a simpler description. For any (l, δ) ∈ C̃onnλ(X̃), define
a connection ∂ : l → l ⊗ ΩX̃(x̃1 + · · · + x̃n) by ∂ := λ−1(δ − µ). In this way,
C̃onnλ(X̃) is identified with the groupoid of pairs (l, ∂), where l is a line bundle
on X̃[[λ]], and ∂ : l → l⊗ΩX̃(x̃1 + · · ·+ x̃n) is a (C[[λ]]-linear) connection whose
residues at x̃i ∈ X̃ equal −1/2.

2.2. Suppose now that the smooth curve X is projective. Denote by Higgs the
moduli stack of rank 2 Higgs bundles (L,∇) on X. Let Connλ be the moduli
stack of triples (L,∇, λ), where λ ∈ C, L is a rank 2 bundle on X and ∇ is a
λ-connection on L. Then Higgs is identified with the closed substack of Connλ

formed by triples (L,∇, λ) with λ = 0. Our next result describes an open subset
in the formal completion of Connλ along Higgs.

Denote by SCurv the space of spectral curves X̃. It is isomorphic to an
affine space: the coordinates on SCurv are the coefficients of the equation for X̃.
Denote by pH : Higgs → SCurv the morphism that sends a Higgs bundle to its
spectral curve (the Hitchin fibration). The fiber of pH over a smooth spectral
curve X̃ ∈ SCurv is the moduli stack of line bundles on X̃.

Denote by M� the moduli stack of collections (X̃, l, ∂), where X̃ ∈ SCurv is a
smooth spectral curve, l is a line bundle on X̃, and ∂ : l → l⊗ΩX̃(x̃1 + · · ·+ x̃n)
is a connection (not a λ-connection) whose residues at x̃1, . . . , x̃n equal −1/2.
As before, x̃1, . . . , x̃n are the ramification points of pX̃ : X̃ → X.

Consider the projection

p� : M� → Higgs : (X̃, l, δ) �→ (X̃, l);

here we identify Higgs bundles with their spectral data (X̃, l) (see Theorem 5.1).
The fiber of p� over (X̃, l) is the space of connections ∂ : l → l⊗ΩX̃(x̃1+· · ·+x̃n),
resx̃i ∂ = −1/2. The following statement is immediate:

Lemma 2.6. Set Higgs′ := p�(M�) ⊂ Higgs.

1. Higgs′ ⊂ Higgs is an open substack.
2. (L,∇) ∈ Higgs′ if and only if the spectral curve X̃ ⊂ T ∗X of (L,∇)

is smooth and for any connected component X ′ ⊂ X and a ∇-invariant
subbundle L′ ⊂ L|X′ , we have deg(L′) = 0. (If X is a connected curve
of genus at least 2, the second condition is equivalent to the condition
deg(L) = 0.)
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3. The fiber p�−1(L,∇) over (L,∇) ∈ Higgs′ is an affine space; the corre-
sponding vector space is H0(X̃, ΩX̃). More precisely: as (L,∇) varies, the
spaces H0(X̃, ΩX̃) form a vector bundle on Higgs′, and p� : M� → Higgs′

is a torsor over this vector bundle.

Denote by ζ0 the relative tangent bundle to p�; it is a foliation on M�, and
Higgs′ is identified with the quotient of M� modulo ζ0.

Remark. M� is an algebraic stack, so the notion of a foliation on M� requires
clarification. However, the stack structure on M� (and on Higgs′) is rather
simple: the automorphism groups of all points are isomorphic, and M� is a
gerbe over the corresponding coarse moduli space, M �. (If X is a connected
curve of genus at least 2, then M� → M � is a Gm-gerbe.) If we work with M �

instead of M�, then ζ0 becomes a foliation on a smooth algebraic space; such
objects are easy to define. The downside is that in this way we get a description
of the coarse moduli space of λ-connections rather than the moduli stack. We
could avoid this difficulty if we rigidify the moduli problem, for instance, by
adding framings of vector bundles at some points.

On the other hand, it is not hard to define the notion of a foliation on an alge-
braic stack. From now on, we will ignore this difficulty and freely use foliations
on M�.

Let us construct another foliation ζ∞ on M� using isomonodromic deforma-
tion. Consider the composition pH ◦ p� : M� → SCurv. The fiber of pH ◦ p� over
a smooth spectral curve X̃ ∈ SCurv is canonically identified with fibers over
infinitesimally close spectral curves (the fiber is essentially the space of rank 1
local systems on X̃ with monodromy −1 around the ramification points; there-
fore, the fiber does not change under deformations of X̃). More precisely, the
morphism pH ◦ p� : M� → SCurv carries a connection. Let ζ∞ be the foliation
of horizontal vector fields with respect to this connection.

Now consider ζ0 and ζ∞ as abstract vector bundles rather than foliations.
Over a point (X̃, l, ∂) ∈ M�, the fiber of ζ0 equals H0(X̃, ΩX̃), while the fiber of
ζ∞ equals H0(X̃, NX̃), where NX̃ is the normal bundle to X̃ ⊂ T ∗X. The sym-
plectic structure on T ∗X identifies NX̃ with ΩX̃ ; therefore, the vector bundles
ζ0 and ζ∞ are isomorphic.

Remark 2.7. We choose the isomorphism ΩX̃→̃NX̃ so that the diagram

p∗
X̃

ΩX → T (T ∗X)|X̃
↓ ↓

ΩX̃ →̃ NX̃

commutes. Here T (T ∗X)|X̃ is the restriction to X̃ ⊂ T ∗X of the tangent bundle
to T ∗X, the map p∗

X̃
ΩX → T (T ∗X)|X̃ identifies p∗

X̃
Ω with the subbundle of

vertical vector fields, p∗
X̃

ΩX → ΩX̃ is the pull-back map for differential forms,
and T (T ∗X)|X̃ → NX̃ is the natural projection.
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Definition 2.8. Let ζ0, ζ∞ ⊂ TM be distributions on a smooth variety M , and
let ν : ζ0→̃ζ∞ be an isomorphism of vector bundles on M . For α, β ∈ C, the
linear combination αζ0+βζ∞ ⊂ TM is the image of the morphism α(idζ0)+βν :
ζ0 → TM (in particular, if the morphism is an embedding of vector bundles,
αζ0 + βζ∞ is a distribution on M).

Theorem B. Let M�, ζ0, and ζ∞ be as above, and let us use the isomorphism
ζ0→̃ζ∞ from Remark 2.7 to construct the linear combination ζλ := ζ0 − λζ∞,
λ ∈ C. Notice that ζ0 and ζ∞ are transversal, so ζλ is a distribution for any
λ ∈ C.

1. ζλ is a foliation on M� for any λ ∈ C.
2. The quotient M�/ζλ exists if λ ∈ C[[λ]] is a formal parameter, and such

quotients form a family M�[[λ]]/ζλ → Spf C[[λ]] over the formal disc.
3. M�[[λ]]/ζλ is canonically isomorphic to the formal completion of Connλ

along Higgs′. This isomorphism respects the projection to Spf C[[λ]] (in-
tuitively, M�/ζλ is identified with an open substack in the moduli stack of
λ-connections when λ is a formal parameter).

2.3. Our results still hold for bundles over an arbitrary reductive group G.
Let us sketch the generalization (the details will be given elsewhere). Let g be
the Lie algebra of G, h its Cartan algebra, and W the Weyl group. Recall ([3])
that to a Higgs bundle over G on a smooth curve X there corresponds a cameral
cover Xcam → X: locally on X, a Higgs field is essentially a map X → g, and
Xcam is given by h ×h/W X, where the map X → h/W is the composition

X → g → g/G = h/W.

Xcam is a closed subscheme of T ∗X ⊗h (the total space of the bundle ΩX ⊗C h),
and the action of W on T ∗X ⊗ h preserves Xcam.

For a given cameral cover Xcam ⊂ T ∗X ⊗ h, denote by Connλ(Xcam) the
groupoid of C[[λ]]-families of G-bundles with λ-connections on X whose reduc-
tions modulo λ are Higgs bundles with cameral cover Xcam. The generalization
of Theorem A provides a description of Connλ(Xcam) in terms of line bundles
with λ-connections on Xcam provided Xcam is smooth. The proof is based on
the following simple observation:

Lemma 2.9. Suppose Xcam ⊂ T ∗X ⊗ h is a smooth cameral curve, (L,∇) ∈
Connλ(Xcam), and x ∈ X. Then in the formal neighborhood of x, the C[[λ]]-
family of λ-connections (L,∇) is induced from G′ ⊂ G. Here G′ is a reductive
group that depends on Xcam and x only. G′ is a torus if Xcam → X is unramified
at x; G′ has semisimple rank 1 (that is, G′ is an extension of SL2 or PGL2 by
a torus) if Xcam → X is ramified at x.

It follows from Lemma 2.9 that the ‘formal’ statement (Theorem 3.1) for GL2

implies the corresponding theorem for G, which in turn implies the generalized
Theorem A. We can then derive an analogue of Theorem B.
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2.4. Organization. In Section 3, we prove Theorem A by deriving it from
its ‘formal’ version (Theorem 3.1), in which X is a formal disc rather than a
curve. We prove Theorem B in Section 4. In Section 5, we explain the relation
between Theorem A and the description of Higgs bundle via spectral curves
(which is reminded in Theorem 5.1). Finally, in Section 6, we sketch a geometric
construction which generalizes the construction of Theorem B.

3. Proof of Theorem A

3.1. All of the above definitions (λ-connections, Higgs bundles, spectral curves,
etc.) still make sense if X is a formal disc rather than a smooth curve. Therefore,
we can formulate a ‘formal’ version of Theorem A:

Theorem 3.1. Let X � Spf C[[z]] be a formal disc and X̃ ⊂ T ∗X a smooth
spectral curve. Then statements (1)–(3) of Theorem A hold.

Theorem 3.1 implies Theorem A:

Proof of Theorem A. Let X be a smooth curve over C, X̃ ⊂ T ∗X a smooth
spectral curve. To simplify the notation, we assume that pX̃ : X̃ → X is
ramified at a single point x̃ ∈ X̃. Denote by X̃∧ the formal completion of X̃ at
x̃ and by X∧ the formal completion of X at x = pX̃(x̃). Clearly, X∧ is a formal
disc and X̃∧ is a (smooth ramified) spectral curve over X∧.

The natural diagram

C̃onnλ(X̃) → C̃onnλ(X̃u)
↓ ↓

C̃onnλ(X̃∧) → C̃onnλ(X̃∧
u )

is Cartesian; essentially, the claim is that a λ-connection on X̃ can be glued
from a λ-connection on X̃u, a λ-connection on X̃∧, and an identification of their
restrictions to the punctured disc X̃∧

u := X̃u ∩ X̃∧. The same statement holds
for Connλ(•). Now Theorem A follows from Theorem 3.1.

3.2. Let us now prove Theorem 3.1. We will assume that X̃ is ramified over
X = Spf C[[z]], because the unramified case is simply a ‘formal’ version of The-
orem 2.4 (note also that only the ramified case is used in the proof of Theorem
A). It is easy to see that there is a formal coordinate z on X such that X̃ is
given by

(ξ − b(z))2 = z, (b(z) ∈ C[[z]]),(3.1)

where ξ is the vector field d/dz on X. Then X̃ = Spf C[[z̃]] for z̃ := ξ − b(z).
The following lemma is a version of [9, Theorem 5.2-1] (see also [10]) and can

be proved by a similar method:

Lemma 3.2. All objects of Connλ(X̃) are isomorphic.

Statement (1) of Theorem A is equivalent to the following claim:
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Proposition 3.3. Suppose (L,∇) ∈ Connλ(X̃); in particular, L is a rank 2 free
C[[z, λ]]-module. Suppose L′ ⊂ L ⊗C[[z]] C((z)) is a rank 2 free C[[z, λ]]-module
such that ∇(L′) ⊂ L′ ⊗ ΩX . Then L′ = L.

Proof. By Lemma 3.2, we can assume without losing generality that

L = (C[[z, λ]])2, ∇ = λd + b(z)dz +
(

0 z
1 0

)
dz.(3.2)

Also by Lemma 3.2, there exists an isomorphism (L,∇) → (L′,∇). Denote its
matrix by

R(z, λ) =
(

r11 r12

r21 r22

)
∈ GL2(C((z))[[λ]]).

Since the isomorphism is horizontal, we have [∇, R(z, λ)] = 0, that is,

λ
∂R(z, λ)

∂z
=

[
R(z, λ),

(
0 z
1 0

)]
.(3.3)

Now it is easy to see that R(z, λ) ∈ (C[[λ]])×, and therefore L′ = L. Indeed,
(3.3) is equivalent to

λ
∂r11

∂z
= −λ

∂r22

∂z
= r12 − z · r21

λ

z

∂r12

∂z
= −λ

∂r21

∂z
= r11 − r22,

which implies

λ2 ∂3r21

∂z3
= 4z

∂r21

∂z
+ 2r21.(3.4)

The only solution to (3.4) in C((z))[[λ]] is r21 = 0, which implies that r12 = 0,
and that r11 = r22 does not depend on z.

3.3. Statement (2) of Theorem A is proved similarly to (1). Actually, the proof
is simpler, because it deals with ‘abelian’ objects (line bundles).

Lemma 3.4. All objects of C̃onnλ(X̃) are isomorphic.

Proof. Take (l1, δ1), (l2, δ2) ∈ C̃onnλ(X̃). Consider the rank 1 free C[[z̃, λ]]-
module l1 ⊗ (l2)−1. It carries a natural λ-connection, which we denote by δ :=
δ1⊗(δ2)−1. Notice that δ has no pole (because δ1 and δ2 have equal residues) and
that its reduction modulo λ is zero (because δ1 and δ2 have equal reductions).
Thus, λ−1δ is an ordinary connection on l1 ⊗ (l2)−1. We can choose a generator
φ ∈ l1 ⊗ (l2)−1 such that λ−1δ(φ) = 0 (because the formal disc X̃ is simply
connected). Such φ gives an isomorphism (l2, δ2)→̃(l1, δ1).

Proposition 3.5. Suppose (l, δ) ∈ C̃onnλ(X̃), and suppose l′ ⊂ l ⊗C[[z̃]] C((z̃))
is a rank 1 free C[[z̃, λ]]-module such that (l′, δ) ∈ C̃onnλ(X̃); in particular,
δ(l′) ⊂ z̃−1l′⊗ΩX̃ (that is, δ has a first order pole on l′ at z̃ = 0). Then l′ = l.
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Proof. By Lemma 3.4, there exists an isomorphism ι : (l, δ)→̃(l′, δ). Such ι
is given by multiplication by r(z̃, λ) ∈ (C((z̃))[[λ]])×. Besides, [δ, ι] = 0, and
therefore

∂r(z̃, λ)
∂z̃

= 0.

Hence r(z̃, λ) ∈ C[[λ]]× and l′ = l.

Proposition 3.5 implies statement (2).

3.4. Now let us prove statement (3). By Lemmas 3.2 and 3.4, both [Connλ(X̃)]
and [C̃onnλ(X̃)] are one-element sets. Therefore, it suffices to show that the
image of [C̃onnλ(X̃)] under the bijection [C̃onnλ(X̃u)]→̃[Connλ(X̃u)] is contained
in [Connλ(X̃)]. This is equivalent to the following statement:

Proposition 3.6. There exist (L,∇) ∈ Connλ(X̃), (l, δ) ∈ C̃onnλ(X̃), and a
C((z))-linear isomorphism φ : L⊗C[[z]] C((z))→̃l⊗C[[z̃]] C((z̃)) such that φ ◦∇ =
δ ◦ φ.

Proof. Define (L,∇) by (3.2), and set

l := C[[z̃, λ]], δ := λd +
(

2z̃b(z̃2) + 2z̃2 − λ

2z̃

)
dz̃.(3.5)

Clearly, (l, δ) ∈ C̃onnλ(X̃). Now define φ : L ⊗C[[z]] C((z)) → l ⊗C[[z̃]] C((z̃)) by

φ(f, g) =
∞∑

i=0

(6i)!
(2i)!(3i)!32i26i

(
λ

z̃3

)i (
f − 6i + 1

6i − 1
z̃g

)
, f, g ∈ C((z))[[λ]].

(3.6)

It is easy to see that φ has the required property.

Remark. The λ-connection (3.2) is easily reduced to the Airy equation; (3.6)
can be obtained from a formal solution to the Airy equation.

4. Proof of Theorem B

4.1. Let us start with a simple observation about foliations on formal schemes:

Definition 4.1. A λ-adic formal scheme is a formal scheme S together with a
function λ ∈ H0(S, OS) such that the zero locus of λi+1 is a subscheme Si ⊂ S
and S = lim−→Si. A λ-adic formal scheme S is flat if Si is flat over C[λ]/(λi+1)
for all i ≥ 0, or, equivalently, if λ ∈ OS is not a zero divisor. Finally, a λ-adic
formal scheme S is smooth if Si is smooth over C[λ]/(λi+1) for all i ≥ 0, or,
equivalently, if S is flat and S0 is smooth over C.

Example 4.2. For an arbitrary C-scheme S, set S[[λ]] := lim−→S × Spec C[λ]/(λi)
(as in Definition 2.2). Then S[[λ]] is a flat λ-adic formal scheme; it is smooth if
and only if S is smooth.
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Lemma 4.3. Let Y and Z be smooth λ-adic formal schemes, and Φ : Y → Z a
morphism over C[[λ]] (that is, Φ∗(λ) = λ). Denote by Y0 ⊂ Y and Z0 ⊂ Z the
zero loci of λ.

1. If the restriction of Φ to Y0 is smooth, then so is Φ.
2. Suppose Φ is smooth, and let ζ := ker(dΦ) ⊂ TY be the foliation corre-

sponding to the fibration Φ : Y → Z. Suppose that the quotient Y0/ζ exists
and coincides with Z0 (that is, the restriction Φ|Y0 : Y0 → Z0 has connected
non-empty fibers). Then the quotient Y/ζ exists and coincides with Z.

Our proof of Theorem B is divided into the following steps:

• Construction of a map Φ : M�[[λ]] → Conn′
form.

• Verification that Φ satisfies the assumptions of Lemma 4.3. Therefore,
Conn′

form = M�[[λ]]/ζ, where the foliation ζ equals ker(dΦ).
• Verification that ζ = ζλ.

4.2. Construction of Φ : M�[[λ]] → Conn′
form. Even though we formu-

lated Theorems A and 3.1 for C[[λ]]-families of λ-connections, essentially the
same proofs work for K[[λ]]-families of λ-connections on a smooth curve X/K,
where K is an arbitrary C-algebra. Actually, the theorems hold for families
parametrized by S[[λ]], where S is a C-scheme (or a stack); indeed, the state-
ments are local on S.

Recall that M� is the moduli stack of triples (X̃, l, ∂) (see Section 2.2); denote
by (X̃�, l�, ∂�) the universal family on M�. Thus, X̃� ⊂ (T ∗X) × M� is an M�-
family of smooth spectral curves, l� is a line bundle on X̃�, and ∂� : l� →
l� ⊗ ΩX̃�/M�(Dr) is a connections with pole at Dr, the ramification divisor of
the projection X̃� → X × M�. The residue of ∂� at Dr equals −1/2.

Let µ = µX̃� ∈ H0(X̃�,ΩX̃�/M�) be the natural relative 1-form on X̃�; it is
the pull-back of the natural 1-form on T ∗X under the projection X̃� → T ∗X.
Denote by l�[[λ]] the pull-back of l� to X̃�[[λ]]. The expression µ + λ∂� gives a
λ-connection on l�[[λ]]:

µ + λ∂� : l�[[λ]] → l�[[λ]] ⊗ ΩX̃�[[λ]]/M�[[λ]](Dr[[λ]]).

So we see that M�[[λ]] carries a natural family of spectral curves (X̃�[[λ]]) and
line bundles with λ-connections (l�[[λ]] and µ+λ∂�) on these curves. According
to the generalized Theorem A, such a family corresponds to a GL2-bundle L
on (M� × X)[[λ]] equipped with a λ-connection L → L ⊗ ΩX . Such a pair
(L,∇) gives a map Φ : M�[[λ]] → Connλ. Clearly, Φ(M�[[λ]]) is contained in
Conn′

form (the formal completion of Connλ along Higgs′).
It is easy to see that Lemma 4.3(2) applies to Φ : M�[[λ]] → Connλ. Indeed,

M� is smooth, and the map

λ : Connλ → C : (L,∇, λ) �→ λ
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is smooth on Higgs′ ⊂ Connλ; therefore, both M�[[λ] and Conn′
form are

smooth λ-adic formal stacks. Besides, the restriction of Φ to M� ⊂ M�[[λ]] (the
zero locus of λ) is the natural projection

M� → M�/ζ0 = Higgs′.

4.3. Now let us verify that ζλ = ζ := ker(dΦ). As rk(ζλ) = rk(ζ), it suffices to
check that ζλ ⊂ ζ. Equivalently, for an open set U ⊂ M�[[λ]] and a vector field
θ on U that belongs to ζλ, we need to check that θ belongs to ζ.

Set U [ε] := U × Spec C[ε]/(ε2). The vector field θ induces an automorphism
Θ : U [ε]→̃U [ε] characterized by the following property:

Θ∗(f + εg) = f + ε(g + θ(f)) (here f, g ∈ OU , so f + εg ∈ OU [ε]).

We need to verify that the two compositions

Φ ◦ π,Φ ◦ π ◦ Θ : U [ε] → Connλ

coincide. Here π : U [ε] → U ↪→ M�[[λ]] is the projection.
Let (X̃1, l1, δ1) and (X̃2, l2, δ2) be the pull-backs of the family (X̃�[[λ]], l�[[λ]],

µ + λ∂�) under π : U [ε] → M�[[λ]] and π ◦ Θ : U [ε] → M�[[λ]], respectively.
Thus, X̃i ⊂ T ∗X × U [ε] is a U [ε]-family of smooth spectral curves, li is a line
bundle on X̃i, and δi is a λ-connection on li with the usual condition on the
residues (i = 1, 2). We need to verify that (X̃1, l1, δ1) and (X̃2, l2, δ2) define the
same U [ε]-family of GL2-bundles with λ-connections on X.

According to Theorem A (or rather its generalized version), it suffices to check
the following two statements:

1. The reductions of (X̃1, l1, δ1) and (X̃2, l2, δ2) modulo λ coincide.
2. Let X̃iu ⊂ X̃i be the open set where pX̃i

: X̃i → U [ε]×X is unramified (i =
1, 2). Then the push-forwards (pX̃1

)∗((l1, δ1)|X̃1u
) and (pX̃2

)∗((l2, δ2)|X̃2u
)

are canonically isomorphic. Notice that the previous statement implies
pX̃1

(X̃1u) = pX̃2
(X̃2u); therefore, these push-forwards are GL2-bundles

with λ-connections on the same open subset of X × U [ε].
Both statements easily follow from the definition of ζλ.

This completes the proof of statements (2) and (3) of Theorem B. To prove
Theorem B(1), we need to show that the distribution ζλ ⊂ TM� is a foliation,
that is, that its curvature

κ : ζλ ⊗ ζλ → TM�/ζλ : θ1 ⊗ θ2 �→ [θ1, θ2]

vanishes. However, κ depends on λ algebraically, and Theorem B(2) implies that
κ = 0 when λ ∈ C[[λ]] is a formal parameter. Theorem B(1) follows.

5. λ-connections and Higgs bundles

5.1. Recall the description of Higgs bundles in terms of spectral curves ([5],
see also [3] for a more general statement).

Theorem 5.1. Let (L,∇) be a Higgs bundle.
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1. There exists a unique spectral curve X̃ ∈ SCurv and a unique (up to a
canonical isomorphism) coherent OX̃-module l such that L = (pX̃)∗l and
∇ = (pX̃)∗µ. We call (X̃, l) the spectral data of (L,∇).

2. If X̃ is smooth, l is an invertible sheaf on X̃.
3. For a smooth spectral curve X̃ and an invertible sheaf l on X̃, there is

a unique (up to a canonical isomorphism) Higgs bundle (L,∇) such that
(X̃, l) is the spectral data of (L,∇).

Corollary 5.2. Fix a smooth spectral curve X̃ ∈ SCurv, and let Higgs(X̃)
(resp. H̃iggs(X̃)) be the groupoid of Higgs bundles (L,∇) on X with spectral
curve X̃ (resp. the groupoid of line bundles l on X̃). Then the functor

l �→ ((pX̃)∗l, (pX̃)∗µ)

is an equivalence F0 : H̃iggs(X̃)→̃Higgs(X̃).

5.2. Let us now show that our description of λ-connections via spectral curves
(Corollary 2.5) agrees with the description of Higgs bundles (Corollary 5.2).

Proposition 5.3. The equivalences F and F0 (see Corollaries 2.5, 5.2) fit into
a commutative diagram

C̃onnλ(X̃) →̃ Connλ(X̃)
↓ ↓

H̃iggs(X̃) →̃ Higgs(X̃),

in which the vertical arrows are

R̃ : C̃onnλ(X̃) → H̃iggs(X̃) : (l, δ) �→ l/λl,

R : Connλ(X̃) → Higgs(X̃) : (L,∇) �→ (L0,∇0).

Here (L0,∇0) is the reduction of (L,∇) modulo λ.

Proof. Take any (l, δ) ∈ C̃onnλ(X̃), and set (L,∇) := F(l, δ), (L0,∇0) :=
R(L,∇), (L′

0,∇′
0) := F0 ◦ R̃(l, δ). We need to construct an isomorphism be-

tween the Higgs bundles (L′
0,∇′

0) and (L0,∇0).
By definition of F , there exists an isomorphism

φ : pX̃((l, δ)|X̃u
)→̃(L,∇)|Xu

.

It induces an isomorphism

φ0 : L′
0|Xu = pX̃((l/λl)|X̃u

)→̃(L/λL)|Xu = L0|Xu .

Clearly, φ0 ◦ ∇′
0 = ∇0 ◦ φ0, because φ agrees with the λ-connections. The

proposition now follows from Lemma 5.4.

Lemma 5.4. φ0 extends to an isomorphism between L′
0 = pX̃(l/λl) and L0 =

L/λL.
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Proof. It suffices to consider that case when X = Spf C[[z]] and X̃ is given by
(3.1). φ is then defined by Proposition 3.6: without loss of generality, we can
assume that (L,∇) and (l, δ) are given by (3.2) and (3.5), respectively, in which
case φ is given by (3.6). It is clear from (3.6) that φ induces a C[[z]]-linear
isomorphism L/λL→̃l/λl.

6. Moduli of λ-connections and the Hitchin fibration

In this section, we provide a construction that, given a completely integrable
system M → B, produces a formal deformation of the dual abelian scheme M∨.
We then show that if M → B is the Hitchin integrable system, this deformation
‘almost coincides’ with Conn′

form; more precisely, they are isomorphic after an
étale base change B̃ → B.

To simplify the exposition, we avoid algebraic stacks in this section, and work
with coarse moduli spaces instead.

6.1. Let π : M → B be a completely integrable system:

Definition 6.1. A completely integrable system is an abelian scheme π : M → B
over a smooth base B together with a symplectic structure ω on M such that
the fibers of π and the image of the zero section 0 : B → M are Lagrangian.

Denote by M∨ the dual abelian scheme, and by M � its universal extension.
Explicitly, M∨ is the coarse moduli space of pairs (b, l), and M � is the coarse
moduli space of triples (b, l, ∂), where b ∈ B, l is a line bundle on the fiber π−1(b)
with Chern class 0, and ∂ is a flat connection on l.

M � is equipped with two foliations: ζ0 is the relative tangent bundle to the
projection

M � → M∨ : (b, l, ∂) �→ (b, l),

while ζ∞ is defined using the isomonodromic deformation (similarly to the defi-
nition of ζ∞ in Section 2.2).

As vector bundles on M �, the foliations ζ0 and ζ∞ are naturally isomorphic.
Indeed, the fiber of ζ0 at (b, l, ∂) is the space of global differential 1-forms on
π−1(b) ⊂ M , while the fiber of ζ∞ is the tangent space to B at b; the two vector
spaces are identified by the symplectic form on M . We can therefore form the
linear combination ζλ := ζ0 − λζ∞.

Proposition 6.2. ζλ is a foliation for any λ ∈ C.

Notice that the quotient M �/ζ0 equals M∨. Proposition 6.2 implies that the
quotient M �/ζλ exists if λ ∈ C[[λ]] is a formal parameter; the quotient is a
canonical formal deformation of M∨.

The proof of Proposition 6.2 will be given elsewhere. However, if M → B is
the Hitchin fibration (which is the most important case for us), Proposition 6.2
follows from Theorem B(1) and Proposition 6.3.
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6.2. Let X be a smooth projective curve. Denote by B ⊂ SCurv the space
of smooth spectral curves X̃ ⊂ T ∗X, and let M be the coarse moduli space of
pairs (X̃, l), where X̃ ∈ B, and l is a line bundle on X̃ with Chern class zero.
Notice that M is an open subset in the coarse moduli space of Higgs bundles on
X.

It is well known that M has a symplectic form which turns M → B into a
completely integrable system: the Hitchin integrable system. Let us apply the
above construction to M → B.

M → B is principally polarized, so M∨ = M . The universal extension M �

is identified with the coarse moduli space of triples (X̃, l, ∂), where (X̃, l) ∈ M ,
and ∂ is a connection on l. The foliation ζ0 is the relative tangent bundle to
M � → M∨, while ζ∞ is given by the isomonodromic deformation of connections.

Consider now the coarse moduli space corresponding to M�, which we denote
by M �. Recall that M � is the coarse moduli space of triples (X̃, l, ∂), where
X̃ ∈ B ⊂ SCurv, l is a line bundle on X̃, and ∂ is a connection on X̃ with
simple poles at x̃1, . . . , x̃n ∈ X̃ (the ramification points of X̃ → X) whose
residue at x̃i equals −1/2. The space M � also carries natural foliations ζ0, ζ∞
defined as above.

Clearly, M � → B is a group scheme and M � → B is a torsor over it. Moreover,
the action of M � on M � agrees with the foliations ζ0, ζ∞ (and so also with
foliations ζλ, λ ∈ C). In this sense, the description of the (coarse) moduli space
of λ-connections given by Theorem B is a ‘twisted’ version of the construction of
Section 6.1 applied to the Hitchin integrable system. Here is a slightly stronger
statement:

Proposition 6.3. There exists an étale cover B̃ → B and an isomorphism

M � ×B B̃→̃M � ×B B̃

that preserves the foliations ζ∞ and ζ0.

Proof. Let B̃ be the coarse moduli space of pairs (X̃, γ), where X̃ ∈ B, and γ is
a line bundle on X̃ such that

γ⊗2 � OX̃(x̃1 + · · · + x̃n) = ΩX̃ ⊗ p∗
X̃

(ΩX)−1.(6.1)

As before, x̃1, . . . , x̃n are the ramifications of pX̃ : X̃ → X. Clearly, the natural
projection B̃ → B is an étale cover.

Suppose now (X̃, l, ∂, γ) ∈ M � ×B B̃, that is, (X̃, l, ∂) ∈ M � and (X̃, γ) ∈
B̃. Let us also choose an isomorphism (6.1). It induces a connection ∂γ on γ

such that (X̃, γ, ∂γ) ∈ M �. Consider now (X̃, γ ⊗ l, ∂γ ⊗ ∂) ∈ M �; clearly, its
isomorphism class does not depend on the choice of isomorphism (6.1). Define
the map M � ×B B̃→̃M � ×B B̃ by

(X̃, l, ∂, γ) �→ (X̃, γ ⊗ l, ∂γ ⊗ ∂, γ).

It is easy to see that it has the required properties.



ON λ-CONNECTIONS ON A CURVE WHERE λ IS A FORMAL PARAMETER 565

Acknowledgments

I am deeply grateful to V. Drinfeld for his constant attention to this work
and for numerous stimulating discussions. Part of this work is contained in the
thesis I presented at Harvard University, and I would like to thank my readers,
D. Kazhdan and A. Braverman, for their invaluable comments. D. Kazhdan
also supervised my studies at Harvard, and I would like to thank him for his
guidance.

This work owes much to the discussions I had with many mathematicians.
Among them, I am most grateful to A. Beilinson, D. Ben-Zvi, R. Bezrukavnikov,
P. Deligne, R. Donagi, D. Gaitsgory, and T. Pantev.

References

[1] D. Arinkin, Moduli of connections with a small parameter on a curve, Electronic preprint
Math. AG/0409373.

[2] , Orthogonality of natural sheaves on moduli stacks of SL(2)-bundles with connec-
tions on P

1 minus 4 points, Selecta Math. (N.S.), 7, no.2, (2001) 213–239.
[3] R. Y. Donagi and D. Gaitsgory, The gerbe of Higgs bundles, Transform. Groups, 7, no.2,

(2002) 109–153.
[4] V. G. Drinfeld and V. V. Sokolov, Lie algebras and equations of Korteweg-de Vries type,

(Russian) Current problems in mathematics, Vol. 24, Itogi Nauki i Tekhniki, 81–180.
Akad. Nauk SSSR Vsesoyuz. Inst. Nauchn. i Tekhn. Inform., Moscow, 1984.

[5] N. Hitchin, Stable bundles and integrable systems. Duke Math. J., 54, no. 1, (1987) 91–
114.

[6] C. Simpson, Nonabelian Hodge theory. Proceedings of the International Congress of Math-
ematicians, Vol. I, II (Kyoto, 1990), 747–756, Math. Soc. Japan, Tokyo, 1991.

[7] , The Hodge filtration on nonabelian cohomology, In Algebraic geometry–Santa
Cruz 1995, Proc. Sympos. Pure Math. 62, 217–281. Amer. Math. Soc., Providence, RI,
1997.

[8] W. Wasow, Asymptotic expansions for ordinary differential equations. Pure and Applied
Mathematics, Vol. XIV. Interscience Publishers John Wiley & Sons, Inc., New York-
London-Sydney, 1965.

[9] , Linear turning point theory, Applied Mathematical Sciences 54. Springer-Verlag,
New York, 1985.

[10] , Simplification of turning point problems for systems of linear differential equa-
tions, Trans. Amer. Math. Soc., 106, (1963) 100–114.

Department of Mathematics, University of Chicago, Chicago, Illinois 60637, USA
E-mail address: arinkin@math.uchicago.edu


