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ISOMORPHISMS BETWEEN

MODULI SPACES OF SL(2)-BUNDLES

WITH CONNECTIONS ON P
1 \ {x1, . . . , x4}.

D. Arinkin and S. Lysenko

Okamoto found in [Ok1] that Painlevé equations and in particular PV I have
unexpectedly large groups of symmetries. One knows from [Fu] that solutions
to PV I correspond to isomonodromic deformations of a certain kind of linear
differential equations. This kind of differential equations corresponds to a certain
kind of SL(2)-bundles with connections on P

1 \ {x1, . . . , x4}. Moduli spaces of
these bundles form a family parametrized by the cross-ratio of x1, . . . , x4 ∈ P

1,
and PV I can be considered as a connection on this family.

Our aim is to find all isomorphisms between these moduli spaces and to give
a geometric description of these isomorphisms.

In this work the basic field is C ,i.e., ‘space’ means ‘C-space’, ‘P1’ means ‘P1
C
’

and so on.

1.

Let C be the moduli space of (X, x1, . . . , x4), where X is a smooth projective
curve of genus 0, x1, . . . , x4 ∈ X, xi �= xj for i �= j. Obviously C � P

1\{0, 1,∞}.
The group S4 acts on C permuting xi and the kernel of this action is Klein’s

four-group Kl.
Let (λ1, . . . , λ4) ∈ C

4 be such that 2λi /∈ Z and

(1)
4∑

i=1

εiλi /∈ Z

for any εi ∈ µ2 := {1,−1}. Denote by Λ the set of all such (λ1, . . . , λ4). Let
θ = (X, x1, . . . , x4;λ1, . . . , λ4) ∈ Θ := C × Λ.

Definition. A θ-bundle is a triple (L,∇, ϕ) such that L is a rank 2 vector
bundle on X, ∇ : L → L⊗ΩX(x1 + · · ·+ x4) is a connection, ϕ : Λ2L→̃OX is a
horizontal isomorphism, and the residue Ri of ∇ at the point xi has eigenvalues
{λi,−λi}.
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θ-bundles form an algebraic stack Mθ. We denote by Mθ the coarse moduli
space corresponding to Mθ (see [LM] for the definitions). We denote by M → Θ
the family of all Mθ.
Remark. (1) implies that if (L,∇, ϕ) is a θ-bundle then (L,∇) is irreducible. In
particular this shows that Mθ is a µ2-gerbe over Mθ.

One can check that PicMθ is the free abelian group with generators δ,
ξ1, . . . , ξ4 (see [AL]). Here δ (resp. ξi) is the class of the line bundle on Mθ

whose fiber over (L,∇, ϕ) is detRΓ(X, L) (resp. li := ker(Ri − λi) ⊂ Lxi).
PicMθ ⊂ PicMθ is the subgroup of index 2 such that δ ∈ PicMθ, ξi /∈ PicMθ.
We identify PicMθ for all θ ∈ Θ and write simply Pic instead of PicMθ.

Define deg : Pic → Z by deg(aδ+
∑4

i=1aiξi) := −a. Set Pic0 := ker(deg). Let
〈·, ·〉 be the bilinear form on Pic0 such that 〈

∑4
i=1aiξi,

∑4
i=1biξi〉 := − 1

2

∑4
i=1aibi.

Denote by G the group of automorphisms of Pic preserving deg and 〈·, ·〉.
Theorem 1. If θ1 ∈ Θ, g ∈ G there exist unique θ2 ∈ Θ and fg : Mθ1→̃Mθ2

such that (fg)∗ = g ∈ Aut(Pic). Any isomorphism f : Mθ1→̃Mθ2 (θ1, θ2 ∈ Θ)
equals fg for some g ∈ G.

Remark. It follows from Theorem 1 that fgh = fg ◦ fh.
Set V := Pic⊗ZC, V0 := Pic0 ⊗ZC ⊂ V . Then R := {v ∈ Pic0 M |〈v, v〉 =

−2} is a D4 root system. Since S4 acts on R permuting ξi we have a map
S4 → Aut(R). One can show that this map induces an isomorphism
S4/Kl→̃Aut(R)/W (R), where W (R) is the Weyl group of R. The composi-
tion G → Aut(R) → Aut(R)/W (R) = S4/Kl gives us an action of G on C. We
denote by ι : Λ → V the embedding (λ1, . . . , λ4) �→ −δ − 2

∑4
i=1λiξi. One can

easily check (see Remark ii at the end of this section) that ι(Λ) is stable under
the action of G, so ι defines an action of G on Λ. Hence G acts on Θ = C × Λ.

Theorem 2. Suppose θ1, θ2 ∈ Θ; g ∈ G; fg : Mθ1→̃Mθ2 . Then θ2 = gθ1.

Denote by PV I the (algebraic) connection on M → Θ along C whose (ana-
lytic) integral curves correspond to isomonodromic deformations of θ-bundles.

Theorem 3. PV I is the unique algebraic connection on M → Θ along C.

It is well known that Mθ is symplectic. In Section 4 we construct a concrete
symplectic structure ω.

Theorem 4. Suppose g ∈ G. Then :
i) The morphisms fg : Mθ → Mgθ form a family fg : M → M .
ii) The maps fg preserve ω and PV I .

We will sketch proofs of Theorems 1-4 in Sections 6, 7.
Remarks.

i) Pic0 ⊂ V0 is the weight lattice of R.
ii) Let us give an explicit description of ι(Λ) in terms of R. Denote by Q the

root lattice of R. Then ι(Λ) is the set of γ ∈ V such that deg γ = 1, 〈γ+δ, q〉 �∈ Z

for any q ∈ Q. Since Pic0 is the lattice dual to Q, ι(Λ) is the set of γ ∈ V such
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that deg γ = 1, 〈γ + p, q〉 �∈ Z for any p ∈ Pic, q ∈ Q, deg p = −1. So ι(Λ) is
stable under the action of g ∈ G.

iii) There is an obvious isomorphism between G and the semidirect product
of Aut(R) and Pic0. Here Aut(R) is identified with the stabilizer of δ ∈ Pic in
G, and p ∈ Pic0 is identified with g ∈ G defined by g(γ) := γ +deg(γ)p, γ ∈ Pic.

2.

In this section we give some examples of isomorphisms f : Mθ→̃Mθ′ . Suppose
θ = (X, x1, . . . , x4;λ1, . . . , λ4) ∈ Θ, (L,∇, ϕ) is a θ-bundle.

Let σ ∈ S4, θ′ = (X, xσ−1(1), . . . , xσ−1(4); λσ−1(1), . . . , λσ−1(4)). Clearly
(L,∇, ϕ) is also a θ′-bundle. This gives us fσ : Mθ→̃Mθ′ . One can easily
compute (fσ)∗ ∈ Aut(V ). The result is: (fσ)∗δ = δ, (fσ)∗ξi = ξσ(i).

Let ε = (ε1, . . . , ε4) ∈ (µ2)4, θ′ = (X, x1, . . . , x4; ε1λ1, . . . , ε4λ4). The notions
of θ-bundle and θ′-bundle are equivalent, so we get fε : Mθ→̃Mθ′ . Clearly
(fε)∗δ = δ, (fε)∗ξi = εiξi.

Let l =
∑4

i=1aiξi ∈ Pic0, θ′ = (X, x1, . . . , x4; λ1 + a1
2 , . . . , λ4 + a4

2 ). Consider
bundles L′ such that L(−N(x1+ · · ·+x4)) ⊂ L′ ⊂ L(N(x1+ · · ·+x4)) for N � 0
and the connection ∇′ induced on L′ by ∇ has poles of first order at xi. There is
a unique bundle L′ such that the residue of ∇′ at xi has eigenvalues (λi,−ai−λi).
Clearly ϕ induces a horizontal isomorphism ϕ′ : Λ2L′→̃O(

∑4
i=1 aixi).

There exists a triple (γ, d, ψ) such that γ is a line bundle on X, d : γ →
γ ⊗ Ω(x1 + · · · + x4) is a connection, resxi d = ai

2 , ψ : γ⊗2 → O(−
∑4

i=1 aixi) is
a horizontal isomorphism. (γ, d, ψ) is unique up to an isomorphism. Obviously
(L′ ⊗ γ,∇′ ⊗ d, ϕ′ ⊗ ψ) is a θ′-bundle. This gives fl : Mθ→̃Mθ′ . It is easy to
check that (fl)∗δ = δ + l, (fl)∗ξi = ξi.

In Section 8 we give a nontrivial example of f : Mθ→̃Mθ′ .

3.

Now we give a geometric description of Mθ which goes back to Okamoto [Ok2].
Suppose θ = (X, x1, . . . , x4;λ1, . . . , λ4) ∈ Θ. We denote by Kθ the Hirzebruch
surface P(OX ⊕ ΩX(x1 + · · · + x4)). Let s∞ = P(OX) ⊂ Kθ be the infinite
section, so Kθ = Kθ \ s∞ is the total space of the bundle ΩX(x1 + · · · + x4).
Let bi ⊂ Kθ be the fiber over xi, resi : bi→̃A

1 the canonical isomorphism. Let
c±i = (resi)−1(λ±

i ), where λ±
i = ±λi for i �= 1, λ+

1 = λ1, λ
−
1 = 1 − λ1. Blowing

up c±i ∈ Kθ we obtain a variety Mθ. Denote by b′i, s
′
∞ the proper preimages of

bi, s∞. We denote by M̃θ the complement to b′i, s
′
∞ in Mθ. Denote by b±i ⊂ Mθ

the preimages of c±i .

Proposition 1. There is an isomorphism f : M̃θ→̃Mθ such that f∗(δ) �
O(−b−1 ), f∗(ξ⊗2

i ) � O(b−i − b+
i ).

Remark. Theorem 1 implies that f is uniquely determined by f∗(δ), f∗(ξi) ∈
Pic M̃θ.
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Let us sketch a construction of f . Let (L,∇, ϕ) be a θ-bundle. Consider
L′ := {s ∈ L|s(x1) ∈ l1}, where l1 := ker(R1 − λ1). Then ∇′ := ∇|L′ has a
pole of order 1 at x1. Since (L′,∇′) is irreducible L′ � OX ⊕ OX(−1). Fix
s ∈ H0(X, L′), s �= 0. Define j : OX ⊕ (ΩX(x1 + · · · + x4))−1 → L′ by (f, τ) �→
fs + τ∇s ∈ L′. Then det j has a unique simple zero x ∈ X. Denote by l
the kernel of jx : (OX ⊕ (ΩX(x1 + · · · + x4))−1)x → L′

x. l defines a point of
P(OX ⊕ ΩX(x1 + · · · + x4)) \ P(OX) = Kθ. We have constructed a morphism
Mθ → Kθ. It induces an isomorphism f : M̃θ → Mθ. �

One can easily check the following formulas:

(2) (s′∞, s′∞) = −2 (b′i, b
′
j) =

{ −2, i = j

0, i �= j
(s′∞, b′i) = 1

(i, j = 1, . . . , 4)

It follows from (2) that Mθ is the least smooth compactification of M̃θ. Clearly
we can identify PicMθ for all θ ∈ Θ. So we write simply Pic instead of PicMθ.
The kernel of the natural map Pic → Pic is the free abelian group Pic∞ with basis
s′∞, b′i (so any class α ∈ Pic∞ contains a unique divisor C such that suppC ⊂
Mθ\Mθ). The restriction of the intersection form on Pic to Pic∞ is non-positive.
Its kernel is generated by D := 2s′∞ +

∑4
i=1b

′
i.

Proposition 2.
i) Ω2

Mθ
� OMθ

(−D).

ii) If γ ∈ Pic, γ ∈ Pic are such that γ|Mθ
= γ then (γ, D) = deg γ.

iii) For γ1, γ2 ∈ Pic0 there exist γj ∈ Pic⊗ZC such that (γj , s
′
∞) = (γj , b

′
i) = 0

and γj |Mθ
= γj (j = 1, 2; i = 1, . . . , 4); in this situation (γ1, γ2) = 〈γ1, γ2〉. �

Remark. Denote by Q ⊂ V0 the lattice dual to Pic0 (so Q is the root lattice
of R). Then γ ∈ Q iff there is a γ ∈ Pic such that (γ, s′∞) = (γ, b′i) = 0 and
γ|Mθ

= γ.

Lemma 1. H0(Mθ, OMθ
) = C

Proof. Riemann-Hilbert correspondence yields an analytic isomorphism
(Mθ)an � (Wθ)an, where Wθ is an affine variety (Wθ is the moduli space of
two-dimensional representations of π1(X \ {x1, . . . , x4}) with fixed conjugacy
classes of local monodromies). Hence Mθ contains no projective curves. Let
f ∈ H0(Mθ, OMθ

). The divisor of f on Mθ can be represented as (f) = C∞+C,
where suppC∞ ⊂ Mθ \Mθ and C is the closure of the divisor of f on Mθ. Since
((f), D) = (C∞, D) = 0 we have (C, D) = 0. But C ≥ 0 and Mθ contains no
projective curves so C = 0. So C∞ ∼ 0. Since suppC∞ ⊂ Mθ \ Mθ this implies
C∞ = 0. �
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4.

The description of Mθ can be reformulated in the following way.
Let π′ be the composition Mθ → Kθ → X. The fiber of π′ over the point

xi ∈ X has two connected components b±i .
Glueing together two copies of X outside x1, . . . , x4, we obtain a scheme N ′.

We have the natural morphism πN : N ′ → X. Set {x+
i , x−

i } := (πN )−1(xi).
There exists a unique morphism π : Mθ → N ′ such that π′ = πN ◦ π and
π−1(x±

i ) = b±i . π defines a structure of an affine bundle on Mθ (i.e., π : Mθ → N ′

is a torsor over some vector bundle on N ′). So π∗ : PicN ′→̃Pic.
Then Proposition 1 implies :

Proposition 3. Set β := (π∗)−1(−δ − 2
∑4

i=1λiξi) ∈ PicN ′ ⊗Z C. Then
i) The vector bundle associated with π : Mθ → N ′ is ΩN ′ .
ii) α ∈ H1(N ′,Ω1

N ′) corresponding to the ΩN ′-torsor π : Mθ → N ′ is the
image of β. �

Since Mθ is an Ω1
N ′ -torsor there is a natural exact sequence 0 → π∗Ω1

N ′ →
TMθ

→ π∗TN ′ → 0, where TN ′ is the tangent bundle. This exact sequence yields
ω ∈ H0(Mθ,Ω2

Mθ
) defined by ω(s1 ∧ s2) = 〈s1, s2〉 for s1 ∈ π∗Ω1

N ′ , s2 ∈ TMθ
.

Here s2 ∈ π∗TN ′ is the image of s2 ∈ TMθ
, 〈·, ·〉 is the natural pairing between

π∗ΩN ′ and π∗TN ′ . dω = 0 because dim Mθ = 2. By the results of [BK] we get:

Corollary 1. The image of ω in H2
DR(Mθ, C) coincides with the image of −δ−

2
∑4

i=1λiξi ∈ Pic⊗ZC. �

Remarks.
i) Consider any variety obtained by the same way as M̃θ, but for any points

c±i ∈ bi ⊂ Kθ, c+
i �= c−i (i = 1, . . . , 4). By the same arguments we get a sym-

plectic structure on this variety and can compute the corresponding de Rham
cohomology class. This class is the image of

∑4
i=1(λ

+
i [b+

i ] + λ−
i [b−i ]) ∈ Pic⊗ZC

in H2
DR(M̃θ, C). Here b±i ⊂ M̃θ is the preimage of c±i ∈ Kθ, λ±

i := resi(c±i ),
resi : bi → A

1 is the canonic isomorphism, [b±i ] ∈ Pic is the class of the divisor
b±i .

ii) It is well known that the analog of Mθ for any curve X and any points
x1, . . . , xn ∈ X has a natural symplectic structure. This structure depends only
on a choice of an invariant scalar product on sl(2). We conjecture that Corollary
1 is true in this situation for a suitable choice of this product.

5.

Denote by Excθ the set of all exceptional curves of the first kind on Mθ.

Proposition 4. The map C �→ [C] is a bijection

Excθ→̃Pic1 := {γ ∈ Pic |deg(γ) = 1}.
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Proof. Suppose C ∈ Excθ. By adjunction formula (C, D) = 1, i.e.,
deg(OMθ

(C)) = 1. So one has the mapping φ : Excθ → Pic1 defined by
φ(C) := [C] ∈ Pic. Proposition 1 shows that −δ ∈ Im φ. Using the isomor-
phisms fl from Section 2, l ∈ Pic0, one sees that φ is surjective. Clearly the
map Excθ → PicMθ : C �→ OMθ

(C) is injective, and its image is contained in
Ex := {γ ∈ PicMθ|(γ2) = −1, (γ, s′∞) ≥ 0, (γ, b′i) ≥ 0, (γ, D) = 1}. It is easy
to prove that the map Ex → Pic1 : γ �→ γ|Mθ

is injective. This completes the
proof. �

In fact we have proved that both maps Excθ → Ex and Ex → Pic1 are
bijective. Denote by Cα the image of α ∈ Pic1 in Ex ⊂ Pic. One can check the
following formulas:

(s′∞, Cα) = 0 (b′i, Cα) =
{

1, α ∈ Pi

0, α /∈ Pi

(3) (Cα, Cβ) = −1 −
[ 〈α − β, α − β〉

2

]

(α, β ∈ Pic1; i = 1, . . . , 4)

Here Pi := (−δ + ξi + ξ1) + Q ∈ Pic1 /Q. Obviously s′∞, b′1, . . . , b
′
4, and Cα

generate Pic.
Denote by G the group of all automorphisms of Pic preserving s′∞, the inter-

section form, and the set {b′1, . . . , b′4}. The restriction map Pic → Pic induces a
homomorphism p : G → Aut(Pic).

Lemma 2. p is a bijection G→̃G.

Proof. Clearly G preserves D, so Proposition 2 implies p(G) ⊂ G. Now we
construct the inverse map.

Suppose g ∈ G. Denote by Γ the free abelian group with basis s′∞, b′i, Cα, (i =
1, . . . , 4, α ∈ Pic1). Denote by B the symmetric bilinear form on Γ defined by
(2) and (3). Since the intersection form on Pic is non-degenerate Pic = Γ/ ker B.
We define g̃ : Γ → Γ on the generators by g̃(s′∞) = s′∞, g̃(Cα) = Cg(α), g̃(b′i) = b′j
iff g(Pi) = Pj and extend it to Γ by linearity. Since g̃ preserves B, g̃ induces
g : Pic → Pic. Clearly g ∈ G. �

6. Proof of Theorems 1 and 2

Fix θ1 = (X(1), x
(1)
1 , . . . , x

(1)
4 ;λ(1)

1 , . . . , λ
(1)
4 ) ∈ Θ, g ∈ G.

Step 1. Suppose θ2 = (X(2), x
(2)
1 , . . . , x

(2)
4 ;λ(2)

1 , . . . , λ
(2)
4 ) ∈ Θ, f : Mθ1→̃Mθ2 are

such that f∗ = g ∈ Aut Pic. Let us prove that θ2 and f are uniquely determined
by θ1 and g.
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Since Mθr is the least smooth compactification of Mθr (r = 1, 2) one can
extend f to f : Mθ1→̃Mθ2 . Clearly g := (f)∗ ∈ G is the image of g via the
isomorphism G→̃G constructed in Lemma 2. Hence f(s(1)

∞ ) = s
(2)
∞ , f(b(1)

σ(i)) =

b
(2)
i , where s

(r)
∞ , b

(r)
i denote the curves s′∞, b′i ⊂ Mθr , r = 1, 2, and σ ∈ S4 is the

permutation such that g−1(Pi) = Pσ(i).
Let E±

i ∈ Excθ1 correspond to g−1[b±i ] ∈ Pic1. Let Kg be the variety ob-
tained by blowing down E±

i ⊂ Mθ1 . Clearly the composition Mθ1→̃Mθ2 → Kθ2

induces an isomorphism fK : Kg→̃Kθ2 . Let s(∞), b(i) ⊂ Kg, and c±(i) ∈ b(i) be

the images of s
(1)
∞ , b

(1)
σ(i), and E±

i ⊂ Mθ1 respectively. Then fK has the following
properties: fK(s(∞)) ⊂ Kθ2 is the infinite section, fK(b(i)) ⊂ Kθ2 is the fiber
over x

(2)
i ∈ X(2), and fK(c(i))± = (resi)−1(λ(2)±

i ). Here λ
(2)±
i = ±λ

(2)
i for i �= 1,

λ
(2)+
1 = λ

(2)
1 , λ

(2)−
1 = 1 − λ

(2)
1 .

Clearly θ2 ∈ Θ and fK : Kg→̃Kθ2 with the above properties are uniquely
determined by Kg, s(∞) ⊂ Kg, b(i) ⊂ Kg, and c+

(i), c
−
(i) ∈ b(i) (i = 1, . . . , 4).

Remark. The map Mθr → Kθr → X(r) induces an isomorphism (s(r)
∞ , s

(r)
∞ ∩

b
(r)
1 , . . . , s

(r)
∞ ∩ b

(r)
4 )→̃(X(r), x

(r)
1 , . . . , x

(r)
4 ), r = 1, 2. So (X(2), x

(2)
1 , . . . , x

(2)
4 ) �

(X(1), x
(1)
σ(1), . . . , x

(1)
σ(4)).

Step 2. Let us construct fg : Mθ1→̃Mθ2 . We keep the notation of Step 1.
Kg is a smooth rational projective surface. It is easy to check that [b(1)] =

[b(2)] = [b(3)] = [b(4)] ∈ PicKg. [b(1)] and [s(∞)] form a basis in PicKg. One
can prove that (s(∞), b(i)) = 1, (s(∞), s(∞)) = −2, (b(i), b(i)) = 0. Combining
this fact with the remark from Step 1 we can find an isomorphism Kg→̃K2 :=
P(OX(2) ⊕ ΩX(2)(x(2)

1 + · · · + x
(2)
4 )) such that s(∞) corresponds to the infinite

section and b(i) corresponds to the fiber over x
(2)
i . Here X(2) := X(1), x

(2)
i :=

x
(1)
σ(i). Then c±(i) corresponds to (resi)−1(λ±

(i)) for some λ±
(i) ∈ C, λ+

(i) �= λ−
(i). By

Remark i from Section 4 the map Mθ1 → K2 yields a symplectic structure on
Mθ1 such that the corresponding de Rham cohomology class is the image of v2 :=∑4

i=1(λ
+
(i)[E

+
i ] + λ−

(i)[E
−
i ]) ∈ Pic⊗ZC. By Lemma 1 two symplectic structures

on Mθ1 should coincide up to a ∈ C
∗. So av2 = v1 := −δ − 2

∑4
i=1λ

(1)
i ξi. Using

deg : Pic⊗ZC → C we obtain that
∑4

i=1(λ
+
(i) + λ−

(i)) �= 0.

Therefore replacing Kg→̃K2 by its composition with a suitable automorphism
of K2 over X(2) we can come to the situation where λ+

(i) +λ−
(i) equals 0 for i �= 1

and 1 for i = 1. Then a = 1, v1 = v2.
Set λ

(2)
i := λ+

(i). Then v2 = g−1(−δ − 2
∑4

i=1λ
(2)
i ξi). Therefore

(4) −δ − 2
4∑

i=1

λ
(2)
i ξi = gv2 = gv1 = g(−δ − 2

4∑
i=1

λ
(1)
i ξi)
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So (λ(2)
1 , . . . , λ

(2)
4 ) is obtained from (λ(1)

1 , . . . , λ
(1)
4 ) by the action of g ∈ G. Hence

(λ(2)
1 , . . . , λ

(2)
4 ) ∈ Λ and θ2 := (X(2), x

(2)
1 , . . . , x

(2)
4 ;λ(2)

1 , . . . , λ
(2)
4 ) ∈ Θ.

The composition Mθ1 → Kg→̃K2 = Kθ2 lifts to an isomorphism fg : Mθ1→̃
Mθ2 . fg induces fg : Mθ1→̃Mθ2 . By the construction fg(E

±
i ) is the closure of

b±i . Since [b±i ] generate Pic we have (fg)∗ = g.

Step 3. Let us prove Theorem 2. We have already proved that (λ(2)
1 , . . . , λ

(2)
4 )

is obtained from (λ(1)
1 , . . . , λ

(1)
4 ) by the action of g ∈ G. Now we prove that

(X(2), x
(2)
1 , . . . , x

(2)
4 ) � (X(1), x

(1)
σ(1), . . . , x

(1)
σ(4)) is obtained from

(X(1), x
(1)
1 , . . . , x

(1)
4 ) by the action of g ∈ G. Consider two particular cases.

Case 1. Suppose g|Pic0 ∈ W (R). Then g induces the identity automorphism
of Pic0 /Q. So the action of g on Pic1 /Q is a translation and σ ∈ Kl. Hence
(X(2), x

(2)
1 , . . . , x

(2)
4 ) � (X(1), x

(1)
1 , . . . , x

(1)
4 ).

Case 2. Suppose g is defined by g(ξi) = ξσ′(i), g(δ) = δ, where σ′ ∈ S4 is
such that σ′(1) = 1. Then fg = fσ′ (see Section 2). By definition σ = (σ′)−1

and (X(2), x
(2)
1 , . . . , x

(2)
4 ) is obtained from (X(1), x

(1)
1 , . . . , x

(1)
4 ) by the action of

σ′ ∈ S4.
Any g can be represented as g1fσ′ , where g1|Pic0 ∈ W (R), σ′ ∈ S4, σ′(1) = 1,

so Theorem 2 follows from these particular cases.

Step 4. Let us prove the last statement of Theorem 1. Take any f : Mθ1→̃Mθ2

(θ1, θ2 ∈ Θ). Extend f to f : Mθ1→̃Mθ2 . Set g := (f)∗ ∈ Aut(Pic). Clearly
g ∈ G. Hence g := f∗ ∈ G ⊂ Aut Pic and f = fg. �
Remark. Consider the isomorphisms fσ(σ ∈ S4), fε(ε ∈ (µ2)4), fl(l ∈ Pic0), and
τ constucted in Section 2 and Section 8. One can easily check that
(fσ)∗, (fε)∗, (fl)∗, and τ∗ generate G, so any isomorphism f : Mθ1→̃Mθ2 , θ1, θ2 ∈
Θ can be represented as a composition of the isomorphisms fσ, fε, fl, τ . That
gives us some geometric description of f . Besides, Theorem 2 is obvious for
fσ, fε, fl, τ , so it can be proved for any f : Mθ1→̃Mθ2 using this decomposition.
This is another proof of Theorem 2.

7. Proof of Theorems 3 and 4

Proof of Theorem 3. Suppose there are two connections on M → Θ along C.
For any fixed θ ∈ Θ two such connections differ by a vector field on Mθ. So it
suffices to prove the following lemma.

Lemma 3. H0(Mθ, TMθ
) = 0.

Proof. Since Mθ is symplectic TMθ
� Ω1

Mθ
. Suppose η ∈ H0(Mθ, Ω1

Mθ
). Then

by Lemma 1 dη ∈ H0(Mθ,Ω2
Mθ

) = Cω. But the image of ω in H2
DR(Mθ, C) does

not vanish, so dη = 0. It follows from Proposition 3 that Mθ can be covered
with open subsets isomorphic to A

2, so locally η lies in the image of d : O → Ω1.
But ker(d) = C and H1

Zar(Mθ, C) = 0, so η = df , f ∈ H0(Mθ, O). Lemma 1
shows that η = 0. �
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Proof of Theorem 4. All the above constructions are still valid for families of Mθ

and so the first part of Theorem 4 is obvious. Suppose g ∈ G. (4) implies that
fg preserves ω. The fact that fg : M→̃M preserves PV I follows from Theorem
3. �

8.

Now we give another geometric description of Mθ, θ = (X, x1, . . . , x4;
λ1, . . . , λ4) ∈ Θ.

Let ∆ ⊂ X2 be the diagonal. Set βi := (xi, xi) ∈ ∆. We denote by K̃θ the
variety obtained by blowing up β1, . . . , β4 ∈ X2. Let b̃i ⊂ K̃θ be the preimage
of βi, ri : P

1→̃b̃i the isomorphism such that ri(0), ri(∞), ri(1) lie on the proper
preimages of {xi}×X, X×{xi}, ∆ respectively. Set u :=

∑4
i=1 λi, vi := λ+

i −λ−
i ,

µi := ri( vi

u−vi
) ∈ b̃i.

Proposition 5. There is a unique map Mθ → K̃θ which is the blow-up at µ1,
. . . , µ4 such that:

i) s′∞, b′i are the proper preimages of ∆, b̃i respectively,
ii) b−i is the preimage of µi,
iii) the morphism Mθ → X from Section 3 equals the composition Mθ →

K̃θ → X × X → X, where X × X → X is the first projection.

Proof. Blow down the curves b−i and b′i on Mθ, i = 1, . . . , 4. Denote by P̃ the
obtained variety. Proposition 1 implies that P̃ is the natural compactification
of the ΩX -torsor whose sheaf of sections is {s ∈ ΩX(x1 + · · ·+x4)| resxi

s = λi}.
It follows from (1) that this torsor is not trivial ,i.e., P̃ � P(E) for a non-trivial
extension 0 → ΩX → E → OX → 0. Thus E � (OX(−1))2 and P̃ � X2.
There is a unique isomorphism P̃→̃X2 such that the natural projection P̃ → X
and the first projection X2 → X are identified and ∆ ⊂ X2 is the image of
s′∞ ⊂ Mθ. To complete the proof one can check the formula for µi by direct
calculation. �

Corollary 2. Set θ′ := (X, x1, . . . , x4; λ′
1, . . . , λ

′
4), λ′

j := λj − 1
2

∑4
i=1λi. The

map X2→̃X2 defined by (x, y) �→ (y, x) induces an isomorphism τ : Mθ→̃Mθ′

such that τ := τ |Mθ
is an isomorphism Mθ→̃Mθ′ . �

One can easily check that τ∗(δ) = δ, τ∗(ξi) = ξi − 1
2

∑4
i=1ξi (so τ∗|V0 is the

reflection corresponding to
∑4

i=1 ξi ∈ R).
Remark. Denote by N the coarse moduli space of indecomposable SL(2)-bundles
on X with quasiparabolic structure at x1, . . . , x4. For a θ-bundle (L,∇, ϕ) we set
li := ker(Ri − λi) ⊂ Lxi . (L, ϕ, l1, . . . , l4) is an indecomposable quasiparabolic
bundle on X. This yields a morphism Mθ → N . One can show that there exists
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an isomorphism N→̃N ′ such that the diagram

Mθ

τ

→̃Mθ′

↓ ↓
N →̃ N ′

commutes. Here θ′ and τ were defined in Corollary 2 and the morphism Mθ′ →
N ′ is analogous to the morphism Mθ → N ′ constructed in Section 4.
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Paris 11 (Orsay) (1992).
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