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Abstract
We show that difference Painlevé equations can be interpreted as isomorphisms of
moduli spaces of difference connections (d-connections) on P

1 with given singularity
structure. In particular, we derive a difference equation that lifts to an isomorphism
between A

(1)∗
2 -surfaces in Sakai’s classification (see [29]); it degenerates to both

difference Painlevé V and classical (differential) Painlevé VI equations. This difference
equation has been known before under the name of asymmetric discrete Painlevé IV
equation.
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1. Introduction
This article is about difference Painlevé equations and their geometric properties.
The term discrete (difference, q-difference, or elliptic) Painlevé equation is rather
vague; there exist different ways of discretizing the classical (second-order differential)
Painlevé equations (see, e.g., [13], [19], [22], [23], [29]). We consider the equations
that fit into Sakai’s classification described in [29].

By definition, any equation of Sakai’s hierarchy originates from a birational
automorphism of C

2 which lifts to a regular isomorphism between two blowups of P
2
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at nine points. This geometric property allows us to classify the equations according
to the type of the resulting surface. The hierarchy also includes the classical Painlevé
equations for which the surfaces are viewed as spaces of initial conditions (see [24],
[25]).

From 2001 to 2004, several researchers have computed the so-called gap prob-
abilities in various discrete probabilistic models of random-matrix type (see [1], [4],
[5], [7], [8] – [12]). Surprisingly, these quantities were often expressible in terms of
certain specific solutions of equations from Sakai’s hierarchy. Later, it was demon-
strated that the equations arising in probabilistic models can be viewed as reductions of
isomonodromy transformations of systems of linear difference equations with rational
coefficients (see [6]). Further discussion of monodromy for difference equations can
be found in [20].

The goal of this article is twofold. First, we show how the geometric approach to
isomonodromy transformations implies that the transformations lift to isomorphisms
between suitable surfaces. This provides a conceptual explanation of the above co-
incidence. The surfaces are geometrically interpreted as suitable moduli spaces of
d-connections (short for difference connections) on the Riemann sphere. Second,
we derive an equation of Sakai’s hierarchy which lifts to an isomorphism between
A

(1)∗
2 -surfaces in Sakai’s classification (see [29]). We call this equation the difference

Painlevé VI, or dPVI.
Let us briefly describe our results.
Consider a matrix linear difference equation

y(z + 1) = A(z)y(z), A(z) = A0z
n + · · · + An−1z + An, Ai ∈ Mat(m, C).

(1.1)

We always assume that A0 is invertible. According to [6], isomonodromy transforma-
tions of this equation consist of maps of the form

A(z) �→ A′(z) = R(z + 1)A(z)R(z)−1 (1.2)

for suitable rational matrix-valued functions R(z). For generic A(z), these transforma-
tions are parameterized by integral shifts of the zeros of A(z) and of certain exponents
at z = ∞ with total sum of shifts equal to zero (see [6, Theorem 2.1]). We can then
express the matrix elements of A′(z) as functions of the matrix elements of A(z); in
special cases, the expressions give rise to the difference Painlevé equations.

However, the isomonodromy transformation is defined only when A(z) is generic
enough. Therefore, the resulting maps are rational rather than regular; that is, the
formulas for matrix elements of A′(z) have singularities. In order to resolve these
singularities, it is convenient to use the geometric approach.
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Let L be a vector bundle on P
1 of rank m. Assume that we are given a d-

connection on L which is, by definition, a linear operator A(z) : Lz → Lz+1 which
depends on z polynomially. (Here Lz is the fiber of L over z.) If L is the trivial
vector bundle, A(z) is a matrix difference equation (see (1.1)).

There is a natural operation on vector bundles with d-connection called mod-
ification; it is induced by a rational isomorphism R : L ��� L′ between two
vector bundles. A d-connection A on L then induces a d-connection A′ on L′, and
vice versa. Isomonodromy transformations can be viewed as special cases of such
modifications.

Let us consider the example that leads to the difference Painlevé V equation
(dPV). Take m = (rank of L) = 2; assume that A(z) has four simple zeros a1, a2,
a3, a4 ∈ C; and assume that there exists a trivialization of L in a neighborhood of
z = ∞ with respect to which the matrix of A(z) has the form

A(z) =
[
ρ1 0
0 ρ2

]
z2 +

[
ρ1d1 0

0 ρ2d2

]
z + O(1), z → ∞.

PROPOSITION (Isomonodromy transformation)
Under certain nondegeneracy conditions on the parameters (a1, . . . , a4, ρ1,

ρ2, d1, d2), for any vector bundle L with d-connection A and any integral shifts
of the parameters a1, . . . , a4, d1, d2, there exists a unique vector bundle L′ with d-
connection A′ related to (L, A) by a modification and such that it satisfies the above
assumptions with shifted values of parameters.

Note that we do not need to assume that (L, A) is generic. This means that the
modifications of this proposition give (regular, not birational) isomorphisms of the
moduli spaces of vector bundles with d-connections with given singularity structure,
provided that the parameters are generic.

From now on, let us also assume that

deg(L) = −(a1 + · · · + a4 + d1 + d2) = −1.

This condition implies that L is always isomorphic to O ⊕ O(−1). (Notice that an
isomonodromy transformation fixes deg(L) if and only if the corresponding shifts of
the parameters a1, . . . , a4, d1, d2 add up to zero.) By a choice of basis in L, the moduli
space of d-connections can be identified with equivalence classes of (2 × 2)-matrices
A with polynomial entries satisfying

A =
[
a11 a12

a21 a22

]
, deg a11 ≤ 2, deg a22 ≤ 2, deg a21 ≤ 1, deg a12 ≤ 3,

det A(z) = ρ1ρ2(z − a1)(z − a2)(z − a3)(z − a4),

a11 + a22(1 + z−1) = (ρ1 + ρ2)z2 + (d1ρ1 + d2ρ2)z + O(1),
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modulo the gauge transformations of the form (1.2) with polynomial

R =
[
r11 r12

0 r22

]
, r11 = const, r22 = const, deg r12 ≤ 1.

It is not hard to see that this moduli space is two-dimensional. We show that its smallest
compactification is a surface of the Sakai-type D

(1)
4 ; in particular, it is a blowup of P

2

at nine points. (We use a different description as a blowup of P
1 × P

1.) The moduli
space itself is the complement of five curves (the support of the unique effective
anticanonical divisor) inside this surface.

In order to connect this picture to dPV, we introduce coordinates on the moduli
spaces.

THEOREM (dPV)
Take the zero of the linear polynomial a21 as the first coordinate, and denote it by q;
take the value of the matrix element a11 at q divided by (q − a3)(q − a4) as the second
coordinate, and denote it by p. Consider the modification of (L, A) to (L′, A′)
which shifts

a1 �→ a1 − 1, a2 �→ a2 − 1, d1 �→ d1 + 1, d2 �→ d2 + 1.

Then the coordinates (p′, q ′) on the moduli space of (L′, A′) are related to (p, q) by
q ′ + q = a3 + a4 + ρ1(d1 + a3 + a4)

p − ρ1
+ ρ2(d2 + a3 + a4)

p − ρ2
,

p′p = (q ′ − a1 + 1)(q ′ − a2 + 1)

(q ′ − a3)(q ′ − a4)
· ρ1ρ2.

This is exactly the dPV equation of [14] and [29].∗

Remark. The idea of using (q, p) as coordinates on the moduli space is by no means
new. For Painlevé equations, it has been used, for example, in [18], in the continuous
situation, and in [19], in the discrete situation.

Another example that we consider in detail deals with rank 2 vector bundles L with
d-connection A(z) which has six simple zeros a1, . . . , a6 ∈ C and whose behavior
near z = ∞ in a suitable trivialization is given by

A(z) =
[

1 0
0 1

]
z3 +

[
d1 0
0 d2

]
z2 + O(z).

∗A different reduction of an isomonodromy transformation to dPV can be found in [5].
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Quite similarly to the case of dPV, there is an action of Z
8 which is parametrized by

integral shifts of ai’s and dj ’s. The group acts by isomorphisms of moduli spaces.
Let us again assume that deg(L) = −(a1 + · · · + a6 + d1 + d2) = −1. Then the
corresponding moduli spaces can be identified with equivalence classes of (2 × 2)-
polynomial matrices A satisfying

A =
[
a11 a12

a21 a22

]
, deg a11 ≤ 3, deg a22 ≤ 3, deg a21 ≤ 1, deg a12 ≤ 3,

det A(z) = (z − a1)(z − a2)(z − a3)(z − a4)(z − a5)(z − a6),

(a11 − z3)
(
a22(1 + z−1) − z3

) − a12a21 = d1d2z
4 + O(z3),

modulo the same gauge transformations as in the case of dPV.
Once again, we show that such a moduli space is two-dimensional and that its

smallest compactification can be identified with P
2 blown up at nine points. The

corresponding surface has type A
(1)∗
2 , in Sakai’s notation, and the moduli space is the

complement of three curves (the support of the effective anticanonical divisor) in this
surface.

Similarly to the case of dPV, in order to get explicit equations, we need to introduce
coordinates on the moduli spaces.

THEOREM (dPVI)
Take the zero of the matrix element a21 as the first coordinate, and denote it by q; take
the value of the matrix element a11 at q divided by (q − a4)(q − a5)(q − a6) as the
second coordinate, and denote it by p. Consider the modification of L to L′ which
shifts

a1 �→ a1 − 1, a2 �→ a2 − 1, d1 �→ d1 + 1, d2 �→ d2 + 1. (1.3)

Then the coordinates (p′, q ′) on the moduli space of L′ are related to (p, q) by
q ′ = (p − 1)(q + 1 − a1 − a2) + pa3 + ∑

j=1,2

cjp

q − ((p(1 − a1 − a2 − dj ) − a3)/(p − 1))
,

p′ · p = (q ′ − a1 + 1)(q ′ − a2 + 1)

(q ′ − a4)(q ′ − a5)(q ′ − a6)
· (

(p − 1)(q ′ − q) + q ′ − a3
)
,

where

cj = (dj + a1 + a2 + a4 − 1)(dj + a1 + a2 + a5 − 1)(dj + a1 + a2 + a6 − 1)

(dj − d3−j )
.

We call the relations above the difference Painlevé VI equation.
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Remark. The difference Painlevé VI equation is equivalent to the asymmetric dPIV
equation of [15] (see also earlier references therein). Indeed, introducing the new
variable r instead of p via p = (q − a3)/(q + r), we can rewrite our relations as

(q + r)(q ′ + r) = (r + a3)(r + a4)(r + a5)(r + a6)

(r + 1 − a1 − a2 − d1)(r + 1 − a1 − a2 − d2)
,

(q ′ + r)(q ′ + r ′) = (q ′ − a3)(q ′ − a4)(q ′ − a5)(q ′ − a6)

(q ′ − (a1 − 1))(q ′ − (a2 − 1))
,

which, up to a change of notation, coincides with [15, (1.3)]. We are very grateful to
the referee for pointing this out.

The reason we prefer seemingly more complicated expressions in the theorem
is that the coordinates have a clear geometric meaning. This also simplifies various
degenerations to other Painlevé equations.

It should be noted that formulas for all isomorphisms of Sakai surfaces in principle
can be written using coordinates of [29]. The computation, however, can be rather
tedious.

There are simple degenerations that turn dPVI into dPV and the classical PVI
equations. In a sense, this can be done simultaneously. Let us consider, in addition to
the flow given by the shift (1.3), the flow generated by the shift

a3 �→ a3 − 1, a4 �→ a4 − 1, d1 �→ d1 + 1, d2 �→ d2 + 1. (1.4)

Clearly, the flow given by the shift (1.4) is also described by dPVI with a slightly
different p-coordinate. Now let a1, a2, d1, and d2 go to infinity at speeds −ρ1, −ρ2, ρ1,
and ρ2, respectively. In the limit, the dPVI equation corresponding to (1.3) converges
to a continuous vector field that is equivalent to the classical PVI.∗ At the same time,
the flow corresponding to (1.4) converges to a discrete flow described by dPV. As the
result, we get two commuting flows on the same surface (of the Sakai-type D

(1)
4 ), a

vector field given by dPVI and discrete dynamics given by dPV.
This limiting picture can be seen from two points of view. First, the classical

PVI possesses the so-called Bäcklund transformations, which can be described via
dPV; see [11]. Second, there is a natural continuous isomonodromy deformation that
moves the parameters ρ1, ρ2 in the dPV setting; it can be reduced to the classical PVI.
Finally, the geometric Mellin transform (a version of the Fourier transform) relates
the two approaches. These interrelations (except for the Bäcklund transformations)
are discussed in detail in the body of the article.

The article is organized as follows. In Section 1 we state our main results. In
Section 2 we study general properties of d-connections and discuss various operations

∗The classical PVI was also obtained as a limit of other discrete Painlevé equations in [19] and [26].
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on them. Section 3 is dedicated to dPV and the corresponding moduli space. In
Section 4 we describe the relations between dPV and PVI. Finally, in Section 5 we
deal with dPVI, the associated moduli space, and degenerations of dPVI to dPV and
PVI.

1.1. Notation
In this article the ground field is C, so “variety” means “variety over C,” “P

1” means
“P

1
C

,” and so on. The coordinate on the projective line P
1 is denoted by z. For a vector

bundle L on P
1, the fiber of L over z ∈ P

1 is denoted by Lz and the space of global
sections of L is denoted by �(P1, L). O(k) stands for the line bundle (vector bundle
of rank 1) on P

1 whose sections are functions on P
1 with a pole of order at most k (or

zero of order at least −k, if k < 0) at ∞ ∈ P
1.

The diagonal (m × m)-matrix with entries α1, . . . , αm is denoted by
diag(α1, . . . , αm).

2. Main results

2.1. d-connections and their moduli
Let L be a vector bundle on P

1 of rank m.

Definition 2.1
A (rational) d-connection on L is a linear operator

A(z) : Lz → Lz+1

which depends on a point z ∈ P
1 − {∞} in a rational way (in particular, A(z) is

defined for all z ∈ C outside of a finite set); here Lz is the fiber of L over z ∈ P
1. In

other words, A is a rational map between the vector bundle L and its pullback s∗(L)
via the automorphism s : P

1 → P
1 : z �→ z + 1.

Remark 2.2
Essentially, a d-connection is a system of (rational) linear difference equations
y(z + 1) = A(z)y(z) on a section y(z) of the vector bundle L. Notice that any vector
bundle L is trivial when restricted to A

1 = P
1 − {∞}. If we pick a trivialization

S(z) : C
m →̃ Lz, z ∈ A

1, of this restriction (a basis of L), A can be written in coor-
dinates as the matrix-valued function A(z) = S(z + 1)−1A(z)S(z) (the matrix of the
d-connection). For two trivializations Si(z) : C

m →̃ Lz (i = 1, 2), the corresponding
matrices Ai = Si(z + 1)−1A(z)Si(z) differ by a d-gauge transformation,

A2(z) = R(z + 1)−1A1(z)R(z),
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for the d-gauge matrix R := S−1
1 S2. Thus, classification of d-connections is equiva-

lent to the classification of their matrices up to the d-gauge transformation.

We work with d-connections that have simple zeros on A
1 and whose behavior at

infinity is simple in the sense of the following definition.

Definition 2.3
Let L be a rank 2 vector bundle on P

1, and let A(z) be a d-connection on L. Suppose
that A(z) satisfies the following conditions.
(1) The only zeros and poles of A(z) are a pole of order n at infinity and

simple zeros at k distinct points a1, . . . , ak ∈ A
1. Here we say that ai is

a simple zero of A(z) if, at ai , A(z) is regular and det(A(z)) has zero of
order 1.

(2) On the formal neighborhood of ∞ ∈ P
1, there exists a trivialization R(z) :

C
2 → Lz (R(z) is essentially a matrix-valued Taylor series in z−1) such that

the matrix of A with respect to R satisfies

R(z + 1)−1A(z)R(z) =
[
ρ1(zn + d1z

n−1) 0
0 ρ2(zn + d2z

n−1)

]
(2.1)

for some numbers ρ1, ρ2, d1, d2 ∈ C.
We call such a d-connection A(z) (or, more precisely, we call the pair (L, A)) a

d-connection of type θ = (a1, . . . , ak; ρ1, ρ2, d1, d2; n).

Remark 2.4
One can also consider d-connections that have simple poles besides simple zeros.
As it turns out, addition of poles does not lead to a significantly different object; in
Section 3.2, we discuss an operation (multiplication by a scalar) that turns a pole of a
d-connection into a zero, and vice versa.

Remark 2.5
The second condition of Definition 2.3 might seem unnatural; however, Corollary 3.4
shows that a generic d-connection satisfies it. See also Remark 3.2 for a reformulation
of this condition in terms of formal solutions to a difference equation.

Denote by Mθ the moduli space of d-connections of type θ . One can think of Mθ in
several different ways: as a set (the set of isomorphism classes of connections of given
type), a category (the category of such connections), a scheme (the corresponding
coarse moduli space), or an algebraic stack (the fine moduli stack). In this article
we work with the coarse moduli space, although some results also hold for other
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incarnations of Mθ . (Note that we need to impose some conditions on θ to make sure
that the coarse moduli space of d-connections of type θ is a scheme.)

It is easy to see (see Corollary 3.11) that Mθ is empty unless

k = 2n, (2.2)

deg(θ) := −d1 − d2 −
k∑

i=1

ai is an integer. (2.3)

Let us also consider the following nondegeneracy assumptions on θ :

−dj −
∑
i∈I

ai 	∈ Z for any I ⊂ {1, . . . , k}, j = 1, 2, (2.4)

ai − aj 	∈ Z for any i 	= j, (2.5)

ρ1, ρ2 	= 0, ρ1 	= ρ2. (2.6)

Let �2n be the set of all collections θ = (a1, . . . , a2n; ρ1, ρ2, d1, d2; n), and let
�

�

2n ⊂ �2n be the set of θ’s which satisfy (2.2) – (2.6). Set � = ⊔
n �2n, �� =⊔

n �
�

2n.

Remark 2.6
Informally speaking, we impose conditions (2.4) – (2.6) for the following reasons:
(2.5) and (2.6) simplify modifications of d-connections (see Section 3.2), while (2.4)
implies that d-connections of type θ are irreducible (see Lemma 3.12). Irreducibility
can be used to prove that the moduli space Mθ is nice; for example, one can show
(using the same ideas as in [3]) that Mθ is a smooth variety of dimension 2n − 2 for
any θ ∈ �

�

2n.

2.2. Difference PV

We want to study the moduli space Mθ for θ ∈ �
�

2n. As Remark 2.6 shows, the first
interesting case is when 2n = 4; then Mθ is a smooth algebraic surface. We also
assume that deg(θ) = −1. (The degree is defined in (2.3).)

Remark 2.7
The assumption on degree is not too restrictive; using modifications of d-connections
(described in Section 3.2), we can construct for any θ an isomorphism Mθ →̃ Mθ ′ ,
where deg(θ ′) = −1.

We describe the surface Mθ by introducing coordinates (q, p) ∈ (P1)2; more precisely,
Mθ is described as an open subset in a blowup of (P1)2. The construction imitates
the description of the moduli space of connections (see [3], [17]), which goes back to
Okamoto [24], [25].
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THEOREM A
Suppose that

θ = (a1, a2, a3, a4; ρ1, ρ2, d1, d2; 2) ∈ �
�

4

has deg(θ) = −1. Let σ1 : K1 → (P1)2 be the blowup of (P1)2 at the following
six points: (q, p) = (a1, 0), (a2, 0), (a3,∞), (a4, ∞), (∞, ρ1), and (∞, ρ2). (Here
q and p are the projections (P1)2 → P

1.) Consider the two exceptional curves
Ej = σ−1

1 (∞, ρj ) ⊂ K1, j = 1, 2; homogeneous coordinates on Ej are given
by (1/q : p − ρj ). Let σ2 : K2 → K1 be the blowup of K1 at the two points
(1/q : p − ρj ) = (1 : ρj (dj + a3 + a4)), j = 1, 2 (one point on each exceptional
curve).
(1) There exists an open embedding P2 : Mθ ↪→ K2.
(2) The complement to P2(Mθ ) in K2 is the union of the proper preimages of the

curves P
1 × {0}, P

1 × {∞}, {∞} × P
1 ⊂ (P1)2 and the two exceptional curves

Ej ⊂ K1, j = 1, 2.

Remark 2.8
K2 is the smallest smooth compactification of Mθ (see [3, Corollary 5]); any open
embedding Mθ ↪→ M with smooth projective M induces a regular morphism M →
K2. Note also that (K2, K2 − Mθ ) is an Okamoto-Painlevé pair (of type D̃4), in the
sense of [27] and [28]; in particular, K2 is a surface of the Sakai-type D

(1)
4 .

In particular, the composition P : Mθ ↪→ K2 → (P1)2 is birational. Therefore, one
can view the components of P as a kind of rational coordinates on Mθ . We denote the
components by q and p, so that P = (q, p).

The natural operations on d-connections (modifications and multiplications by
scalars) define isomorphisms between the spaces Mθ for different θ (see Section 3.2).
Our next result describes such an isomorphism for one of the simplest modifications
of d-connections. The description can be viewed as a nonlinear difference equation in
coordinates (p, q) (the difference PV ).

As before, suppose that

θ = (a1, a2, a3, a4; ρ1, ρ2, d1, d2; 2) ∈ �
�

4

has deg(θ) = −1. Set

θ ′ = (a1 − 1, a2 − 1, a3, a4; ρ1, ρ2, d1 + 1, d2 + 1; 2) ∈ �
�

4.

Modification of d-connections defines an isomorphism dPV : Mθ → Mθ ′ . Explicitly,
for every (L, A) ∈ Mθ , the image dPV(L, A) = (L′, A′) is the only d-connection
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of type θ ′ which admits a rational isomorphism R : L′ �̃�� L which agrees with the
d-connections: R(z + 1)A′(z) = A(z)R(z).

THEOREM B
Set p′ := p ◦ dPV, q ′ := q ◦ dPV : Mθ → P

1. Then
q ′ + q = a3 + a4 + ρ1(d1 + a3 + a4)

p − ρ1
+ ρ2(d2 + a3 + a4)

p − ρ2
,

p′ · p = (q ′ − a1 + 1)(q ′ − a2 + 1)

(q ′ − a3)(q ′ − a4)
· ρ1ρ2.

(2.7)

2.3. Difference PV and classical PVI
As we mentioned above, d-connections and ordinary connections have many common
properties. Let us consider the following class of (ordinary) connections.

Denote by 	 ⊂ C
8 the set of all collections λ = (λ−

1 , λ+
1 , . . . , λ−

4 , λ+
4 ) such that

4∑
i=1

(λ−
i + λ+

i ) ∈ Z, λ+
i − λ−

i 	∈ Z,

4∑
i=1

λ
εi

i 	∈ Z

for any choice of upper indexes εi ∈ {+,−}. Let X ⊂ (P1)4 be the set of all collections
x = (x1, . . . , x4) of four distinct points of P

1:

X := {
(x1, . . . , x4)

∣∣ xi 	= xj for i 	= j
} ⊂ (P1)4.

Definition 2.9
Suppose that (x, λ) ∈ X × 	. A connection of type (x, λ) is a pair (L,∇) such that
L is a rank 2 vector bundle on P

1, ∇ : L → L ⊗ �P1 (x1 + · · · + x4) is a connection
with simple poles at xi’s, and the residue of ∇ at xi has eigenvalues {λ−

i , λ+
i }.

For (x, λ) ∈ X × 	, we denote the coarse moduli space of connections of type (x, λ)
by M(x,λ). It can be thought of as the space of initial conditions of the Painlevé equation
PVI. The space M(x,λ) has a geometric description that goes back to K. Okamoto [24],
[25]; we recall the description in Proposition 5.1. It is easy to see from the description
that Mθ and M(x,λ) are isomorphic for a suitable choice of parameters. (They are both
surfaces of type D

(1)
4 .)

THEOREM C
Suppose that

θ = (a1, a2, a3, a4; ρ1, ρ2, d1, d2; 2) ∈ �
�

4
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has deg(θ) = −1. Set

x = (x1, x2, x3, x4) := (0, ρ1, ρ2,∞) ∈ X,

λ = (λ−
1 , λ+

1 , . . . , λ−
4 , λ+

4 ) := (a1, a2, 0, d1 +a3 +a4, 0, d2 +a3 +a4, −a3,−a4) ∈ 	.

Then Mθ � M(x,λ).

Remark 2.10
Theorem C can be proved by direct calculations, but it can also be explained in
terms of moduli spaces. In Section 5.6 we describe a one-to-one correspondence
between d-connections of type θ and connections of type (x, λ). Up to small twists,
the correspondence is the geometric Mellin transform of [21]; it is constructed using
de Rham cohomology and equivariant cohomology groups. The Mellin transform is a
particular case of the duality for generalized one-motives (also defined in [21]).

Now let us fix λ ∈ 	 and consider surfaces M(x,λ) for all x ∈ X. They can be viewed
as fibers of an algebraic family Mλ → X. The sixth Painlevé equation PVI is an
algebraic connection on this family; the (analytic) integral curves of PVI correspond
to isomonodromy deformation of connections.

By Theorem C, the sixth Painlevé equation PVI induces a connection on a family
of moduli spaces of d-connections. It turns out that this connection can be defined
for arbitrary θ ∈ �

�

2n (not necessarily when 2n = 4). More precisely, we have the
following.

THEOREM D
Let n be a positive integer. Fix a1, . . . , a2n, d1, d2 ∈ C which satisfy (2.3) – (2.5), and
set P = {(ρ1, ρ2) ∈ C

2 : ρ1, ρ2 	= 0, ρ1 	= ρ2}. For all ρ := (ρ1, ρ2) ∈ P , set
θ(ρ) = (a1, . . . , a2n; ρ1, ρ2, d1, d2; n) ∈ �

�

2n, and consider the coarse moduli spaces
Mθ(ρ). Clearly, they form a family M → P .
(1) The family M → P carries a natural algebraic connection (defined in Sec-

tion 5.3).
(2) In the case of 2n = 4, this connection coincides with the PVI connection under

the isomorphism of Theorem C.

Remark 2.11
The connection of Theorem D can be thought of as a continuous isomonodromy
deformation of d-connections.
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2.4. Difference PVI
So far, we have worked with d-connections of type θ , where θ is nondegenerate, in the
sense of (2.4) – (2.6). It turns out that a different class of d-connections enjoys similar
properties. Namely, let us replace (2.6) with the conditions

ρ1 = ρ2 	= 0, d1 	= d2. (2.8)

Let �


2n ⊂ �2n be the set of all θ’s which satisfy (2.2) – (2.5) and (2.8), and
set � = ⊔

n �


2n. It can be shown that for θ ∈ �


2n, the coarse moduli space
Mθ is a smooth variety of dimension 2n − 4. (Recall that for θ ∈ �

�

2n, we have
dim(Mθ ) = 2n − 2.) Therefore, the first interesting case is θ ∈ �



6; then Mθ is an
algebraic surface. As before, we assume that deg(θ) = −1.

Similarly to Theorem A, we can describe the moduli space Mθ using coordinates
(q, p) ∈ (P1)2.

THEOREM E
Suppose that

θ = (a1, a2, a3, a4, a5, a6; ρ, ρ, d1, d2; 3) ∈ �


6

has deg(θ) = −1. Let σ1 : K1 → (P1)2 be the blowup of (P1)2 at the following
seven points: (q, p) = (a1, 0), (a2, 0), (a3, 0), (a4, ∞), (a5,∞), (a6, ∞), and (∞, ρ).
(Here q and p are the projections (P1)2 → P

1.) Consider the exceptional curve
E = σ−1

1 (∞, ρ) ⊂ K1; a homogeneous coordinate on E is given by (1/q : p − ρ).
Let σ2 : K2 → K1 be the blowup of K1 at the two points (1/q : p − ρ) = (1 :
ρ(dj + a4 + a5 + a6)), j = 1, 2.
(1) There exists an open embedding P2 : Mθ ↪→ K2.
(2) The complement to P2(Mθ ) in K2 is the union of the proper preimages of

the curves P
1 × {0}, P

1 × {∞}, {∞} × P
1 ⊂ (P1)2 and the exceptional curve

E ⊂ K1, j = 1, 2.

Remark 2.12
Using multiplication by scalar, it is easy to see that the moduli space Mθ for θ =
(a1, . . . , a2n; ρ, ρ, d1, d2; n) does not depend on ρ. Therefore, we can assume that
ρ = 1 without loss of generality.

Remark 2.13
K2 is not the smallest smooth compactification of Mθ (unlike the case when θ ∈ �

�

4;
see Remark 2.8). Indeed, the proper preimage of {∞} × P

1 ⊂ (P1)2 is an exceptional
curve in K2 − Mθ . Contracting the exceptional curve, we obtain the smallest smooth
compactification of Mθ , which is a surface of the Sakai-type A

(1)∗
2 .
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Modifications of d-connections define natural isomorphisms between spaces Mθ .
Similarly to Theorem B, we describe a simple isomorphism of this kind explicitly.
We call the resulting difference equation the difference PVI. As we see, it degenerates
into both the difference PV (see Section 6.3) and the usual PVI (see Section 6.4).

Suppose that

θ = (a1, a2, a3, a4, a5, a6; 1, 1, d1, d2; 3) ∈ �


6

has deg(θ) = −1. Set

θ ′ = (a1 − 1, a2 − 1, a3, a4, a5, a6; 1, 1, d1 + 1, d2 + 1; 3) ∈ �


6.

Modification of d-connections induces an isomorphism dPVI : Mθ → Mθ ′ . Explicitly,
for every (L, A) ∈ Mθ , the image dPVI(L, A) = (L′, A′) is the only d-connection
of type θ ′ which admits a rational isomorphism R : L′ �̃�� L which agrees with the
d-connections R(z + 1)A′(z) = A(z)R(z).

THEOREM F
Set p′ := p ◦ dPVI, q ′ := q ◦ dPVI : Mθ → P

1. For j = 1, 2, set

cj := (dj + a1 + a2 + a4 − 1)(dj + a1 + a2 + a5 − 1)(dj + a1 + a2 + a6 − 1)

(dj − d3−j )
.

(The denominator is ±(d1 − d2).) Then
q ′ = (p − 1)(q + 1 − a1 − a2) + pa3 + ∑

j=1,2

cjp

q − (p(1 − a1 − a2 − dj ) − a3)/(p − 1)
,

p′ · p = (q ′ − a1 + 1)(q ′ − a2 + 1)

(q ′ − a4)(q ′ − a5)(q ′ − a6)
· (

(p − 1)(q ′ − q) + q ′ − a3
)
.

(2.9)

Remark 2.14
Theorem C identifies Mθ for θ ∈ �

�

4 with a moduli space of connections of certain
kind. A similar statement holds for θ = (a1, . . . , a6; ρ, ρ, d1, d2; 3) ∈ �



6. In this case,
Mθ is isomorphic to the moduli space of pairs (L, ∇), where L is a rank 3 bundle
on P

1 and ∇ is a connection on L with first-order poles at ρ, 0, and ∞ (and no other
poles); the residues at the poles have eigenvalues {0, d1+a4+a5+a6, d2+a4+a5+a6},
{a1, a2, a3}, and {−a4, −a5, −a6}, respectively. The isomorphism can be constructed
using the Mellin transform (similarly to the construction in Section 5.6).

Notice that if we interpret Mθ as a moduli space of rank 3 bundles with connections
on P

1, then dPVI becomes an isomorphism between such moduli spaces (a Bäcklund
transformation), which corresponds to a modification of such bundles.
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3. General d-connections

3.1. Formal behavior at infinity
Let L be a vector bundle on P

1, and let A(z) : Lz → Lz+1 be a rational d-
connection on L. Since ∞ ∈ P

1 is the only fixed point of the transformation z �→
z + 1, it is natural to study the restriction of A to a neighborhood of infinity. Here
the word “neighborhood” can be understood either analytically (a small disk) or
formally (the formal disk). In this section we work with the formal neighborhood; the
corresponding classification problem is significantly easier. The situation is somewhat
similar to classification of irregular singularities for ordinary differential equations;
the formal classification is much simpler than the analytic one (because of Stokes’s
phenomenon).

In the language of difference equations, the problem is to classify matrices A(z)
over the ring of formal Laurent series C((z−1)) modulo d-gauge transformations

A(z) �→ R(z + 1)−1A(z)R(z),

where the gauge matrix R(z) is an invertible matrix over the ring of formal Taylor
series C[[z−1]].

If A is generic, the answer is given by the following easy statement (see, e.g., [6,
Proposition 1.1]).

PROPOSITION 3.1
Suppose that the (m × m)-matrix A(z) = ∑

i≤n Aiz
i over C((z−1)) satisfies the fol-

lowing condition:

All eigenvalues of the leading term An are distinct and nonzero;
in other words, An is invertible, regular, and semisimple.

(3.1)

Then there exists a gauge matrix R(z) = ∑
i≤0 Riz

i with invertible R0 such that

R(z + 1)−1A(z)R(z) = A′
nz

n + A′
n−1z

n−1, (3.2)

where A′
n and A′

n−1 are diagonal matrices. The matrix R(z) is uniquely determined
up to right multiplication by a permutation matrix and a constant diagonal matrix.

Denote the diagonal entries of A′
n by ρ1, . . . , ρm; notice that ρi’s are the eigenvalues

of An; in particular, all ρi are distinct and nonzero. Denote the corresponding diagonal
entries of A′

n−1 by c1, . . . , cm. Set di := ci/ρi ; we work with di rather then ci because it
simplifies formulas (2.3) and (2.4). We call the collection (ρ1, . . . , ρm, d1, . . . , dm; n)
the formal type of A(z) at infinity. Proposition 3.1 implies that the formal type is
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determined by A(z) up to a simultaneous permutation of ρi’s and di’s, that is, up to
the action of the symmetric group Sm.

Remark 3.2
Proposition 3.1 is sometimes (e.g., in [6]) formulated in terms of formal solutions to
the difference equation; the claim is that the equation Y (z + 1) = A(z)Y (z) has a
formal solution of the form

Y (z) = (
�(z)

)n
(∑

i≤0

Ŷiz
i
)

diag(ρz
1z

d1, . . . , ρz
mzdm),

where Ŷi are (m × m)-matrices, Ŷ0 is invertible, and ρ1, . . . , ρm, d1, . . . , dm ∈ C.
Note that

∑
i≤0 Ŷiz

i does not coincide with R(z) of Proposition 3.1.

Remark 3.3
The formal type of A(z) can be determined directly without diagonalizing A(z).
Indeed, denote by σi(z) and σ ′

i (z) (i = 1, . . . , m) the coefficients of the characteristic
polynomials of A(z) and R(z + 1)−1A(z)R(z), respectively, so that σ1(z) = − tr A(z)
and σm(z) = (−1)m det A(z). Clearly, σi(z) and σ ′

i (z) have pole of order i ·n at infinity.
One can easily check that the order of pole of σi(z) − σ ′

i (z) is at most i · n − 2. Thus,
the two leading terms of σi(z) and σ ′

i (z) coincide. It is now easy to see that the formal
type of A(z) is determined (up to the Sm-action) by the pairs of leading terms of σi(z),
i = 1, . . . , m.

In particular, if we assume that An is diagonal, then its diagonal entries are the
ρi’s, and the diagonal entries of An−1 equal ρidi , even if An−1 is not diagonal.

Let us now translate Proposition 3.1 into the language of d-connections. For simplicity,
we consider vector bundles only of rank 2.

COROLLARY 3.4
Let A(z) be a d-connection on a rank 2 vector bundle L. Denote by n the order of
pole of A at infinity, and denote by An : L∞ → L∞ the leading term of A (i.e., n

is the smallest number such that the limit

An := lim
z→∞ A(z)z−n

exists). Suppose that all eigenvalues of An are distinct and nonzero. Then A(z)
satisfies Definition 2.3(2) (for some ρ1, ρ2, d1, d2 ∈ C).

We call the collection (ρ1, ρ2, d1, d2; n) the formal type of the d-connection A(z).
It is determined by A(z) up to the action of S2. Notice also that in the situation of
Corollary 3.4, condition (2.6) holds automatically.
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3.2. Operations on d-connections
Let us now discuss some natural operations on d-connections. The operations allow
us to identify the moduli spaces (or moduli stacks, or sets of isomorphism classes,
or categories) of d-connections of type θ for different θ . As a trivial example, notice
that Mθ ′ = Mθ if θ ′ is obtained from θ by a permutation of ai’s or a simultaneous
permutation of ρi’s and di’s.

Multiplication by a scalar. Let f (z) 	= 0 be a rational function on P
1, and let A(z)

be a d-connection on a vector bundle L. Clearly, the product f (z)A(z) is again a
d-connection on L.

In the language of difference equations, this operation corresponds to multi-
plication of solutions by �-functions. Indeed, let us write f (z) = c

∏
(z − zi)ki .

Then y(z) solves the difference equation y(z + 1) = A(z)y(z) if and only if
ỹ(z) = cz

∏
�(z − zi)ki y(z) solves ỹ(z + 1) = (f (z)A(z))ỹ(z).

On the other hand, multiplication by a scalar is also a special case of a tensor
product of d-connections. We can view f (z) as a d-connection on the trivial rank 1
bundle OP1 ; then f (z)A(z) becomes the natural d-connection on the tensor product
L = L ⊗ OP1 of two vector bundles with d-connections.

Remark 3.5
For any d-connection A(z), we can pick a function f (z) such that the only pole of
the product f (z)A(z) is at infinity. For instance, suppose that L has rank 2, and
suppose that the d-connection A(z) has a simple pole at z = z0; this means that all
matrix elements of A(z) (in some basis) have at most a simple pole and that det(A(z))
has a simple pole at z = z0. Then (z − z0)A(z) has a simple zero at z0. In this way,
classification of rank 2 d-connections with simple poles and simple zeros on P

1 −{∞}
is reduced to classification of d-connections with simple zeros only.

Now suppose that (L, A(z)) ∈ Mθ for θ ∈ �. Let f (z) be a rational function; clearly,
the product (L, f (z)A(z)) is a d-connection of type θ ′ (for some θ ′ ∈ �) if and
only if the function f (z) = c is a nonzero constant. If f (z) = c ∈ C − {0}, then
(L, cA) ∈ Mθ ′ for

θ ′ = (a1, . . . , ak; cρ1, cρ2, d1, d2; n).

Clearly, the correspondence (L, A) �→ (L, cA) gives an isomorphism µ = µc :
Mθ →̃ Mθ ′ ; the inverse map is µc−1 .

Modification. Suppose that R : L �̃�� L′ is a rational isomorphism between two
vector bundles L and L′ on P

1. Then a d-connection A(z) on L induces a d-
connection A′ on L′ (and vice versa).
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In the language of difference equation, this operation is the d-gauge transformation

A′(z) = R(z + 1)−1A(z)R(z), (3.3)

where R, A, and A′ are the matrices of R, A, and A′, respectively (corresponding
to some choice of bases). We call A′ a modification of A. (Of course, A is also a
modification of A′.)

Remark 3.6
Modifications can also be viewed as isomonodromy deformations in the sense of [6].
Indeed, the monodromies of A and A′ coincide. (For the monodromies to exist, A
and A′ have to satisfy the assumptions of Corollary 3.4.)

The simplest class of modifications is the so-called class of elementary modifications.

Definition 3.7
Suppose that the rational isomorphism R : L �̃�� L′ is regular and has exactly one
simple zero. In this case, A′ is an elementary upper modification of A, and A is an
elementary lower modification of A′.

Note that an elementary upper modification R : L → L′ is uniquely determined by
the pair (x, l), where x ∈ P

1 is the only zero of R and the one-dimensional subspace
l ⊂ Lx is given by l = ker(R(x) : Lx → L′

x) ⊂ Lx . Conversely, any pair
(x ∈ P

1, l ⊂ Lx) defines an elementary upper modification. Similarly, elementary
lower modifications of L′ are in one-to-one correspondence with pairs (x, l′), where
x ∈ P

1, l′ ⊂ L′
x is a subspace of codimension 1. (For R : L → L′, x is the only

zero of R, and l′ = im(R(x) : Lx → L′
x).)

PROPOSITION 3.8
Suppose that (L, A) ∈ Mθ for θ = (a1, . . . , ak; ρ1, ρ2, d1, d2; n), and suppose that
ρ1 	= ρ2. Let (L′, A′) be an elementary upper modification of L given by (x ∈
P

1; l ⊂ Lx). Then the only cases when (L′, A′) belongs to Mθ ′ for some θ ′ ∈ � are
as follows.
(1) If x = ∞, then l must be an eigenspace of An : L∞ → L∞ (the leading term

of A = Anz
n + lower-order terms). If, for instance, l = ker(An −ρ1) ⊂ L∞,

then θ ′ = (a1, . . . , ak; ρ1, ρ2, d1 − 1, d2; n), and an analogous formula holds
when l = ker(An − ρ2).

(2) If x = ai is a zero of A and x−1 	= aj is not, then l must be the kernel of A(x) :
Lx → Lx+1; in this case, θ ′ = (a1, . . . , ai − 1, . . . , ak; ρ1, ρ2, d1, d2; n).

In either case, the elementary modifications define an isomorphism Mθ →̃ Mθ ′ .



MODULI SPACES OF DIFFERENCE EQUATIONS 533

Remark 3.9
Sometimes an elementary modification of a d-connection of type θ has simple poles,
which can be turned into simple zeros using multiplication by a scalar (e.g., this
happens if neither x nor x − 1 is a pole). However, this procedure does not lead to an
isomorphism between the moduli spaces Mθ (at least assuming that (2.2) – (2.6) hold)
because the corresponding spaces have different dimensions.

Thus, elementary modifications (upper or lower) allow us to identify Mθ ′ and Mθ if
θ ′ is obtained from θ by adding or subtracting 1 to one of the ai’s or di’s, provided
certain conditions hold. Composing such identifications, we get other isomorphisms
between Mθ for different θ ∈ �k .

The situation is particularly simple if θ satisfies the conditions (2.5) and (2.6).
Then Mθ and Mθ ′ are naturally isomorphic if θ ′ is obtained from θ by adding integers
to ai’s and di’s. In other words, we have a natural action of the group G = (Z)k × (Z)2

on �k , and for any θ ∈ �k satisfying (2.5) and (2.6) (in particular, for any θ ∈ �
�

k),
we get isomorphisms Mθ → Mgθ for all g ∈ G.

3.3. Irreducibility of d-connections
Let A(z) be a d-connection on a vector bundle L on P

1. Assume that A(z) is
nondegenerate at infinity in the sense that (3.1) holds. Denote by (ρ1, . . . , ρm, d1, . . . ,

dm; n) the formal type of A(z) at infinity.
For the morphism A(z) : Lz → Lz+1, its determinant is a map det A(z) :∧m Lz → ∧m Lz+1; in other words, det A(z) is a d-connection on the line bundle

det L := ∧m L. It is easy to see that det L has formal type (ρ1ρ2 · · · ρm, d1 + · · · +
dm; mn) at infinity. Let a1, . . . , ak ∈ A

1 and b1, . . . , bl ∈ A
1 be zeros and poles

(counted with multiplicity), respectively, of det A(z) on A
1.

The following two statements are immediate.

LEMMA 3.10
The collection (a1, . . . , ak; b1, . . . , bl ; ρ1, . . . , ρm, d1, . . . , dm; n) satisfies the equali-
ties

mn = k − l,

deg(L) = −∑m
i=1 di − ∑k

i=1 ai + ∑l
i=1 bi.

COROLLARY 3.11
Let (L, A) be a d-connection of type

θ = (a1, . . . , ak; ρ1, ρ2, d1, d2; n) ∈ �.
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Then k = 2n and deg(θ) = deg(L) (see (2.3) for the definition of deg(θ)); in
particular, deg(θ) is an integer.

LEMMA 3.12
Suppose that θ ∈ � satisfies (2.4). Then any (L, A) ∈ Mθ is irreducible; there is no
rank 1 subbundle � ⊂ L such that A(�z) ⊂ �z+1 for all z.

Proof
(Both the statement and its proof are completely analogous to [3, Proposition 1].)
Suppose that � ⊂ L is an invariant subbundle of rank 1, so that A induces a d-
connection A|� on �. All zeros of A|� belong to {a1, . . . , ak}; besides, the formal type
of A|� at infinity is either (ρ1, d1; n) or (ρ2, d2; n). Now Lemma 3.10 leads to a contra-
diction. �

COROLLARY 3.13
Suppose that (L, A) ∈ Mθ , and suppose that θ ∈ �2n satisfies (2.4). If L �
O(n1) ⊕ O(n2), then |n1 − n2| ≤ n.

Proof
Without loss of generality, we can assume that n1 ≥ n2. Let � ⊂ L be a rank 1 subbun-
dle of degree n1. Since (L, A) is irreducible, � is not A-invariant, and so the rational
map α : � → L → s∗L → s∗(L/�) is not identically zero. Notice that α can have at
most a pole of order n at ∞ (and no other poles); thus, n1 = deg(�) ≤ n+deg(L/�) =
n + n2. �

4. Difference PV
In this section we study Mθ for

θ = (a1, a2, a3, a4; ρ1, ρ2, d1, d2; 2) ∈ �
�

4.

We assume that deg(θ) = −1 (i.e., −d1 − d2 − ∑4
i=1 ai = −1). Using modifications,

we can make this assumption without loss of generality.

4.1. Mθ as a quotient
Let (L, A) ∈ Mθ . By Corollary 3.13, L is isomorphic to O ⊕ O(−1). Let us
choose an isomorphism S : O ⊕ O(−1) →̃ L; then A induces the d-connection
S(z + 1)−1A(z)S(z) of type θ on O ⊕ O(−1). Such a d-connection can be written as
a matrix

A =
[
a11 a12

a21 a22

]
,

a11, a22 ∈ �
(
P

1, O(2)
)
,

a12 ∈ �
(
P

1, O(3)
)
,

a21 ∈ �
(
P

1, O(1)
)
.

(4.1)
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Of course, S is not unique; it can be composed with an automorphism of O ⊕
O(−1). Such an automorphism can be written as a matrix

R =
[
r11 r12

0 r22

]
,

r11, r22 ∈ C − {0},
r12 ∈ �

(
P

1, O(1)
)
.

(4.2)

If we replace S with S ◦ R, then A is replaced with its d-gauge transform

R(z + 1)−1A(z)R(z). (4.3)

LEMMA 4.1
Let A be a d-connection on O ⊕ O(−1); its matrix A is of the form (4.1). We claim
that A is of type θ if and only if A satisfies the conditions

det(A) = (z − a1)(z − a2)(z − a3)(z − a4)ρ1ρ2, (4.4)

a11 + a22(1 + z−1) = (ρ1 + ρ2)z2 + (d1ρ1 + d2ρ2)z + t(z−1), (4.5)

where t(z−1) ∈ C[[z−1]] is a Taylor series in z−1.

Proof
A is of type θ if and only if it satisfies the two conditions of Definition 2.3. Let us
reformulate the conditions in terms of A.

Definition 2.3(1) is equivalent to the condition that

det(A) = c(z − a1)(z − a2)(z − a3)(z − a4) for some c ∈ C − {0}. (4.6)

(Here we use that det(A) is a polynomial of degree 4 in z.) Now set

S(z) :=
[

1 0
0 z−1

]
.

(S is essentially a basis of O ⊕ O(−1) in a neighborhood of ∞ ∈ P
1.) By

Remark 3.3, Definition 2.3(2) is equivalent to the two conditions

det
(
S(z + 1)−1A(z)S(z)

) = ρ1ρ2z
4 + ρ1ρ2(d1 + d2)z3 + t1(z−1)z2, (4.7)

tr
(
S(z + 1)−1A(z)S(z)

) = (ρ1 + ρ2)z2 + (d1ρ1 + d2ρ2)z + t2(z−1). (4.8)

Here t1, t2 are Taylor series in z−1.
It is easy to see that (4.4) is equivalent to the combination of (4.6) and (4.7) (here

we use the fact that deg(θ) = −1), and (4.5) is equivalent to (4.8). �
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COROLLARY 4.2
Denote by Xθ the space of matrices A of the form (4.1) which satisfy (4.4) and (4.5);
denote by G the group of matrices R of the form (4.2). Let G act on Xθ via d-gauge
transformations (see (4.3)). Then the quotient Xθ/G is canonically isomorphic to Mθ .

4.2. Geometric description of Mθ

In this section we derive Theorem A from another geometric description of Mθ (see
Theorem 4.4). Recall that Theorem A realizes Mθ as an open subset of a blowup of
(P1)2; in Theorem 4.4 we use a different rational surface in place of (P1)2. Of the two
descriptions, Theorem 4.4 uses somewhat more natural constructions (however, see
Remark 4.5); for instance, all four points a1, . . . , a4 appear in a symmetric manner.
On the other hand, the advantage of Theorem A is that (P1)2 has natural coordinates
(q, p), which can then be viewed as rational coordinates q, p : Mθ → P

1. This makes
Theorem A more suitable for writing formulas.

As before, (L, A) ∈ Mθ , S : O ⊕ O(−1) →̃ L, and A is the matrix of A
relative to S. Notice that the matrix element a21 ∈ �(P1, O(1)) is not identically zero
because (L, A) is irreducible. Therefore, a21 has a single zero on P

1; let us denote it
by q ∈ P

1. Set p̃ := a11(q) ∈ (O(2))q .

PROPOSITION 4.3
The coordinates p̃ and q depend only on (L, A) ∈ Mθ and not on S.

Proof
This statement can be easily checked directly by calculating the d-gauge transfor-
mation (4.3) with the gauge matrix (4.2). It is also possible to provide a geometric
explanation in the spirit of [3, Section 4.1]. �

The pair (q, p̃) can be viewed as a map P̃ : Mθ → K̃ , where K̃ := V(O(2)∨) is
the total space of the line bundle O(2). We prove in Theorem 4.4(1) that the map
P̃ : Mθ → K̃ is a regular birational morphism. Since Mθ is a smooth algebraic
surface, P̃ identifies Mθ with an open subset of a blowup of K̃ . Let us describe the
blowup.

Let us start with some general remarks about the geometry of K̃ . Clearly, K̃ is
fibered over P

1 so that the fiber over z ∈ P
1 is O(2)z. If f is a (rational) section of

O(2) which is regular at z, then its value f (z) ∈ O(2)z can be viewed as a point of
K̃; we denote this point by (z, f (z)). For example, (z, 0(z)) is the zero element in the
fiber of K̃ over z ∈ P

1.
Now let σ̃c : K̃c → K̃ be the blowup of K̃ at c := (z, f (z)). Then the exceptional

divisor σ̃−1
c (c) ⊂ K̃c is isomorphic to the projective line P(TcK̃); that is, points of

σ̃−1
c (c) correspond to lines in the tangent space to K̃ at c. Any smooth curve C ⊂ K̃
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which passes through c defines such a line (the tangent line to C at c). In particular, we
can take C to be the graph {(x, f (x)) : x ∈ P

1} of f ; denote the corresponding point
of K̃c by (z, f ′(z)). Any other rational section g of O(2) defines a point (z, g′(z)) ∈ K̃c,
provided that g is regular at z and g(z) = f (z).

THEOREM 4.4
(1) The map P̃ : Mθ → K̃ is a regular birational morphism of smooth algebraic

surfaces.
(2) Let σ̃1 : K̃1 → K̃ be the blowup of K̃ at the following six points: (ai, 0(ai))

(i = 1, . . . , 4) and (∞, (ρjz
2)(∞)) (j = 1, 2). Let σ2 : K̃2 → K̃1 be the

blowup of K̃1 at the two points (∞, (ρjz
2 + ρjdj z)′(∞)), j = 1, 2. (These

points belong to the preimages of (∞, (ρjz
2)(∞)), j = 1, 2.) Then the map P̃

induces an open embedding P̃2 : Mθ ↪→ K̃2.
(3) The complement to P̃2(Mθ ) in K̃2 is the union of the proper preimages of

the following curves: the zero section {(z, 0(z)) : z ∈ P
1} ⊂ K̃ , the fiber

at infinity {(∞, az2(∞)) : a ∈ C} ⊂ K̃ , and two exceptional curves
σ̃−1

1 (∞, (ρjz
2)(∞)) ⊂ K̃1.

The proof of Theorem 4.4 is given in Section 4.3. Let us now derive Theorem A from
Theorem 4.4.

Proof of Theorem A
For (L, A) ∈ Mθ , consider the expression

p := p̃

(q − a3)(q − a4)
. (4.9)

Here the denominator is the value of the section (z − a3)(z − a4) ∈ �(P1, O(2))
at z = q ∈ P

1. Both the numerator and the denominator are elements of O(2)q ;
therefore, p ∈ C, provided that the denominator does not vanish. We can view p as
a rational mapping p : Mθ → P

1. Actually, Theorem 4.4 implies that p : Mθ →
P

1 is regular; the corresponding rational mapping K̃ ��� P
1 has singularities at

(a3, 0(a3)), (a4, 0(a4)) ∈ K̃ , but the blowup K̃1 → K̃ resolves the singularities. We
therefore obtain a regular mapping P := (q, p) : Mθ → (P1)2. We claim that P

induces an embedding P2 : Mθ ↪→ K2, where K2 is the blowup of (P1)2 described in
Theorem A.

Let us consider the birational mapping � : (q, p̃) �→ (q, p) : K̃ ��� (P1)2. It is
easy to see that � induces an open embedding �1 : K̃1 ↪→ K1, and the complement
K1−�(K̃1) is the proper preimage of P

1×{∞} ⊂ (P1)2 under the blowup K1 → (P1)2.
To complete the proof, we should now check that �1 maps the centers of the blowup
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K̃2 → K̃1 to the centers of the blowup K2 → K1. This also follows from the
formulas. �

Remark 4.5
Geometrically, formula (4.9) can be explained as the multiplication of a d-connection
by a scalar. For (L, A) ∈ Mθ , consider the d-connection

Ã := 1

(z − a3)(z − a4)
A

on L. Then Ã has simple zeros at a1, a2 and simple poles at a3, a4, and its formal type
at infinity is (ρ1, ρ2; d1 + a3 + a4, d2 + a3 + a4; 0). Moreover, we can then view Mθ as
the moduli space of d-connections of this kind (as in Remark 3.5). For d-connections
of this kind, p plays the role of p̃, and Theorem A plays the role of Theorem 4.4.

4.3. Proof of Theorem 4.4
The most direct way to prove Theorem 4.4 is by bringing matrices (4.1) to some
normal form. We do not reproduce all calculations here; the idea of the proof is as
follows.

Denote by M̃θ the open subset of K̃2 described in Theorem 4.4(3) (i.e., the
complement of proper preimages of the zero section, the fiber at infinity, and two ex-
ceptional curves). We need to show that the map P̃ : Mθ → K̃ lifts to an isomorphism
Mθ → M̃θ . Let us consider open sets

U0 := q−1(P1 − {∞}) ⊂ Mθ, U∞ := q−1(P1 − {0}) ⊂ Mθ,

Ũ0 := q−1(P1 − {∞}) ⊂ M̃θ , Ũ∞ := q−1(P1 − {∞}) ⊂ M̃θ .

It suffices to show that P̃ lifts to isomorphisms U0 →̃ Ũ0, U∞ →̃ Ũ∞. We show this
by writing U0 and U∞ explicitly as zero loci of polynomial equations.

Let (L, A) be a point of U0. Then q = q(L, A) ∈ C and p̃ = p̃(L, A) ∈
(O(2))q = C. It is easy to see that there exists an isomorphism S : O ⊕ O(−1) →̃ L,
unique up to a multiplicative constant, such that the matrix of the d-connection A
relative to S is

A =
[

a11 = p̃ a12

a21 = z − q a22

]
,

a22 ∈ �
(
P

1, O(2)
)
,

a12 ∈ �
(
P

1, O(3)
)
.

(4.10)

Essentially, (4.10) serves as a normal form of d-connections (L, A) (provided that
q 	= ∞). The conditions (4.4) and (4.5) now become equations on a12, a22. Explicitly,
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a12 and a22 are determined by their coefficients

a12 = a12,3z
3 + a12,2z

2 + a12,1z + a12,0,

a22 = a22,2z
2 + a22,1z + a22,0,

and (4.4) and (4.5) are a system of polynomial equations on ai2,j , p̃, and q. Solving
these equations, we find polynomial (in p̃ and q) formulas for all ai2,j except for
r := a22,0. The equation on r looks as follows:

p̃r = F (p̃, q), (4.11)

where F (p̃, q) is a polynomial. Thus, U0 is identified with the zero locus of the
equation (4.11) in the three-dimensional space with coordinates p̃, q, and r .

Besides, F (0, q) = c(q − a1)(q − a2)(q − a3)(q − a4) for some c ∈ C − {0}.
Therefore, the map (p̃, q) : U0 → A

2 identifies U0 with the complement to the proper
preimage of the q-axis {(0, q)} in the blowup of A

2 at the four points (p̃, q) = (0, ai),
i = 1, . . . , 4. This complement is exactly Ũ0.

A similar approach works for U∞. For (L, A) ∈ U∞, set ω := (q(L, A))−1 ∈ C,
π := p̃(L, A)/(q(L, A)2) ∈ C, where the denominator is understood as the value
of z2 ∈ �(P1, O(2)) at z = q. One can think of ω and π as coordinates on the
complement to the zero locus of q in K̃ . Then there is a unique up to a multiplicative
constant choice of S : O ⊕ O(−1) →̃ L such that the matrix of A is

A =
[

πz2 a12

1 − ωz a22

]
.

Again, we get a system of polynomial equations on the coefficients of ai2. Solving the
equations, we find polynomial (in π and ω) formulas for all ai2,j except for r = a22,0.
In this case, the equation on r is

πω2r = G(π,ω), (4.12)

where G(π,ω) is a polynomial. Therefore, U∞ is the zero locus of equation (4.12) in
the three-dimensional space with coordinates π,ω, and r . Again, from the formula
for G(π,ω), one easily sees the isomorphism U∞ →̃ Ũ∞.

For instance, let us consider the neighborhood of ω = 0. (The complement of
ω = 0 is covered by U0.) One can check that G(π, 0) = (π − ρ1)(π − ρ2), so when
ω = 0, either π = ρ1 or π = ρ2. Consider the neighborhood of the set ω = 0, π = ρ1

in U∞. It follows that π1 := (π − ρ1)/ω is a regular function on the neighborhood
(π1 is a coordinate on the blowup of the ω-π plane at (ω, π) = (0, ρ1)). We can then
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rewrite (4.12) in variables π1, ω, and r:

(ωπ1 + ρ1)rω = H (π1, ω),

where H (π1, ω) is a polynomial such that H (π1, 0) = (ρ2 −ρ1)(π1 −ρ1d1); therefore,
r is essentially a coordinate on the blowup of the ω-π1 plane at (ω, π1) = (0, ρ1d1).
Of course, the neighborhood of the set ω = 0, π = ρ2 in U∞ has a similar
description. �

Remark 4.6
Theorems A and 4.4 can also be proved in a more geometric way, in the spirit of [3,
Theorem 3].

4.4. Proof of Theorem B
The proof of Theorem B is also based on calculations. The calculations are simplified
by the observation that it suffices to check the formulas (2.7) on a dense subset of Mθ ;
we can therefore assume that q, q ′ 	= ∞.

Take (L, A) ∈ Mθ , and set (L′, A′) := dPV(L, A). Let us assume that
q(L, A) 	= ∞ (i.e., (L, A) ∈ U0); then there is an isomorphism S : O ⊕
O(−1) →̃ L such that the matrix of A relative to S is of the form (4.10). Using
the formula p̃ = p(q − a3)(q − a4), we can write the matrix as

A =
[
p(q − a3)(q − a4) a12

z − q a22

]
,

a22 ∈ �
(
P

1, O(2)
)
,

a12 ∈ �
(
P

1, O(3)
)
.

(4.13)

Recall also that a12, a22 are polynomials of z whose coefficients are rational functions
of p, q.

Similarly, if we assume that q(L′, A′) 	= 0, there exists an isomorphism S′ :
O ⊕ O(−1) →̃ L′ such that the matrix of A′ relative to S′ is of the form

A′ =
[
p′(q ′ − a3)(q ′ − a4) a′

12

z − q ′ a′
22

]
,

a′
22 ∈ �

(
P

1, O(2)
)
,

a′
12 ∈ �

(
P

1, O(3)
)
.

(4.14)

By the definition of dPV, the matrix A′ is the d-gauge transformation of A:

A′(z) = R(z + 1)−1A(z)R(z), (4.15)

where R is the matrix of the rational map R : L′ �̃�� L (from the definition of
dPV) with respect to the bases S, S′. It follows from the properties of modifications
(see Section 3.2) that R induces a regular map L′ → L ⊗ O(1) whose determinant
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has simple zeros at a1, a2 and no other zeros. In other words, R is of the form

R =
[
r11 r12

r21 r22

]
,

r11, r22 ∈ �
(
P

1, O(1)
)
,

r21 ∈ C, r12 ∈ �
(
P

1, O(2)
)
,

such that

det(R) = c(z − a1)(z − a2) (c ∈ C − {0}). (4.16)

Condition (4.16) yields polynomial equations on the coefficients of r11, r12, r21, and
r22; the condition that (4.15) gives a matrix A′ of the form (4.14) also gives such
equations. The resulting system determines R up to a multiplicative constant. From
(4.15), we now obtain a formula for the matrix A′ in terms of p and q; in particular,
we can derive (2.7). �

5. Difference PV and classical PVI

5.1. Geometry of PVI
Let us recall the description of the surface M(x,λ). We suppose that

4∑
i=1

(λ−
i + λ+

i ) = 1. (5.1)

It is easy to see that M(x,λ) depends only on the classes of λ±
i in C/Z (because of

modifications of bundles with connections), so our assumption does not restrict the
generality.

Suppose that x ∈ X, λ ∈ 	, and let Kx be the total space of the line bundle
�P1 (x1 + · · · + x4). Let bi ⊂ Kx be the fiber over xi ∈ P

1. Notice that the residue of
1-forms identifies the fiber of �(x1 + · · · + x4) over xi with C, so we get a canonical
isomorphism resi : bi →̃ A

1. Denote by M̃(x,λ) the blowup of Kx at the eight points
(resi)−1(λ±

i ), i = 1, . . . , 4, and let M ′
(x,λ) ⊂ M̃(x,λ) be the complement to the proper

preimages of bi ⊂ Kx .

PROPOSITION 5.1
There exists an isomorphism M(x,λ) →̃ M ′

(x,λ).

Proposition 5.1 is a slight generalization of [3, Theorem 3] (see also [17, Theo-
rem 2.2]); [3] works only with SL(2)-bundles, which corresponds to assuming that
λ−

i + λ+
i = 0 (i = 2, 3, 4). However, the general case is easily reduced to this special

case. Let us sketch the construction of the map M(x,λ) →̃ M ′
(x,λ).

Given (L, ∇) ∈ M(x,λ), one can show that L � O ⊕ O(−1). (This is similar
to Corollary 3.13.) If we fix an isomorphism O ⊕ O(−1) →̃ L, the connection ∇ is
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determined by its matrix

M(z) =
[
m11 m12

m21 m22

]
,

m11,m22 ∈ �
(
P

1, �P1 (x1 + · · · + x4)
)
,

m12 ∈ �
(
P

1,�P1 (x1 + · · · + x4) ⊗ O(1)
)
,

m21 ∈ �
(
P

1,�P1 (x1 + · · · + x4) ⊗ O(−1)
)
.

It can be proved that m21 is not identically zero (because (L,∇) is irreducible; this
is similar to Lemma 3.12). Therefore, m21 has a single zero on P

1; denote it by qPVI.
Set pPVI := m11(qPVI). Note that pPVI belongs to the fiber of �P1 (x1 + · · · + x4)
over qPVI ∈ P

1. In other words, pPVI is a point of the total space Kx . (In the notation
of Section 4.2, the point is (qPVI, pPVI) ∈ Kx .) One can check that qPVI and pPVI

depend only on (L,∇) and not on the choice of O ⊕ O(−1) →̃ L. Therefore, we
obtain a regular map M(x,λ) → Kx . Proposition 5.1 claims that the map induces an
isomorphism M(x,λ) →̃ M ′

(x,λ).

Proof of Theorem C
Let θ ∈ �

�

4, x ∈ X, and λ ∈ 	 be as in Theorem C; we define the isomorphism
Mθ → M(x,λ) by explicit formulas. Let q, p : Mθ → P

1 be the coordinates from
Theorem A. Consider the expression

pPVI := (z−1dz)z=pq,

where (z−1dz)z=p ∈ (�P1 (x1 + · · · + x4))p is the value of z−1dz ∈ �(P1, �P1 (x1 +
· · · + x4)) at z = p. Then pPVI ∈ (�P1 (x1 + · · · + x4))p, provided that q 	= ∞. Let us
also set qPVI := p.

If q 	= ∞, we have (qPVI, pPVI) ∈ Kx ; in this manner, we get a rational map

Mθ ��� Kx : (q, p) �→ (qPVI, pPVI).

Using Theorem A and Proposition 5.1, it is easy to see that the map is actually regular
and that it lifts to an isomorphism Mθ → M(x,λ). �

5.2. Classical PVI
The isomonodromy deformation of bundles with connections gives a system of dif-
ferential equations on the coordinates qPVI, pPVI (the usual PVI). Here qPVI, pPVI are
viewed as functions of x1, . . . , x4, while λ±

i are fixed parameters. Let us recall the
explicit formulas (which we adapted from [16]).

For simplicity, we assume, in addition to (5.1), that x4 = ∞. Define the new
parameters by κi := λ+

i − λ−
i , i = 1, . . . , 4, and let us replace the variable pPVI with

p̃PVI :=
(pPVI

dz

)
−

3∑
i=1

λ−
i

z − xi

.
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Since pPVI ∈ (�P1 (x1 + · · · + x4))qPVI , the ratio pPVI/dz (if it is defined) is a number.
The advantage of p̃PVI is that the differential equations for qPVI, p̃PVI involve fewer
parameters: κi’s rather than λ±

i ’s.
Set also

κ0 := 1

2

(
1 −

4∑
i=1

κi

)
,

and set qi := qPVI − xi , i = 1, 2, 3. Define the Hamiltonians hi , i = 1, 2, 3, by

hi := (q1q2q3)(p̃PVI)2 − ((κi − 1)qjqk + κjqiqk + κkqiqj )p̃PVI + κ0(κ0 + κ4)

(xi − xj )(xi − xk)
.

The equations can then be written in the Hamiltonian form as

∂qPVI

∂xi

= ∂hi

∂p̃PVI
,

∂p̃PVI

∂xi

= − ∂hi

∂qPVI
(i = 1, 2, 3). (5.2)

The system (5.2) can be reduced to the usual form of PVI as follows. Set

y := qPVI − x1

x2 − x1
, x := x3 − x1

x2 − x1
.

Then (5.2) implies that y depends only on x, not on x1, x2, x3, and that y satisfies the
PVI equation

d2y

dx2
= 1

2

( 1

y
+ 1

y − 1
+ 1

y − x

)(dy

dx

)2
−

( 1

x
+ 1

x − 1
+ 1

y − x

)dy

dx

+ y(y − 1)(y − x)

x2(x − 1)2

(
κ2

4 − κ2
1

x

y2
+ κ2

2
x − 1

(y − 1)2
+ (1 − κ2

3 )
x(x − 1)

(y − x)2

)
. (5.3)

5.3. Isomonodromy deformation of d-connections
Let us prove Theorem D(1). Informally, we need to show that given θ ∈ �

�

2n and
ρ ′

1, ρ
′
2 ∈ C, any d-connection of type θ has a natural first-order deformation that is of

type

θε := (a1, . . . , a2n; ρ1 + ερ ′
1, ρ2 + ερ ′

2, d1, d2; n).

Here ε is the parameter of the deformation, and all calculations are done modulo ε2,
that is, over the ring of dual numbers C

ε := C[ε]/(ε2). First, let us prove a statement
for formal power series.

PROPOSITION 5.2
Suppose that the matrix A(z) = ∑

i≤n Aiz
i over C((z−1)) has formal type (ρ1, . . . ,

ρm; d1, . . . , dm; n) at infinity (see Proposition 3.1). For any collection ρ ′
1, . . . , ρ

′
m ∈
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C, there exists a gauge matrix Rε(z) = R(z) + εR′(z), where R(z) is as in
Proposition 3.1 (i.e., R(z) is an invertible (m × m)-matrix over C[[z−1]]), and R′(z)
is an (m × m)-matrix over the ring of formal Laurent series C((z−1)) such that

Rε(z+1)−1A(z)Rε(z) = diag
(
(ρ1+ρ ′

1ε)(zn+d1z
n−1), . . . , (ρm+ερ ′

m)(zn+dmzn−1)
)
.

(5.4)

The matrix Rε(z) is unique up to right multiplication by a diagonal matrix with entries
in C

ε .

Proof
Condition (5.4) is equivalent to the two conditions

R(z + 1)−1A(z)R(z) = diag(ρ1z
n + ρ1d1z

n−1, . . . , ρmzn + ρmdmzn−1), (5.5)

R(z + 1)−1A(z)R′(z) − R(z + 1)−1R′(z + 1)R(z + 1)−1A(z)R(z)

= diag(ρ ′
1z

n + ρ ′
1d1z

n−1, . . . , ρ ′
mzn + ρ ′

mdmzn−1).
(5.6)

As A(z) has formal type (ρ1, . . . , ρm; d1, . . . , dm; n) at infinity, there exists a matrix
R(z) satisfying (5.5); moreover, R(z) is unique up to right multiplication by a constant
diagonal matrix (see Proposition 3.1). Once (5.5) is satisfied, (5.6) can be rewritten as

B(z)S(z) − S(z + 1)B(z) = diag(ρ ′
1z

n + ρ ′
1d1z

n−1, . . . , ρ ′
mzn + ρ ′

mdmzn−1), (5.7)

where we set B(z) := diag(ρ1z
n + ρ1d1z

n−1, . . . , ρmzn + ρmdmzn−1) and S(z) :=
R(z)−1R′(z). One can view (5.7) as a difference equation on the matrix S(z); it is easy
to see that the only solutions whose matrix elements are Laurent series are given by
S(z) = diag((ρ ′

1/ρ1)z + c1, . . . , (ρ ′
m/ρm)z + cm), where ci’s are arbitrary constants.

This implies the statement. �

Proposition 5.2 allows us to construct the natural first-order deformation and thus
proving Theorem D(1). The construction is most easily described using the following
well-known statement.

LEMMA 5.3
Let L be a vector bundle on P

1, and let S(z) : C
2 →̃ Lz be a trivialization of L

in the punctured formal neighborhood of ∞ (so S(z) is essentially a matrix whose
entries belong to C((z−1))). Then there exists a unique vector bundle LS such that
L and LS have equal restrictions to P

1 − {∞} and that the map

S(z) : C
2 → Lz = (LS)z

extends to a trivialization of LS in the formal neighborhood of ∞.
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Notice that Lemma 5.3 still works when S depends on parameters. In this case, the
modification LS also depends on the parameters.

Proof of Theorem D(1)
Take ρ = (ρ1, ρ2) ∈ P , and take (L, A) ∈ Mθ(ρ). Take a tangent vector τ =
ρ ′

1
∂

∂ρ1
+ ρ ′

2
∂

∂ρ2
to P at ρ. Let us construct a natural lifting of τ to a tangent vector τM

to M at (L, A) ∈ M .
Choose a trivialization S(z) : C

2 →̃ Lz on the neighborhood of ∞ ∈ P
1. The

matrix

A(z) := S−1(z + 1)A(z)S(z)

of A relative to S satisfies the assumption of Proposition 5.2. Let us set Sε(z) :=
S(z)Rε(z), where the matrix Rε(z) is given by Proposition 5.2. We can view Sε(z) as
a trivialization of L in the punctured formal neighborhood of ∞ ∈ P

1, which depends
on ε ∈ C

ε . Lemma 5.3 defines a vector bundle Lε := LSε

, which depends on ε.
Lε and L coincide on P

1 − {∞} (for any value of the parameter ε); thus, the
d-connection A on L induces a d-connection Aε on Lε . Notice also that when
ε = 0, we have Lε = L, Aε = A. The pair (Lε, Aε) defines a tangent vector
τM to M at (L, A). The vector τM does not depend on the choice of Rε . It is easy
to see that as τ and (L, A) vary, the lifting τM defines a flat algebraic connection
on M → P . �

5.4. Isomonodromy deformation for 2n = 4
Suppose now that 2n = 4, deg(θ) = −1. Then the construction of Section 5.3 can be
reformulated more explicitly. Instead of working with d-connections, let us consider
their matrices (i.e., we think of Mθ as a quotient Xθ/G; see Corollary 4.2).

Let (L, A) and (Lε, Aε) be as in the proof of Theorem D(1). Choose a triv-
ialization Sε : O ⊕ O(−1) →̃ Lε (depending on ε). When ε = 0, Sε becomes a
trivialization S : O ⊕ O(−1) →̃ L. Let A be the matrix of A relative to S, and let
Aε be the matrix of Aε relative to Sε . Let us summarize the properties of Aε in the
following.

PROPOSITION 5.4
The matrix Aε(z) = A(z) + εA′(z), where

A′ =
[
a′

11 a′
12

a′
21 a′

22

]
,

a′
11, a

′
22 ∈ �

(
P

1, O(2)
)
,

a′
12 ∈ �

(
P

1, O(3)
)
,

a′
21 ∈ �

(
P

1, O(1)
)
,

(5.8)

satisfies the following conditions.
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(1) For some (2 × 2)-matrix Sε(z) = 1 + εS ′(z), where the entries of S ′(z) are
polynomials in z (of arbitrary degree), we have Aε(z) = Sε(z+1)−1A(z)Sε(z).

(2) For some (2 × 2)-matrix

Rε(z) =
[

1 0
0 z−1

] (
T (z−1) + εT ′(z−1)

)
,

where T , T ′ are (2 × 2)-matrices over C[[z−1]] and T is invertible (i.e.,
det(T |z−1=0) 	= 0), we have

Rε(z + 1)−1Aε(z)Rε(z) = diag
(
(ρ1 + ερ ′

1)(z2 + d1z), (ρ2 + ερ ′
2)(z2 + d2z)

)
.

Conversely, a matrix Aε with such properties corresponds to the continuous isomon-
odromy deformation of Theorem D(1). Actually, we can reformulate Theorem D(1)
(for 2n = 4, deg(θ) = −1) as the following statement.

PROPOSITION 5.5
Let A(z) ∈ Xθ , let θ ∈ �

�

4, and let deg(θ) = −1.
(1) There is a deformation Aε(z) which satisfies the conditions of Proposition 5.4.
(2) Aε(z) is unique up to a d-gauge transformation

Aε(z) �→ Rε(z + 1)−1Aε(z)Rε(z)

for a gauge matrix Rε(z) = 1 + εR′(z), where R′(z) is of the form

R′(z) =
[
r ′

11 r ′
12

0 r ′
22

]
,

r ′
11, r

′
22 ∈ C,

r ′
12 ∈ �

(
P

1, O(1)
)
.

5.5. Isomonodromy deformation of d-connections as PVI
Let us now use coordinates q, p on Mθ to write the connection of Theorem D(1) as
a system of differential equations on p and q. Suppose that (L, A) ∈ Mθ , and let
A ∈ Xθ be the matrix of A relative to some trivialization S : O ⊕ O(−1) →̃ L.
We need to find a matrix Aε which satisfies the conditions of Proposition 5.4. As in
Section 4.4, it suffices to do so when (L, A) belong to a dense subset of Mθ ; we
can thus assume that q(L, A) 	= ∞. We can then pick S such that A is of the form
(4.13).

We look for Aε in the form

Aε(z) =
[
aε

11 aε
12

aε
21 aε

22

]
= Sε(z + 1)−1A(z)Sε(z)
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for the gauge matrix

Sε(z) = 1 +
[
s ′

11 s ′
12

s ′
21 s ′

22

]
ε,

s ′
11, s

′
22 ∈ �

(
P

1, O(1)
)
,

s ′
12 ∈ �

(
P

1, O(2)
)
,

s ′
21 ∈ C.

(Actually, the proof of Proposition 5.2 shows that Aε is necessarily of this form.)
Then Aε automatically satisfies Proposition 5.4(1), so we only need to make sure that
Proposition 5.4(2) is satisfied. From Lemma 4.1 (which still holds for d-connections
that depend on ε), we see that Proposition 5.4(2) is equivalent to the equations

det(Aε) = (z − a1)(z − a2)(z − a3)(z − a4)ρε
1ρ

ε
2 ,

aε
11 + aε

22(1 + z−1) = (ρε
1 + ρε

2 )z2 + (d1ρ
ε
1 + d2ρ

ε
2 )z + t(z−1),

where ρε
i = ρi + ρ ′

iε and t(z−1) ∈ C
ε[[z−1]] is a Taylor series in z−1 with coefficients

in C
ε . Solving these equations, we can find formulas for q ′, p′ in terms of ρ ′

1, ρ ′
2, and

θ ; here q ′ and p′ are determined by the conditions

aε
21(q + εq ′) = 0 ∈ C

ε, aε
11(q + εq ′) = (p + εp′)(q + εq ′ − a3)(q + εq ′ − a4).

The formulas for q ′ and p′ can then be viewed as a system on differential equations
on q and p (considered as functions of ρi):

dq = ρ1dρ2 − ρ2dρ1

ρ1 − ρ2

(p(q − a3)(q − a4)

ρ1ρ2
− (q − a1)(q − a2)

p

)
,

dp = p
dρ1 − dρ2

ρ1 − ρ2
+ ρ1dρ2 − ρ2dρ1

ρ1 − ρ2

(
a1 + a2 − 2q + p2(a3 + a4 − 2q)

ρ1ρ2

+ p

ρ1ρ2

(
d1ρ1 + d2ρ2 + 2q(ρ1 + ρ2)

))
. (5.9)

Proof of Theorem D(2)
We need to verify that (5.9) is obtained from the PVI (5.2) by plugging in the for-
mulas for pPVI, qPVI, xi’s, and λ±

i ’s (from Theorem C and Section 5.1). This is a
straightforward calculation. �

Remark 5.6
Theorem D(2) can also be proved by an indirect argument. Indeed, both PVI and (5.9)
define algebraic connections on the family M → P from Theorem D. The difference
between two such connections is a vector field on the moduli space Mθ ; on the other
hand, it is known that Mθ has no nonzero global vector fields (see [2, Theorem 3,
Lemma 3], [28, Proposition 2.1]).
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Still another, more geometric, proof of Theorem D(2) uses the Mellin transform
described in Section 5.6. It is easy to see that, under the transform, the continuous
isomonodromy deformation of d-connections (from Theorem D(1)) corresponds to
the isomonodromy deformation of ordinary connections, which is described by the
sixth Painlevé equation.

5.6. Mellin transform
In this section (which is completely independent from the rest of the article), we sketch
the geometric construction underlying Theorem C. Fix θ ∈ �

�

4, x ∈ X, and λ ∈ 	 as
in Theorem C.

Take (L̂, ∇) ∈ M(x,λ). For any z ∈ C, consider the connection

∇z := ∇ − zζ−1dζ : L̂ → L̂ × �P1 (x1 + x2 + x3 + x4),

where we denote by ζ the coordinate on P
1. Recall that x1 = 0, x4 = ∞, so subtraction

of zζ−1dζ from ∇ does not introduce new poles. Denote by L̂∗! ⊃ L̂ the smallest
quasi-coherent sheaf that contains L̂ and such that ∇z(L̂∗!) ⊂ L̂∗! for all z ∈ C. (In
terms of D-modules, L̂∗! can be constructed by taking the intermediate extension of
(L̂, ∇z) from P

1 −{x1, x2, x3, x4} to P
1 −{0, ∞} and then extending to P

1.) Consider
the first de Rham cohomology group H 1

DR(L̂∗!, ∇z). Since L̂∗! and L̂∗! ⊗ �P1 have
no higher cohomologies, it can be computed by the formula

H 1
DR(L̂∗!,∇z) = coker

(∇z : �(P1, L̂∗!) → �(P1, L̂∗! ⊗ �P1 )
)
.

H 1
DR(L̂∗!, ∇z) depends on z in an algebraic way; more precisely, it is the fiber over

z ∈ C of a natural quasi-coherent sheaf L∗! on P
1 −{∞}. The sheaf L∗! is the Mellin

transform of L̂∗! in terms of [21].
Consider now the rational map a : L̂ �̃�� L̂ : s �→ ζ s. Note that a satisfies the

relation a◦∇z = ∇z+1◦a. It is also easy to see that a induces an automorphism of L̂∗!;
therefore, it becomes an isomorphism of D-modules (i.e., quasi-coherent sheaves with
connections) (L̂∗!,∇z) →̃ (L̂∗!, ∇z+1). Hence, a yields an identification,

Ã(z) : H 1
DR(L̂∗!,∇z) →̃ H 1

DR(L̂∗!,∇z+1).

As z ∈ C varies, we can view Ã(z) as a d-connection on the quasi-coherent sheaf
L∗!. One can check that L∗! contains a unique coherent locally free subsheaf of
rank 2 (i.e., a rank 2 vector bundle) L ⊂ L∗! such that

A(z) := (z − a3)(z − a4)Ã(z)

is a d-connection of type θ on L. The correspondence

(L̂, ∇) �→ (L, A)
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gives a map M(x,λ) → Mθ . Note that the scalar multiple (z − a3)(z − a4) also appears
in Remark 4.5.

To describe the inverse map Mθ → M(x,λ), let us reconstruct (L̂, ∇) from (L, A).
For any ζ ∈ C − {0}, consider the d-connection

Ãζ := ζ−1 A
(z − a3)(z − a4)

on L. Let L∗! be the smallest quasi-coherent sheaf on P
1 which contains L and

such that Ãζ induces an isomorphism (L∗!)z → (L∗!)z+1 for all z and ζ . (The
quotient L∗!/L is the direct sum of length 1 skyscraper sheaves supported at points
a1, a1 − 1, a1 − 2, . . . ; a2, a2 − 1, . . . ; a3 + 1, a3 + 2, . . . ; a4 + 1, a4 + 2, . . . .) For
any ζ ∈ C − {0}, we obtain a structure of a Z-equivariant sheaf on L∗!, where 1 ∈ Z

acts on P
1 by z �→ z + 1 and on L∗! by Ãζ . (In some sense, L∗! is obtained from L

by an intermediate extension for Z-equivariant sheaves.) Consider the corresponding
equivariant cohomology group H 1

Z
(L∗!, Ãζ ), which can be computed by the formula

H 1
Z

(L∗!, Ãζ ) = coker
(
Ãζ − 1 : �(P1, L∗!) → �(P1, L∗!)

)
.

H 1
Z

(L∗!, Ãζ ) is the fiber over ζ ∈ C − {0} of the quasi-coherent sheaf L̂∗! on
P

1 − {∞, 0}.
For every ζ ∈ C − {0}, consider the rational map

δ(ζ ) : L ��� L : s �→ zζ−1s.

The map δ(ζ ) induces a regular map L∗! → L∗! and, therefore, a map

δ∗(ζ ) : �(P1, L∗!) → �(P1, L∗!).

The map δ∗(ζ ) satisfies the commutativity relation

δ∗(ζ )Ãζ = Ãζ δ∗(ζ ) − dÃζ

dζ
.

Now let us consider the trivial quasi-coherent sheaf over P
1 − {0, ∞} whose fiber

over every point ζ ∈ P
1 − {0, ∞} equals �(P1, L∗!). The formula Ãζ − 1 gives an

endomorphism of this sheaf; the cokernel of the endomorphism is L̂∗!. Notice now
that Ãζ −1 is horizontal with respect to the connection ∇ = d +δ∗(ζ )dζ on the sheaf.
Therefore, ∇ induces a connection L̂∗! → L̂∗! ⊗ �P1 (which we also denote by ∇).
Finally, L̂ ⊂ L̂∗! can be reconstructed as the only coherent locally free subsheaf of
rank 2 such that ∇ is a connection of type (x, λ) on L̂.
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6. Difference PVI
In this section we study Mθ for θ ∈ �



k . We need suitable versions of several statements
from Section 3.

6.1
PROPOSITION 6.1 (cf. Proposition 3.1)
Suppose that the matrix A(z) = ∑

i≤n Aiz
i over C((z−1)) satisfies the following

condition:

The leading term An is a nonzero scalar matrix,
while all eigenvalues of the next term An−1 are distinct.

(6.1)

Then there exists a gauge matrix R(z) = ∑
i≤0 Riz

i with invertible R0 such that

R(z + 1)−1A(z)R(z) = A′
nz

n + A′
n−1z

n−1, (6.2)

where A′
n and A′

n−1 are diagonal. R(z) is uniquely determined up to right multiplica-
tion by a permutation matrix and a constant diagonal matrix.

As before, we denote the only eigenvalue of A′
n by ρ = ρ1 = · · · = ρn, and we denote

the eigenvalues of A′
n−1 by ρd1, . . . , ρdn. It is easy to see that An = A′

n (so ρ is also
the eigenvalue of An) and that An−1 is conjugate to A′

n−1 (so ρd1, . . . , ρdn are also
eigenvalues of A′

n−1; this can be thought of as a version of Remark 3.3).

PROPOSITION 6.2 (cf. Proposition 3.8)
Suppose that θ = (a1, . . . , ak; ρ, ρ, d1, d2; n), and suppose that d1 	= d2. Let (L′, A′)
be an elementary upper modification of (L, A) ∈ Mθ given by (x ∈ P

1; l ⊂ Lx).
Then the only cases when (L′, A′) belongs to Mθ ′ for some θ ′ ∈ � are as follows.
(1) If x = ∞, then l must be an eigenspace of An−1 : L∞ → L∞ (the second

term of A = ρzn + An−1z
n−1 + lower-order terms). If, for instance, l =

ker(An−1 − ρd1) ⊂ L∞, then θ ′ = (a1, . . . , ak; ρ1, ρ2, d1 − 1, d2; n), and an
analogous formula holds when l = ker(An−1 − ρd2).

(2) If x = ai is a zero of A and x−1 	= aj is not, then l must be the kernel of A(x) :
Lx → Lx+1; in this case, θ ′ = (a1, . . . , ai − 1, . . . , ak; ρ1, ρ2, d1, d2; n).

In either case, the elementary modifications define an isomorphism Mθ →̃ Mθ ′ .

COROLLARY 6.3
Suppose that θ ∈ �k satisfies (2.5) and (2.8). Then Mθ is naturally isomorphic to Mθ ′

whenever θ ′ is obtained from θ by adding integers to ai’s and di’s.
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LEMMA 6.4 (cf. Corollary 3.13)
Suppose that (L, A) ∈ Mθ , and suppose that θ ∈ �2n satisfies (2.4) and (2.8). If
L � O(n1) ⊕ O(n2), then |n1 − n2| ≤ n − 1.

Proof
The proof repeats that of Corollary 3.13; the only difference is that the order of pole
of α at ∞ cannot exceed n − 1 (because the coefficient of zn in α is an off-diagonal
element of a scalar matrix, i.e., zero). �

6.2. Proofs of Theorems E, F
Proof of Theorem E
The proof of Theorem E follows the same ideas as the proof of Theorem A. Fix θ ∈ �



6,
deg(θ) = −1. For any (L, A) ∈ Mθ , Lemma 6.4 implies that L � O ⊕ O(−1).
Choosing an isomorphism S : O ⊕ O(−1) →̃ L, we can write A as a matrix

A =
[
a11 a12

a21 a22

]
,

a11, a22 ∈ �
(
P

1, O(3)
)
,

a12 ∈ �
(
P

1, O(4)
)
,

a21 ∈ �
(
P

1, O(2)
)
.

(6.3)

Choosing a different isomorphism S replaces A with its d-gauge transformation (4.3),
where the gauge matrix R is given by (4.2).

LEMMA 6.5 (cf. Lemma 4.1)
Let A be a d-connection on O ⊕ O(−1); its matrix A is of the form (6.3). We claim
that A is of type θ if and only if A satisfies the following conditions:

a12 ∈ �
(
P

1, O(3)
)
, a21 ∈ �

(
P

1, O(1)
)
, a11 − ρz3, a22 − ρz3 ∈ �

(
P

1, O(2)
)
,

det(A) = (z − a1)(z − a2)(z − a3)(z − a4)(z − a5)(z − a6)ρ2,

(a11 − ρz3)
(
a22(1 + z−1) − ρz3) − a12a21 = d1d2ρ

2z4 + lower-order terms.

Remark. The last condition of the lemma can be more naturally written as

det
(
R(z + 1)−1AR(z) − ρz3) = d1d2ρ

2z4 + lower-order terms,

where R(z) := diag(1, z−1) is a trivialization of O ⊕ O(−1) near ∞ ∈ P
1.

We can now think of Mθ as the quotient of the space of all matrices (6.3) that satisfy
Lemma 6.5 modulo d-gauge transformations with gauge matrices (4.2) (cf. Corollary
4.2). For any matrix (6.3) which satisfies Lemma 6.5, denote by q ∈ P

1 the only zero
of a21, and set p̃ := a11(q) ∈ (O(3))q . It is easy to see that q and p̃ do not change
under d-gauge transformations with gauge matrices (4.2); therefore, P̃ := (q, p̃) can
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be viewed as a map Mθ → K̃ , where K̃ := V(O(3)∨) is the total space of the line
bundle O(3). We can now use the map P̃ for a geometric description of Mθ . (We are
using the notation of Theorem 4.4.)

THEOREM 6.6
(1) The map P̃ : Mθ → K̃ is a regular birational morphism of smooth algebraic

surfaces.
(2) Let σ̃1 : K̃1 → K̃ be the blowup of K̃ at the following seven points: (ai, 0(ai))

(i = 1, . . . , 6) and (∞, (ρz3)(∞)). Let σ2 : K̃2 → K̃1 be the blowup of K̃1

at the two points (∞, (ρz3 + ρdjz
2)′(∞)), j = 1, 2. (These points belong to

the preimage σ̃−1
1 (∞, (ρz3)(∞)) ⊂ K̃1.) Then the map P̃ induces an open

embedding P̃2 : Mθ ↪→ K̃2.
(3) The complement to P̃2(Mθ ) in K̃2 is the union of the proper preimages of the

following curves: the zero section {(z, 0(z)) : z ∈ P
1} ⊂ K̃ , the fiber at infinity

{(∞, az3(∞)) : a ∈ C} ⊂ K̃ , and the exceptional curve σ̃−1
1 (∞, (ρz3)(∞)) ⊂

K̃1.

The proof of Theorem 6.6 is completely analogous to that of Theorem 4.4 (see Sec-
tion 4.3). Now Theorem E easily follows; we set

p := p̃

(q − a4)(q − a5)(q − a6)
,

and it is not hard to check that the map P := (q, p) : Mθ → (P1)2 (which is birational
by Theorem 6.6) is regular and induces an embedding Mθ ↪→ K2 with the required
properties. �

Proof of Theorem F
The proof repeats the proof of Theorem B (given in Section 4.4) almost word for word.
(Of course, the calculations involved are somewhat more complicated.) The only real
difference is formulas (4.13) and (4.14); the corresponding formulas in our case are

A =
[
z3 − q3 + p(q − a4)(q − a5)(q − a6) a12

z − q a22

]
, a22, a12 ∈ �

(
P

1, O(3)
)
,

A′ =
[
z3 − (q ′)3 + p′(q ′ − a3)(q ′ − a4)(q ′ − a6) a′

12

z − q ′ a′
22

]
, a′

22, a
′
12 ∈ �

(
P

1, O(3)
)
.

�

6.3. Degeneration to difference PV
Given

θ̃ = (ã1, ã2, ã3, ã4; ρ̃1, ρ̃2, d̃1, d̃2; 2) ∈ �
�

4,
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let us define θ(t) for t ∈ C − {0} by

θ(t) =
(
ã1, ã2, − ρ̃1

t
,− ρ̃2

t
, ã3, ã4; 1, 1, d̃1 + ρ̃1

t
, d̃2 + ρ̃2

t
; 3

)
.

Clearly, θ(t) ∈ �


6 for all but countably many t . Denote the components of θ = θ(t)
by ai = ai(t), dj = dj (t). Formulas (2.9) define a family of equations depending on
parameter t ∈ C − {0}. Let us show that the difference PV (2.7) is the limit of this
family as t → 0.

Replace p with a new variable p̃ := (ρ̃2+qt)p; accordingly, set p̃′ := (ρ̃2+q ′t)p′.
After we plug the formulas for θ(t), p̃, and p̃′ into (2.9), it becomes the system

q + q ′ = ã3 + ã4 + ρ̃1(d̃1 + ã4 + ã5)

p̃ − ρ̃1
+ ρ̃2(d̃2 + ã4 + ã5)

p̃ − ρ̃2
+ O(t),

p̃p̃′ = (q ′ − ã1 + 1)(q ′ − ã2 + 1)

(q ′ − ã3)(q ′ − ã4)
· ρ̃1ρ̃2 + O(t),

(6.4)

where O(t) stands for a Taylor series in t with no constant term. This is exactly the
difference PV equation (2.7).

Remark 6.7
The degeneration of (2.9) to (2.7) has a clear geometric meaning; let us sketch it. It
is easy to construct a family of moduli spaces ν : N → A

1 such that the fiber ν−1(t)
over t ∈ A

1 − {0} equals Mθ(t) whenever θ(t) ∈ �


6, while ν−1(0) = Mθ̃ . Similarly,
one can define a family ν ′ : N ′ → A

1 such that (ν ′)−1(t) = Mθ ′(t) if t 	= 0, θ(t) ∈ �


6,
and such that (ν ′)−1(0) = Mθ̃ ′ . Here

θ̃ ′ = (ã1 + 1, ã2 + 1, ã3, ã4; ρ̃1, ρ̃2, d̃1 − 1, d̃2 − 1; 2),

θ ′(t)=
(
ã1 +1, ã2 +1, − ρ̃1

t
, − ρ̃2

t
, ã3, ã4; 1, 1, d̃1 + ρ̃1

t
−1, d̃2 + ρ̃2

t
−1; 3

)
.

The modification of d-connections defines a rational isomorphism N �̃�� N ′ which is
regular over a neighborhood of 0 ∈ A

1; this isomorphism is given by (2.9) if t 	= 0
and θ(t) ∈ �



6, and it is given by (2.7) if t = 0.

6.4. Degeneration to classical PVI
Let us now show how difference PVI (2.9) degenerates into the classical PVI. Fix

θ̃ = (ã1, ã2, ã3, ã4; ρ̃1, ρ̃2, d̃1, d̃2; 2) ∈ �
�

4,

and set

θ(t) :=
(
− ρ̃1

t
, − ρ̃2

t
, ã1, ã2, ã3, ã4; 1, 1, d̃1 + ρ̃1

t
, d̃2 + ρ̃2

t
; 3

)
(t ∈ C − {0}).
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Again, θ(t) ∈ �


6 for all but countably many t . Let us also set

θ ′(t) :=
(
− ρ̃1

t
− 1, − ρ̃2

t
− 1, ã1, ã2, ã3, ã4;1,1,d̃1 + ρ̃1

t
+ 1, d̃2 + ρ̃2

t
+ 1; 3

)
,

so that dPVI is an isomorphism Mθ(t) →̃ Mθ ′(t). Note that the formula for θ ′(t) is
obtained from the formula for θ(t) if we substitute

ρ̃ ′
i := ρ̃i + t (6.5)

for ρ̃i , i = 1, 2.
Let us replace p with p̃ := (q − ã2)tp; accordingly, set p̃′ := (q ′ − ã2)tp′. Then

(2.9) can be written as

q ′ − q

t
= (q − ã3)(q − ã4)

ρ̃1ρ̃2
p̃ − (q − ã1)(q − ã2)

p̃
+ O(t),

p̃′ − p̃

t
= ã1 + ã2 − 2q + 2(ρ̃1 + ρ̃2)q + d̃1ρ̃1 + d̃2ρ̃2

ρ̃1ρ̃2
p̃

+ ã3 + ã4 − 2q

ρ̃1ρ̃2
p̃2 + O(t),

(6.6)

where (q, p) are the coordinates on Mθ(t) and (q ′, p′) are the coordinates on Mθ ′(t). As
t → 0, the left-hand sides tend to derivatives of q and p with respect to t . Similarly,
(6.5) becomes the expression

dρ̃i

dt
= 1 (i = 1, 2);

all other parameters ã1, . . . , ã4; d̃1, d̃2 do not depend on t . Now it is easy to see that
(6.6) is obtained from (5.9) (which is equivalent to the sixth Painlevé equation) by
changing variables from ρ̃1, ρ̃2 to t .

The degeneration of (2.9) to (6.6) has a geometric interpretation similar to that
given for the degeneration to (2.7) (see Remark 6.7). The details are left to the reader.
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