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Measuring the difference between Riemann surfaces

Two Riemann surfaces X and Y of genus g are always diffeomorphic,
thanks to the classification of topological surfaces. However, they might
not have the same complex structure.

That is to say, there might not be any holomorphic X → Y with a
holomorphic inverse Y → X . But how close can we get?

For an orientation-preserving diffeomorphism f : X → Y , we would like to
say how close f is to being a biholomorphism (holomorphic map with
holomorphic inverse).

To do this, we will define a differential form µf on X that measures how
far f is from being a biholomorphism.
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Measuring the difference between Riemann surfaces

Goal: Define a form µf on X measuring how far f : X → Y is from being
a biholomorphism.

Note that f is a biholomorphism if and only if (df )p : TpX → Tf (p)Y is
C-linear for every p ∈ X .

Thus we may start with a more down-to-earth goal: Define a quantity µT
measuring how far a linear map T : R2 → R2 is from being C-linear.
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Measuring the difference between Riemann surfaces

Goal: Define a quantity µT measuring how far a linear map T : R2 → R2

is from being C-linear.

Since an arbitrary T : R2 → R2 is of the form T (z) = az + bz , we define
µT = b

a .

When T is C-linear, we have T (z) = az , and so µT = 0. The more T
depends on z , the greater b is, and hence the greater µT is.

When T is orientation-preserving, we have
∣∣b
a

∣∣ < 1.
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Measuring the difference between Riemann surfaces

Goal: Define a form µf on X measuring how far f : X → Y is from being
a biholomorphism.

Definition (Beltrami differential at a point)

Let f : X → Y be an orientation-preserving diffeomorphism of Riemann
surfaces, and let p ∈ X . Fix coordinate systems about p and f (p), giving
isomorphisms TpX ∼= C and Tf (p)Y ∼= C. Then we have

(df )p =
(
∂f
∂z (p)

)
z +

(
∂f
∂z (p)

)
z . We define

µf (p) = µ(df )p =
∂f
∂z (p)
∂f
∂z (p)

.
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Measuring the difference between Riemann surfaces

Exercise

Let f : X → Y be an orienation-preserving diffeomorphism of Riemann
surfaces, and let p ∈ X .

1 Fix a coordinate system about p. Show that µf (p) does not depend
on the choice of coordinate system about f (p).

2 Show that if z and w are local coordinates about p, with z = ϕ(w),
then

µf (p)w.r.t. w =
∂(f ◦ϕ)
∂w (p)

∂(f ◦ϕ)
∂w (p)

=
∂f
∂z (p)
∂f
∂z (p)

·
∂ϕ
∂w (p)
∂ϕ
∂w (p)

= µf (p)w.r.t. z ·
∂ϕ
∂w (p)
∂ϕ
∂w (p)

.

The second exercise shows that µf can be understood as a C∞ section of
K ⊗ K ∗, where K is the holomorphic cotangent bundle of X , and K and
K ∗ are its complex conjugate and linear dual, respectively. In local

coordinates, we write µf = µ(z)dzdz for some local C∞ function µ.
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Measuring the difference between Riemann surfaces

Definition

Let X be a Riemann surface. We define the vector space Bel(X ) of C∞

Beltrami differentials to be the set of C∞ sections of K ⊗ K ∗.

Exercise

Show that |µ(p)| is independent of any choice of coordinates about p for
every µ ∈ Bel(X ).

Theorem (Global C∞ Riemann mapping theorem)

Let Bel1(X ) be the set of µ ∈ Bel(X ) with |µ(p)| < 1 for every p ∈ X.
For every µ ∈ Bel1(X ), there exists a Riemann surface Xµ and a
diffeomorphism f : X → Xµ such that µf = µ.

The surface Xµ is unique up to biholomorphism, and the map f is
unique up to postcomposition by some automorphism of Xµ.
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The Torelli space

Recall that a Torelli marking on a Riemann surface X is a choice of basis
B = {a1, . . . , ag , b1, . . . , bg} for H1(X ;Z) so that ai · bj = δij and
ai · aj = bi · bj = 0 for all i , j .

Definition

Fix g > 0. The Torelli space for genus g Riemann surfaces is

Ug = {(X ,B) | X a genus g Riemann surface with Torelli marking B}/ ∼,

where (X ,B) ∼ (Y ,C ) if there is there is a biholomorphism f : X → Y
with f∗B = C .

Let (X ,B) ∈ Ug , and let µ ∈ Bel(X ). For small enough t ∈ R, we have
tµ ∈ Bel1(X ), and so by the global C∞ Riemann mapping theorem we
have a diffeomorphism ftµ : X → Xtµ. By the definition of the Torelli
space, there is a well-defined point (Xtµ, (ftµ)∗B) ∈ Ug , irrespective of the
choice of Xtµ and ftµ.
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The Torelli space

Theorem

The map

Bel(X )→ T(X ,B)Ug
µ 7→ ∂

∂t

∣∣
t=0

(Xtµ, (ftµ)∗B)

is a linear surjection. We may therefore understand every tangent vector
to Ug as an equivalence class [µ] of Beltrami differentials.
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The Torelli space

Recall that every (X ,B) ∈ Ug has a dual basis ω1, . . . , ωg ∈ Ω(X )
satisfying ∫

ai

ωj = δij , ∀1 ≤ i , j ≤ g .

We define the period matrix τ(X ,B)gi , j=1 =
(∫

bi
ωj

)g
i , j=1

.

Let f : X → Y be a biholomorphism with C = f∗B. Then the formula∫
f∗γ
ω =

∫
γ f
∗ω implies that (f −1)∗ω1, . . . , (f

−1)∗ωg is a dual basis for

(Y ,C ), and that τ(X ,B) = τ(Y ,C ).

Therefore we have a well defined map

τ : Ug → Sg ⊂ Cg2

(X ,B) 7→ τ(X ,B),

where Sg is the space of symmetric g × g complex matrices with
positive-definite imaginary part, called the Siegel upper half-space.

Bradley Zykoski The Ahlfors-Rauch variational formula June 5, 2020 12 / 19



The Torelli space

Recall that every (X ,B) ∈ Ug has a dual basis ω1, . . . , ωg ∈ Ω(X )
satisfying ∫

ai

ωj = δij , ∀1 ≤ i , j ≤ g .

We define the period matrix τ(X ,B)gi , j=1 =
(∫

bi
ωj

)g
i , j=1

.

Let f : X → Y be a biholomorphism with C = f∗B. Then the formula∫
f∗γ
ω =

∫
γ f
∗ω implies that (f −1)∗ω1, . . . , (f

−1)∗ωg is a dual basis for

(Y ,C ), and that τ(X ,B) = τ(Y ,C ).

Therefore we have a well defined map

τ : Ug → Sg ⊂ Cg2

(X ,B) 7→ τ(X ,B),

where Sg is the space of symmetric g × g complex matrices with
positive-definite imaginary part, called the Siegel upper half-space.

Bradley Zykoski The Ahlfors-Rauch variational formula June 5, 2020 12 / 19



The Torelli space

Recall that every (X ,B) ∈ Ug has a dual basis ω1, . . . , ωg ∈ Ω(X )
satisfying ∫

ai

ωj = δij , ∀1 ≤ i , j ≤ g .

We define the period matrix τ(X ,B)gi , j=1 =
(∫

bi
ωj

)g
i , j=1

.

Let f : X → Y be a biholomorphism with C = f∗B. Then the formula∫
f∗γ
ω =

∫
γ f
∗ω implies that (f −1)∗ω1, . . . , (f

−1)∗ωg is a dual basis for

(Y ,C ), and that τ(X ,B) = τ(Y ,C ).

Therefore we have a well defined map

τ : Ug → Sg ⊂ Cg2

(X ,B) 7→ τ(X ,B),

where Sg is the space of symmetric g × g complex matrices with
positive-definite imaginary part, called the Siegel upper half-space.

Bradley Zykoski The Ahlfors-Rauch variational formula June 5, 2020 12 / 19



The Ahlfors-Rauch variational formula

Theorem (Ahlfors-Rauch variational formula)

The derivative (dτ)(X ,B) : T(X ,B)Ug → Tτ(X ,B)Sg is given by

(dτ)(X ,B)([µ])ij =

∫
X

(ωi ⊗ ωj)µ, ∀µ ∈ Bel(X ).

It is not immediately evident that the expression (ωi ⊗ ωj)µ denotes the
sort of thing that can be integrated. If we write in local coordinates

ωi = ci (z)dz , ωj = cj(z)dz , and µ = µ(z)dzdz , then one often sees the
deceptively simple algebraic manipulation

(ci (z)dz)(cj(z)dz)
(
µ(z)dzdz

)
= ci (z)cj(z)µ(z) (dz)

2dz
dz = ci (z)cj(z)µ(z)dzdz ,

where dzdz = dz ∧ dz = −2idx ∧ dy .

In the exercises, we will obtain this manipulation as a sequence of vector
bundle isomorphisms.
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The Ahlfors-Rauch variational formula

We proceed to prove the variational formula

(dτ)(X ,B)([µ])ij =

∫
X

(ωi ⊗ ωj)µ.

For small enough t ∈ R, we again have ftµ : X → Xtµ. Let ω1,t , . . . , ωg ,t

be the dual basis for Xtµ. Then

(dτ)(X ,B)([µ])ij = lim
t→0

1
t (τ(Xtµ, (ftµ)∗B)ij − τ(X ,B)ij) .

Fix j , and let ψt = f ∗tµωj ,t−ωj . Then τ(Xtµ, (ftµ)∗B)ij−τ(X ,B)ij =
∫
bi
ψt .

The variational formula then becomes∫
bi

ψt = t

∫
X

(ωi ⊗ ωj)µ+ O(t2).
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The Ahlfors-Rauch variational formula

Since T ∗CX = K ⊕ K , we may decompose ψt = f ∗tµωj ,t − ωj as the sum of

its K -part ψK
t and its K -part ψK

t . Let z be a local coordinate on X and zt
be a local coordinate on Xtµ. Then, writing ωj = cj(z)dz and
ωj ,t = cj ,t(zt)dzt , we have

ψK
t =

(
(cj ,t ◦ ftµ) · ∂ftµ∂z − cj

)
dz ,

ψK
t = (cj ,t ◦ ftµ) · ∂ftµ∂z dz

= (cj ,t ◦ ftµ) · tµ · ∂ftµ∂z dz ,

where the latter equality follows from the definition of ftµ.

Exercise

Use Riemann’s bilinear relations to show that∫
bi

ψt =

∫
X
ωi ∧ ψK

t .
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The Ahlfors-Rauch variational formula

Since we are only interested in integrating ωi ∧ ψK
t , it suffices to consider

this form outside a set of measure 0. Let U ⊂ X be a (contractible)
coordinate chart on X so that X r U has measure 0, and let z be a
coordinate on U.

We may now write

ωi ∧ ψK
t =

(
ci · (cj ,t ◦ ftµ) · tµ · ∂ftµ∂z

)
dz ∧ dz

We have reduced our problem to showing that the integral of
ωi ∧ ψK

t − t(ωi ⊗ ωj)µ is O(t2). Note that

ωi ∧ ψK
t − t(ωi ⊗ ωj)µ = ci · tµ ·

(
(cj ,t ◦ ftµ) · ∂ftµ∂z − cj

)
dz ∧ dz

= t
(
ωi ⊗ ψK

t

)
µ
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The Ahlfors-Rauch variational formula

We have reduced our problem to showing that t
∫
X

(
ωi ⊗ ψK

t

)
µ = O(t2).

Recall ψK
t =

(
(cj ,t ◦ ftµ) · ∂ftµ∂z − cj

)
dz .

Exercise

Use Riemann’s bilinear relations to show that

− i

2

∫
X
ψt ∧ ψt = 0.

Since ψt = ψK
t + ψK

t , it follows that − i
2

∫
X ψ

K
t ∧ ψK

t = i
2

∫
X ψ

K
t ∧ ψK

t .

In coordinates, this equation becomes∫
U

∣∣∣(cj ,t ◦ ftµ) · ∂ftµ∂z − cj

∣∣∣2 dx ∧ dy =

∫
U

∣∣∣(cj ,t ◦ ftµ) · tµ · ∂ftµ∂z
∣∣∣2 dx ∧ dy .
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The Ahlfors-Rauch variational formula

We therefore have

1

4

∣∣∣∣t ∫
X

(
ωi ⊗ ψK

t

)
µ

∣∣∣∣2 ≤ |t|2(∫
U
|ci · tµ|2 dx ∧ dy

+

∫
U

∣∣∣cj − (cj ,t ◦ ftµ) · ∂ftµ∂z
∣∣∣2 dx ∧ dy

)

= |t|2
(∫

U
|ci · tµ|2 dx ∧ dy

+

∫
U

∣∣∣(cj ,t ◦ ftµ) · tµ · ∂ftµ∂z
∣∣∣2 dx ∧ dy

)
= |t|4

(∫
U
|ci · µ|2 dx ∧ dy

+

∫
U

∣∣∣(cj ,t ◦ ftµ) · µ · ∂ftµ∂z
∣∣∣2 dx ∧ dy

)
.

Taking square roots, we conclude that t
∫
X

(
ωi ⊗ ψK

t

)
µ = O(t2).
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