Teichmüller Geodesic Flow

Christopher Zhang

Masur's Criterion

Main idea: understanding dynamics of $GL^+(2,\mathbb{R})$ on the moduli space of translation surfaces gives us information about individual surfaces (X, ω) .

Example: Veech dichotomy

Theorem (Masur's Criterion) Let $g_t = \begin{pmatrix} e^{t/2} & 0 \\ 0 & e^{-t/2} \end{pmatrix}$ (often called Teichmüller geodesic flow). If ω is a translation surface such that the vertical direction is not uniquely ergodic, then $g_t \omega$ leaves every compact set i.e. for any compact $K \subset \mathcal{H}(\kappa)$ there exists a time T s.t. if t > T then $g_t \omega \notin K$.

Equivalently, if g_t recurs to a compact set K, then the vertical direction of ω is uniquely ergodic. This means $g_{t_n}\omega \in K$ for some sequence $t_n \to \infty$.

Theorem (Veech Dichtomy)

For a Veech surface, any direction with a saddle connection is parabolic and any other direction is uniquely ergodic.

Proof.

Yesterday we showed any direction with a saddle is parabolic. Now we will finish the proof using Masur's criterion.

- Let θ be a direction that is not uniquely ergodic. Rotate the surface so this direction is vertical. We call the rotated surface ω. By Masur's criterion g_tω diverges.
- **②** Fact: if $g_t ω ∈ SL(2, ℝ)/SL(X, ω)$ diverges, then SL(X, ω) has a parabolic element in the vertical direction.
- O The original surface must be parabolic in the direction θ. In particular it has a saddle.

Masur's Criterion

Proposition

On each $\mathcal{H}_1(\kappa)$, there exists a finite $SL(2,\mathbb{R})$ -invariant measure μ_{MV} . This measure is called the Masur-Veech measure.

Proposition (Poincare Recurrence)

If ϕ_t is a flow on S and μ a finite invariant measure, then for any set U with $\mu(U) > 0$, μ -almost every $x \in U$ comes back to U infinitely often.

Proof.

- Let $U_0 \subset U$ be the set $\phi^t(U_0) \notin U$ for $t \ge 1$. $\phi^n(U_0) \cap \phi^m(U_0) = \emptyset$ for all $n \neq m \in \mathbb{N}$.
- ② If $\mu(U_0) = \epsilon > 0$, then $\mu(S) ≥ \mu(U) + \mu(\phi(U)) + \mu(\phi^2(U)) + ...$ is not finite.
- 3 If x comes back to U only finitely many times, $x \in \phi^{-k}(U)$.

Corollary

For almost all surface $\omega \in \mathcal{H}(\kappa)$, the vertical direction is uniquely ergodic.

Proof.

- By Poincare recurrence, almost every surface ω, gtω recurs to some compact set K.
- **2** By Masur's criterion, such ω have uniquely ergodic vertical direction.

This is weaker than Kerckhoff, Masur, Smillie: on EVERY surface, almost every direction is uniquely direction.

Let $(X, \omega) \in \mathcal{H}(\kappa)$. A holomorphic 1-form ω gives an element of $H^1(X, \Sigma; \mathbb{C}) \cong \mathbb{C}^d$ by integrating.

Proposition

Around every point in $(X, \omega) \in \mathcal{H}(\kappa)$, there is a neighborhood U such that $U \to H^1(X, \Sigma; \mathbb{C}) \cong \mathbb{C}^d$ is a homeomorphism onto its image. These are called **period coordinate** charts. Two charts different by an element of $SL(d, \mathbb{Z})$.

Analogy: any two isomorphisms $H_1(T^2; \mathbb{Z}) \cong \mathbb{Z}^2$ differ by an element of $SL(2, \mathbb{Z})$.

Proposition

If
$$(X, \omega) \in \mathcal{H}(\kappa)$$
, $H^1(X, \Sigma; \mathbb{C}) \cong \mathbb{C}^{2g+|\kappa|-1}$, so $2g + |\kappa| - 1$ is the dimension of $\mathcal{H}(\kappa)$.

Proposition

The dimension of $\mathcal{H}(\kappa)$ is $2g + |\kappa| - 1$.

Example: the dimension of $\mathcal{H}(1,1)$ is 5 (genus = 2).

The lowest dimension stratum is $\mathcal{H}(2g-2)$ is dimension 2g.

The highest dimension stratum is $\mathcal{H}(1, 1, ..., 1)$ has $|\kappa| = 2g - 2$ and dimension = 4g - 3.

Fact: \mathcal{M}_g has dimension 3g - 3, so there are stratum $\mathcal{H}(\kappa) \to \mathcal{M}_g$ is not surjective for many strata.

Sanity check: the Hodge bundle $\mathcal{H} \to \mathcal{M}_g$ has 3g - 3-dimensional base and g-dimensional fiber, so it has dimension 4g - 3, which is the dimension of the largest stratum.

Let $\phi : U \to \mathbb{C}^d$ be a periodic coordinate chart. For any open set $V \subset U$ we define $\mu_{MV}(V)$ as the Lebesgue measure of $\phi(V)$.

If $V \subset U_1 \cap U_2$, $\mu_{MV}(V)$ is still well defined, because $SL(d, \mathbb{Z})$ preserves Lebesgue measure.

 $\mu_{MV}(\mathcal{H}(\kappa))$ is infinite, but $\mu_{MV}(\mathcal{H}_1(\kappa))$ is finite.

Example:

3 *H*₁(0) ≃ *SL*(2, ℝ)/*SL*(2, ℤ)
3 *H*(0) ≃ *SL*(2, ℝ)/*SL*(2, ℤ) × ℝ₊

Lemma

Let (X, ω) be a flat surface of area 1. There is some constants R, c such that if ω has diameter $\geq R$, then it must have a cylinder in ω of height $\geq cR$.

Sketch of proof that Masur-Veech measures are finite.

- The set S₀ ⊂ H(κ) such that all relative periods are bounded is finite measure.
- 2 The set S₁ with "one long cylinder" is similar to SL(2, ℝ)/SL(2, ℤ)
- **3** Only finitely of these S_n

Definition

A flow ϕ_t on S is **ergodic** with respect to a finite measure μ if for almost every $x \in S$

$$\lim_{T \to \infty} \frac{1}{T} \int_0^T \chi_A(\phi_t x) dt = \frac{\mu(A)}{\mu(S)}$$

Theorem

Teichmüller geodesic flow g_t is ergodic with respect to μ_{MV} . It is also **mixing**.

Ergodicity

Theorem

For almost all $x \in \mathcal{H}_1(\kappa)$, and all $f \in C_c^0$

$$\lim_{T \to \infty} \frac{1}{T} \int_0^T f(\phi_t x) = \frac{\mu_{MV}(A)}{\mu_{MV}(\mathcal{H}_1(\kappa))}$$

Sketch of proof.

- Let f be the left hand side of the above equation. It is well-defined for almost every x. It suffices to show f is constant. f is constant along orbits of g_t.
- 2 There are expanding and contracting foliations $\mathcal{W}^u, \mathcal{W}^s$.
- 3 \hat{f} is constant on each leaf of $\mathcal{W}^u, \mathcal{W}^s$.
- There is a full measure set E ⊂ H₁(κ) such that you can get between any two points in E by traveling along g_t orbits or leaves of W^u, W^s.