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1 Exercises

1. There are finitely many separatrices/ saddles in a give direction. Show that straight line flow is
undefined for a finite set of separatrices and saddles as above.

2. Show there are at most finitely many saddle connections of length ≤ L. Thus, there are countably
many saddle connections on a flat surface.

3. Show that a closed straight line orbit (that does not go through singularities) must lie on the
interior of a cylinder. The boundary of the cylinder must be saddles.

4. Find a translation surface (X,ω) with a nontrivial automorphism such that X has genus ≥ 2.

5. Show that for any curve, there is a geodesic segment in that homotopy class (with the same
endpoints). Every closed curve has a geodesic representative in its free homotopy class. It is not
unique iff it is the core curve of a cylinder.

6. Compute the Veech group of the following square-tiled surface with 3 squares.

7. A square-tiled surface (X,ω) can be thought of as a branched cover of the square torus with one
branch point p. Some preimages of p are singularities of the flat metric and some are not. For this
problem we will consider all preimages either singularities or marked points.

(a) Show that SL(X,ω) < SL(2,Z).

(b) Show that it is a finite index subgroup.

8. Let A ∈ SL(2,Z). How is the Veech group of A(X,ω) related to the Veech group of (X,ω)?

9. We outline the proof of the proposition that after cutting all the saddles in a given direction, all
the resulting components are periodic or minimal. Let ω be a compact translation surface and θ
a direction.

(a) Assume the straight-line orbit of x in direction θ is closed. Show that for a small enough
neighborhood U around x, the straight-line orbit is closed for all points in U .

(b) Let I ⊂ ω be a straight line segment not pointing in the direction θ. Show that if you flow I
in the direction θ, it will eventually hit itself.

(c) Let a be the left endpoint of I. Prove that if a is not on a saddle connection, a will eventually
hit I (after flowing in the direction θ).

(d) Let x be any point with an orbit Ox that is not closed. Show the boundary of Ox is a union
of saddles as follows. Assume by contradiction that a ∈ ∂Ox was not on a saddle. There is a
small straight line perpendicular to θ whose left (or right) endpoint is a. Use part (b) to get
a contradiction.

(e) Conclude that every component is minimal or periodic.

10. We outline the proof that a direction that contains a parabolic element P ∈ SL(X,ω) is periodic
with rationally related cylinders. This was used in the proof of the Veech dichotomy.

(a) P ∈ SL(X,ω) means that there is a homeomorphism φ : X → X that is of the form z 7→ Pz+c
in every translation coordinate chart where c can be different constants.

(b) Show that φ permutes the singularities, so some power φk fixes all singularities.

(c) Justify that φk must fix the separatrices in the direction v of the eigenvector of P .

(d) By your work in problem 9, each separatrix must be a saddle connection or is dense in a
component. Show that if a dense separatrix were fixed, then φk would be the identity, and
that this is a contradiction.
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(e) Conclude that the saddles cut the surface up into cylinders and the cylinders have rationally
related moduli.

11. Check that the sum of the orders of singularities of a holormophic 1-form is 2g − 2. In two ways:

(a) Using Riemann-Roch

(b) Using Poincare-Hopf

12. Show that the complex dimension of H1(X,Σ;C) is 2g + |κ| − 1.

13. We outline the proof that if the diameter is large, then there is a large cylinder.

(a) Fix a point x ∈ ω. A consider the closed ball Br(x) of radius r centered at x in the flat metric.
We choose r to be the smallest radius such that Br(x) intersects itself. Assume that there
are no singularities of Br(x) (or its boundary), so that there must be a saddle connection.

(b) Let there by k singularities and let the diameter of the surface be R. Show there is a point
distance at least R/k from any singularity.

(c) Let x be a point that is far away all singularities. Show that a large enough Br(x) must
intersect itself.
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