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Polygonal Billiards Tables

We consider a polygon P, and we want to study the straight-line
trajectories on P that bounce off the sides with an angle of reflection
equal to the angle of incidence.
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Unfolding a Table

We don’t want to keep track of a sequence of angles! We unfold the table
at every point of incidence, so that we have a mirror-version of our table
where the path continues in a straight line
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Unfolding a Table

Let G be the subgroup of O(2) generated by the reflections through the
sides of P. We want the angles of P to all be rational multiples of π, so
that G is a finite group. The unfolding of P is the surface obtained by
gluing together the reflected copies gP of P for every g ∈ G .
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The Unfolded Square

The square table unfolds to a torus R2/Z2. All straight-line trajectories
are given by the image of a straight line in R2 under the quotient
R2 → R2/Z2. Straight-line trajectories are therefore characterized by their
slope: those of rational slope are periodic, and those of irrational slope are
dense.
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The Unfolded π
8 −

3π
8 −

π
2 Triangle

The triangular table with interior angles π
8 , 3π

8 , and π
2 unfolds to the genus

2 surface given by identifying opposite sides of the regular octagon.
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Translation Surfaces

Unfolding always produces an oriented surface endowed with a flat
Riemannian metric, which comes from the fact that we can always
draw the surface in the Euclidean plane.

There are some points at which the Riemannian metric is not
well-defined: in the octagon above, every circle drawn around the
single vertex of our octagonal surface has total angle 3π

4 · 8 = 6π.
Call such an exception a cone singularity.

Notice also that if you take an upwards-pointing vector on the surface
and slide it around, it remains pointing upward. That is to say, our
surface have trivial holonomy.

Definition (Translation surface, first interpretation)

A translation surface is a closed oriented topological surface S , along with
a flat Riemannian metric on S , except at a finite set Σ of cone
singularities, with trivial holonomy.
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Translation Surfaces

Let us consider for a moment a holomorphic 1-form ω on some
Riemann surface X . On some coordinate chart U that does not
include the zeroes of ω, we may write in coordinates ω = f (z)dz ,
where f is a holomorphic function that vanishes nowhere on U.

We may then always define a new coordinate w =
∫ z
p f (ζ)dζ, where p

is some point in U. This gives

dw = ∂
∂z

(∫ z
p f (ζ)dζ

)
dz = f (z)dz = ω.

Consider now two overlapping coordinate charts U1 and U2 with
coordinates w1 and w2, respectively, where ω = dw1 on U1 and
ω = dw2 on U2. Then on U1 ∩ U2, we have dw1 = ω = dw2, and
hence w2 = w1 + C for some C ∈ C.

Translations w2 = w1 + C preserve the Euclidean metric on C = R2,
and preserve the notion of “upward-pointing-vector.”

Bradley Zykoski Riemann Surfaces and Dynamics June 1, 2020 9 / 21



Translation Surfaces

Let us consider for a moment a holomorphic 1-form ω on some
Riemann surface X . On some coordinate chart U that does not
include the zeroes of ω, we may write in coordinates ω = f (z)dz ,
where f is a holomorphic function that vanishes nowhere on U.

We may then always define a new coordinate w =
∫ z
p f (ζ)dζ, where p

is some point in U. This gives

dw = ∂
∂z

(∫ z
p f (ζ)dζ

)
dz = f (z)dz = ω.

Consider now two overlapping coordinate charts U1 and U2 with
coordinates w1 and w2, respectively, where ω = dw1 on U1 and
ω = dw2 on U2. Then on U1 ∩ U2, we have dw1 = ω = dw2, and
hence w2 = w1 + C for some C ∈ C.

Translations w2 = w1 + C preserve the Euclidean metric on C = R2,
and preserve the notion of “upward-pointing-vector.”

Bradley Zykoski Riemann Surfaces and Dynamics June 1, 2020 9 / 21



Translation Surfaces

Let us consider for a moment a holomorphic 1-form ω on some
Riemann surface X . On some coordinate chart U that does not
include the zeroes of ω, we may write in coordinates ω = f (z)dz ,
where f is a holomorphic function that vanishes nowhere on U.

We may then always define a new coordinate w =
∫ z
p f (ζ)dζ, where p

is some point in U. This gives

dw = ∂
∂z

(∫ z
p f (ζ)dζ

)
dz = f (z)dz = ω.

Consider now two overlapping coordinate charts U1 and U2 with
coordinates w1 and w2, respectively, where ω = dw1 on U1 and
ω = dw2 on U2. Then on U1 ∩ U2, we have dw1 = ω = dw2, and
hence w2 = w1 + C for some C ∈ C.

Translations w2 = w1 + C preserve the Euclidean metric on C = R2,
and preserve the notion of “upward-pointing-vector.”

Bradley Zykoski Riemann Surfaces and Dynamics June 1, 2020 9 / 21



Translation Surfaces

Let us consider for a moment a holomorphic 1-form ω on some
Riemann surface X . On some coordinate chart U that does not
include the zeroes of ω, we may write in coordinates ω = f (z)dz ,
where f is a holomorphic function that vanishes nowhere on U.

We may then always define a new coordinate w =
∫ z
p f (ζ)dζ, where p

is some point in U. This gives

dw = ∂
∂z

(∫ z
p f (ζ)dζ

)
dz = f (z)dz = ω.

Consider now two overlapping coordinate charts U1 and U2 with
coordinates w1 and w2, respectively, where ω = dw1 on U1 and
ω = dw2 on U2. Then on U1 ∩ U2, we have dw1 = ω = dw2, and
hence w2 = w1 + C for some C ∈ C.

Translations w2 = w1 + C preserve the Euclidean metric on C = R2,
and preserve the notion of “upward-pointing-vector.”

Bradley Zykoski Riemann Surfaces and Dynamics June 1, 2020 9 / 21



Translation Surfaces

Definition (Translation surface, second interpretation)

A translation surface is a closed Riemann surface X , along with a
holomorphic 1-form ω.
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Moduli of Translation Surfaces

Any translation surface can be drawn as a collection of polygons with
opposite sides identified, as we saw with the torus (a single square)
and the genus 2 surface (a single octagon).

Each side of such a polygon has a length r and points in some
direction θ. We record these with a single complex parameter re iθ.
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Moduli of Translation Surfaces

These polygonal pictures lie in the plane, and hence are acted upon by
GL+

2 (R).
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Moduli of Translation Surfaces

The cone singularities of a translation surface may equivalently be
understood as the zeroes of the holomorphic 1-form. Counting multiplicity,
there are always 2g − 2 of these, where g is the genus of the surface.

Definition (Stratum of translation surfaces)

Let κ = (k1, . . . , kn) satisfy
∑

kj = 2g − 2. We denote by H(κ) the
topological space that parametrizes all translation surfaces with zeroes of
multiplicities κ. We have seen that H(κ) admits a natural action
GL+

2 (R) y H(κ).

Theorem (Magic Wand of EMM + Theorem of Filip)

Any closed GL+
2 (R)-invariant subset of H(κ) is an algebraic C-variety.
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Moduli of Translation Surfaces

Every translation surface can be drawn with polygons in infinitely
many different ways. For example, any parallelogram with integral
endpoints and area 1 gives the same translation surface R2/Z2.

Suppose (X , ω) ∈ H(κ) can be drawn with a single polygon, and
choose an edge vj from each pair of parallel edges. Let zj = rje

iθj be
the complex parameter associated to vj . Then there is some ε > 0 so
that any choice of r ′j ∈ (rj − ε, rj + ε), θ′j ∈ (θj − ε, θj + ε) determines
a new translation surface (X ′, ω′) ∈ H(κ) by re-drawing our polygon
so that the vj have our new choices of lengths and directions.

In general, we take {vj}j to be a collection of edges whose lengths
and directions uniquely determine those of all the other edges. We
call the resulting system of coordinates (z1, z2, . . . , z2g+n−1) period
coordinates on H(κ).
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The Illumination Problem

Light rays reflecting off mirrors follow the same rules as our billiards,
so let us replace the billiards metaphor with light.

In any room whose walls are mirrors, which points illuminate which
other points?
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Roger Penrose’s Non-Polygonal Room

In 1958, Roger Penrose gave an example of a non-polygonal room in which
no point illuminates every other.
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Tokarsky’s and Castro’s Polygonal Rooms

In 1995 and 1997, respectively, Tokarsky and Castro constructed polygonal
rooms where the indicated points do not illuminate each other.
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Cofinite Illuminability in Rational Polygonal Rooms

Theorem (Lelièvre-Monteil-Weiss, 2014)

In a polygonal room P, whose angles are rational multiples of π, every
point fails to illuminate at most finitely many other points.

Proof: Consider any such polygon P. We unfold P to a translation surface
(X0, ω0) ∈ H(κ) and choose any a point x0 ∈ X0. We consider x0 as a
marked point, or equivalently as a “zero” of ω0 of multiplicity 0, so that
(X0, ω0, x0) ∈ H(κ, 0).

Define

N = {(X , ω, x , y) ∈ H(κ, 0, 0) | x does not illuminate y}
X0 = {(X0, ω0, x0, y) ∈ H(κ, 0, 0) | y 6= x0}.
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Theorem (Lelièvre-Monteil-Weiss, 2014)

In a polygonal room P, whose angles are rational multiples of π, every
point fails to illuminate at most finitely many other points.

Proof: Consider any such polygon P. We unfold P to a translation surface
(X0, ω0) ∈ H(κ) and choose any a point x0 ∈ X0. We consider x0 as a
marked point, or equivalently as a “zero” of ω0 of multiplicity 0, so that
(X0, ω0, x0) ∈ H(κ, 0).

Define

N = {(X , ω, x , y) ∈ H(κ, 0, 0) | x does not illuminate y}
X0 = {(X0, ω0, x0, y) ∈ H(κ, 0, 0) | y 6= x0}.

Bradley Zykoski Riemann Surfaces and Dynamics June 1, 2020 18 / 21



Cofinite Illuminability in Rational Polygonal Rooms
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Cofinite Illuminability in Rational Polygonal Rooms

N = {(X , ω, x , y) ∈ H(κ, 0, 0) | x does not illuminate y}
X0 = {(X0, ω0, x0, y) ∈ H(κ, 0, 0) | y 6= x0}

If I have any (X , ω, x , y) in the complement of N , then x does illuminate
y . If I vary this picture slightly, or by any element of GL+

2 (R) at all, we
see that x continues to illuminate y . Therefore N is closed and
GL+

2 (R)-invariant, and hence algebraic over C by the Magic Wand and
the Theorem of Filip.

Since X0 is a copy of X0 \ x0, it is also algebraic over C. Notice X0 6⊂ N
and dimCX0 = 1. Thus dimC(X0 ∩N ) = 0. Thus the set of y ∈ X0 not
illuminated by x0 is a 0-dimensional variety, which is a finite set of points.

�
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