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If (M2, g) is a surface with Riemannian metric, then a family of immersed
curves {Ct | 0 ≤ t < T} on M2 evolves by Curve Shortening if

∂C
∂t

= κg~ν, (1)

where κg is the geodesic curvature, and ~ν is a unit normal to the curve. Since
κg~ν can be written as ∂2C

∂s2 , where s is arclength along C, (1) is essentially a
parabolic equation, i.e. a nonlinear heat equation.

In [An2] it is shown that for any solution {Ct | 0 ≤ t < T} of (1) there
is only a discrete set of times at which the immersed curve Ct will have self
tangencies. Hence the number of self- intersections of Ct is always finite, and
it was also shown in [An2] that this number decreases whenever the curve
develops a self- tangency.

As the name suggests, Curve Shortening is a gradientflow for the length
functional on the space of immersed curves in the surface M2. One can there-
fore try to use Curve Shortening to prove existence of geodesics by variational
methods. In my talk at S’Agarro I observed that geodesics always are curves
without self-tangencies, and recalled that the space of such curves has many
different connected components. I then discussed how one can try to exploit
the nice behaviour of Curve Shortening with respect to self-intersections to
prove existence of geodesics in each component.

The fact that Curve Shortening never increases the number of self- inter-
sections of a curve is a consequence of a theorem of Sturm on linear parabolic
equations, and instead of describing the contents of my talk I would like to
point out that this theorem of Sturm can also be used to give alternative
proofs of the following theorems of Arnol’d:
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plutense de Madrid, Spain, and I receive support from the spanish Ministry of Education in the

form of a “beca de sabatical.”

1



Theorem A (“Tennis ball theorem”). Any embedded curve in S2 which
divides the sphere into two parts of equal area has at least four inflection
points.

Theorem B. Any noncontractible embedded curve in RP2 has at least three
inflection points.

Theorem C. Any plane convex curve has at least four inflection points and
six extatic points.

Proofs of these theorems can be found in [Ar1] and in the preprints made
available at the conference in S’Agarro. One of these preprints [Ar2] contains
a fourth theorem on “flattening points” of space curves which Arnol’d puts
in the same list of generalizations of the Morse inequalities. I have not been
able to find a proof of this particular theorem along the same lines as the
proofs of theorems A, B and C which I will give below.

The theorem of Sturm which we use to give alternative proofs of theorems
A, B and C can be stated as follows:

Theorem ([Sturm 1836, An1]). Let u(x, t) satisfy a linear parabolic PDE
of the type

∂u

∂t
= a(x, t)

∂2u

∂x2
+ b(x, t)

∂u

∂x
+ c(x, t)u (2)

for x ∈ R, 0 < t < T , and assume that u(x + 1, t) ≡ u(x, t). Assume u, ut,
ux, uxx, a, at, ax, axx, b, bx and c are continuous. Assume furthermore that
the coefficient a(x, t) is strictly positive.

Then z(t) = #{x ∈ R/Z | u(x, t) = 0} is a finite and nonincreasing
function of t. At any time t for which u(·, t) has a multiple zero z(t) will
decrease.

At the end of this note I will show how this theorem is similar to the
well known fact that zeroes of a function of one complex variable always have
positive degree.

The proofs of theorems A, B and C will more or less go like this: Given
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an arbitrary curve C we consider the maximal evolution {Ct | 0 ≤ t < T}
of Curve Shortening with initial data C0 = C and determine the asymptotic
behaviour of Ct as t ↑ T . We then observe that the curvature κCt

satisfies
a linear parabolic equation of the form (2), so that Sturm’s theorem tells us
that C has at least as many inflection points as Ct for t close to T . From the
asymptotic behaviour of Ct for t ↑ T we then get the desired lower bound
for the number of inflection points. To estimate the number of extatic points
we allow the curve to evolve by “Affine Curve Shortening” and consider the
affine curvature µ instead of the Euclidean curvature.

§1. The Tennis ball Theorem.

Let C0 ⊂ S2 be an embedded curve which divides the sphere in two parts
of equal area, and let {Ct | 0 ≤ t < T} be the corresponding evolution by
Curve Shortening. If one parametrizes Ct by C : R/Z × [0, T ) → S2 with
∂tC ⊥ ∂xC, then the curvature κ(x, t) of Ct at C(x, t) satisfies

∂κ

∂t
=
∂2κ

∂s2
+ (κ2 + 1)κ (3)

where ∂/∂s = |∂xC|−1∂/∂x. This equation is of the form (2) so that the
number of zeroes of κ(·, t), i.e. the number of inflection points of Ct does not
increase with t.

Lemma. The evolution Ct exists for all t > 0. At any time t the curve
Ct divides the sphere into two parts of equal area. As t → ∞ the curve Ct

converges to a great circle.

Denote by Ω(t) one of the two components of S2 \ Ct and let A(t) be the
area of Ω(t). Then

A′(t) =
∫
Ct

vds =
∫
Ct

κds,

where v is the normal velocity and κ is the curvature of Ct in the direction of
the outward normal of Ωt. The sphere has Gauss curvature K ≡ +1 so the
Gauss-Bonnet theorem tells us that

A′(t) =
∫
Ct

κds = −2π +
∫ ∫

Ωt

KdA = A(t)− 2π.

By our assumption A(0) = 2π and it thus follows that A(t) ≡ 2π for all
t ∈ [0, T ).
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By Grayson’s theorem [Gr] the solution Ct either shrinks to a point in
finite time or else exists for all t ≥ 0. Since Ct bounds a region Ωt of area 2π
it cannot shrink to a point and hence must exist forever.

The ω-limit set of the evolution Ct consists of geodesics, and since the
flow is real analytic an argument of Leon Simon implies that the Ct converge
to a unique geodesic C∞ of S2. Such a geodesic must of course be a great
circle. To determine how many inflection points Ct has for large t we choose
coordinates and linearize Curve Shortening around the limit C∞.

We may assume that C∞ is the equator, i.e. the intersection of S2 with
the xy-plane. After removing north and south poles we can then project the
sphere onto the cylinder x2 + y2 = 1, which gives us coordinates (φ, z). In
these coordinates the equator is given by z = 0 and any C1 nearby curve is
the graph of a 2π periodic function z = u(φ). For instance, any great circle
which is not a meridian is the graph of u(φ) = A cos(φ−φ0) for certain A ∈ R,
φ0 ∈ R/2πZ.

If t is large then Ct will be a graph z = u(φ, t). Curve Shortening implies
that u(φ, t) satisfies

∂u

∂t
= A(u, uφ)

(
∂2u

∂φ2
+ u

)
(4)

where A(u, uφ) is some smooth positive function with A(0, 0) = 1. One can
compute A explicitely, but the precise form of the equation is not important.
Instead we observe that since great circles do not evolve under Curve Short-
ening, the functions u = M cos(φ − φ0) must be steady states of (4) for any
value of M , φ0.

Our solution u(φ, t) together with its derivatives converge to u ≡ 0 as
t → ∞. From this one can deduce that u must be asymptotic to a solution
of the linearized equation corresponding to (4), i.e. to

∂v

∂t
=
∂2v

∂φ2
+ v.

Thus
u(φ, t) = Ce(1−n2)t cos (n(φ− φ0)) + o

(
e(1−n2)t

)
(5)

for some n ≥ 2 and some C 6= 0. Here o(· · ·) represents some function which
is small in Ck for any k <∞.

The proof is now complete since the graph of u(·, t) will have at least
2n ≥ 4 inflection points.
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Nearly the same argument gives us the theorem on inflection points of
simple noncontractible curves in RP2. Indeed, if γ0 ⊂ RP2 is such a curve
then its lift C0 to the unit sphere is an embedded curve which divides the
sphere into two parts of equal area. The lift C0 is also invariant under the
antipodal map x 7→ −x. As above the corresponding evolution {Ct | t ≥ 0}
by Curve Shortening will converge to a great circle, with asymptotics given
by (5) for some n ≥ 2. Since all Ct must also be invariant under the antipodal
map (φ, z) 7→ (φ + π,−z) only odd values of n can occur in (5). Hence the
lowest value of n which can appear is n = 3. For any n ≥ 3 the curve with
graph ε cos (n(φ− φ0)) has at least 6 inflection points. By Sturm’s theorem
C0 must have at least 6 inflection points, and the curve γ0 in the projective
plane must have at least 3 inflection points.

§2. Extatic Points

Let C ⊂ R2 be a convex curve. For any point P ∈ C there will be a conic
section

Ax2 +Bxy + Cy2 +Dx+ Ey + F = 0

which has maximal order of contact with C at P . In general this order of
contact will be 5. If the order of contact is 6 or more the point P is called
extatic. We can also describe these points in terms of affine geometry.

Recall that the affine arc length on a convex curve is defined by

ds = (ω(Cx, Cxx))1/3
dx

where ω is the area or symplectic form on R2. If one parametrizes C by affine
arclength one has ω(Cs, Css) ≡ 1, and hence after differentiation ω(Cs, Csss) ≡
0. It follows that for some µ ∈ R one has

Csss = −µCs.

The quantity µ is called the affine curvature of C. Conic sections are exactly
those curves which have constant affine curvature. One easily verifies the
following:

Lemma. P ∈ C is extatic if and only if
∂µ

∂s
(P ) = 0.

We must therefore show that the affine curvature has at least 6 critical
points on any convex curve. To do this we let the curve evolve by affine curve
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shortening, i.e. with normal velocity v = (κ)1/3. In terms of a parametrization
this is equivalent with the PDE

∂C
∂t

=
∂2C
∂s2

which is formally similar to (1), but actually is different since here s is affine
arclength, and thus ∂

∂s = {ω(Cx, Cxx)}−1/3 ∂
∂x .

Let p(θ, t) be the support function of Ct, i.e.

p(θ, t) = sup{x cos θ + y sin θ | (x, y) ∈ Ct}.

The support function p completely determines the curve Ct, and the curvature,
velocity and affine curvature are given by

κ = − (p+ pθθ)
−1
, v = − (p+ pθθ)

−1/3
,

µ = v3 (vθθ + v) . (6)

Starting from v = ∂p
∂t one then computes that v(θ, t) and µ(θ, t) evolve ac-

cording to

3
∂v

∂t
= v4 (vθθ + v) = vµ, (7)

3
∂µ

∂t
= v4µθθ + 2v3vθµθ + 4µ2, (8)

and hence, after differentiating (8) with respect to θ, one finds that µθ satisfies
a linear parabolic PDE of the type (2). Sturm’s theorem therefore says that
affine curve shortening does not increase the number of extatic points of a
convex curve.

Recall that Sapiro and Tannenbaum [STa] showed that the Ct shrink to
a point at some time T > 0, and that the Ct, after rescaling by a factor
(T − t)−3/4, converge to an ellipse. After applying a translation and a special
affine transformation we may assume that the limiting point is the origin,
and that the limiting ellipse is a circle. Thus the curve (T − t)3/4Ct converges
to a circle, and the rescaled curvature (T − t)3/4κ(θ, t) and rescaled velocity
(T − t)1/4v(θ, t) converge in C∞ to constants.

We put w(θ, τ) = (T − t)1/4v(θ, t), and τ = − ln(T − t), and observe that
(7) implies

∂w

∂τ
=
w4

3
(wθθ + w)− w

4
. (9)
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The constant to which v converges as t ↑ T , i.e. when τ → ∞, must be a
time independent solution of (9), from which one finds that w(θ, τ) →

(
3
4

)1/4

(τ →∞).

To detect the oscillations of w for large τ we linearize (9), i.e. we put
w(θ, τ) =

(
3
4

)1/4 + ψ(θ, τ), and after discarding higher order terms in ψ find
that ψ satisfies

∂ψ

∂τ
= 1

4ψθθ + ψ. (10)

For large values of τ any solution of this equation is asymptotically like

ψ(θ, τ) ∼ Ce(1−k2/4)τ cos(k(θ − θ0)) (11)

for some k ∈ N, C > 0 and θ0. Since ψ vanishes as τ → ∞ we must have
k ≥ 3.

If we now substitute (11) back in (6), we get an asymptotic expansion
for µ(θ, t),

µ(θ, t) ∼ 3
4(T − t)

+ C ′(T − t)k2/4−2 cos k(θ − θ0) + · · · ,

from which it follows that µ has at least 2k ≥ 6 critical points.

To prove the four vertex theorem one evolves a convex curve by (ordinary,
Euclidean) Curve Shortening and applies exaclty the same argument. The
analog of the Sapiro-Tannenbaum theorem is the result of Gage and Hamilton
[GH], which says that after rescaling by (T − t)−1/2 the curve converges
smoothly to a circle of radius

√
2. The resulting proof is of course much

more complicated than the textbook proof.

§3. Parabolic equations as degenerate Cauchy-Riemann equations.

One can present Sturm’s theorem as an analog of a well known fact con-
cerning analytic functions: Any nondegenerate zero of an analytic function
has positive degree; by a small perturbiation of the function one can decom-
pose a degenerate zero into several nondegenerate zeroes and conclude that
any zero (simple or not) has positive degree.

To see the analogy, consider u(x, t) a smooth function on Ω = R/Z×[0, T ]
which satisfies (2). If u(·, t0) has simple zeroes for some t0 ∈ [0, T ], then
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the number of zeroes of u(·, t0) is twice the winding number of the map
w : Ω → R2

w(x, t) =
(
∂u

∂x
(x, t), u(x, t)

)
on the circle R/Z × {t0}. Thus the number of zeroes at time T minus the
number of zeroes at time t = 0 is twice the degree of the map w on Ω.

Suppose now that w = (v, u) satisfies a first order system of equations of
the form

ux = A(x, t)u+B(x, t)v (12a)

ut − β(x, t)vx = C(x, t)u+D(x, t)v (12b)

for certain functions β, A, B, C, D on Ω. For instance, this will be true if
u satisfies (2) (choose β(x, t) = a(x, t), A = 0, B = 1, C(x, t) = −c(x, t) and
D(x, t) = −b(x, t).)

Positivity Lemma. Assume β(x, t) > 0 on Ω. If w is non zero on ∂Ω and
if w only has simple zeroes in Ω, i.e. if detDw 6= 0 at any zero of w, then the
degree of w : Ω → R2 is nonnegative.

The reason is simple: at any zero one has u = v = 0, so that (12a), (12b)
imply that ux = 0, and ut = β(x, t)vx. Hence

detDw(x, t) =
∣∣∣∣ vx vt

ux ut

∣∣∣∣ =
∣∣∣∣ vx vt

0 βvx

∣∣∣∣ = β(x, t) (vx)2 ≥ 0.

If the determinant is non zero, it must therefore be positive.

If the system (12a), (12b) is such that any solution can be approximated
by a solution with only simple zeroes (or even a solution of a system of the
same type with simple zeroes) then one can drop the condition that w must
have simple zeroes: any solution of (12a), (12b) which is nonzero on ∂Ω must
have nonnegative degree.

The system (12a), (12b) is similar to the Cauchy-Riemann equations. In-
deed, the same arguments can (and have of course been) applied to equations
of the form

ux + α(x, t)vt = A(x, t)u+B(x, t)v (13a)

ut − β(x, t)vx = C(x, t)u+D(x, t)v (13b)
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with positive coefficients α, β, to yield the same conclusion (so, for α = β = 1
and A = B = C = D = 0 one finds that an analytic function v + iu of a
complex variable x+ it always has nonnegative degree.)

One obtains the system (12a), (12b) which contains the linear parabolic
equation (2) as a special case by letting the coefficient α tend to zero.

§4. Which equations satisfy the positivity lemma?

We will show that up to linear transformations the only systems of two
equations in two functions of two variables for which the proof of the positivity
lemma works, are the Cauchy Riemann equations and the Heat Equation
written as a system.

Consider a system of ` PDEs

Mi(u) =
n∑

i=1

aj
i (x)uj(x) (14)

in n functions u1, · · ·, un of n variables x1, · · ·, xn, where M is a first order
differential operator

Mi(u) =
∑
j,k

M jk
i

∂uj

∂xi
.

Assume that the degree of any nondegenerate zero of any solution of (14) is
positive, for the reasons given in the proof of the positivity lemma. In other
words, we assume that any nonsingular matrix Ajk with M jk

i Ajk = 0 actually
has detA > 0. What can we say about the differential operator M?

One can transform the equations (14) in three different ways: one can
make linear combinations of the equations, i.e. one can replace the differential
operators Mi by M′

i = SijMj for an arbitrary S ∈ GL(n,R). The new and
old equations will have the same solutions, so the positivity lemma will hold
for one if and only if it holds for the other. Upto substitutions of this kind,
the operators Mi are completely determined by their kernel, i.e. the subspace

K = {A ∈ Ln |
∑
j,k

M jk
i Ajk = 0∀i}

of the space of all n× n matrices Ln

Thus we can rephrase our question as follows: for which subspaces K ⊂
Ln is detA ≥ 0 for all A ∈ K?
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Since det(−A) = (−1)ndetA, the dimension n must be even. Examples
of such subspaces K ⊂ Ln in any even dimension are given by the kernel of
the Cauchy Riemann equations.

The two other types of transformations which one can apply to the equa-
tions (14) are linear transformations of the dependent variables u′i = Sijuj ,
and of the independent variables x′i = Rijxj . The corresponding action on
Ln is given by A 7→ S · A · R−1. If we require detS, detR > 0, then the
determinant will be nonnegative on K if and only if it is nonnegative on
SKR−1.

In two dimensions one can now easily classify all equations of the type
(14) for which the positivity lemma applies.

Let K ⊂ L2 be a linear subspace on which the determinant is nonnega-
tive. If K is one dimensional, then it is spanned by a matrix with nonnegative
determinant. Conversely, any subspace spanned by such a matrix has det≥ 0.
This situation corresponds to a system of three equations.

Assume that K is two dimensional. If K only contains singular matrices,
then up to linear transformations it must be the subspace spanned by

(
1
0

0
0

)
and

(
0
0

1
0

)
.

If K contains at least one nonsingular matrix A then we may assume that
A is the identity matrix after replacing K with A−1K. Being two dimensional,
K is spanned by I and some other matrix B, i.e. K = {λI + µB | λ, µ ∈ R}.
After replacing K with SKS−1 for suitable S we may assume that B is in
Jordan normal form. By subtracting a suitable multiple of I from B we may
assume that B has trace zero. Let ±β be the eigenvalues of B. Then by
assumption

det(λI + µB) = (λ+ µβ)(λ− µβ) ≥ 0

for all λ, µ ∈ R. This can only happen if β = iω, ω ≥ 0 is imaginary or zero.

If β 6= 0 we find that K consists of all matrices of the form
(

a
−b

b
a

)
, and

that the corresponding differential operator M is equivalent to the Cauchy-
Riemann equations. If β = 0, then B must be the matrix

(
0
0

1
0

)
, and K

consists of all matrices of the form
(

a
0

b
a

)
. the corresponding equations are

then equivalent to the system (12a), (12b) related to the heat equation.

For a geometric view of the preceding argument one should identify L2 =

10



{
(

a
c

b
d

)
| a, b, c, d ∈ R} with R4, and identify the linear subspace K with

the corresponding linear subspace K ⊂ RP3. The equation det ≥ 0, i.e.
ad − bc ≥ 0 defines a subset of RP3 whose boundary is a quadric Q. The
question is therefore which subspaces K ⊂ RP3 lie on one side of the quadric
Q? We found: points (K one-dimensional), lines disjoint from Q (Cauchy-
Riemann equations), lines tangent to but not contained in Q (equations of
parabolic type) and lines contained in Q (K only contains singular matrices
and the positivity lemma is vacuous).
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