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Methods of Integration

1. The indefinite integral

We recall some facts about integration from first semester calculus.

1.1. Definition. A function y = F (x) is called an antiderivative of another func-

tion y = f(x) if F ′(x) = f(x) for all x.

1.2. Example. F1(x) = x2 is an antiderivative of f(x) = 2x.

F2(x) = x2 + 2004 is also an antiderivative of f(x) = 2x.

G(t) = 1
2

sin(2t + 1) is an antiderivative of g(t) = cos(2t + 1).

The Fundamental Theorem of Calculus states that if a function y = f(x) is continuous
on an interval a ≤ x ≤ b, then there always exists an antiderivative F (x) of f , and one
has

(1)

Z b

a

f(x) dx = F (b) − F (a).

The best way of computing an integral is often to find an antiderivative F of the given
function f , and then to use the Fundamental Theorem (1). How you go about finding an

antiderivative F for some given function f is the subject of this chapter.

The following notation is commonly used for antiderivates:

(2) F (x) =

Z

f(x)dx.

The integral which appears here does not have the integration bounds a and b. It is
called an indefinite integral, as opposed to the integral in (1) which is called a definite
integral. It’s important to distinguish between the two kinds of integrals. Here is a list
of differences:

Indefinite integral Definite integral

R
f(x)dx is a function of x.

R b

a
f(x)dx is a number.

By definition
R

f(x)dx is any function

of x whose derivative is f(x).

R b

a
f(x)dx was defined in terms of Rie-

mann sums and can be interpreted as
“area under the graph of y = f(x)”, at
least when f(x) > 0.

x is not a dummy variable, for example,
R

2xdx = x2+C and
R

2tdt = t2+C are
functions of diffferent variables, so they
are not equal.

x is a dummy variable, for example,
R 1

0
2xdx = 1, and

R 1

0
2tdt = 1, so

R 1

0
2xdx =

R 1

0
2tdt.
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2. You can always check the answer

Suppose you want to find an antiderivative of a given function f(x) and after a long
and messy computation which you don’t really trust you get an “answer”, F (x). You can
then throw away the dubious computation and differentiate the F (x) you had found. If
F ′(x) turns out to be equal to f(x), then your F (x) is indeed an antiderivative and your
computation isn’t important anymore.

2.1. Example. Suppose we want to find
R

ln xdx. My cousin Bruce says it might
be F (x) = x ln x − x. Let’s see if he’s right:

d

dx
(x ln x − x) = x · 1

x
+ 1 · ln x − 1 = ln x.

Who knows how Bruce thought of this1, but he’s right! We now know that
R

ln xdx =
x ln x − x + C.

3. About “+C”

Let f(x) be a function defined on some interval a ≤ x ≤ b. If F (x) is an antiderivative

of f(x) on this interval, then for any constant C the function F̃ (x) = F (x)+C will also be
an antiderivative of f(x). So one given function f(x) has many different antiderivatives,
obtained by adding different constants to one given antiderivative.

3.1. Theorem. If F1(x) and F2(x) are antiderivatives of the same function f(x) on

some interval a ≤ x ≤ b, then there is a constant C such that F1(x) = F2(x) + C.

Proof. Consider the difference G(x) = F1(x)−F2(x). Then G′(x) = F ′
1(x)−F ′

2(x) =
f(x) − f(x) = 0, so that G(x) must be constant. Hence F1(x) − F2(x) = C for some
constant. �

It follows that there is some ambiguity in the notation
R

f(x) dx. Two functions F1(x)
and F2(x) can both equal

R
f(x) dx without equaling each other. When this happens, they

(F1 and F2) differ by a constant. This can sometimes lead to confusing situations, e.g.
you can check that

Z

2 sin x cos xdx = sin2 x

Z

2 sin x cos x dx = − cos2 x

are both correct. (Just differentiate the two functions sin2 x and − cos2 x!) These two
answers look different until you realize that because of the trig identity sin2 x+cos2 x = 1
they really only differ by a constant: sin2 x = − cos2 x + 1.

To avoid this kind of confusion we will from now on
never forget to include the “arbitrary constant +C” in
our answer when we compute an antiderivative.

1He integrated by parts.
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4. Standard Integrals

Here is a list of the standard derivatives and hence the standard integrals everyone
should know.

Z

f(x) dx = F (x) + C

Z

xn dx =
xn+1

n + 1
+ C for all n 6= −1

Z
1

x
dx = ln |x| + C

Z

sin xdx = − cos x + C

Z

cos xdx = sin x + C

Z

tan xdx = − ln cos x + C

Z
1

1 + x2
dx = arctan x + C

Z
1√

1 − x2
dx = arcsin x + C (=

π

2
− arccos x + C)

Z
dx

cos x
=

1

2
ln

1 + sin x

1 − sin x
+ C for − π

2
< x <

π

2
.

All of these integrals are familiar from first semester calculus (like Math 221), except for
the last one. You can check the last one by differentiation (using ln a

b
= ln a−ln b simplifies

things a bit).

5. Method of substitution

The chain rule says that

dF (G(x))

dx
= F ′(G(x)) · G′(x),

so that Z

F ′(G(x)) · G′(x) dx = F (G(x)) + C.

5.1. Example. Consider the function f(x) = 2x sin(x2 + 3). It does not appear in
the list of standard integrals we know by heart. But we do notice2 that 2x = d

dx
(x2 + 3).

So let’s call G(x) = x2 + 3, and F (u) = − cos u, then

F (G(x)) = − cos(x2 + 3)

and
dF (G(x))

dx
= sin(x2 + 3)

| {z }

F ′(G(x))

· 2x
|{z}

G′(x)

= f(x),

so that Z

2x sin(x2 + 3) dx = − cos(x2 + 3) + C.

The most transparent way of computing an integral by substitution is by introducing
new variables. Thus to do the integral

Z

f(G(x))G′(x) dx

2 You will start noticing things like this after doing several examples.
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where f(u) = F ′(u), we introduce the substitution u = G(x), and agree to write du =
dG(x) = G′(x) dx. Then we get

Z

f(G(x))G′(x) dx =

Z

f(u) du = F (u) + C.

At the end of the integration we must remember that u really stands for G(x), so that
Z

f(G(x))G′(x) dx = F (u) + C = F (G(x)) + C.

For definite integrals this implies
Z b

a

f(G(x))G′(x) dx = F (G(b)) − F (G(a)).

which you can also write as

(3)

Z b

a

f(G(x))G′(x) dx =

Z G(b)

G(a)

f(u) du.

5.2. Example. [Substitution in a definite integral. ] As an example we compute
Z 1

0

x

1 + x2
dx,

using the substitution u = G(x) = 1 + x2. Since du = 2x dx, the associated indefinite
integral is

Z
1

1 + x2

| {z }
1
u

x dx
|{z}

1
2
du

= 1
2

Z
1

u
du.

To find the definite integral you must compute the new integration bounds G(0) and G(1)
(see equation (3).) If x runs between x = 0 and x = 1, then u = G(x) = 1 + x2 runs
between u = 1 + 02 = 1 and u = 1 + 12 = 2, so the definite integral we must compute is

Z 1

0

x

1 + x2
dx = 1

2

Z 2

1

1

u
du,

which is in our list of memorable integrals. So we find
Z 1

0

x

1 + x2
dx = 1

2

Z 2

1

1

u
du = 1

2

ˆ
ln u

˜2

1
= 1

2
ln 2.

6. The double angle trick

If an integral contains sin2 x or cos2 x, then you can remove the squares by using the
double angle formulas from trigonometry.

Recall that

cos2 α − sin2 α = cos 2α and cos2 α + sin2 α = 1,

Adding these two equations gives

cos2 α =
1

2
(cos 2α + 1)

while substracting them gives

sin2 α =
1

2
(1 − cos 2α) .
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6.1. Example. The following integral shows up in many contexts, so it is worth
knowing:

Z

cos2 xdx =
1

2

Z

(1 + cos 2x)dx

=
1

2



x +
1

2
sin 2x

ff

+ C

=
x

2
+

1

4
sin 2x + C.

Since sin 2x = 2 sin x cos x this result can also be written as
Z

cos2 x dx =
x

2
+

1

2
sin x cos x + C.

If you don’t want to memorize the double angle formulas, then you can use “Complex
Exponentials” to do these and many similar integrals. However, you will have to wait
until we are in §28 where this is explained.

7. Integration by Parts

The product rule states

d

dx
(F (x)G(x)) =

dF (x)

dx
G(x) + F (x)

dG(x)

dx

and therefore, after rearranging terms,

F (x)
dG(x)

dx
=

d

dx
(F (x)G(x))− dF (x)

dx
G(x).

This implies the formula for integration by parts
Z

F (x)
dG(x)

dx
dx = F (x)G(x) −

Z
dF (x)

dx
G(x) dx.

7.1. Example – Integrating by parts once.
Z

x
|{z}

F (x)

ex
|{z}

G′(x)

dx = x
|{z}

F (x)

ex
|{z}

G(x)

−
Z

ex
|{z}

G(x)

1
|{z}

F ′(x)

dx = xex − ex + C.

Observe that in this example ex was easy to integrate, while the factor x becomes an easier
function when you differentiate it. This is the usual state of affairs when integration by
parts works: differentiating one of the factors (F (x)) should simplify the integral, while
integrating the other (G′(x)) should not complicate things (too much).

Another example: sin x = d
dx

(− cos x) so
Z

x sin xdx = x(− cos x) −
Z

(− cos x) · 1 dx == −x cos x + sin x + C.

7.2. Example – Repeated Integration by Parts. Sometimes one integration by
parts is not enough: since e2x = d

dx
( 1
2
e2x) one has

Z

x2

|{z}

F (x)

e2x

|{z}

G′(x)

dx = x2 e2x

2
−

Z
e2x

2
2x dx

= x2 e2x

2
−


e2x

4
2x −

Z
e2x

4
2 dx

ff

= x2 e2x

2
−


e2x

4
2x − e2x

8
2 + C

ff

=
1

2
x2e2x − 1

2
xe2x +

1

4
e2x − C
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(Be careful with all the minus signs that appear when you integrate by parts.)

The same procedure will work whenever you have to integrate
Z

P (x)eax dx

where P (x) is a polynomial, and a is a constant. Each time you integrate by parts, you
get this

Z

P (x)eax dx = P (x)
eax

a
−

Z
eax

a
P ′(x) dx

=
1

a
P (x)eax − 1

a

Z

P ′(x)eax dx.

You have replaced the integral
R

P (x)eax dx with the integral
R

P ′(x)eax dx. This is the
same kind of integral, but it is a little easier since the degree of the derivative P ′(x) is less
than the degree of P (x).

7.3. Example – My cousin Bruce’s computation. Sometimes the factor G′(x)
is “invisible”. Here is how you can get the antiderivative of ln x by integrating by parts:

Z

ln xdx =

Z

ln x
|{z}

F (x)

· 1
|{z}

G′(x)

dx

= lnx · x −
Z

1

x
· x dx

= x ln x −
Z

1 dx

= x ln x − x + C.

You can do
R

P (x) lnx dx in the same way if P (x) is a polynomial.

8. Reduction Formulas

Consider the integral

In =

Z

xneax dx.

Integration by parts gives you

In = xn
1

a
eax −

Z

nxn−1 1

a
eax dx

=
1

a
xneax − n

a

Z

xn−1eax dx.

We haven’t computed the integral, and in fact the integral that we still have to do is of
the same kind as the one we started with (integral of xn−1eax instead of xneax). What
we have derived is the following reduction formula

In =
1

a
xneax − n

a
In−1 (R)

which holds for all n.

For n = 0 the reduction formula says

I0 =
1

a
eax, i.e.

Z

eax dx =
1

a
eax + C.

When n 6= 0 the reduction formula tells us that we have to compute In−1 if we want to
find In. The point of a reduction formula is that the same formula also applies to In−1,
and In−2, etc., so that after repeated application of the formula we end up with I0, i.e.,
an integral we know.
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8.1. Example. To compute
R

x3eax dx we use the reduction formula three times:

I3 =
1

a
x3eax − 3

a
I2

=
1

a
x3eax − 3

a


1

a
x2eax − 2

a
I1

ff

=
1

a
x3eax − 3

a


1

a
x2eax − 2

a

„
1

a
xeax − 1

a
I0

«ff

Insert the known integral I0 = 1
a
eax + C and simplify the other terms and you get

Z

x3eax dx =
1

a
x3eax − 3

a2
x2eax +

6

a3
xeax − 6

a4
eax + C.

8.2. Reduction formula requiring two partial integrations. Consider

Sn =

Z

xn sin xdx.

Then for n ≥ 2 one has

Sn = −xn cos x + n

Z

xn−1 cos xdx

= −xn cos x + nxn−1 sin x − n(n − 1)

Z

xn−2 sin x dx.

Thus we find the reduction formula

Sn = −xn cos x + nxn−1 sin x − n(n − 1)Sn−2.

Each time you use this reduction, the exponent n drops by 2, so in the end you get either
S1 or S0, depending on whether you started with an odd or even n.

8.3. A reduction formula where you have to solve for In. We try to compute

In =

Z

(sin x)n dx

by a reduction formula. Integrating by parts twice we get

In =

Z

(sin x)n−1 sin x dx

= −(sin x)n−1 cos x −
Z

(− cos x)(n − 1)(sin x)n−2 cos x dx

= −(sin x)n−1 cos x + (n − 1)

Z

(sin x)n−2 cos2 x dx.

We now use cos2 x = 1 − sin2 x, which gives

In = −(sinx)n−1 cos x + (n − 1)

Z
˘
sinn−2 x − sinn x

¯
dx

= −(sinx)n−1 cos x + (n − 1)In−2 − (n − 1)In.

You can think of this as an equation for In, which, when you solve it tells you

nIn = −(sinx)n−1 cos x + (n − 1)In−2

and thus implies

In = − 1

n
sinn−1 x cos x +

n − 1

n
In−2. (S)

Since we know the integrals

I0 =

Z

(sin x)0dx =

Z

dx = x + C and I1 =

Z

sin xdx = − cos x + C

the reduction formula (S) allows us to calculate In for any n ≥ 0.
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8.4. A reduction formula which will be handy later. In the next section you
will see how the integral of any “rational function” can be transformed into integrals of
easier functions, the hardest of which turns out to be

In =

Z
dx

(1 + x2)n
.

When n = 1 this is a standard integral, namely

I1 =

Z
dx

1 + x2
= arctan x + C.

When n > 1 integration by parts gives you a reduction formula. Here’s the computation:

In =

Z

(1 + x2)−n dx

=
x

(1 + x2)n
−

Z

x (−n)
`
1 + x2´−n−1

2x dx

=
x

(1 + x2)n
+ 2n

Z
x2

(1 + x2)n+1
dx

Apply

x2

(1 + x2)n+1
=

(1 + x2) − 1

(1 + x2)n+1
=

1

(1 + x2)n
− 1

(1 + x2)n+1

to get
Z

x2

(1 + x2)n+1
dx =

Z 
1

(1 + x2)n
− 1

(1 + x2)n+1

ff

dx = In − In+1.

Our integration by parts therefore told us that

In =
x

(1 + x2)n
+ 2n

`
In − In+1

´
,

which you can solve for In+1. You find the reduction formula

In+1 =
1

2n

x

(1 + x2)n
+

2n − 1

2n
In.

As an example of how you can use it, we start with I1 = arctan x + C, and conclude
that

Z
dx

(1 + x2)2
= I2 = I1+1

=
1

2 · 1
x

(1 + x2)1
+

2 · 1 − 1

2 · 1 I1

= 1
2

x

1 + x2
+ 1

2
arctan x + C.

Apply the reduction formula again, now with n = 2, and you get
Z

dx

(1 + x2)3
= I3 = I2+1

=
1

2 · 2
x

(1 + x2)2
+

2 · 2 − 1

2 · 2 I2

= 1
4

x

(1 + x2)2
+ 3

4



1
2

x

1 + x2
+ 1

2
arctan x

ff

= 1
4

x

(1 + x2)2
+ 3

8

x

1 + x2
+ 3

8
arctan x + C.
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9. Partial Fraction Expansion

A rational function is one which is a ratio of polynomials,

f(x) =
P (x)

Q(x)
=

pnxn + pn−1x
n−1 + · · · + p1x + p0

qdxd + qd−1xd−1 + · · · + q1x + q0
.

Such rational functions can always be integrated, and the trick which allows you to do
this is called a partial fraction expansion. The whole procedure consists of several
steps which are explained in this section. The procedure itself has nothing to do with
integration: it’s just a way of rewriting rational functions. It is in fact useful in other
situations, such as finding Taylor series (see Part 2 of these notes) and computing “inverse
Laplace transforms” (see Math 319.)

9.1. Reduce to a proper rational function. A proper rational function is a
rational function P (x)/Q(x) where the degree of P (x) is strictly less than the degree of
Q(x). the method of partial fractions only applies to proper rational functions. Fortu-
nately there’s an additional trick for dealing with rational functions that are not proper.

If P/Q isn’t proper, i.e. if degree(P ) ≥ degree(Q), then you divide P by Q, with
result

P (x)

Q(x)
= S(x) +

R(x)

Q(x)

where S(x) is the quotient, and R(x) is the remainder after division. In practice you would
do a long division to find S(x) and R(x).

9.2. Example. Consider the rational function

f(x) =
x3 − 2x + 2

x2 − 1
.

Here the numerator has degree 3 which is more than the degree of the denominator (which
is 2). To apply the method of partial fractions we must first do a division with remainder.
One has

x +1 = S(x)

x2 − x x3 −2x +2
x3 −x2

x2 −2x
x2 −x

−x +2 = R(x)

so that

f(x) =
x3 − 2x + 2

x2 − 1
= x + 1 +

−x + 2

x2 − 1

When we integrate we get

Z
x3 − 2x + 2

x2 − 1
dx =

Z 

x + 1 +
−x + 2

x2 − 1

ff

dx

=
x2

2
+ x +

Z −x + 2

x2 − 1
dx.

The rational function which still have to integrate, namely −x+2
x2−1

, is proper, i.e. its numer-

ator has lower degree than its denominator.
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9.3. Partial Fraction Expansion: The Easy Case. To compute the partial frac-
tion expansion of a proper rational function P (x)/Q(x) you must factor the denominator
Q(x). Factoring the denominator is a problem as difficult as finding all of its roots; in
Math 222 we shall only do problems where the denominator is already factored into linear
and quadratic factors, or where this factorization is easy to find.

In the easiest partial fractions problems, all the roots of Q(x) are real and distinct,
so the denominator is factored into distinct linear factors, say

P (x)

Q(x)
=

P (x)

(x − a1)(x − a2) · · · (x − an)
.

To integrate this function we find constants A1, A2, . . . , An so that

P (x)

Q(x)
=

A1

x − a1
+

A2

x − a2
+ · · · + An

x − an
. (#)

Then the integral is
Z

P (x)

Q(x)
dx = A1 ln |x − a1| + A2 ln |x − a2| + · · · + An ln |x − an| + C.

One way to find the coefficients Ai in (#) is called the method of equating coeffi-
cients. In this method we multiply both sides of (#) with Q(x) = (x − a1) · · · (x − an).
The result is a polynomial of degree n on both sides. Equating the coefficients of these
polynomial gives a system of n linear equations for A1, . . . , An. You get the Ai by solving
that system of equations.

Another much faster way to find the coefficients Ai is the Heaviside trick3. Multiply
equation (#) by x − ai and then plug in4 x = ai. On the right you are left with Ai so

Ai =
P (x)(x− ai)

Q(x)

˛
˛
˛
˛
x=ai

=
P (ai)

(ai − a1) · · · (ai − ai−1)(ai − ai+1) · · · (ai − an)
.

9.4. Previous Example continued. To integrate
−x + 2

x2 − 1
we factor the denomi-

nator,

x2 − 1 = (x − 1)(x + 1).

The partial fraction expansion of
−x + 2

x2 − 1
then is

−x + 2

x2 − 1
=

−x + 2

(x − 1)(x + 1)
=

A

x − 1
+

B

x + 1
. (†)

Multiply with (x − 1)(x + 1) to get

−x + 2 = A(x + 1) + B(x − 1) = (A + B)x + (A − B).

The functions of x on the left and right are equal only if the coefficient of x and the
constant term are equal. In other words we must have

A + B = −1 and A − B = 2.

These are two linear equations for two unknowns A and B, which we now proceed to solve.
Adding both equations gives 2A = 1, so that A = 1

2
; from the first equation one then

finds B = −1 − A = − 3
2
. So

−x + 2

x2 − 1
=

1/2

x − 1
− 3/2

x + 1
.

3 Named after Oliver Heaviside, a physicist and electrical engineer in the late 19th and early 20ieth
century.

4 More properly, you should take the limit x → ai. The problem here is that equation (#) has
x − ai in the denominator, so that it does not hold for x = ai. Therefore you cannot set x equal to ai

in any equation derived from (#), but you can take the limit x → ai, which in practice is just as good.
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Instead, we could also use the Heaviside trick: multiply (†) with x − 1 to get

−x + 2

x + 1
= A + B

x − 1

x + 1

Take the limit x → 1 and you find

−1 + 2

1 + 1
= A, i.e. A =

1

2
.

Similarly, after multiplying (†) with x + 1 one gets

−x + 2

x − 1
= A

x + 1

x − 1
+ B,

and letting x → −1 you find

B =
−(−1) + 2

(−1) − 1
= −3

2
,

as before.

Either way, the integral is now easily found, namely,
Z

x3 − 2x + 1

x2 − 1
dx =

x2

2
+ x +

Z −x + 2

x2 − 1
dx

=
x2

2
+ x +

Z 
1/2

x − 1
− 3/2

x + 1

ff

dx

=
x2

2
+ x +

1

2
ln |x − 1| − 3

2
ln |x + 1| + C.

9.5. Partial Fraction Expansion: The General Case. Buckle up.

When the denominator Q(x) contains repeated factors or quadratic factors (or both)
the partial fraction decomposition is more complicated. In the most general case the
denominator Q(x) can be factored in the form

(4) Q(x) = (x − a1)
k1 · · · (x − an)

kn(x2 + b1x + c1)
ℓ1 · · · (x2 + bmx + cm)ℓm

Here we assume that the factors x − a1, . . . , x − an are all different, and we also assume
that the factors x2 + b1x + c1, . . . , x2 + bmx + cm are all different.

It is a theorem from advanced algebra that you can always write the rational function
P (x)/Q(x) as a sum of terms like this

(5)
P (x)

Q(x)
= · · · + A

(x − ai)k
+ · · · + Bx + C

(x2 + bjx + cj)ℓ
+ · · ·

How did this sum come about?

For each linear factor (x − a)k in the denominator (4) you get terms

A1

x − a
+

A2

(x − a)2
+ · · · + Ak

(x − a)k

in the decomposition. There are as many terms as the exponent of the linear factor that
generated them.

For each quadratic factor (x2 + bx + c)ℓ you get terms

B1x + C1

x2 + bx + c
+

B2x + C2

(x2 + bx + c)2
+ · · · + Bmx + Cm

(x2 + bx + c)ℓ
.

Again, there are as many terms as the exponent ℓ with which the quadratic factor appears
in the denominator (4).

In general, you find the constants A..., B... and C... by the method of equating coef-
ficients.



15

9.6. Example. To do the integral
Z

x2 + 3

x2(x + 1)(x2 + 1)2
dx

apply the method of equating coefficients to the form

x2 + 3

x2(x + 1)(x2 + 1)2
=

A1

x
+

A2

x2
+

A3

x + 1
+

B1x + C1

x2 + 1
+

B2x + C2

(x2 + 1)2
. (EX)

Solving this last problem will require solving a system of seven linear equations in the seven
unknowns A1, A2, A3, B1, C1, B2, C2. A computer program like Maple can do this easily,
but it is a lot of work to do it by hand. In general, the method of equating coefficients
requires solving n linear equations in n unknowns where n is the degree of the denominator
Q(x).

See Problem 99 for a worked example where the coefficients are found.

!!
Unfortunately, in the presence of quadratic factors or repeated linear
factors the Heaviside trick does not give the whole answer; you must use
the method of equating coefficients.

!!

Once you have found the partial fraction decomposition (EX) you still have to inte-
grate the terms which appeared. The first three terms are of the form

R
A(x − a)−p dx

and they are easy to integrate:
Z

Adx

x − a
= A ln |x − a| + C

and Z
A dx

(x − a)p
=

A

(1 − p)(x− a)p−1
+ C

if p > 1. The next, fourth term in (EX) can be written as
Z

B1x + C1

x2 + 1
dx = B1

Z
x

x2 + 1
dx + C1

Z
dx

x2 + 1

=
B1

2
ln(x2 + 1) + C1 arctan x + Cintegration const.

While these integrals are already not very simple, the integrals
Z

Bx + C

(x2 + bx + c)p
dx with p > 1

which can appear are particularly unpleasant. If you really must compute one of these,
then complete the square in the denominator so that the integral takes the form

Z
Ax + B

((x + b)2 + a2)p
dx.

After the change of variables u = x + b and factoring out constants you have to do the
integrals

Z
du

(u2 + a2)p
and

Z
u du

(u2 + a2)p
.

Use the reduction formula we found in example 8.4 to compute this integral.

An alternative approach is to use complex numbers (which are on the menu for this
semester.) If you allow complex numbers then the quadratic factors x2 + bx + c can be
factored, and your partial fraction expansion only contains terms of the form A/(x− a)p,
although A and a can now be complex numbers. The integrals are then easy, but the
answer has complex numbers in it, and rewriting the answer in terms of real numbers
again can be quite involved.
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10. PROBLEMS

Basic Integrals.

The following integrals are straightforward provided you know the list of standard antideriva-
tives. They can be done without using substitution or any other tricks, and you learned them in
first semester calculus.

1.

Z
˘
6x5 − 2x−4 − 7x

+3/x− 5 + 4ex + 7x
¯
dx

2.

Z

(x/a + a/x + xa + ax + ax) dx

3.

Z
˘√

x− 3
√
x4 +

7
3
√
x2

− 6ex + 1
¯
dx

4.

Z
˘
2x +

`
1
2

´x¯
dx

5.

Z 4

1
x−2 dx (hm. . . )

6.

Z 4

1
t−2 dt (!)

7.

Z 4

1
x−2 dt (!!!)

8.

Z 0

−3
(5y4 − 6y2 + 14) dy

9.

Z 3

1

„
1

t2
− 1

t4

«

dt

10.

Z 2

1

t6 − t2

t4
dt

11.

Z 2

1

x2 + 1√
x

dx

12.

Z 2

0
(x3 − 1)2 dx

13.

Z 2

1
(x+ 1/x)2 dx

14.

Z 3

3

p

x5 + 2 dx

15.

Z −1

1
(x− 1)(3x + 2) dx

16.

Z 4

1
(
√
t− 2/

√
t) dt

17.

Z 8

1

„

3
√
r +

1
3
√
r

«

dr

18.

Z 0

−1
(x+ 1)3 dx

19.

Z e

1

x2 + x+ 1

x
dx

20.

Z 9

4

„√
x+

1√
x

«2

dx

21.

Z 1

0

“
4
√
x5 +

5
√
x4

”

dx

22.

Z 8

1

x− 1
3
√
x2

dx

23.

Z π/3

π/4
sin t dt

24.

Z π/2

0
(cos θ + 2 sin θ) dθ

25.

Z π/2

0
(cos θ + sin 2θ) dθ

26.

Z π

2π/3

tan x

cos x
dx

27.

Z π/2

π/3

cot x

sinx
dx

28.

Z √
3

1

6

1 + x2
dx

29.

Z 0.5

0

dx√
1 − x2

30.

Z 8

4
(1/x) dx

31.

Z ln 6

ln 3
8ex dx

32.

Z 9

8
2t dt

33.

Z −e

−e2

3

x
dx

34.

Z 3

−2
|x2 − 1| dx

35.

Z 2

−1
|x− x2| dx

36.

Z 2

−1
(x− 2|x|)dx

37.

Z 2

0
(x2 − |x− 1|) dx

38.

Z 2

0
f(x) dx where

f(x) =

(

x4 if 0 ≤ x < 1,

x5, if 1 ≤ x ≤ 2.
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39.

Z π

−π
f(x) dx where

f(x) =

(

x, if − π ≤ x ≤ 0,

sinx, if 0 < x ≤ π.

40. Compute

I =

Z 2

0
2x

`
1 + x2

´3
dx

in two different ways:
(i) Expand (1+x2)3, multiply with 2x, and

integrate each term.
(ii) Use the substitution u = 1 + x2.

41. Compute

In =

Z

2x
`
1 + x2

´n
dx.

42. If f ′(x) = x − 1/x2 and f(1) = 1/2 find
f(x).

Basic Substitutions.

Use a substitution to evaluate the following integrals.

43.

Z 2

1

udu

1 + u2

44.

Z 2

1

x dx

1 + x2

45.

Z π/3

π/4
sin2 θ cos θ dθ

46.

Z 3

2

1

r ln r
, dr

47.

Z
sin 2x

1 + cos2 x
dx

48.

Z
sin 2x

1 + sinx
dx

49.

Z 1

0
z

p

1 − z2 dz

50.

Z 2

1

ln 2x

x
dx

51.

Z √
2

ξ=0
ξ(1 + 2ξ2)10 dξ

52.

Z 3

2
sin ρ

`
cos 2ρ)4 dρ

53.

Z

αe−α
2

dα

54.

Z
e

1
t

t2
dt

Review of the Inverse Trigonometric Functions.

55. The inverse sine function is the inverse function to the (restricted) sine function, i.e. when
π/2 ≤ θ ≤ π/2 we have

θ = arcsin(y) ⇐⇒ y = sin θ.

The inverse sine function is sometimes called Arc Sine function and denoted θ = arcsin(y). We
avoid the notation sin−1(x) which is used by some as it is ambiguous (it could stand for either
arcsinx or for (sinx)−1 = 1/(sin x)).

(i) If y = sin θ, express sin θ, cos θ, and tan θ in terms of y when 0 ≤ θ < π/2.

(ii) If y = sin θ, express sin θ, cos θ, and tan θ in terms of y when π/2 < θ ≤ π.

(iii) If y = sin θ, express sin θ, cos θ, and tan θ in terms of y when −π/2 < θ < 0.

(iv) Evaluate

Z
dy

p
1 − y2

using the substitution y = sin θ, but give the final answer in terms of

y.

56. Express in simplest form:

(i) cos(sin−1(x)); (ii) tan

(

arcsin
ln 1

4

ln 16

)

; (iii) sin
`
2 arctanα

´

57. Draw the graph of y = f(x) = arcsin
`
sin(x)

´
, for −2π ≤ x ≤ +2π. Make sure you get the

same answer as your graphing calculator.

58. Use the change of variables formula to evaluate

Z √
3/2

1/2

dx√
1 − x2

first using the substitution

x = sinu and then using the substitution x = cosu.

59. The inverse tangent function is the inverse function to the (restricted) tangent function, i.e.
for π/2 < θ < π/2 we have

θ = arctan(w) ⇐⇒ w = tan θ.
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The inverse tangent function is sometimes called Arc Tangent function and denoted θ = arctan(y).
We avoid the notation tan−1(x) which is used by some as it is ambiguous (it could stand for either
arctanx or for (tan x)−1 = 1/(tan x)).

(i) If w = tan θ, express sin θ and cos θ in terms of w when

(ii) 0 ≤ θ < π/2; (iii) π/2 < θ ≤ π; (iv) − π/2 < θ < 0.

(v) Evaluate

Z
dw

1 + w2
using the substitution w = tan θ, but give the final answer in terms of w.

Evaluate these integrals:

60.

Z
dx√

1 − x2

61.

Z
dx√

4 − x2

62.

Z
xdx√
1 − 4x4

63.

Z 1/2

−1/2

dx√
4 − x2

64.

Z 1

−1

dx√
4 − x2

65.

Z √
3/2

0

dx√
1 − x2

66.

Z
dx

x2 + 1
,

67.

Z
dx

x2 + a2
,

68.

Z
dx

7 + 3x2
,

69.

Z √
3

1

dx

x2 + 1
,

70.

Z a
√

3

a

dx

x2 + a2
.

Integration by Parts and Reduction Formulae.

71. Evaluate

Z

xn lnxdx where n 6= −1.

72. Evaluate

Z

eax sin bx dx where a2 + b2 6= 0. [Hint: Integrate by parts twice.]

73. Evaluate

Z

eax cos bx dx where a2 + b2 6= 0.

74. Prove the formula Z

xnex dx = xnex − n

Z

xn−1ex dx

and use it to evaluate

Z

x2ex dx.

75. Prove the formula
Z

sinn xdx = − 1

n
cos x sinn−1 x+

n− 1

n

Z

sinn−2 x dx, n 6= 0

76. Evaluate

Z

sin2 xdx. Show that the answer is the same as the answer you get using the half

angle formula.

77. Evaluate

Z π

0
sin14 xdx.

78. Prove the formula
Z

cosn x dx =
1

n
sinx cosn−1 x+

n− 1

n

Z

cosn−2 xdx, n 6= 0

and use it to evaluate

Z π/4

0
cos4 xdx.

79. Prove the formula
Z

xm(lnx)n dx =
xm+1(lnx)n

m+ 1
− n

m+ 1

Z

xm(lnx)n−1 dx, m 6= −1,

and use it to evaluate the following integrals:

80.

Z

lnxdx

81.

Z

(lnx)2 dx
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82.

Z

x3(lnx)2 dx

83. Evaluate

Z

x−1 lnxdx by another method. [Hint: the solution is short!]

84. For an integer n > 1 derive the formula
Z

tann x dx =
1

n− 1
tann−1 x−

Z

tann−2 x dx

Using this, find

Z π/4

0
tan5 x dx by doing just one explicit integration.

Use the reduction formula from example 8.4 to compute these integrals:

85.

Z
dx

(1 + x2)3

86.

Z
dx

(1 + x2)4

87.

Z
xdx

(1 + x2)4
[Hint:

R
x/(1 + x2)ndx is easy.]

88.

Z
1 + x

(1 + x2)2
dx

89. The reduction formula from example 8.4 is valid for all n 6= 0. In particular, n does not have
to be an integer, and it does not have to be positive.

Find a relation between

Z
p

1 + x2 dx and

Z
dx√

1 + x2
by setting n = − 1

2
.

Integration of Rational Functions.

Express each of the following rational
functions as a polynomial plus a proper ra-
tional function. (See §9.1 for definitions.)

90.
x3

x3 − 4
,

91.
x3 + 2x

x3 − 4
,

92.
x3 − x2 − x− 5

x3 − 4
.

93.
x3 − 1

x2 − 1
.

Completing the square.

Write ax2 + bx + c in the form a(x +
p)2 + q, i.e. find p and q in terms of a, b,
and c (this procedure, which you might re-
member from high school algebra, is called

“completing the square.”). Then evaluate
the integrals

94.

Z
dx

x2 + 6x+ 8
,

95.

Z
dx

x2 + 6x+ 10
,

96.

Z
dx

5x2 + 20x+ 25
.

97. Use the method of equating coefficients
to find numbers A, B, C such that

x2 + 3

x(x+ 1)(x − 1)
=
A

x
+

B

x+ 1
+

C

x− 1

and then evaluate the integral
Z

x2 + 3

x(x+ 1)(x− 1)
dx.

98. Do the previous problem using the Heav-
iside trick.

99. Find the integral

Z
x2 + 3

x2(x− 1)
dx.

Evaluate the following integrals:

100.

Z −2

−5

x4 − 1

x2 + 1
dx

101.

Z
x3 dx

x4 + 1

102.

Z
x5 dx

x2 − 1

103.

Z
x5 dx

x4 − 1
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104.

Z
e3x dx

e4x − 1

105.

Z
ex dx√
1 + e2x

106.

Z
ex dx

e2x + 2ex + 2

107.

Z
dx

x(x2 + 1)

108.

Z
dx

x(x2 + 1)2

109.

Z
dx

x2(x− 1)

110.

Z
1

(x− 1)(x − 2)(x − 3)
dx

111.

Z
x2 + 1

(x− 1)(x − 2)(x − 3)
dx

112.

Z
x3 + 1

(x− 1)(x − 2)(x − 3)
dx

113. (a) Compute

Z 2

1

dx

x(x− h)
where h is a

small positive number.

(b) What happens to your answer to (i)
when h→ 0+ ?

(c) Compute

Z 2

1

dx

x2
.

Miscellaneous and Mixed Integrals.

114. Find the area of the region bounded by the curves

x = 1, x = 2, y =
2

x2 − 4x+ 5
, y =

x2 − 8x+ 7

x2 − 8x+ 16
.

115. Let P be the piece of the parabola y = x2 on which 0 ≤ x ≤ 1.

(i) Find the area between P, the x-axis and the line x = 1.

(ii) Find the length of P.

116. Let a be a positive constant and

F (x) =

Z x

0
sin(aθ) cos(θ) dθ.

[Hint: use a trig identity for sinA cosB, or wait until we have covered complex exponentials and
then come back to do this problem.]

(i) Find F (x) if a 6= 1.

(ii) Find F (x) if a = 1. (Don’t divide by zero.)

Evaluate the following integrals:

117.

Z a

0
x sinxdx

118.

Z a

0
x2 cos x dx

119.

Z 4

3

xdx√
x2 − 1

120.

Z 1/3

1/4

xdx√
1 − x2

121.

Z 4

3

dx

x
√
x2 − 1

122.

Z
xdx

x2 + 2x+ 17

123.

Z
x4

(x2 − 36)1/2
dx

124.

Z
x4

x2 − 36
dx

125.

Z
x4

36 − x2
dx

126.

Z
x4

(36 − x2)3/2
dx

127.

Z
(x2 + 1) dx

x4 − x2

128.

Z
(x2 + 3) dx

x4 − 2x2

129.

Z
dx

(x2 − 3)1/2

130.

Z

ex(x+ cos(x)) dx

131.

Z

(ex + ln(x)) dx

132.

Z
dx

(x+ 5)
√
x2 + 5x

133.

Z
3x2 + 2x− 2

x3 − 1
dx



21

134.

Z
x4

x4 − 16
dx

135.

Z
x

(x− 1)3
dx

136.

Z
4

(x− 1)3(x+ 1)
dx

137.

Z
1√

1 − 2x− x2
dx

138.

Z
dx√

x2 + 2x+ 3

139.

Z e

1
x lnx dx

140.

Z e3

e2
x2 lnx dx

141.

Z e

1
x(lnx)3 dx

142.

Z

arctan(
√
x) dx

143.

Z

x(cos x)2 dx

144.

Z π

0

p
1 + cos(6w) dw

145. Find Z
dx

x(x− 1)(x − 2)(x − 3)

and
Z

(x3 + 1) dx

x(x− 1)(x − 2)(x − 3)

146. You don’t always have to find the antiderivative to find a definite integral. This problem gives
you two examples of how you can avoid finding the antiderivative.

(i) To find

I =

Z π/2

0

sinx dx

sinx+ cos x

you use the substitution u = π/2 − x. The new integral you get must of course be equal to the
integral I you started with, so if you add the old and new integrals you get 2I. If you actually do
this you will see that the sum of the old and new integrals is very easy to compute.

(ii) Use the same trick to find

Z π/2

0
sin2 xdx

147. Graph the equation x
2
3 + y

2
3 = a

2
3 . Compute the area bounded by this curve.

148. The Bow-Tie Graph. Graph the equation y2 = x4 − x6. Compute the area bounded by this
curve.

149. The Fan-Tailed Fish. Graph the equation

y2 = x2

„
1 − x

1 + x

«

.

Find the area enclosed by the loop. (Hint: Rationalize the denominator of the integrand.)

150. Find the area of the region bounded by the curves

x = 2, y = 0, y = x ln
x

2

151. Find the volume of the solid of revolution obtained by rotating around the x−axis the region
bounded by the lines x = 5, x = 10, y = 0, and the curve

y =
x√

x2 + 25
.

152. How to find the integral of f(x) =
1

cos x

(i) Verify the answer given in the table in the lecture notes.

(ii) Note that
1

cos x
=

cos x

cos2 x
=

cos x

1 − sin2 x
,
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and apply the substitution s = sinx followed by a partial fraction decomposition to compute
R

dx
cos x

.
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Taylor’s Formula and Infinite Series

All continuous functions which vanish at x = a
are approximately equal at x = a,

but some are more approximately equal than others.

11. Taylor Polynomials

Suppose you need to do some computation with a complicated function y = f(x), and suppose
that the only values of x you care about are close to some constant x = a. Since polynomials
are simpler than most other functions, you could then look for a polynomial y = P (x) which
somehow “matches” your function y = f(x) for values of x close to a. And you could then replace
your function f with the polynomial P , hoping that the error you make isn’t too big. Which
polynomial you will choose depends on when you think a polynomial “matches” a function. In
this chapter we will say that a polynomial P of degree n matches a function f at x = a if P has
the same value and the same derivatives of order 1, 2, . . . , n at x = a as the function f .
The polynomial which matches a given function at some point x = a is the Taylor polynomial of
f . It is given by the following formula.

11.1. Definition. The Taylor polynomial of a function y = f(x) of degree n at a point a
is the polynomial

(6) Tanf(x) = f(a) + f ′(a)(x − a) +
f ′′(a)

2!
(x− a)2 + · · · + f(n)(a)

n!
(x− a)n.

(Recall that n! = 1 · 2 · 3 · · ·n, and by definition 0! = 1.

11.2. Theorem. The Taylor polynomial has the following property: it is the only polyno-
mial P (x) of degree n whose value and whose derivatives of orders 1, 2, . . . , and n are the same
as those of f , i.e. it’s the only polynomial of degree n for which

P (a) = f(a), P ′(a) = f ′(a), P ′′(a) = f ′′(a), . . . , P (n)(a) = f(n)(a)

holds.

Proof. We do the case a = 0, for simplicity. Let n be given, consider a polynomial P (x) of
degree n, say,

P (x) = a0 + a1x+ a2x
2 + a3x3 + · · · + anx

n,

and let’s see what its derivatives look like. They are:

P (x) = a0 + a1x + a2x2 + a3x3 + a4x4 + · · ·
P ′(x) = a1 + 2a2x + 3a3x2 + 4a4x3 + · · ·

P (2)(x) = 1 · 2a2 + 2 · 3a3x + 3 · 4a4x2 + · · ·
P (3)(x) = 1 · 2 · 3a3 + 2 · 3 · 4a4x + · · ·
P (4)(x) = 1 · 2 · 3 · 4a4 + · · ·

When you set x = 0 all the terms which have a positive power of x vanish, and you are left with
the first entry on each line, i.e.

P (0) = a0, P ′(0) = a1, P (2)(0) = 2a2, P (3)(0) = 2 · 3a3, etc.

and in general

P (k)(0) = k!ak for 0 ≤ k ≤ n.
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For k ≥ n+ 1 the derivatives p(k)(x) all vanish of course, since P (x) is a polynomial of degree n.

Therefore, if we want P to have the same values and derivatives at x = 0 of orders 1,,. . . , n
as the function f , then we must have k!ak = P (k)(0) = f(k)(0) for all k ≤ n. Thus

ak =
f(k)(0)

k!
for 0 ≤ k ≤ n.

�

12. Examples

Note that the zeroth order Taylor polynomial is just a constant,

Ta0 f(x) = f(a),

while the first order Taylor polynomial is

Ta1 f(x) = f(a) + f ′(a)(x − a).

This is exactly the linear approximation of f(x) for x close to a which was derived in 1st semester
calculus.

The Taylor polynomial generalizes this first order approximation by providing “higher order
approximations” to f .

Most of the time we will take a = 0 in which case we write Tnf(x) instead of Tanf(x), and
we get a slightly simpler formula

(7) Tnf(x) = f(0) + f ′(0)x +
f ′′(0)

2!
x2 + · · · + f(n)(0)

n!
xn.

You will see below that for many functions f(x) the Taylor polynomials Tnf(x) give better and
better approximations as you add more terms (i.e. as you increase n). For this reason the limit
when n→ ∞ is often considered, which leads to the infinite sum

T∞f(x) = f(0) + f ′(0)x +
f ′′(0)

2!
x2 +

f ′′(0)

3!
x3 + · · ·

At this point we will not try to make sense of the “sum of infinitely many numbers”.

12.1. Example: Compute the Taylor polynomials of degree 0, 1 and 2 of f(x) = ex

at a = 0, and plot them. One has

f(x) = ex =⇒ f ′(x) = ex =⇒ f ′′(x) = ex,

so that

f(0) = 1, f ′(0) = 1, f ′′(0) = 1.

Therefore the first three Taylor polynomials of ex at a = 0 are

y = f(x)

y = T0f(x)

y = f(x)

y = T1f(x)

y = f(x)

y = T2f(x)

Figure 1. The Taylor polynomials of degree 0, 1 and 2 of f(x) = ex at a = 0.
The zeroth order Taylor polynomial has the right value at x = 0 but it doesn’t
know whether or not the function f is increasing at x = 0. The first order Taylor
polynomial has the right slope at x = 0, but it doesn’t see if the graph of f is
curved up or down at x = 0. The second order Taylor polynomial also has the
right curvature at x = 0.
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T0f(x) = 1

T1f(x) = 1 + x

T2f(x) = 1 + x+
1

2
x2.

The graphs are found in Figure 2. As you can see from the graphs, the Taylor polynomial T0f(x)
of degree 0 is close to ex for small x, by virtue of the continuity of ex

The Taylor polynomial of degree 0, i.e. T0f(x) = 1 captures the fact that ex by virtue of its
continuity does not change very much if x stays close to x = 0.

The Taylor polynomial of degree 1, i.e. T1f(x) = 1 + x corresponds to the tangent line to
the graph of f(x) = ex, and so it also captures the fact that the function f(x) is increasing near
x = 0.

Clearly T1f(x) is a better approximation to ex than T0f(x).

The graphs of both y = T0f(x) and y = T1f(x) are straight lines, while the graph of y = ex

is curved (in fact, convex). The second order Taylor polynomial captures this convexity. In fact,
the graph of y = T2f(x) is a parabola, and since it has the same first and second derivative at
x = 0, its curvature is the same as the curvature of the graph of y = ex at x = 0.

So it seems that y = T2f(x) = 1 + x+ x2/2 is an approximation to y = ex which beats both
T0f(x) and T1f(x).

y
=

1
+
x

y = ex

y = 1 + x+ 1
2
x2

y = 1 + x+ x2

y = 1 + x+ 3
2
x2

y = 1 + x− 1
2
x2

Figure 2. The top edge of the shaded region is the graph of y = ex. The graphs
are of the functions y = 1+x+Cx2 for various values of C. These graphs all are
tangent at x = 0, but one of the parabolas matches the graph of y = ex better
than any of the others.
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12.2. Example: Find the Taylor polynomials of f(x) = sinx. When you start com-
puting the derivatives of sin x you find

f(x) = sinx, f ′(x) = cos x, f ′′(x) = − sinx, f(3)(x) = − cos x,

and thus
f(4)(x) = sinx.

So after four derivatives you’re back to where you started, and the sequence of derivatives of sin x
cycles through the pattern

sinx, cos x, − sinx, − cos x, sinx, cos x, − sinx, − cos x, sinx, . . .

on and on. At x = 0 you then get the following values for the derivatives f(j)(0),

j 1 2 3 4 5 6 7 8 · · ·
f(j)(0) 0 1 0 −1 0 1 0 −1 · · ·

This gives the following Taylor polynomials

T0f(x) = 0

T1f(x) = x

T2f(x) = x

T3f(x) = x− x3

3!

T4f(x) = x− x3

3!

T5f(x) = x− x3

3!
+
x5

5!

Note that since f(2)(0) = 0 the Taylor polynomials T1f(x) and T2f(x) are the same! The second
order Taylor polynomial in this example is really only a polynomial of degree 1. In general the
Taylor polynomial Tnf(x) of any function is a polynomial of degree at most n, and this example
shows that the degree can sometimes be strictly less.

π 2π
−π−2π

y = sinx

T1f(x) T5f(x) T9f(x)

T3f(x) T7f(x) T11f(x)

Figure 3. Taylor polynomials of f(x) = sinx

12.3. Example – Compute the Taylor polynomials of degree two and three of
f(x) = 1 + x + x2 + x3 at a = 3. Solution: Remember that our notation for the nth degree
Taylor polynomial of a function f at a is Tanf(x), and that it is defined by (6).

We have
f ′(x) = 1 + 2x+ 3x2, f ′′(x) = 2 + 6x, f ′′′(x) = 6

Therefore f(3) = 40, f ′(3) = 34, f ′′(3) = 20, f ′′(3) = 6, and thus

(8) T s2 f(x) = 40 + 34(x− 3) +
20

2!
(x− 3)2 = 40 + 34(x− 3) + 10(x− 3)2.

Why don’t we expand the answer? You could do this (i.e. replace (x−3)2 by x2−6x+9 throughout
and sort the powers of x), but as we will see in this chapter, the Taylor polynomial Tanf(x) is used
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as an approximation for f(x) when x is close to a. In this example T 3
2 f(x) is to be used when

x is close to 3. If x − 3 is a small number then the successive powers x − 3, (x − 3)2, (x − 3)3,
. . . decrease rapidly, and so the terms in (8) are arranged in decreasing order.

We can also compute the third degree Taylor polynomial. It is

T 3
3 f(x) = 40 + 34(x − 3) +

20

2!
(x− 3)2 +

6

3!
(x− 3)3

= 40 + 34(x − 3) + 10(x− 3)2 + (x− 3)3.

If you expand this (this takes a little work) you find that

40 + 34(x− 3) + 10(x− 3)2 + (x− 3)3 = 1 + x+ x2 + x3.

So the third degree Taylor polynomial is the function f itself! Why is this so? Because of Theorem
11.2! Both sides in the above equation are third degree polynomials, and their derivatives of order
0, 1, 2 and 3 are the same at x = 3, so they must be the same polynomial.

13. Some special Taylor polynomials

Here is a list of functions whose Taylor polynomials are sufficiently regular that you can write

a formula for the nth term.

Tne
x = 1 + x+

x2

2!
+
x3

3!
+ · · · + xn

n!

T2n+1 {sinx} = x− x3

3!
+
x5

5!
− x7

7!
+ · · · + (−1)n

x2n+1

(2n+ 1)!

T2n {cos x} = 1 − x2

2!
+
x4

4!
− x6

6!
+ · · · + (−1)n

x2n

(2n)!

Tn


1

1 − x

ff

= 1 + x+ x2 + x3 + x4 + · · · + xn (Geometric Series)

Tn {ln(1 + x)} = x− x2

2
+
x3

3
− x4

4
+ · · · + (−1)n+1 x

n

n

All of these Taylor polynomials can be computed directly from the definition, by repeatedly
differentiating f(x).

Another function whose Taylor polynomial you should know is f(x) = (1 + x)a, where a is a
constant. You can compute Tnf(x) directly from the definition, and when you do this you find

(9) Tn{(1 + x)a} = 1 + ax+
a(a − 1)

1 · 2
x2 +

a(a − 1)(a − 2)

1 · 2 · 3
x3

+ · · · + a(a − 1) · · · (a− n+ 1)

1 · 2 · · ·n
xn.

This formula is called Newton’s binomial formula. The coefficient of xn is called a binomial
coefficient, and it is written

(10)
“a

n

”

=
a(a − 1) · · · (a − n+ 1)

n!
.

When a is an integer
`a
n

´
is also called “a choose n.”

Note that you already knew special cases of the binomial formula: when a is a positive integer
the binomial coefficients are just the numbers in Pascal’s triangle. When a = −1 the binomial
formula is the Geometric series.

14. The Remainder Term

The Taylor polynomial Tnf(x) is almost never exactly equal to f(x), but often it is a good
approximation, especially if x is small. To see how good the approximation is we define the “error
term” or, “remainder term”.
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14.1. Definition. If f is an n times differentiable function on some interval containing a,
then

Ranf(x) = f(x) − Tanf(x)

is called the nth order remainder (or error) term in the Taylor polynomial of f . If a = 0, as will
be the case in most examples we do, then we write

Rnf(x) = f(x) − Tnf(x).

14.2. Example. If f(x) = sinx then we have found that T3f(x) = x− 1
6
x3, so that

R3{sinx} = sinx− x+ 1
6
x3.

This is a completely correct formula for the remainder term, but it’s rather useless: there’s nothing
about this expression that suggests that x − 1

6
x3 is a much better approximation to sinx than,

say, x+ 1
6
x3.

The usual situation is that there is no simple formula for the remainder term.

14.3. An unusual example, in which there is a simple formula for Rnf(x). Consider
f(x) = 1 − x+ 3x2 − 15x3.

Then you find

T2f(x) = 1 − x+ 3x2, so that R2f(x) = f(x) − T2f(x) = −15x3.

The moral of this example is this: Given a polynomial f(x) you find its nth degree Taylor poly-
nomial by taking all terms of degree ≤ n in f(x); the remainder Rnf(x) then consists of the
remaining terms.

14.4. Another unusual, but important example where you can compute Rnf(x).
Consider the function

f(x) =
1

1 − x
.

Then repeated differentiation gives

f ′(x) =
1

(1 − x)2
, f(2)(x) =

1 · 2
(1 − x)3

, f(3)(x) =
1 · 2 · 3
(1 − x)4

, . . .

and thus

f(n)(x) =
1 · 2 · 3 · · ·n
(1 − x)n+1

.

Consequently,

f(n)(0) = n! =⇒ 1

n!
f(n)(0) = 1,

and you see that the Taylor polynomials of this function are really simple, namely

Tnf(x) = 1 + x+ x2 + x3 + x4 + · · · + xn.

But this sum should be really familiar: it is just the Geometric Sum (each term is x times the
previous term). Its sum is given by5

Tnf(x) = 1 + x+ x2 + x3 + x4 + · · · + xn =
1 − xn+1

1 − x
,

which we can rewrite as

Tnf(x) =
1

1 − x
− xn+1

1 − x
= f(x) − xn+1

1 − x
.

The remainder term therefore is

Rnf(x) = f(x) − Tnf(x) =
xn+1

1 − x
.

5Multiply both sides with 1 − x to verify this, in case you had forgotten the formula!
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15. Lagrange’s Formula for the Remainder Term

15.1. Theorem. Let f be an n + 1 times differentiable function on some interval I con-
taining x = 0. Then for every x in the interval I there is a ξ between 0 and x such that

Rnf(x) =
f(n+1)(ξ)

(n+ 1)!
xn+1.

(ξ between 0 and x means either 0 < ξ < x or x < ξ < 0, depending on the sign of x.) This
theorem (including the proof) is similar to the Mean Value Theorem. The proof is a bit involved,
and I’ve put it at the end of this chapter.

There are calculus textbooks which, after presenting this remainder formula, give a whole
bunch of problems which ask you to find ξ for given f and x. Such problems completely miss the
point of Lagrange’s formula. The point is that even though you usually can’t compute the mystery
point ξ precisely, Lagrange’s formula for the remainder term allows you to estimate it. Here is
the most common way to estimate the remainder:

15.2. Estimate of remainder term. If f is an n+ 1 times differentiable function on an
interval containing x = 0, and if you have a constant M such that

(†)
˛
˛
˛f(n+1)(t)

˛
˛
˛ ≤ M for all t between 0 and x,

then

|Rnf(x)| ≤ M |x|n+1

(n+ 1)!
.

Proof. We don’t know what ξ is in Lagrange’s formula, but it doesn’t matter, for wherever
it is, it must lie between 0 and x so that our assumption (†) implies |f(n+1)(ξ)| ≤ M . Put that
in Lagrange’s formula and you get the stated inequality. �

15.3. How to compute e in a few decimal places. Consider f(x) = ex. We computed
the Taylor polynomials before. If you set x = 1, then you get e = f(1) = Tnf(1) + Rnf(1), and
thus, taking n = 8,

e = 1 +
1

1!
+

1

2!
+

1

3!
+

1

4!
+

1

5!
+

1

6!
+

1

7!
+

1

8!
+ R8(1).

By Lagrange’s formula there is a ξ between 0 and 1 such that

R8(1) =
f(9)(ξ)

9!
19 =

eξ

9!
.

(remember: f(x) = ex, so all its derivatives are also ex.) We don’t really know where ξ is, but
since it lies between 0 and 1 we know that 1 < eξ < e. So the remainder term R8(1) is positive
and no more than e/9!. Estimating e < 3, we find

1

9!
< R8(1) <

3

9!
.

Thus we see that

1 +
1

1!
+

1

2!
+

1

3!
+ · · · + 1

7!
+

1

8!
+

1

9!
< e < 1 +

1

1!
+

1

2!
+

1

3!
+ · · · + 1

7!
+

1

8!
+

3

9!

or, in decimals,

2.718 281 . . . < e < 2.718 287 . . .
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15.4. Error in the approximation sinx ≈ x. In many calculations involving sinx for
small values of x one makes the simplifying approximation sinx ≈ x, justified by the known limit

lim
x→0

sinx

x
= 1.

Question: How big is the error in this approximation?

To answer this question, we use Lagrange’s formula for the remainder term again.

Let f(x) = sinx. Then the first degree Taylor polynomial of f is

T1f(x) = x.

The approximation sin x ≈ x is therefore exactly what you get if you approximate f(x) = sinx by
its first degree Taylor polynomial. Lagrange tells us that

f(x) = T1f(x) +R1f(x), i.e. sinx = x+R1f(x),

where, since f ′′(x) = − sinx,

R1f(x) =
f ′′(ξ)

2!
x2 = − 1

2
sin ξ · x2

for some ξ between 0 and x.

As always with Lagrange’s remainder term, we don’t know where ξ is precisely, so we have
to estimate the remainder term. The easiest way to do this (but not the best: see below) is to
say that no matter what ξ is, sin ξ will always be between −1 and 1. Hence the remainder term
is bounded by

(¶) |R1f(x)| ≤ 1
2
x2,

and we find that

x− 1
2
x2 ≤ sinx ≤ x+ 1

2
x2.

Question: How small must we choose x to be sure that the approximation sin x ≈ x isn’t off by
more than 1% ?

If we want the error to be less than 1% of the estimate, then we should require 1
2
x2 to be

less than 1% of |x|, i.e.

1
2
x2 < 0.01 · |x| ⇔ |x| < 0.02

So we have shown that, if you choose |x| < 0.02, then the error you make in approximating sin x
by just x is no more than 1%.

A final comment about this example: the estimate for the error we got here can be improved
quite a bit in two different ways:

(1) You could notice that one has | sinx| ≤ x for all x, so if ξ is between 0 and x, then
| sin ξ| ≤ |ξ| ≤ |x|, which gives you the estimate

|R1f(x)| ≤ 1
2
|x|3 instead of 1

2
x2 as in (¶).

(2) For this particular function the two Taylor polynomials T1f(x) and T2f(x) are the same
(because f ′′(0) = 0). So T2f(x) = x, and we can write

sinx = f(x) = x+R2f(x),

In other words, the error in the approximation sinx ≈ x is also given by the second order remainder
term, which according to Lagrange is given by

R2f(x) =
− cos ξ

3!
x3 | cos ξ|≤1

=⇒ |R2f(x)| ≤ 1
6
|x|3,

which is the best estimate for the error in sin x ≈ x we have so far.
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16. The limit as x → 0, keeping n fixed

16.1. Little-oh. Lagrange’s formula for the remainder term lets us write a function y =
f(x), which is defined on some interval containing x = 0, in the following way

(11) f(x) = f(0) + f ′(0)x+
f(2)(0)

2!
x2 + · · · + f(n)(0)

n!
xn +

f(n+1)(ξ)

(n+ 1)!
xn+1

The last term contains the ξ from Lagrange’s theorem, which depends on x, and of which you
only know that it lies between 0 and x. For many purposes it is not necessary to know the last
term in this much detail – often it is enough to know that “in some sense” the last term is the
smallest term, in particular, as x → 0 it is much smaller than x, or x2, or, . . . , or xn:

16.2. Theorem. If the n + 1st derivative f(n+1)(x) is continuous at x = 0 then the re-

mainder term Rnf(x) = f(n+1)(ξ)xn+1/(n + 1)! satisfies

lim
x→0

Rnf(x)

xk
= 0

for any k = 0, 1, 2, . . . , n.

Proof. Since ξ lies between 0 and x, one has limx→0 f(n+1)(ξ) = f(n+1)(0), and therefore

lim
x→0

Rnf(x)

xk
= lim
x→0

f(n+1)(ξ)
xn+1

xk
= lim
x→0

f(n+1)(ξ) · xn+1−k = f(n+1)(0) · 0 = 0.

�

So we can rephrase (11) by saying

f(x) = f(0) + f ′(0)x +
f(2)(0)

2!
x2 + · · · + f(n)(0)

n!
xn + remainder

where the remainder is much smaller than xn, xn−1, . . . , x2, x or 1. In order to express the con-
dition that some function is “much smaller than xn,” at least for very small x, Landau introduced
the following notation which many people find useful.

16.3. Definition. “o(xn)” is an abbreviation for any function h(x) which satisfies

lim
x→0

h(x)

xn
= 0.

So you can rewrite (11) as

f(x) = f(0) + f ′(0)x +
f(2)(0)

2!
x2 + · · · + f(n)(0)

n!
xn + o(xn).

The nice thing about Landau’s little-oh is that you can compute with it, as long as you obey the
following (at first sight rather strange) rules which will be proved in class

xn · o(xm) = o(xn+m)

o(xn) · o(xm) = o(xn+m)

xm = o(xn) if n < m

o(xn) + o(xm) = o(xn) if n < m

o(Cxn) = o(xn) for any constant C

16.4. Example: prove one of these little-oh rules. Let’s do the first one, i.e. let’s show
that xn · o(xm) is o(xn+m) as x→ 0.

Remember, if someone writes xn ·o(xm), then the o(xm) is an abbreviation for some function
h(x) which satisfies limx→0 h(x)/xm = 0. So the xn · o(xm) we are given here really is an
abbreviation for xnh(x). We then have

lim
x→0

xnh(x)

xn+m
= lim
x→0

h(x)

xm
= 0, since h(x) = o(xm).
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1

x
x2

x3

x4

x10
x20

Figure 4. How the powers stack up. All graphs of y = xn (n > 1) are tangent
to the x-axis at the origin. But the larger the exponent n the “flatter” the graph
of y = xn is.

16.5. Can you see that x3 = o(x2) by looking at the graphs of these functions?
A picture is of course never a proof, but have a look at figure 4 which shows you the graphs of
y = x, x2, x3, x4, x5 and x10. As you see, when x approaches 0, the graphs of higher powers of
x approach the x-axis (much?) faster than do the graphs of lower powers.

You should also have a look at figure 5 which exhibits the graphs of y = x2, as well as several
linear functions y = Cx (with C = 1, 1

2
, 1

5
and 1

10
.) For each of these linear functions one has

x2 < Cx if x is small enough; how small is actually small enough depends on C. The smaller the
constant C, the closer you have to keep x to 0 to be sure that x2 is smaller than Cx. Nevertheless,
no matter how small C is, the parabola will eventually always reach the region below the line
y = Cx.

16.6. Example: Little-oh arithmetic is a little funny. Both x2 and x3 are functions
which are o(x), i.e.

x2 = o(x) and x3 = o(x)

Nevertheless x2 6= x3. So in working with little-oh we are giving up on the principle that says
that two things which both equal a third object must themselves be equal; in other words, a = b
and b = c implies a = c, but not when you’re using little-ohs! You can also put it like this: just
because two quantities both are much smaller than x, they don’t have to be equal. In particular,

you can never cancel little-ohs!!!

In other words, the following is pretty wrong

o(x2) − o(x2) = 0.

Why? The two o(x2)’s both refer to functions h(x) which satisfy limx→0 h(x)/x2 = 0, but there
are many such functions, and the two o(x2)’s could be abbreviations for different functions h(x).

Contrast this with the following computation, which at first sight looks wrong even though
it is actually right:

o(x2) − o(x2) = o(x2).

In words: if you subtract two quantities both of which are negligible compared to x2 for small x
then the result will also be negligible compared to x2 for small x.

16.7. Computations with Taylor polynomials. The following theorem is very useful
because it lets you compute Taylor polynomials of a function without differentiating it.
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y = x

y = x/2

y = x/5

y = x/10

y = x/20

y = x2

Figure 5. x2 is smaller than any multiple of x, if x is small enough. Compare
the quadratic function y = x2 with a linear function y = Cx. Their graphs are a
parabola and a straight line. Parts of the parabola may lie above the line, but as
x ց 0 the parabola will always duck underneath the line.

16.8. Theorem. If f(x) and g(x) are n+ 1 times differentiable functions then

(12) Tnf(x) = Tng(x) ⇐⇒ f(x) = g(x) + o(xn).

In other words, if two functions have the same nth degree Taylor polynomial, then their difference
is much smaller than xn, at least, if x is small.

In principle the definition of Tnf(x) lets you compute as many terms of the Taylor polynomial
as you want, but in many (most) examples the computations quickly get out of hand. To see what
can happen go though the following example:

16.9. How NOT to compute the Taylor polynomial of degree 12 of f(x) = 1/(1 +
x2). Diligently computing derivatives one by one you find

f(x) =
1

1 + x2
so f(0) = 1

f ′(x) =
−2x

(1 + x2)2
so f ′(0) = 0

f ′′(x) =
6x2 − 2

(1 + x2)3
so f ′′(0) = −2

f(3)(x) = 24
x− x3

(1 + x2)4
so f(3)(0) = 0

f(4)(x) = 24
1 − 10x2 + 5x4

(1 + x2)5
so f(4)(0) = 24 = 4!

f(5)(x) = 240
−3x+ 10x3 − 3x5

(1 + x2)6
so f(4)(0) = 0

f(6)(x) = −720
−1 + 21x2 − 35x4 + 7x6

(1 + x2)7
so f(4)(0) = 720 = 6!

..

.
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I’m getting tired of differentiating – can you find f(12)(x)? After a lot of work we give up at the
sixth derivative, and all we have found is

T6


1

1 + x2

ff

= 1 − x2 + x4 − x6.

By the way,

f(12)(x) = 479001600
1 − 78x2 + 715 x4 − 1716 x6 + 1287 x8 − 286 x10 + 13x12

(1 + x2)13

and 479001600 = 12!.

16.10. The right approach to finding the Taylor polynomial of any degree of
f(x) = 1/(1 + x2). Start with the Geometric Series: if g(t) = 1/(1 − t) then

g(t) = 1 + t+ t2 + t3 + t4 + · · · + tn + o(tn).

Now substitute t = −x2 in this limit,

g(−x2) = 1 − x2 + x4 − x6 + · · · + (−1)nx2n + o
``
−x2

´n´

Since o
``
−x2

´n´
= o(x2n) and

g(−x2) =
1

1 − (−x2)
=

1

1 + x2
,

we have found

1

1 + x2
= 1 − x2 + x4 − x6 + · · · + (−1)nx2n + o(x2n)

By Theorem (16.8) this implies

T2n


1

1 + x2

ff

= 1 − x2 + x4 − x6 + · · · + (−1)nx2n.

16.11. Example of multiplication of Taylor series. Finding the Taylor series of e2x/(1+
x) directly from the definition is another recipe for headaches. Instead, you should exploit your
knowledge of the Taylor series of both factors e2x and 1/(1 + x):

e2x = 1 + 2x+
22x2

2!
+

23x3

3!
+

24x4

4!
+ o(x4)

= 1 + 2x+ 2x2 +
4

3
x3 +

2

3
x4 + o(x4)

1

1 + x
= 1 − x+ x2 − x3 + x4 + o(x4).

Then multiply these two

e2x · 1

1 + x
=

„

1 + 2x+ 2x2 +
4

3
x3 +

2

3
x4 + o(x4)

«

·
`
1 − x+ x2 − x3 + x4 + o(x4)

´

= 1 − x + x2 − x3 + x4 + o(x4)
+ 2x − 2x2 + 2x3 − 2x4 + o(x4)

+ 2x2 − 2x3 + 2x4 + o(x4)

+ 4
3
x3 − 4

3
x4 + o(x4)

+ 2
3
x4 + o(x4)

= 1 + x+ x2 +
1

3
x3 +

1

3
x4 + o(x4) (x → 0)
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16.12. Taylor’s formula and Fibonacci numbers. The Fibonacci numbers are defined
as follows: the first two are f0 = 1 and f1 = 1, and the others are defined by the equation

(Fib) fn = fn−1 + fn−2

So

f2 = f1 + f0 = 1 + 1 = 2,

f3 = f2 + f1 = 2 + 1 = 3,

f4 = f3 + f2 = 3 + 2 = 5,

etc.

The equation (Fib) lets you compute the whole sequence of numbers, one by one, when you are
given only the first few numbers of the sequence (f0 and f1 in this case). Such an equation for
the elements of a sequence is called a recursion relation.

Now consider the function

f(x) =
1

1 − x− x2
.

Let

T∞f(x) = c0 + c1x+ c2x
2 + c3x

3 + · · ·
be its Taylor series.

Due to Lagrange’s remainder theorem you have, for any n,

1

1 − x− x2
= c0 + c1x+ c2x

2 + c3x
3 + · · · + cnx

n + o(xn) (x → 0).

Multiply both sides with 1 − x− x2 and you get

1 = (1 − x− x2) · (c0 + c1x+ c2x
2 + · · · + cn + o(xn)) (x → 0)

= c0 + c1x + c2x2 + · · · + cnxn + o(xn)
− c0x − c1x2 − · · · − cn−1xn + o(xn)

− c0x2 − · · · − cn−2xn − o(xn) (x → 0)

= c0 + (c1 − c0)x+ (c2 − c1 − c0)x
2 + (c3 − c2 − c1)x3 + · · ·

· · · + (cn − cn−1 − cn−2)x
n + o(xn) (x → 0)

Compare the coefficients of powers xk on both sides for k = 0, 1, . . . , n and you find

c0 = 1, c1 − c0 = 0 =⇒ c1 = c0 = 1, c2 − c1 − c0 = 0 =⇒ c2 = c1 + c0 = 2

and in general

cn − cn−1 − cn−2 = 0 =⇒ cn = cn−1 + cn−2

Therefore the coefficients of the Taylor series T∞f(x) are exactly the Fibonacci numbers:

cn = fn for n = 0, 1, 2, 3, . . .

Since it is much easier to compute the Fibonacci numbers one by one than it is to compute the
derivatives of f(x) = 1/(1−x−x2), this is a better way to compute the Taylor series of f(x) than
just directly from the definition.

16.13. More about the Fibonacci numbers. In this example you’ll see a trick that lets
you compute the Taylor series of any rational function. You already know the trick: find the
partial fraction decomposition of the given rational function. Ignoring the case that you have
quadratic expressions in the denominator, this lets you represent your rational function as a sum
of terms of the form

A

(x− a)p
.

These are easy to differentiate any number of times, and thus they allow you to write their Taylor
series.

Let’s apply this to the function f(x) = 1/(1−x−x2) from the example 16.12. First we factor
the denominator.

1 − x− x2 = 0 ⇐⇒ x2 + x− 1 = 0 ⇐⇒ x =
−1 ±

√
5

2
.
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The number

φ =
1 +

√
5

2
≈ 1.618 033 988 749 89 . . .

is called the Golden Ratio. It satisfies6

φ+
1

φ
=

√
5.

The roots of our polynomial x2 + x− 1 are therefore

x− =
−1 −

√
5

2
= −φ, x+ =

−1 +
√

5

2
=

1

φ
.

and we can factor 1 − x− x2 as follows

1 − x− x2 = −(x2 + x− 1) = −(x− x−)(x − x+) = −(x− 1

φ
)(x + φ).

So f(x) can be written as

f(x) =
1

1 − x− x2
=

−1

(x− 1
φ
)(x + φ)

=
A

x− 1
φ

+
B

x+ φ

The Heaviside trick will tell you what A and B are, namely,

A =
−1

1
φ

+ φ
=

−1√
5
, B =

1
1
φ

+ φ
=

1√
5

The nth derivative of f(x) is

f(n)(x) =
A(−1)nn!

“

x− 1
φ

”n+1
+

B(−1)nn!

(x+ φ)n+1

Setting x = 0 and dividing by n! finally gives you the coefficient of xn in the Taylor series of f(x).
The result is the following formula for the nth Fibonacci number

cn =
f(n)(0)

n!
=

1

n!

A(−1)nn!
“

− 1
φ

”n+1
+

1

n!

B(−1)nn!

(φ)n+1
= −Aφn+1 − B

„
1

φ

«n+1

Using the values for A and B you find

(13) fn = cn =
1√
5



φn+1 − 1

φn+1

ff

16.14. Differentiating Taylor polynomials. If

Tnf(x) = a0 + a1x+ a2x
2 + · · · + anx

n

is the Taylor polynomial of a function y = f(x), then what is the Taylor polynomial of its derivative
f ′(x)?

16.15. Theorem. The Taylor polynomial of degree n− 1 of f ′(x) is given by

Tn−1{f ′(x)} = a1 + 2a2x+ · · · + nanx
n−1.

In other words, “the Taylor polynomial of the derivative is the derivative of the Taylor polyno-
mial.”

Proof. Let g(x) = f ′(x). Then g(k)(0) = f(k+1)(0), so that

Tn−1g(x) = g(0) + g′(0)x + g(2)(0)
x2

2!
+ · · · + g(n−1)(0)

xn−1

(n− 1)!

= f ′(0) + f(2)(0)x + f(3)(0)
x2

2!
+ · · · + f(n)(0)

xn−1

(n− 1)!
($)

6To prove this, use
1

φ
=

2

1 +
√

5
=

2

1 +
√

5

1 −
√

5

1 −
√

5
=

−1 +
√

5

2
.
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On the other hand, if Tnf(x) = a0 + a1x+ · · · + anxn, then ak = f(k)(0)/k!, so that

kak =
k

(k − 1)!
f(k)(0) =

f(k)(0)

(k − 1)!
.

In other words,

1 · a1 = f ′(0), 2a2 = f(2)(0), 3a3 =
f(3)(0)

2!
, etc.

So, continuing from ($) you find that

Tn−1{f ′(x)} = Tn−1g(x) = a1 + 2a2x+ · · · + nanx
n−1

as claimed. �

16.16. Example. We compute the Taylor polynomial of f(x) = 1/(1 − x)2 by noting that

f(x) = F ′(x), where F (x) =
1

1 − x
.

Since

Tn+1F (x) = 1 + x+ x2 + x3 + · · · + xn+1,

theorem 16.15 implies that

Tn


1

(1 − x)2

ff

= 1 + 2x+ 3x2 + 4x3 + · · · + (n+ 1)xn

16.17. Example. [Example: Taylor polynomials of arctan x. ] Let f(x) = arctan x. Then
know that

f ′(x) =
1

1 + x2
.

By substitution of t = −x2 in the Taylor polynomial of 1/(1 − t) we had found

T2n{f ′(x)} = T2n


1

1 + x2

ff

= 1 − x2 + x4 − x6 + · · · + (−1)nx2n + o
`
x2n

´
.

This Taylor polynomial must be the derivative of T2n+1f(x), so we have

T2n+1 {arctan x} = x− x3

3
+
x5

5
+ · · · + (−1)n

x2n+1

2n+ 1
.

17. The limit n → ∞, keeping x fixed

17.1. Sequences and their limits. We shall call a sequence any ordered sequence of
numbers a1, a2, a3, . . .: for each positive integer n we have to specify a number an.

17.2. Examples of sequences.

definition first few number in the sequence

↓ ↓
an = n 1, 2, 3, 4, . . .

bn = 0 0, 0, 0, 0, . . .

cn =
1

n
1
1
, 1
2
, 1
3
, 1

4
, . . .

dn =
`
− 1

3

´n − 1
3
, 1
9
,− 1

27
, 1
81
, . . .

En = 1 +
1

1!
+

1

2!
+

1

3!
+ · · · + 1

n!
1, 2, 2 1

2
, 2 2

3
, 2 17

24
, 2 43

60
, . . .

Sn = T2n+1{sinx} = x− x3

3!
+ · · · + (−1)n

x2n+1

(2n+ 1)!
x, x− x3

3!
, x− x3

3!
+
x5

5!
, . . .

The last two sequences are derived from the Taylor polynomials of ex (at x = 1) and sin x
(at any x). The last example Sn really is a sequence of functions, i.e. for every choice of x you
get a different sequence.
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17.3. Definition. A sequence of numbers (an)∞n=1 converges to a limit L, if for every ǫ > 0
there is a number Nǫ such that for all n > Nǫ one has

|an − L| < ǫ.

One writes

lim
n→∞

an = L

17.4. Example: lim
n→∞

1

n
= 0. The sequence cn = 1/n converges to 0. To prove this let

ǫ > 0 be given. We have to find an Nǫ such that

|cn| < ǫ for all n > Nǫ.

The cn are all positive, so |cn| = cn, and hence

|cn| < ǫ ⇐⇒ 1

n
< ǫ ⇐⇒ n >

1

ǫ
,

which prompts us to choose Nǫ = 1/ǫ. The calculation we just did shows that if n > 1
ǫ

= Nǫ,

then |cn| < ǫ. That means that limn→∞ cn = 0.

17.5. Example: lim
n→∞

an = 0 if |a| < 1. As in the previous example one can show that

limn→∞ 2−n = 0, and more generally, that for any constant a with −1 < a < 1 one has

lim
n→∞

an = 0.

Indeed,

|an| = |a|n = en ln |a| < ǫ

holds if and only if

n ln |a| < ln ǫ.

Since |a| < 1 we have ln |a| < 0 so that dividing by ln |a| reverses the inequality, with result

|an| < ǫ ⇐⇒ n >
ln ǫ

ln |a|
The choice Nǫ = (ln ǫ)/(ln |a|) therefore guarantees that |an| < ǫ whenever n > Nǫ.

One can show that the operation of taking limits of sequences obeys the same rules as taking
limits of functions.

17.6. Theorem. If

lim
n→∞

an = A and lim
n→∞

bn = B,

then one has

lim
n→∞

an ± bn = A±B

lim
n→∞

anbn = AB

lim
n→∞

an

bn
=
A

B
(assuming B 6= 0).

The so-called “sandwich theorem” for ordinary limits also applies to limits of sequences. Namely,
one has

17.7. “Sandwich theorem”. If an is a sequence which satisfies bn < an < cN for all n,
and if limn→∞ bn = limn→∞ cn = 0, then limn→∞ an = 0. Finally, one can show this:

17.8. Theorem. If f(x) is a function which is continuous at x = A, and an is a sequence
which converges to A, then

lim
n→∞

f(an) = f
“

lim
n→∞

an
”

= f(A).
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17.9. Example. Since limn→∞ 1/n = 0 and since f(x) = cos x is continuous at x = 0 we
have

lim
n→∞

cos
1

n
= cos 0 = 1.

17.10. Example. You can compute the limit of any rational function of n by dividing
numerator and denominator by the highest occurring power of n. Here is an example:

lim
n→∞

2n2 − 1

n2 + 3n
= lim
n→∞

2 −
`

1
n

´2

1 + 3 · 1
n

=
2 − 02

1 + 3 · 02
= 2

17.11. Example. [Application of the Sandwich theorem. ] We show that limn→∞ 1√
n2+1

=

0 in two different ways.

Method 1: Since
√
n2 + 1 >

√
n2 = n we have

0 <
1√

n2 + 1
<

1

n
.

The sequences “0” and 1
n

both go to zero, so the Sandwich theorem implies that 1/
√
n2 + 1 also

goes to zero.

Method 2: Divide numerator and denominator both by n to get

an =
1/n

p
1 + (1/n)2

= f

„
1

n

«

, where f(x) =
x√

1 + x2
.

Since f(x) is continuous at x = 0, and since 1
n

→ 0 as n→ ∞, we conclude that an converges to
0.

17.12. Example: lim
n→∞

xn

n!
= 0 for any real number x. If |x| ≤ 1 then this is easy, for

we would have |xn| ≤ 1 for all n ≥ 0 and thus
˛
˛
˛
˛

xn

n!

˛
˛
˛
˛ ≤

1

n!
=

1

1 · 2 · 3 · · · (n− 1) · n
| {z }

n−1 factors

≤ 1

1 · 2 · 2 · · · 2 · 2
| {z }

n−1 factors

=
1

2n−1

which shows that limn→∞ xn

n!
= 0, by the Sandwich Theorem.

For arbitrary x you first choose an integer N ≥ 2x. Then for all n ≥ N one has

xn

n!
≤ |x| · |x| · · · |x| · |x|

1 · 2 · 3 · · ·n use |x| ≤ N

2

≤ N ·N ·N · · ·N ·N
1 · 2 · 3 · · ·n

„
1

2

«n

Split fraction into two parts, one containing the first N factors from both numerator and denom-
inator, the other the remaining factors:

N

1
· N

2
· N

3
· · · N

N
| {z }

=NN/N!

· N

N + 1
· · · N

n
=
NN

N !
· N

N + 1
| {z }

<1

· N

N + 2
| {z }

<1

· · · N
n

|{z}

<1

≤ NN

N !

Hence we have
˛
˛
˛
˛

xn

n!

˛
˛
˛
˛ ≤

NN

N !

„
1

2

«n

if 2|x| ≤ N and n ≥ N .

Here everything is independent of n, except for the last factor ( 1
2
)n which causes the whole

thing to converge to zero as n → ∞.
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18. Convergence of Taylor Series

18.1. Definition. Let y = f(x) be some function defined on an interval a < x < b contain-
ing 0. We say the Taylor series T∞f(x) converges to f(x) for a given x if

lim
n→∞

Tnf(x) = f(x).

The most common notations which express this condition are

f(x) =
∞X

k=0

f(k)(0)
xk

k!

or

f(x) = f(0) + f ′(0)x+ f ′′(0)
x2

2!
+ f(3)(0)

x3

3!
+ · · ·

In both cases convergence justifies the idea that you can add infinitely many terms, as sug-
gested by both notations.

There is no easy and general criterion which you could apply to a given function f(x) that
would tell you if its Taylor series converges for any particular x (except x = 0 – what does the
Taylor series look like when you set x = 0?). On the other hand, it turns out that for many
functions the Taylor series does converge to f(x) for all x in some interval −ρ < x < ρ. In this
section we will check this for two examples: the “geometric series” and the exponential function.

Before we do the examples I want to make this point about how we’re going to prove that
the Taylor series converges: Instead of taking the limit of the Tnf(x) as n → ∞, you are usually
better off looking at the remainder term. Since Tnf(x) = f(x) −Rnf(x) you have

lim
n→∞

Tnf(x) = f(x) ⇐⇒ lim
n→∞

Rnf(x) = 0

So: to check that the Taylor series of f(x) converges to f(x) we must show that the remainder
term Rnf(x) goes to zero as n → ∞.

18.2. Example: The Geometric series converges for −1 < x < 1. If f(x) = 1/(1− x)

then by the formula for the Geometric Sum you have

f(x) =
1

1 − x

=
1 − xn+1 + xn+1

1 − x

= 1 + x+ x2 + · · · + xn +
xn+1

1 − x

= Tnf(x) +
xn+1

1 − x
.

We are not dividing by zero since |x| < 1 so that 1 − x 6= 0. The remainder term is

Rnf(x) =
xn+1

1 − x
.

Since |x| < 1 we have

lim
n→∞

|Rnf(x)| = lim
n→∞

|x|n+1

|1 − x|
=

limn→∞ |x|n+1

|1 − x|
=

0

|1 − x|
= 0.

Thus we have shown that the series converges for all −1 < x < 1, i.e.

1

1 − x
= lim
n→∞

˘
1 + x+ x2 + · · · + xn

¯
= 1 + x+ x2 + x3 + · · ·
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18.3. Convergence of the exponential Taylor series. Let f(x) = ex. It turns out the
Taylor series of ex converges to ex for every value of x. Here’s why: we had found that

Tne
x = 1 + x+

x2

2!
+ · · · + xn

n!
,

and by Lagrange’s formula the remainder is given by

Rne
x = eξ

xn+1

(n+ 1)!
,

where ξ is some number between 0 and x.

If x > 0 then 0 < ξ < x so that eξ ≤ ex; if x < 0 then x < ξ < 0 implies that eξ < e0 = 1.
Either way one has eξ ≤ e|x|, and thus

|Rnex| ≤ e|x|
|x|n+1

(n+ 1)!
.

We have shown before that limn→∞ xn+1/(n + 1)! = 0, so the Sandwich theorem again implies
that limn→∞ |Rnex| = 0.

Conclusion:

ex = lim
n→∞



1 + x+
x2

2!
+ · · · + xn

n!

ff

= 1 + x+
x2

2!
+
x3

3!
+
x4

4!
+ · · ·

Do Taylor series always converge? And if the series of some function y = f(x) converges,
must it then converge to f(x)? Although the Taylor series of most function we run into converge
to the functions itself, the following example shows that it doesn’t have to be so.

18.4. The day that all Chemistry stood still. The rate at which a chemical reaction
“A→B” proceeds depends among other things on the temperature at which the reaction is taking
place. This dependence is described by the Arrhenius law which states that the rate at which a
reaction takes place is proportional to

f(T ) = e−
∆E

kT

where ∆E is the amount of energy involved in each reaction, k is Boltzmann’s constant, and T
is the temperature in degrees Kelvin. If you ignore the constants ∆E and k (i.e. if you set them
equal to one by choosing the right units) then the reaction rate is proportional to

f(T ) = e−1/T .

If you have to deal with reactions at low temperatures you might be inclined to replace this
function with its Taylor series at T = 0, or at least the first non-zero term in this series. If you
were to do this you’d be in for a surprise. To see what happens, let’s look at the following function,

f(x) =

(

e−1/x x > 0

0 x ≤ 0

This function goes to zero very quickly as x → 0. In fact one has

lim
xց0

f(x)

xn
= lim
xց0

e−1/x

xn
= lim
t→∞

tne−t = 0. (set t = 1/x)

This implies

f(x) = o(xn) (x → 0)

for any n = 1, 2, 3 . . .. As x → 0, this function vanishes faster than any power of x.

If you try to compute the Taylor series of f you need its derivatives at x = 0 of all orders.
These can be computed (not easily), and the result turns out to be that all derivatives of f
vanish at x = 0,

f(0) = f ′(0) = f ′′(0) = f(3)(0) = · · · = 0.

The Taylor series of f is therefore

T∞f(x) = 0 + 0 · x+ 0 · x
2

2!
+ 0 · x

3

3!
+ · · · = 0.

Clearly this series converges (all terms are zero, after all), but instead of converging to the function
f(x) we started with, it converges to the function g(x) = 0.
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The Taylor series at

this point does not

converge to f

1 2 3

y = e−1/x

Figure 6. An innocent looking function with an unexpected Taylor series. See
example 18.4 which shows that even when a Taylor series of some function f
converges you can’t be sure that it converges to f – it could converge to a different
function.

What does this mean for the chemical reaction rates and Arrhenius’ law? We wanted to
“simplify” the Arrhenius law by computing the Taylor series of f(T ) at T = 0, but we have just
seen that all terms in this series are zero. Therefore replacing the Arrhenius reaction rate by its
Taylor series at T = 0 has the effect of setting all reaction rates equal to zero.

19. Leibniz’ formulas for ln 2 and π/4

Leibniz showed that
1

1
− 1

2
+

1

3
− 1

4
+

1

5
− · · · = ln 2

and
1

1
− 1

3
+

1

5
− 1

7
+

1

9
− · · · =

π

4
Both formulas arise by setting x = 1 in the Taylor series for

ln(1 + x) = x− x2

2
+
x3

3
+
x4

4
− · · ·

arctan x = x− x3

3
+
x5

5
+
x7

7
− · · ·

This is only justified if you show that the series actually converge, which we’ll do here, at least for
the first of these two formulas. The proof of the second is similar. The following is not Leibniz’
original proof.

You begin with the geometric sum

1 − x+ x2 − x3 + · · · + (−1)nxn =
1

1 + x
+

(−1)n+1xn+1

1 + x

Then you integrate both sides from x = 0 to x = 1 and get

1

1
− 1

2
+

1

3
− · · · + (−1)n

1

n+ 1
=

Z 1

0

dx

1 + x
+ (−1)n+1

Z 1

0

xn+1dx

1 + x

= ln2 + (−1)n+1

Z 1

0

xn+1dx

1 + x

(Use
R 1
0 x

kdx = 1
k+1

.) Instead of computing the last integral you estimate it by saying

0 ≤ xn+1

1 + x
≤ xn+1 =⇒ 0 ≤

Z 1

0

xn+1dx

1 + x
≤

Z 1

0
xn+1dx =

1

n+ 2

Hence

lim
n→∞

(−1)n+1

Z 1

0

xn+1dx

1 + x
= 0,

and we get

lim
n→∞

1

1
− 1

2
+

1

3
− · · · + (−1)n

1

n+ 1
= ln2 + lim

n→∞
(−1)n+1

Z 1

0

xn+1dx

1 + x

= ln2.
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20. Proof of Lagrange’s formula

For simplicity assume x > 0. Consider the function

g(t) = f(0) + f ′(0)t +
f ′′(0)

2
t2 + · · · + f(n)(0)

n!
tn +Ktn+1 − f(t),

where

(14) K
def
= −

f(0) + f ′(0)x + · · · + f(n)(0)
n!

xn − f(x)

xn+1

We have chosen this particular K to be sure that

g(x) = 0.

Just by computing the derivatives you also find that

g(0) = g′(0) = g′′(0) = · · · = g(n)(0) = 0,

while

(15) g(n+1)(t) = (n+ 1)!K − f(n+1)(t).

We now apply Rolle’s Theorem n times:

• since g(t) vanishes at t = 0 and at t = x there exists an x1 with 0 < x1 < x such that
g′(x1) = 0

• since g′(t) vanishes at t = 0 and at t = x1 there exists an x2 with 0 < x2 < x1 such
that g′(x2) = 0

• since g′′(t) vanishes at t = 0 and at t = x2 there exists an x3 with 0 < x3 < x2 such
that g′′(x3) = 0

..

.
• since g(n)(t) vanishes at t = 0 and at t = xn there exists an xn+1 with 0 < xn+1 < xn

such that g(n)(xn+1) = 0.

We now set ξ = xn+1, and observe that we have shown that g(n+1)(ξ) = 0, so by (15) we get

K =
f(n+1)(ξ)

(n+ 1)!
.

Apply that to (14) and you finally get

f(x) = f(0) + f ′(0)x + · · · + f(n)(0)

n!
xn +

f(n+1)(ξ)

(n+ 1)!
xn+1.

21. Proof of Theorem 16.8

21.1. Lemma. If h(x) is a k times differentiable function on some interval containing 0,

and if for some integer k < n one has h(0) = h′(0) = · · · = h(k−1)(0) = 0, then

(16) lim
x→0

h(x)

xk
=
h(k)(0)

k!
.

Proof. Just apply l’Hopital’s rule k times. You get

lim
x→0

h(x)

xk

= 0
0= lim
x→0

h′(x)

kxk−1

= 0
0= lim
x→0

h(2)(x)

k(k − 1)xk−2

= 0
0= · · ·

· · · = lim
x→0

h(k−1)(x)

k(k − 1) · · · 2x1

= 0
0=

h(k)(0)

k(k − 1) · · · 2 · 1
�
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First define the function h(x) = f(x)− g(x). If f(x) and g(x) are n times differentiable, then
so is h(x).

The condition Tnf(x) = Tng(x) means that

f(0) = g(0), f ′(0) = g′(0), . . . , f(n)(0) = g(n)(0),

which says, in terms of h(x),

(†) h(0) = h′(0) = h′′(0) = · · · = h(n)(0) = 0,

i.e.
Tnh(x) = 0.

We now prove the first pat of the theorem: suppose f(x) and g(x) have the same nth degree
Taylor polynomial. Then we have just argued that Tnh(x) = 0, and Lemma 21.1 (with k = n)
says that limx→0 h(x)/xn = 0, as claimed.

To conclude we show the converse also holds. So suppose that limx→0 h(x)/xn = 0. We’ll
show that (†) follows. If (†) were not true then there would be a smallest integer k ≤ n such that

h(0) = h′(0) = h′′(0) = · · · = h(k−1)(0) = 0, but h(k)(0) 6= 0.

This runs into the following contradiction with Lemma 21.1

0 6= h(k)(0)

k!
= lim
x→0

h(x)

xk
= lim
x→0

h(x)

xn
· x

n

xk
= 0 · lim

x→0
xn−k

| {z }

(∗)

= 0.

Here the limit (∗) exists because n ≥ k.

22. PROBLEMS

Taylor’s formula.

153. Find a second order polynomial (i.e. a
quadratic function) Q(x) such that Q(7) =
43, Q′(7) = 19, Q′′(7) = 11.

154. A fourth order polynomial P (x) sat-
isfies P (0) = 1, P ′(0) = −3, P ′′(0) =
−8, P ′′′(0) = 24. Find P (x).

155. Let f(x) =
√
x+ 25. Find the poly-

nomial P (x) of degree three such that

P (k)(0) = f(k)(0) for k = 0, 1, 2, 3.

156. Let f(x) = 1 + x − x2 − x3. Com-
pute and graph T0f(x), T1f(x), T2f(x),
T3f(x), and T4f(x), as well as f(x) itself (so,
for each of these functions find where they
are positive or negative, where they are in-
creasing/decreasing, and find the inflection
points on their graph.)

157. Find T3 sinx and T5 sinx.

Graph T3 sinx and T5 sinx as well as
y = sinx in one picture. (As before, find
where these functions are positive or neg-
ative, where they are increasing/decreasing,
and find the inflection points on their graph.
This problem can&should be done without
a graphing calculator.)

Compute Ta0 f(x), Ta1 f(x) and Ta2 f(x)
for the following functions.

158. f(x) = x3, a = 0; then for a = 1 and
a = 2.

159. f(x) =
1

x
, a = 1. Also do a = 2.

160. f(x) =
√
x, a = 1.

161. f(x) = lnx, a = 1. Also a = e2.

162. f(x) = ln
√
x, a = 1.

163. f(x) = sin(2x), a = 0, also a = π/4.

164. f(x) = cos(x), a = π.

165. f(x) = (x− 1)2, a = 0, and also a = 1.

166. f(x) =
1

ex
, a = 0.

167. Find the nth degree Taylor polynomial
Tanf(x) of the following functions f(x)

n a f(x)

2 0 1 + x− x3

3 0 1 + x− x3

25 0 1 + x− x3

25 2 1 + x− x3

2 1 1 + x− x3

1 1 x2

2 1 x2

5 1 1/x
5 0 1/(1 + x)
3 0 1/(1 − 3x+ 2x2)
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For which of these combinations (n, a, f(x))
is Tanf(x) the same as f(x)?

∗ ∗ ∗
Compute the Taylor series T∞f(t) for the
following functions (α is a constant). Give a
formula for the coefficient of xn in T∞f(t).
(Be smart. Remember properties of the log-
arithm, definitions of the hyperbolic func-
tions, partial fraction decomposition.)

168. et

169. eαt

170. sin(3t)

171. sinh t

172. cosh t

173.
1

1 + 2t

174.
3

(2 − t)2

175. ln(1 + t)

176. ln(2 + 2t)

177. ln
√

1 + t

178. ln(1 + 2t)

179. ln

r
1 + t

1 − t

180.
1

1 − t2
[hint:PFD!]

181.
t

1 − t2

182. sin t+ cos t

183. 2 sin t cos t

184. tan t (3 terms only)

185. 1 + t2 − 2

3
t4

186. (1 + t)5

187. 3
√

1 + t

188. Compute the Taylor series of the follow-
ing two functions

f(x) = sin a cos x+ cos a sinx

and
g(x) = sin(a + x)

where a is a constant.

189. Compute the Taylor series of the follow-
ing two functions

h(x) = cos a cos x− sina sinx

and
k(x) = cos(a+ x)

where a is a constant.

190. The following questions ask you to redis-
cover Newton’s Binomial Formula, which
is just the Taylor series for (1 + x)n. New-
ton’s formula generalizes the formulas for
(a + b)2, (a + b)3, etc that you get using
Pascal’s triangle. It allows non integer ex-
ponents which are allowed to be either pos-
itive and negative. Reread section 13 before
doing this problem.

(a) Find the Taylor series of f(x) =√
1 + x (= (1 + x)1/2)

(b) Find the coefficient of x4 in the Tay-
lor series of f(x) = (1 + x)π (don’t do the
arithmetic!)

(c) Let p be any real number. Com-
pute the terms of degree 0, 1, 2 and 3 of the
Taylor series of

f(x) = (1 + x)p

(d) Compute the Taylor polynomial of
degree n of f(x) = (1 + x)p.

(e) Write the result of (d) for the expo-
nents p = 2, 3 and also, for p = −1,−2,−3
and finally for p = 1

2
. The Binomial The-

orem states that this series converges when
|x| < 1.

Lagrange’s formula for the remainder.

191. Find the fourth degree Taylor polynomial
T4{cos x} for the function f(x) = cos x and
estimate the error | cos x−P4(x)| for |x| < 1.

192. Find the 4th degree Taylor polynomial
T4{sinx} for the function f(x) = sinx. Es-
timate the error | sinx−T4{sinx}| for |x| <
1.

193. (Computing the cube root of 9) The cube
root of 8 = 2×2×2 is easy, and 9 is only one
more than 8. So you could try to compute
3
√

9 by viewing it as 3
√

8 + 1.

(a) Let f(x) = 3
√

8 + x. Find T2f(x),

and estimate the error | 3
√

9 − T2f(1)|.
(b) Repeat part (i) for “n = 3”,

i.e. compute T3f(x) and estimate | 3
√

9 −
T3f(1)|.

(c) Follow the method of problem 193

to compute
√

10:

(d) Use Taylor’s formula with f(x) =√
9 + x, n = 1, to calculate

√
10 approx-

imately. Show that the error is less than
1/216.
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(e) Repeat with n = 2. Show that the
error is less than 0.0003.

194. Find the eighth degree Taylor polyno-
mial T8f(x) about the point 0 for the func-
tion f(x) = cos x and estimate the error
| cos x− T8f(x)| for |x| < 1.

Now find the ninth degree Taylor poly-
nomial, and estimate | cos x − T9f(x)| for
|x| ≤ 1.

Little-oh and manipulating Taylor polynomials.

Are the following statements True or
False? In mathematics this means that you
should either show that the statement al-
ways holds or else give at least one coun-
terexample, thereby showing that the state-
ment is not always true.

195. (1 + x2)2 − 1 = o(x)?

196. (1 + x2)2 − 1 = o(x2)?

197.
√

1 + x−
√

1 − x = o(x) ?

198. o(x) + o(x) = o(x)?

199. o(x) − o(x) = o(x)?

200. o(x) · o(x) = o(x) ?

201. o(x2) + o(x) = o(x2)?

202. o(x2) − o(x2) = o(x3)?

203. o(2x) = o(x) ?

204. o(x) + o(x2) = o(x)?

205. o(x) + o(x2) = o(x2)?

206. 1 − cos x = o(x)?

207. For which value(s) of k is
√

1 + x2 =
1 + o(xk) (as x→ 0)?

For which value(s) of k is 3
√

1 + x2 =
1 + o(xk) (as x→ 0)?

For which value(s) of k is 1 − cos x2 =
o(xk) (as x→ 0)?

208. Let gn be the coefficient of xn in the Tay-
lor series of the function

g(x) =
1

2 − 3x+ x2

(a) Compute g0 and g1 directly from
the definition of the Taylor series.

(b) Show that the recursion relation
gn = 3gn−1 − 2gn−2 holds for all n ≥ 2.

(c) Compute g2, g3, g4, g5.

(d) Using a partial fraction decomposi-

tion of g(x) find a formula for g(n)(0), and
hence for gn.

209. Answer the same questions as in the pre-
vious problem, for the functions

h(x) =
x

2 − 3x+ x2

and

k(x) =
2 − x

2 − 3x+ x2
.

210. Let hn be the coefficient of xn in the Tay-
lor series of

h(x) =
1 + x

2 − 5x+ 2x2
.

(a) Find a recursion relation for the hn.

(b) Compute h0, h1, . . . , h8.

(c) Derive a formula for hn valid for all
n, by using a partial fraction expansion.

(d) Is h2009 more or less than a million?
A billion?

Find the Taylor series for the follow-
ing functions, by substituting, adding, mul-
tiplying, applying long division and/or dif-

ferentiating known series for 1
1+x

, ex, sinx,

cos x and lnx.

211. eat

212. e1+t

213. e−t
2

214.
1 + t

1 − t

215.
1

1 + 2t

216.
ln(1 + x)

x

217.
et

1 − t

218.
1√

1 − t

219.
1√

1 − t2
(recommendation: use the an-

swer to problem 218)

220. arcsin t
(use problem 218 again)

221. Compute T4[e
−t cos t] (See example

16.11.)

222. T4[e
−t sin 2t]

223.
1

2 − t− t2
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224.
3
p

1 + 2t + t2

225. ln(1 − t2)

226. sin t cos t

Limits of Sequences.

Compute the following limits:

227. lim
n→∞

n

2n− 3

228. lim
n→∞

n2

2n− 3

229. lim
n→∞

n2

2n2 + n− 3

230. lim
n→∞

2n + 1

1 − 2n

231. lim
n→∞

2n + 1

1 − 3n

232. lim
n→∞

en + 1

1 − 2n

233. lim
n→∞

n2

(1.01)n

234. lim
n→∞

1000n

n!

235. lim
n→∞

n! + 1

(n+ 1)!

236. Compute lim
n→∞

(n!)2

(2n)!
[Hint: write out all

the factors in numerator and denominator.]

237. Let fn be the nth Fibonacci number.
Compute

lim
n→∞

fn

fn−1

Convergence of Taylor Series.

238. Prove that the Taylor series for f(x) =
cos x converges to f(x) for all real numbers
x (by showing that the remainder term goes
to zero as n→ ∞).

239. Prove that the Taylor series for g(x) =
sin(2x) converges to g(x) for all real num-
bers x .

240. Prove that the Taylor series for h(x) =
cosh(x) converges to h(x) for all real num-
bers x .

241. Prove that the Taylor series for k(x) =
e2x+3 converges to k(x) for all real numbers
x .

242. Prove that the Taylor series for ℓ(x) =
cos

`
x− π

7

´
converges to ℓ(x) for all real num-

bers x.

243. If the Taylor series of a function y = f(x)
converges for all x, does it have to converge
to f(x), or could it converge to some other
function?

244. For which real numbers x does the Taylor

series of f(x) =
1

1 − x
converge to f(x)?

245. For which real numbers x does the Tay-

lor series of f(x) =
1

1 − x2
converge to f(x)?

(hint: a substitution may help.)

246. For which real numbers x does the Taylor

series of f(x) =
1

1 + x2
converge to f(x)?

247. For which real numbers x does the Taylor

series of f(x) =
1

3 + 2x
converge to f(x)?

248. For which real numbers x does the Tay-

lor series of f(x) =
1

2 − x− x2
converge to

f(x)? (hint: use pfd and the Geometric Se-
ries to find the remainder term.)

249. Show that the Taylor series for f(x) =
ln(1 + x) converges when −1 < x < 1 by
integrating the Geometric Series

1

1 + t
= 1 − t+ t2 − t3 + · · ·

+ (−1)ntn + (−1)n+1 t
n+1

1 + t

from t = 0 to t = x. (See §19.)

250. Show that the Taylor series for f(x) =

e−x
2

converges for all real numbers x. (Set
t = −x2 in the Taylor series with remainder
for et.)

251. Show that the Taylor series for f(x) =
sin(x4) converges for all real numbers x.
(Set t = x4 in the Taylor series with remain-
der for sin t.)

252. Show that the Taylor series for f(x) =
1/(1 + x3) converges whenever −1 < x < 1
(Use the Geometric Series.)

253. For which x does the Taylor series of
f(x) = 2/(1 + 4x2) converge? (Again, use
the Geometric Series.)
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254. The error function from statistics is de-
fined by

erf(x) =
1√
π

Z x

0
e−t

2/2 dt

(a) Find the Taylor series of the error
function from the Taylor series of f(r) = er

(set r = −t2/2 and integrate).

(b) Estimate the error term and show
that the Taylor series of the error function
converges for all real x.

255. Prove Leibniz’ formula for
π

4
by mimick-

ing the proof in section 19. Specifically, find
a formula for the remainder in :

1

1 + t2
= 1 − t2 + · · · + (−1)nt2n + R2n(t)

and integrate this from t = 0 to t = 1.

Approximating integrals.

256. (a) Compute T2{sin t} and give an upper
bound for R2{sin t} for 0 ≤ t ≤ 0.5

(b) Use part (a) to approximate
Z 0.5

0
sin(x2) dx, and give an upper bound

for the error in your approximation.

257. Approximate

Z 0.1

0
arctan xdx and esti-

mate the error in your approximation by
analyzing T2f(t) and R2f(t) where f(t) =
arctan t.

258. Approximate

Z 0.1

0
x2e−x

2
dx and esti-

mate the error in your approximation by
analyzing T3f(t) and R3f(t) where f(t) =
te−t.

259. Estimate

Z 0.5

0

p

1 + x4 dx with an error

of less than 10−4.

260. Estimate

Z 0.1

0
arctanx dx with an error

of less than 0.001.
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Complex Numbers and the Complex Exponential

23. Complex numbers

The equation x2 + 1 = 0 has no solutions, because for any real number x the square x2 is
nonnegative, and so x2 + 1 can never be less than 1. In spite of this it turns out to be very useful
to assume that there is a number i for which one has

(17) i2 = −1.

Any complex number is then an expression of the form a + bi, where a and b are old-fashioned
real numbers. The number a is called the real part of a+ bi, and b is called its imaginary part.

Traditionally the letters z and w are used to stand for complex numbers.

Since any complex number is specified by two real numbers one can visualize them by plotting
a point with coordinates (a, b) in the plane for a complex number a+ bi. The plane in which one
plot these complex numbers is called the Complex plane, or Argand plane.

z = a+ bi

a = Re(z)

b = Im(z)

θ = arg zr = |z| =
√ a

2 + b
2

Figure 7. A complex number.

You can add, multiply and divide complex numbers. Here’s how:

To add (subtract) z = a+ bi and w = c+ di

z + w = (a + bi) + (c+ di) = (a + c) + (b+ d)i,

z − w = (a + bi) − (c+ di) = (a − c) + (b− d)i.

To multiply z and w proceed as follows:

zw = (a + bi)(c + di)

= a(c+ di) + bi(c+ di)

= ac + adi+ bci+ bdi2

= (ac − bd) + (ad + bc)i

where we have use the defining property i2 = −1 to get rid of i2.
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To divide two complex numbers one always uses the following trick.

a+ bi

c+ di
=
a+ bi

c+ di
· c− di

c− di

=
(a+ bi)(c− di)

(c+ di)(c − di)

Now

(c+ di)(c − di) = c2 − (di)2 = c2 − d2i2 = c2 + d2,

so

a+ bi

c+ di
=

(ac + bd) + (bc− ad)i

c2 + d2

=
ac + bd

c2 + d2
+
bc− ad

c2 + d2
i

Obviously you do not want to memorize this formula: instead you remember the trick, i.e. to
divide c+ di into a+ bi you multiply numerator and denominator with c− di.

For any complex number w = c + di the number c − di is called its complex conjugate.
Notation:

w = c+ di, w̄ = c− di.

A frequently used property of the complex conjugate is the following formula

(18) ww̄ = (c+ di)(c − di) = c2 − (di)2 = c2 + d2.

The following notation is used for the real and imaginary parts of a complex number z. If

z = a+ bi then

a = the Real Part of z = Re(z), b = the Imaginary Part of z = Im(z).

Note that both Rez and Imz are real numbers. A common mistake is to say that Imz = bi. The
“i” should not be there.

24. Argument and Absolute Value

For any given complex number z = a+ bi one defines the absolute value or modulus to be

|z| =
p

a2 + b2,

so |z| is the distance from the origin to the point z in the complex plane (see figure 7).

The angle θ is called the argument of the complex number z. Notation:

arg z = θ.

The argument is defined in an ambiguous way: it is only defined up to a multiple of 2π. E.g. the
argument of −1 could be π, or −π, or 3π, or, etc. In general one says arg(−1) = π + 2kπ, where
k may be any integer.

From trigonometry one sees that for any complex number z = a+ bi one has

a = |z| cos θ, and b = |z| sin θ,

so that

|z| = |z| cos θ + i|z| sin θ = |z|
`
cos θ + i sin θ

´
.

and

tan θ =
sin θ

cos θ
=
b

a
.

24.1. Example: Find argument and absolute value of z = 2 + i. Solution: |z| =√
22 + 12 =

√
5. z lies in the first quadrant so its argument θ is an angle between 0 and π/2.

From tan θ = 1
2

we then conclude arg(2 + i) = θ = arctan
1

2
.
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a

b
c

d

z

w

z +w

Figure 8. Addition of z = a + bi and w = c+ di

25. Geometry of Arithmetic

Since we can picture complex numbers as points in the complex plane, we can also try to
visualize the arithmetic operations “addition” and “multiplication.” To add z and w one forms
the parallelogram with the origin, z and w as vertices. The fourth vertex then is z+w. See figure
8.

z = a + bi

iz = −b+ ai

Figure 9. Multiplication of a+ bi by i.

To understand multiplication we first look at multiplication with i. If z = a+ bi then

iz = i(a+ bi) = ia+ bi2 = ai − b = −b+ ai.

Thus, to form iz from the complex number z one rotates z counterclockwise by 90 degrees. See
figure 9.

If a is any real number, then multiplication of w = c+ di by a gives

aw = ac + adi,

so aw points in the same direction, but is a times as far away from the origin. If a < 0 then aw
points in the opposite direction. See figure 10.

Next, to multiply z = a + bi and w = c+ di we write the product as

zw = (a + bi)w = aw + biw.

Figure 11 shows a + bi on the right. On the left, the complex number w was first drawn, then
aw was drawn. Subsequently iw and biw were constructed, and finally zw = aw+ biw was drawn
by adding aw and biw.

One sees from figure 11 that since iw is perpendicular to w, the line segment from 0 to biw is
perpendicular to the segment from 0 to aw. Therefore the larger shaded triangle on the left is a
right triangle. The length of the adjacent side is a|w|, and the length of the opposite side is b|w|.
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−2z

−z

z

2z

3z

Figure 10. Multiplication of a real and a complex number

iw

w

aw

aw+biw

a

a+bi

biw

θ
θ

ϕ

b

Figure 11. Multiplication of two complex numbers

The ratio of these two lengths is a : b, which is the same as for the shaded right triangle on the
right, so we conclude that these two triangles are similar.

The triangle on the left is |w| times as large as the triangle on the right. The two angles
marked θ are equal.

Since |zw| is the length of the hypothenuse of the shaded triangle on the left, it is |w| times
the hypothenuse of the triangle on the right, i.e. |zw| = |w| · |z|.

The argument of zw is the angle θ + ϕ; since θ = arg z and ϕ = argw we get the following
two formulas

|zw| = |z| · |w|(19)

arg(zw) = arg z + argw,(20)

in other words,

when you multiply complex numbers, their lengths get multiplied
and their arguments get added.

26. Applications in Trigonometry

26.1. Unit length complex numbers. For any θ the number z = cos θ+ i sin θ has length
1: it lies on the unit circle. Its argument is arg z = θ. Conversely, any complex number on the
unit circle is of the form cos φ+ i sinφ, where φ is its argument.
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26.2. The Addition Formulas for Sine & Cosine. For any two angles θ and φ one can
multiply z = cos θ + i sin θ and w = cosφ + i sinφ. The product zw is a complex number of
absolute value |zw| = |z| · |w| = 1 · 1, and with argument arg(zw) = arg z + argw = θ+ φ. So zw
lies on the unit circle and must be cos(θ + φ) + i sin(θ + φ). Thus we have

(21) (cos θ + i sin θ)(cos φ+ i sinφ) = cos(θ + φ) + i sin(θ + φ).

By multiplying out the Left Hand Side we get

(cos θ + i sin θ)(cos φ+ i sinφ) = cos θ cos φ− sin θ sinφ(22)

+ i(sin θ cosφ+ cos θ sinφ).

Compare the Right Hand Sides of (21) and (22), and you get the addition formulas for Sine and
Cosine:

cos(θ + φ) = cos θ cosφ− sin θ sinφ

sin(θ + φ) = sin θ cosφ+ cos θ sinφ

26.3. De Moivre’s formula. For any complex number z the argument of its square z2 is
arg(z2) = arg(z · z) = arg z + arg z = 2arg z. The argument of its cube is arg z3 = arg(z · z2) =
arg(z) + arg z2 = arg z + 2arg z = 3arg z. Continuing like this one finds that

(23) arg zn = n arg z

for any integer n.

Applying this to z = cos θ + i sin θ you find that zn is a number with absolute value |zn| =
|z|n = 1n = 1, and argument n arg z = nθ. Hence zn = cosnθ + i sinnθ. So we have found

(24) (cos θ + i sin θ)n = cosnθ + i sinnθ.

This is de Moivre’s formula.

For instance, for n = 2 this tells us that

cos 2θ + i sin 2θ = (cos θ + i sin θ)2 = cos2 θ − sin2 θ + 2i cos θ sin θ.

Comparing real and imaginary parts on left and right hand sides this gives you the double angle
formulas cos θ = cos2 θ − sin2 θ and sin 2θ = 2 sin θ cos θ.

For n = 3 you get, using the Binomial Theorem, or Pascal’s triangle,

(cos θ + i sin θ)3 = cos3 θ + 3i cos2 θ sin θ + 3i2 cos θ sin2 θ + i3 sin3 θ

= cos3 θ − 3 cos θ sin2 θ + i(3 cos2 θ sin θ − sin3 θ)

so that

cos 3θ = cos3 θ − 3 cos θ sin2 θ

and

sin 3θ = cos2 θ sin θ − sin3 θ.

In this way it is fairly easy to write down similar formulas for sin 4θ, sin 5θ, etc.. . .

27. Calculus of complex valued functions

A complex valued function on some interval I = (a, b) ⊆ R is a function f : I → C. Such a
function can be written as in terms of its real and imaginary parts,

(25) f(x) = u(x) + iv(x),

in which u, v : I → R are two real valued functions.

One defines limits of complex valued functions in terms of limits of their real and imaginary
parts. Thus we say that

lim
x→x0

f(x) = L

if f(x) = u(x) + iv(x), L = A+ iB, and both

lim
x→x0

u(x) = A and lim
x→x1

v(x) = B

hold. From this definition one can prove that the usual limit theorems also apply to complex
valued functions.
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1

eiθ = cos θ + i sin θ

θ

Figure 12. Euler’s definition of eiθ

27.1. Theorem. If limx→x0 f(x) = L and limx→x0 g(x) = M , then one has

lim
x→x0

f(x) ± g(x) = L±M,

lim
x→x0

f(x)g(x) = LM,

lim
x→x0

f(x)

g(x)
=

L

M
, provided M 6= 0.

The derivative of a complex valued function f(x) = u(x) + iv(x) is defined by simply differ-
entiating its real and imaginary parts:

(26) f ′(x) = u′(x) + iv′(x).

Again, one finds that the sum,product and quotient rules also hold for complex valued functions.

27.2. Theorem. If f, g : I → C are complex valued functions which are differentiable at
some x0 ∈ I, then the functions f ± g, fg and f/g are differentiable (assuming g(x0) 6= 0 in the
case of the quotient.) One has

(f ± g)′(x0) = f ′(x0) ± g′(x0)

(fg)′(x0) = f ′(x0)g(x0) + f(x0)g′(x0)
„
f

g

«′
(x0) =

f ′(x0)g(x0) − f(x0)g′(x0)

g(x0)2

Note that the chain rule does not appear in this list! See problem 289 for more about the chain
rule.

28. The Complex Exponential Function

We finally give a definition of ea+bi. First we consider the case a = 0:

28.1. Definition. For any real number t we set

eit = cos t+ i sin t.

See Figure 12.

28.2. Example. eπi = cos π + i sinπ = −1. This leads to Euler’s famous formula

eπi + 1 = 0,

which combines the five most basic quantities in mathematics: e, π, i, 1, and 0.

Reasons why the definition 28.1 seems a good definition.

Reason 1. We haven’t defined eit before and we can do anything we like.
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Reason 2. Substitute it in the Taylor series for ex:

eit = 1 + it +
(it)2

2!
+

(it)3

3!
+

(it)4

4!
+ · · ·

= 1 + it − t2

2!
− i

t3

3!
+
t4

4!
+ i

t5

5!
− · · ·

= 1 − t2/2! + t4/4! − · · ·
+ i

`
t− t3/3! + t5/5! − · · ·

´

= cos t+ i sin t.

This is not a proof, because before we had only proved the convergence of the Taylor series for ex

if x was a real number, and here we have pretended that the series is also good if you substitute
x = it.

Reason 3. As a function of t the definition 28.1 gives us the correct derivative. Namely,
using the chain rule (i.e. pretending it still applies for complex functions) we would get

deit

dt
= ieit.

Indeed, this is correct. To see this proceed from our definition 28.1:

deit

dt
=
d cos t+ i sin t

dt

=
d cos t

dt
+ i

d sin t

dt
= − sin t+ i cos t

= i(cos t + i sin t)

Reason 4. The formula ex · ey = ex+y still holds. Rather, we have eit+is = eiteis. To
check this replace the exponentials by their definition:

eiteis = (cos t+ i sin t)(cos s+ i sin s) = cos(t+ s) + i sin(t+ s) = ei(t+s).

Requiring ex ·ey = ex+y to be true for all complex numbers helps us decide what ea+bi shoud
be for arbitrary complex numbers a+ bi.

28.3. Definition. For any complex number a+ bi we set

ea+bi = ea · eib = ea(cos b+ i sin b).

One verifies as above in “reason 3” that this gives us the right behaviour under differentiation.
Thus, for any complex number r = a+ bi the function

y(t) = ert = eat(cos bt+ i sin bt)

satisfies

y′(t) =
dert

dt
= rert.

29. Complex solutions of polynomial equations

29.1. Quadratic equations. The well-known quadratic formula tells you that the equation

(27) ax2 + bx+ c = 0

has two solutions, given by

(28) x± =
−b±

√
D

2a
, D = b2 − 4ac.

If the coefficients a, b, c are real numbers and if the discriminant D is positive, then this formula
does indeed give two real solutions x+ and x−. However, if D < 0, then there are no real solutions,
but there are two complex solutions, namely

x± =
−b
2a

± i

√
−D
2a
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29.2. Example: solve x2 +2x+5 = 0. Solution: Use the quadratic formula, or complete
the square:

x2 + 2x+ 5 = 0

⇐⇒ x2 + 2x+ 1 = −4

⇐⇒ (x+ 1)2 = −4

⇐⇒ x+ 1 = ±2i

⇐⇒ x = −1 ± 2i.

So, if you allow complex solutions then every quadratic equation has two solutions, unless
the two solutions coincide (the case D = 0, in which there is only one solution.)

29.3. Complex roots of a number. For any given complex number w there is a method
of finding all complex solutions of the equation

(29) zn = w

if n = 2, 3, 4, · · · is a given integer.

To find these solutions you write w in polar form, i.e. you find r > 0 and θ such that w = reiθ.
Then

z = r1/neiθ/n

is a solution to (29). But it isn’t the only solution, because the angle θ for which w = riθ isn’t
unique – it is only determined up to a multiple of 2π. Thus if we have found one angle θ for which
w = riθ, then we can also write

w = rei(θ+2kπ), k = 0,±1,±2, · · ·
The nth roots of w are then

zk = r1/nei
`

θ

n
+2 k

n
π

´

Here k can be any integer, so it looks as if there are infinitely many solutions. However, if you
increase k by n, then the exponent above increases by 2πi, and hence zk does not change. In a
formula:

zn = z0, zn+1 = z1, zn+2 = z2, . . . zk+n = zk

So if you take k = 0, 1, 2, · · · , n− 1 then you have had all the solutions.

The solutions zk always form a regular polygon with n sides.

29.4. Example: find all sixth roots of w = 1. We are to solve z6 = 1. First write 1 in
polar form,

1 = 1 · e0i = 1 · e2kπi, (k = 0,±1,±2, . . .).

Then we take the 6th root and find

zk = 11/6e2kπi/6 = ekπi/3, (k = 0,±1,±2, . . .).

The six roots are

z0 = 1 z1 = eπi/3 = 1
2

+ i
2

√
3 z2 = e2πi/3 = − 1

2
+ i

2

√
3

z3 = −1 z4 = eπi/3 = − 1
2
− i

2

√
3 z5 = eπi/3 = 1

2
− i

2

√
3

30. Other handy things you can do with complex numbers

30.1. Partial fractions. Consider the partial fraction decomposition

x2 + 3x− 4

(x− 2)(x2 + 4)
=

A

x− 2
+
Bx+ C

x2 + 4

The coefficient A is easy to find: multiply with x − 2 and set x = 2 (or rather, take the limit
x→ 2) to get

A =
22 + 3 · 2 − 4

22 + 4
= · · · .
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1

1
2

+ i
2

√
3− 1

2
+ i

2

√
3

−1

− 1
2
− i

2

√
3 1

2
− i

2

√
3

Figure 13. The sixth roots of 1. There are six of them, and they re arranged in
a regular hexagon.

Before we had no similar way of finding B and C quickly, but now we can apply the same trick:
multiply with x2 + 4,

x2 + 3x− 4

(x− 2)
= Bx+ C + (x2 + 4)

A

x− 2
,

and substitute x = 2i. This make x2 + 4 = 0, with result

(2i)2 + 3 · 2i− 4

(2i− 2)
= 2iB + C.

Simplify the complex number on the left:

(2i)2 + 3 · 2i− 4

(2i− 2)
=

−4 + 6i− 4

−2 + 2i

=
−8 + 6i

−2 + 2i

=
(−8 + 6i)(−2 − 2i)

(−2)2 + 22

=
28 + 4i

8

=
7

2
+
i

2

So we get 2iB + C = 7
2

+ i
2
; since B and C are real numbers this implies

B =
1

4
, C =

7

2
.

30.2. Certain trigonometric and exponential integrals. You can compute

I =

Z

e3x cos 2xdx



58

by integrating by parts twice. You can also use that cos 2x is the real part of e2ix. Instead of
computing the real integral I, we look at the following related complex integral

J =

Z

e3xe2ixdx

which we get from I by replacing cos 2x with e2ix. Since e2ix = cos 2x+ i sin 2x we have

J =

Z

e3x(cos 2x+ i sin 2x)dx =

Z

e3x cos 2xdx+ i

Z

e3x sin 2xdx

i.e.,

J = I + something imaginary.

The point of all this is that J is easier to compute than I:

J =

Z

e3xe2ixdx =

Z

e3x+2ixdx =

Z

e(3+2i)xdx =
e(3+2i)x

3 + 2i
+ C

where we have used that Z

eaxdx =
1

a
eax + C

holds even if a is complex is a complex number such as a = 3 + 2i.

To find I you have to compute the real part of J , which you do as follows:

e(3+2i)x

3 + 2i
= e3x

cos 2x+ i sin 2x

3 + 2i

= e3x
(cos 2x+ i sin 2x)(3 − 2i)

(3 + 2i)(3 − 2i)

= e3x
3 cos 2x+ 2 sin 2x+ i(· · · )

13
so Z

e3x cos 2xdx = e3x
`

3
13

cos 2x+ 2
13

sin 2x
´

+ C.

30.3. Complex amplitudes. A harmonic oscillation is given by

y(t) = A cos(ωt − φ),

where A is the amplitude, ω is the frequency, and φ is the phase of the oscillation. If you add
two harmonic oscillations with the same frequency ω, then you get another harmonic oscillation
with frequency ω. You can prove this using the addition formulas for cosines, but there’s another
way using complex exponentials. It goes like this.

Let y(t) = A cos(ωt − φ) and z(t) = B cos(ωt − θ) be the two harmonic oscillations we wish
to add. They are the real parts of

Y (t) = A {cos(ωt − φ) + i sin(ωt − φ)} = Aeiωt−iφ = Ae−iφeiωt

Z(t) = B {cos(ωt− θ) + i sin(ωt − θ)} = Beiωt−iθ = Be−iθeiωt

Therefore y(t) + z(t) is the real part of Y (t) + Z(t), i.e.

y(t) + z(t) = Re
`
Y (t)

´
+ Re

`
Z(t)

´
= Re

`
Y (t) + Z(t)

´
.

The quantity Y (t) + Z(t) is easy to compute:

Y (t) + Z(t) = Ae−iφeiωt + Be−iθeiωt =
“

Ae−iφ +Be−iθ
”

eiωt.

If you now do the complex addition

Ae−iφ +Be−iθ = Ce−iψ,

i.e. you add the numbers on the right, and compute the absolute value C and argument −ψ of
the sum, then we see that Y (t) + Z(t) = Cei(ωt−ψ). Since we were looking for the real part of
Y (t) + Z(t), we get

y(t) + z(t) = A cos(ωt− φ) + B cos(ωt − θ) = C cos(ωt− ψ).

The complex numbers Ae−iφ, Be−iθ and Ce−iψ are called the complex amplitudes for the har-
monic oscillations y(t), z(t) and y(t) + z(t).
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w

The recipe for adding harmonic oscillations can therefore be summarized as follows: Add the
complex amplitudes.

31. PROBLEMS

Computing and Drawing Complex Numbers.

261. Compute the following complex numbers
by hand.

Draw all numbers in the complex (or
“Argand”) plane (use graph paper or quad
paper if necessary).

Compute absolute value and argument
of all numbers involved.

i2; i3; i4; 1/i;

(1 + 2i)(2 − i);

(1 + i)(1 + 2i)(1 + 3i);

( 1
2

√
2 + i

2

√
2)2; ( 1

2
+ i

2

√
3)3;

1

1 + i
; 5/(2 − i);

262. [Deriving the addition formula for
tan(θ + φ)] Let θ, φ ∈

`
−π

2
, π

2

´
be two an-

gles.

(a) What are the arguments of

z = 1 + i tan θ and w = 1 + i tanφ?

(Draw both z and w.)

(b) Compute zw.

(c) What is the argument of zw?

(d) Compute tan(arg zw).

263. Find formulas for cos 4θ, sin 4θ, cos 5θ
and sin 6θ in terms of cos θ and sin θ, by us-
ing de Moivre’s formula.

264. In the following picture draw 2w, 3
4
w, iw,

−2iw, (2 + i)w and (2 − i)w. (Try to make
a nice drawing, use a ruler.)

Make a new copy of the picture, and
draw w̄, −w̄ and −w.

Make yet another copy of the drawing.
Draw 1/w, 1/w̄, and −1/w. For this draw-
ing you need to know where the unit circle is
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in your drawing: Draw a circle centered at
the origin with radius of your choice, and let
this be the unit circle. [Depending on which
circle you draw you will get a different an-
swer!]

265. Verify directly from the definition of addi-
tion and multiplication of complex numbers
that

(a) z + w = w + z

(b) zw = wz

(c) z(v + w) = zv + zw

holds for all complex numbers v, w, and z.

266. True or False? (In mathematics this
means that you should either give a proof
that the statement is always true, or else
give a counterexample, thereby showing that
the statement is not always true.)

For any complex numbers z and w one
has

(a) Re(z) + Re(w) = Re(z +w)

(b) z +w = z̄ + w̄

(c) Im(z) + Im(w) = Im(z +w)

(d) zw = (z̄)(w̄)

(e) Re(z)Re(w) = Re(zw)

(f) z/w = (z̄)/(w̄)

(g) Re(iz) = Im(z)

(h) Re(iz) = iRe(z)

(i) Re(iz) = Im(z)

(j) Re(iz) = iIm(z)

(k) Im(iz) = Re(z)

(l) Re(z̄) = Re(z)

267. The imaginary part of a complex num-
ber is known to be twice its real part. The
absolute value of this number is 4. Which
number is this?

268. The real part of a complex number is
known to be half the absolute value of that
number. The imaginary part of the number
is 1. Which number is it?

The Complex Exponential.

269. Compute and draw the following num-
bers in the complex plane

eπi/3; eπi/2;
√

2e3πi/4; e17πi/4.

eπi + 1; ei ln 2.

1

eπi/4
;
e−πi

eπi/4
;
e2−πi/2

eπi/4

e2009πi; e2009πi/2 .

−8e4πi/3 ; 12eπi + 3e−πi.

270. Compute the absolute value and argu-
ment of e(ln 2)(1+i).

271. Suppose z can be any complex number.

(a) Is it true that ez is always a positive
number?

(b) Is it true that ez 6= 0?

272. Verify directly from the definition that

e−it =
1

eit

holds for all real values of t.

273. Show that

cos t =
eit + e−it

2
, sin t =

eit − e−it

2i

274. Show that

cosh x = cos ix, sinhx =
1

i
sin ix.

275. The general solution of a second order
linear differential equation contains expres-
sions of the form Aeiβt+Be−iβt. These can
be rewritten as C1 cos βt+ C2 sinβt.

If Aeiβt + Be−iβt = 2 cos βt + 3 sinβt,
then what are A and B?

276. (a) Show that you can write a “cosine-
wave” with amplitude A and phase φ as fol-
lows

A cos(t− φ) = Re
`
zeit

´
,

where the “complex amplitude” is given by

z = Ae−iφ. (See §30.3).

(b) Show that a “sine-wave” with am-
plitude A and phase φ as follows

A sin(t− φ) = Re
`
zeit

´
,

where the “complex amplitude” is given by
z = −iAe−iφ.

277. Find A and φ where A cos(t − φ) =

2 cos(t) + 2 cos(t − 2
3
π).

278. Find A and φ where A cos(t − φ) =

12 cos(t − 1
6
π) + 12 sin(t − 1

3
π).

279. Find A and φ where A cos(t − φ) =
12 cos(t − π/6) + 12 cos(t − π/3).

280. Find A and φ such that A cos(t − φ) =

cos
`
t− 1

6
π

´
+

√
3 cos

`
t− 2

3
π

´
.
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Real and Complex Solutions of Algebraic Equations.

281. Find and draw all real and complex so-
lutions of

(a) z2 + 6z + 10 = 0

(b) z3 + 8 = 0

(c) z3 − 125 = 0

(d) 2z2 + 4z + 4 = 0

(e) z4 + 2z2 − 3 = 0

(f) 3z6 = z3 + 2

(g) z5 − 32 = 0

(h) z5 − 16z = 0

Calculus of Complex Valued Functions.

282. Compute the derivatives of the following
functions

f(x) =
1

x+ i
g(x) = log x+ i arctan x

h(x) = eix
2

k(x) = log
i+ x

i− x

Try to simplify your answers.

283. (a) Compute
Z

`
cos 2x

´4
dx

by using cos θ = 1
2
(eiθ + e−iθ) and expand-

ing the fourth power.

(b) Assuming a ∈ R, compute
Z

e−2x
`
sinax

´2
dx.

(same trick: write sinax in terms of complex
exponentials; make sure your final answer
has no complex numbers.)

284. Use cosα = (eiα + e−iα)/2, etc. to eval-
uate these indefinite integrals:

(a)

Z

cos2 xdx

(b)

Z

cos4 xdx,

(c)

Z

cos2 x sinxdx,

(d)

Z

sin3 xdx,

(e)

Z

cos2 x sin2 x dx,

(f)

Z

sin6 xdx

(g)

Z

sin(3x) cos(5x) dx

(h)

Z

sin2(2x) cos(3x) dx

(i)

Z π/4

0
sin(3x) cos(x) dx

(j)

Z π/3

0
sin3(x) cos2(x) dx

(k)

Z π/2

0
sin2(x) cos2(x) dx

(l)

Z π/3

0
sin(x) cos2(x) dx

285. Compute the following integrals when
m 6= n are distinct integers.

(a)

Z 2π

0
sin(mx) cos(nx) dx

(b)

Z 2π

0
sin(nx) cos(nx) dx

(c)

Z 2π

0
cos(mx) cos(nx) dx

(d)

Z π

0
cos(mx) cos(nx) dx

(e)

Z 2π

0
sin(mx) sin(nx) dx

(f)

Z π

0
sin(mx) sin(nx) dx

These integrals are basic to the the-
ory of Fourier series, which occurs in
many applications, especially in the study of
wave motion (light, sound, economic cycles,
clocks, oceans, etc.). They say that different
frequency waves are “independent”.

286. Show that cos x+sinx = C cos(x+β) for
suitable constants C and β and use this to
evaluate the following integrals.

(a)

Z
dx

cos x+ sinx

(b)

Z
dx

(cos x+ sinx)2

(c)

Z
dx

A cos x+ B sinx

where A and B are any constants.

287. Compute the integrals
Z π/2

0
sin2 kx sin2 lx dx,

where k and l are positive integers.
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288. Show that for any integers k, l,m
Z π

0
sinkx sin lx sinmx dx = 0

if and only if k + l+m is even.

289. (i) Prove the following version of the
Chain rule: If f : I → C is a differentiable
complex valued function, and g : J → I
is a differentiable real valued function, then
h = f ◦g : J → C is a differentiable function,

and one has

h′(x) = f ′(g(x))g′(x).

(ii) Let n ≥ 0 be a nonnegative integer.
Prove that if f : I → C is a differentiable
function, then g(x) = f(x)n is also differen-
tiable, and one has

g′(x) = nf(x)n−1f ′(x).

Note that the chain rule from part (a) does
not apply! Why?
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Differential Equations

32. What is a DiffEq?

A differential equation is an equation involving an unknown function and its derivatives.
The order of the differential equation is the order of the highest derivative which appears. A
linear differential equation is one of form

y(n) + a1(x)y(n−1) + · · · + an−1(x)y′ + an(x)y = k(x)

where the coefficients a1(x), . . . , an(x) and the right hand side k(x) are given functions of x and
y is the unknown function. Here

y(k) =
dky

dxk

denotes the kth derivative of y so this equation has order n. We shall mainly study the case n = 1
where the equation has form

y′ + a(x)y = k(x)

and the case n = 2 with constant coefficients where the equation has form

y′′ + ay′ + by = k(x).

When the right hand side k(x) is zero the equation is called homogeneous linear and otherwise it
is called inhomogeneous linear (or nonhomogeneous linear by some people). For a homogeneous
linear equation the sum of two solutions is a solution and a constant multiple of a solution is a
solution. This property of linear equations is called the principle of superposition.

33. First Order Separable Equations

A separable differential equation is a diffeq of the form

(30) y′(x) = F (x)G(y(x)), or
dy

dx
= F (x)G(y).

To solve this equation divide by G(y(x)) to get

(31)
1

G(y(x))

dy

dx
= F (x).

Next find a function H(y) whose derivative with respect to y is

(32) H′(y) =
1

G(y)

„

solution: H(y) =

Z
dy

G(y)
.

«

Then the chain rule implies that (31) can be written as

dH(y(x))

dx
= F (x).

In words: H(y(x)) is an antiderivative of F (x), which means we can find H(y(x)) by integrating
F (x):

(33) H(y(x)) =

Z

F (x)dx+ C.

Once you’ve found the integral of F (x) this gives you y(x) in implicit form: the equation (33)
gives you y(x) as an implicit function of x. To get y(x) itself you must solve the equation (33)
for y(x).

A quick way of organizing the calculation goes like this:
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To solve
dy

dx
= F (x)G(y) you first separate the variables,

dy

G(y)
= F (x) dx,

and then integrate,
Z

dy

G(y)
=

Z

F (x) dx.

The result is an implicit equation for the solution y with one undetermined
integration constant.

Determining the constant. The solution you get from the above procedure contains an
arbitrary constant C. If the value of the solution is specified at some given x0, i.e. if y(x0) is
known then you can express C in terms of y(x0) by using (33).

A snag: You have to divide by G(y) which is problematic when G(y) = 0. This has as
consequence that in addition to the solutions you found with the above procedure, there are at
least a few more solutions: the zeroes of G(y) (see Example 33.2 below). In addition to the zeroes
of G(y) there sometimes can be more solutions, as we will see in Example 35.2 on “Leaky Bucket
Dating.”

33.1. Example. We solve
dz

dt
= (1 + z2) cos t.

Separate variables and integrate
Z

dz

1 + z2
=

Z

cos tdt,

to get

arctan z = sin t+ C.

Finally solve for z and you find the general solution

z(t) = tan
`
sin(t) + C

´
.

33.2. Example: The snag in action. If you apply the method to y′(x) = Ky with K

a constant, you get y(x) = eK(x+C). No matter how you choose C you never get the function
y(x) = 0, even though y(x) = 0 satisfies the equation. This is because here G(y) = Ky, and G(y)
vanishes for y = 0.

34. First Order Linear Equations

There are two systematic methods which solve a first order linear inhomogeneous equation

dy

dx
+ a(x)y = k(x). (‡)

You can multiply the equation with an “integrating factor”, or you do a substitution y(x) =
c(x)y0(x), where y0 is a solution of the homogeneous equation (that’s the equation you get by
setting k(x) ≡ 0).

34.1. The Integrating Factor. Let

A(x) =

Z

a(x) dx, m(x) = eA(x).

Multiply the equation (‡) by the “integrating factor” m(x) to get

m(x)
dy

dx
+ a(x)m(x)y = m(x)k(x).

By the chain rule the integrating factor satisfies

dm(x)

dx
= A′(x)m(x) = a(x)m(x).

Therefore one has

dm(x)y

dx
= m(x)

dy

dx
+ a(x)m(x)y = m(x)


dy

dx
+ a(x)y

ff

= m(x)k(x).
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Integrating and then dividing by the integrating factor gives the solution

y =
1

m(x)

„Z

m(x)k(x) dx+ C

«

.

In this derivation we have to divide by m(x), but since m(x) = eA(x) and since exponentials never
vanish we know that m(x) 6= 0, no matter which problem we’re doing, so it’s OK, we can always
divide by m(x).

34.2. Variation of constants for 1st order equations. Here is the second method of
solving the inhomogeneous equation (‡). Recall again that the homogeneous equation associated
with (‡) is

dy

dx
+ a(x)y = 0. (†)

The general solution of this equation is

y(x) = Ce−A(x).

where the coefficient C is an arbitrary constant. To solve the inhomogeneous equation (‡) we
replace the constant C by an unknown function C(x), i.e. we look for a solution in the form

y = C(x)y0(x) where y0(x)
def
= e−A(x).

(This is how the method gets its name: we are allowing the constant C to vary.)

Then y′0(x) + a(x)y0(x) = 0 (because y0(x) solves (†)) and

y′(x) + a(x)y(x) = C′(x)y0(x) + C(x)y′0(x) + a(x)C(x)y0(x) = C′(x)y0(x)

so y(x) = C(x)y0(x) is a solution if C′(x)y0(x) = k(x), i.e.

C(x) =

Z
k(x)

y0(x)
dx.

Once you notice that y0(x) =
1

m(x)
, you realize that the resulting solution

y(x) = C(x)y0(x) = y0(x)

Z
k(x)

y0(x)
dx

is the same solution we found before, using the integrating factor.

Either method implies the following:

34.3. Theorem. The initial value problem

dy

dx
+ a(x)y = 0, y(0) = y0,

has exactly one solution. It is given by

y = y0e
−A(x), where A(x) =

Z x

0
a(t) dt.

The theorem says three things: (1) there is a solution, (2) there is a formula for the solution, (3)
there aren’t any other solutions (if you insist on the initial value y(0) = y0.) The last assertion is
just as important as the other two, so I’ll spend a whole section trying to explain why.

35. Dynamical Systems and Determinism

A differential equation which describes how something (e.g. the position of a particle) evolves
in time is called a dynamical system. In this situation the independent variable is time, so it
is customary to call it t rather than x; the dependent variable, which depends on time is often
denoted by x. In other words, one has a differential equation for a function x = x(t). The simplest
examples have form

(34)
dx

dt
= f(x, t).

In applications such a differential equation expresses a law according to which the quantity x(t)
evolves with time (synonyms: “evolutionary law”, “dynamical law”, “evolution equation for x”).
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A good law is deterministic, which means that any solution of (34) is completely determined
by its value at one particular time t0: if you know x at time t = t0, then the “evolution law” (34)
should predict the values of x(t) at all other times, both in the past (t < t0) and in the future
(t > t0).

Our experience with solving differential equations so far (§33 and §34) tells us that the general
solution to a differential equation like (34) contains an unknown integration constant C. Let’s call
the general solution x(t;C) to emphasize the presence of this constant. If the value of x at some
time t0 is known to be, say, x0, then you get an equation

(35) x(t0;C) = x0

which you can try to solve for C. If this equation always has exactly one solution C then the
evolutionary law (34) is deterministic (the value of x(t0) always determines x(t) at all other times

t); if for some prescribed value x0 at some time t0 the equation (35) has several solutions, then
the evolutionary law (34) is not deterministic (because knowing x(t) at time t0 still does not
determine the whole solution x(t) at times other than t0).

35.1. Example: Carbon Dating. Suppose we have a fossil, and we want to know how
old it is.

All living things contain carbon, which naturally occurs in two isotopes, C14 (unstable) and
C12 (stable). A long as the living thing is alive it eats & breaths, and its ratio of C12 to C14 is
kept constant. Once the thing dies the isotope C14 decays into C12 at a steady rate.

Let x(t) be the ratio of C14 to C12 at time t. The laws of radioactive decay says that there
is a constant k > 0 such that

dx(t)

dt
= −kx(t).

Solve this differential equation (it is both separable and first order linear: you choose your method)
to find the general solution

x(t;C) = Ce−kt.

After some lab work it is found that the current C14/C12 ratio of our fossil is xnow. Thus we have

xnow = Ce−ktnow =⇒ C = xnowe
tnow .

Therefore our fossil’s C14/C12 ratio at any other time t is/was

x(t) = xnowe
k(tnow−t).

This allows you to compute the time at which the fossil died. At this time the C14/C12 ratio must
have been the common value in all living things, which can be measured, let’s call it xlife. So at
the time tdemise when our fossil became a fossil you would have had x(tdemise) = xlife. Hence the
age of the fossil would be given by

xlife = x(tdemise) = xnowe
k(tnow−tdemise) =⇒ tnow − tdemise =

1

k
ln

xlife

xnow

35.2. Example: On Dating a Leaky Bucket. A bucket is filled with water. There’s a
hole in the bottom of the bucket so the water streams out at a certain rate.

h(t) the height of water in the bucket
A area of cross section of bucket
a area of hole in the bucket
v velocity with which water goes through the hole.

h(t)
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Figure 14. Several solutions h(t;C) of the Leaking Bucket Equation (36). Note
how they all have the same values when t ≥ 1.

The amount of water in the bucket is A× h(t);

The rate at which water is leaving the bucket is a× v(t);

Hence
dAh(t)

dt
= −av(t).

In fluid mechanics it is shown that the velocity of the water as it passes through the hole only
depends on the height h(t) of the water, and that, for some constant K,

v(t) =
p
Kh(t).

The last two equations together give a differential equation for h(t), namely,

dh(t)

dt
= − a

A

p
Kh(t).

To make things a bit easier we assume that the constants are such that a
A

√
K = 2. Then h(t)

satisfies

(36) h′(t) = −2
p
h(t).

This equation is separable, and when you solve it you get

dh

2
√
h

= −1 =⇒
p
h(t) = −t+ C.

This formula can’t be valid for all values of t, for if you take t > C, the RHS becomes negative
and can’t be equal to the square root in the LHS. But when t ≤ C we do get a solution,

h(t;C) = (C − t)2.

This solution describes a bucket which is losing water until at time C it is empty. Motivated by
the physical interpretation of our solution it is natural to assume that the bucket stays empty
when t > C, so that the solution with integration constant C is given by

h(t) =

(

(C − t)2 when t ≤ C

0 for t > C.

We now come to the question: is the Leaky Bucket Equation deterministic? The answer is:
NO. If you let C be any negative number, then h(t;C) describes the water level of a bucket which
long ago had water, but emptied out at time C < 0. In particular, for all these solutions of the
diffeq (36) you have h(0) = 0, and knowing the value of h(t) at t = 0 in this case therefore doesn’t
tell you what h(t) is at other times.

Once you put it in terms of the physical interpretation it is actually quite obvious why this
system can’t be deterministic: it’s because you can’t answer the question “If you know that the
bucket once had water and that it is empty now, then how much water did it hold one hour ago?”
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36. Higher order equations

After looking at first order differential equations we now turn to higher order equations.

36.1. Example: Spring with a weight. A body of mass m is suspended by a spring.
There are two forces on the body: gravity and the tension in the spring. Let F be the sum of
these two forces. Newton’s law says that the motion of the weight satisfies F = ma where a is the
acceleration. The force of gravity is mg where g=32ft/sec2; the quantity mg is called the weight
of the body. We assume Hooke’s law which says that the tension in the spring is proportional to
the amount by which the spring is stretched; the constant or proportionality is called the spring
constant. We write k for this spring constant.

m

spring

gravity

y(t)

F

F
The total force acting on the body is therefore

F = mg − ky(t).

According to Newton’s first/second/third law the acceleration a of the body satisfies F = ma.
Since the acceleration a is the second derivative of position y we get the following differential
equation for y(t)

(37) m
d2y

dt2
= mg − ky(t).

36.2. Example: the pendulum.

Fstring

θ

θ
L

F
gravity

=mg

m

P

The velocity of the weight on the pendulum is Ldθ
dt

, hence its acceleration is a = Ld2q/dt2. There

are two forces acting on the weight: gravity (strength mg; direction vertically down) and the
tension in the string (strength: whatever it takes to keep the weight on the circle of radius L and
center P ; direction parallel to the string). Together they leave a force of size Fgravity · sin θ which
accelerates the weight. By Newton’s “F = ma” law you get

mL
d2θ

dt2
= −mg sin θ(t),

or, canceling ms,

(38)
d2θ

dt2
+
g

L
sin θ(t) = 0.
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37. Constant Coefficient Linear Homogeneous Equations

37.1. Differential operators. In this section we study the homogeneous linear differential
equation

(39) y(n) + a1y
(n−1) + · · · + an−1y

′ + any = 0

where the coefficients a1, . . . , an are constants.

37.2. Examples. The three equations

dy

dx
− y = 0,

y′′ − y = 0, y′′ + y = 0

y(iv) − y = 0

are homogeneous linear differential equations with constant coefficients. Their degrees are 1, 2, 2,
and 4.

It will be handy to have an abbreviation for the Left Hand Side in (39), so we agree to write
L[y] for the result of substituting a function y in the LHS of (39). In other words, for any given
function y = y(x) we set

L[y](x)
def
= y(n)(x) + a1y

(n−1)(x) + · · · + an−1y
′(x) + any(x).

We call L an operator. An operator is like a function in that you give it an input, it does a
computation and gives you an output. The difference is that ordinary functions take a number as
their input, while the operator L takes a function y(x) as its input, and gives another function
(the LHS of (39)) as its output. Since the computation of L[y] involves taking derivatives of y,
the operator L is called a differential operator.

37.3. Example. The differential equations in the previous example correspond to the dif-
ferential operators

L1[y] = y′ − y,

L2[y] = y′′ − y, L3[y] = y′′ + y

L4[y] = y(iv) − y.

So one has

L3[sin 2x] =
d2 sin 2x

dx2
− sin 2x = −4 sin 2x− sin 2x = −5 sin 2x.

37.4. The superposition principle. The following theorem is the most important prop-
erty of linear differential equations.

37.5. Superposition Principle. For any two functions y1 and y2 we have

L[y1 + y2] = L[y1] + L[y2].

For any function y and any constant c we have

L[cy] = cL[y].

The proof, which is rather straightforward once you know what to do, will be given in lecture.
It follows from this theorem that if y1, . . . , yk are given functions, and c1, . . . , ck are constants,
then

L[c1y1 + · · · + ckyk] = c1L[y1] + · · · + ckL[yk].

The importance of the superposition principle is that it allows you to take old solutions
to the homogeneous equation and make new ones. Namely, if y1, . . . , yk are solutions to the
homogeneous equation L[y] = 0, then so is c1y1 + · · · + ckyk for any choice of constants c1, . . . ,
ck.
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37.6. Example. Consider the equation

y′′ − 4y = 0.

My cousin Bruce says that the two functions y1(x) = e2x and y2(x) = e−2x both are solutions to
this equations. You can check that Bruce is right just by substituting his solutions in the equation.

The Superposition Principle now implies that

y(x) = c1e
2x + c2e

−2x

also is a solution, for any choice of constants c1, c2.

37.7. The characteristic polynomial. This example contains in it the general method
for solving linear constant coefficient ODEs. Suppose we want to solve the equation (39), i.e.

L[y]
def
= y(n) + a1y

(n−1) + · · · + an−1y
′ + any = 0.

Then the first thing to do is to see if there are any exponential functions y = erx which satisfy
the equation. Since

derx

dx
= rerx,

d2erx

dx2
= r2erx,

d3erx

dx3
= r3erx, etc. . . .

we see that

(40) L[erx] =
`
rn + a1r

n−1 + · · · an−1r + an
´
erx.

The polynomial

P (r) = rn + a1r
n−1 + · · · + an−1r + an.

is called the characteristic polynomial.

We see that y = erx is a solution of L[y] = 0 if and only if P (r) = 0.

37.8. Example. We look for all exponential solutions of the equation

y′′ − 4y = 0.

Substitution of y = erx gives

y′′ − 4y = r2erx − 4erx =
`
r2 − 4

´
erx.

The exponential erx can’t vanish, so y′′ − 4y = 0 will hold exactly when r2 − 4 = 0, i.e. when
r = ±2. Therefore the only exponential functions which satisfy y′′ − 4y = 0 are y1(x) = e2x and
y2(x) = e−2x.

37.9. Theorem. Suppose the polynomial P (r) has n distinct roots r1, r2, . . . , rn. Then the
general solution of L[y] = 0 is

y = c1e
r1x + c2e

r2x + · · · + cne
rnx

where c1, c2, . . . , cn are arbitrary constants.

Proof. We have just seen that the functions y1(x) = er1x, y2(x) = er2x, y3(x) = er3x,
etc. are solutions of the equation L[y] = 0. In Math 320 (or 319, or. . . ) you prove that these are
all the solutions (it also follows from the method of variation of parameters that there aren’t any
other solutions).

�

37.10. Complex roots and repeated roots. If the characteristic polynomial has n dis-
tinct real roots then Theorem 37.9 tells you what the general solution to the equation L[y] = 0 is.
In general a polynomial equation like P (r) = 0 can have repeated roots, and it can have complex
roots.
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37.11. Example. Solve y′′ + 2y′ + y = 0.

The characteristic polynomial is P (r) = r2 + 2r + 1 = (r + 1)2, so the only root of the
characteristic equation r2 + 2r + 1 = 0 is r = −1 (it’s a repeated root). This means that for this
equation we only get one exponential solution, namely y(x) = e−x.

It turns out that for this equation there is another solution which is not exponential. It is

y2(x) = xe−x. You can check that it really satisfies the equation y′′ + 2y′ + y = 0.

When there are repeated roots there are other solutions: if P (r) = 0, then tjert is a solution if
j is a nonnegative integer less than the multiplicity of r. Also, if any of the roots are complex, the
phrase general solution should be understood to mean general complex solution and the coefficients
cj should be complex. If the equation is real, the real and imaginary part of a complex solution
are again solutions. We only describe the case n = 2 in detail.

37.12. Theorem. Consider the differential equation

d2y

dx2
+ a1

dy

dx
+ a2y = 0 (†)

and suppose that r1 and r2 are the solutions of the characteristic equation of r2 + a1r + a2 = 0.
Then

(i): If r1 and r2 are distinct and real, the general solution of (†) is

y = c1e
r1x + c2e

r2x.

(ii): If r1 = r2, the general solution of (†) is

y = c1e
r1x + c2xe

r1x.

(iii): If r1 = α+ βi and r2 = α− βi, the general solution of (†) is

y = c1e
αx cos(βx) + c2e

αx sin(βx).

In each case c1 and c2 are arbitrary constants.

Case (i) and case (iii) can be subsumed into a single case using complex notation:

e(α±βi)x = eαx cos βx± ieαx sinβx,

eαx cos βx =
e(α+βi)x + e(α−βi)x

2
, eαx sinβx =

e(α+βi)x − e(α−βi)x

2i
.

38. Inhomogeneous Linear Equations

In this section we study the inhomogeneous linear differential equation

y(n) + a1y
(n−1) + · · · + an−1y

′ + any = k(x)

where the coefficients a1, . . . , an are constants and the function k(x) is a given function. In the
operator notation this equation may be written

L[y] = k(x).

The following theorem says that once we know one particular solution yp of the inhomogeneous
equation L[y] = k(x) we can find all the solutions y to the inhomogeneous equation L[y] = k(x)
by finding all the solutions yh to the homogeneous equation L[y] = 0.

38.1. Another Superposition Principle. Assume L[yp] = k(x). Then L[y] = k(x) if
and only if y = yp + yh where L[yh] = 0.

Proof. Suppose L[yp] = k(x) and y = yp + yh. Then

L[y] = L[yp + yh] = L[yp] + L[yh] = k(x) + L[yh].

Hence L[y] = k(x) if and only if L[yh] = 0. �
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39. Variation of Constants

There is a method to find the general solution of a linear inhomogeneous equation of arbitrary
order, provided you already know the solutions to the homogeneous equation. We won’t explain
this method here, but merely show you the answer you get in the case of second order equations.

If y1(x) and y2(x) are solutions to the homogeneous equation

y′′(x) + a(x)y′(x) + b(x)y(x) = 0

for which

W (x)
def
= y1(x)y′2(x) − y′1(x)y2(x) 6= 0,

then the general solution of the inhomogeneous equation

y′′(x) + a(x)y′(x) + b(x)y(x) = f(x)

is given by

y(x) = −y1(x)
Z
y2(ξ)f(ξ)

W (ξ)
dξ + y2(x)

Z
y1(ξ)f(ξ)

W (ξ)
dξ.

For more details you should take a more advanced course like Math 319 or 320.

39.1. Undetermined Coefficients. The easiest way to find a particular solution yp to
the inhomogeneous equation is the method of undetermined coefficients or “educated guessing.”
Unlike the method of “variation of constants” which was (hardly) explained in the previous section,
this method does not work for all equations. But it does give you the answer for a few equations
which show up often enough to make it worth knowing the method.

The basis of the “method” is this: it turns out that many of the second order equations with
you run into have the form

y′′ + ay′ + by = f(t),

where a and b are constants, and where the righthand side f(t) comes from a fairly short list
of functions. For all f(t) in this list you memorize (yuck!) a particular solution yp. With the
particular solution in hand you can then find the general solution by adding it to the general
solution of the homogeneous equation.

Here is the list:

f(t) = polynomial in t: In this case you try yp(t) = some other polynomial in t with
the same degree as f(t).

Exceptions: if r = 0 is a root of the characteristic equation, then you must try a
polynomial yp(t) of degree one higher than f(t);

if r = 0 is a double root then the degree of yp(t) must be two more than the degree
of f(t).

f(t) = eat: try yp(t) = Aeat.
Exceptions: if r = a is a root of the characteristic equation, then you must try

yp(t) = Ateat;
if r = a is a double root then try yp(t) = At2eat.

f(t) = sin bt or f(t) = cos bt: In both cases, try yp(t) = A cos bt+ B sin bt.
Exceptions: if r = bi is a root of the characteristic equation, then you should try

yp(t) = t(A cos bt +B sin bt).
f(t) = eat sin bt or f(t) = eat cos bt: Try yp(t) = eat(A cos bt+ B sin bt).

Exceptions: if r = a+ bi is a root of the characteristic equation, then you should
try yp(t) = teat(A cos bt +B sin bt).

39.2. Example. Find the general solution to the following equations

y′′ + xy′ − y = 2ex(41)

y′′ − 2y′ + y =
p

1 + x2(42)

The first equation does not have constant coefficients so the method doesn’t apply. Sorry, but we
can’t solve this equation in this course.7

7Who says you can’t solve this equation? For equation (41) you can find a solution by computing
its Taylor series! For more details you should again take a more advanced course (like Math 319), or,
in this case, give it a try yourself.
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The second equation does have constant coefficients, so we can solve the homogeneous equa-
tion (y′′ − 2y′ + y = 0), but the righthand side does not appear in our list. Again, the method
doesn’t work.

39.3. A more upbeat example. To find a particular solution of

y′′ − y′ + y = 3t2

we note that (1) the equation is linear with constant coefficients, and (2) the right hand side is a
polynomial, so it’s in our list of “right hand sides for which we know what to guess.” We try a
polynomial of the same degree as the right hand side, namely 2. We don’t know which polynomial,
so we leave its coefficients undetermined (whence the name of the method.) I.e. we try

yp(t) = A+ Bt + Ct2.

To see if this is a solution, we compute

y′p(t) = B + 2Ct, y′′p (t) = 2C,

so that

y′′p − y′p + yp = (A− B + 2C) + (B − 2C)t + Ct2.

Thus y′′p − y′p + yp = 3t2 if and only if

A−B + 2C = 0, B − 2C = 0, C = 3.

Solving these equations leads to C = 3, B = 2C = 6 and A = B − 2C = 0. We conclude that

yp(t) = 6t+ 3t2

is a particular solution.

39.4. Another example, which is rather long, but that’s because it is meant to
cover several cases. Find the general solution to the equation

y′′ + 3y′ + 2y = t+ t3 − et + 2e−2t − e−t sin 2t.

Solution: First we find the characteristic equation,

r2 + 3r + 2 = (r + 2)(r + 1) = 0.

The characteristic roots are r1 = −1, and r2 = −2. The general solution to the homogeneous
equation is

yh(t) = C1e
−t + C2e

−2t.

We now look for a particular solutions. Initially it doesn’t look very good as the righthand side
does not appear in our list. However, the righthand side is a sum of five terms, each of which is
in our list.

Abbreviate L[y] = y′′ + 3y′ + 2y. Then we will find functions y1, . . . , y4 for which one has

L[y1] = t+ t3, L[y2] = −et, L[y3] = 2e−2t, L[y4] = −e−t sin 2t.

Then, by the Superposition Principle (Theorem 37.5) you get that yp
def
= y1 +y2 +y3 +y4 satisfies

L[yp] = L[y1] + L[y2] + L[y3] + L[y4] = t+ t3 − et + 2e−2t − e−t sin 2t.

So yp (once we find it) is a particular solution.

Now let’s find y1, . . . , y4.

y1(t): the righthand side t+t3 is a polynomial, and r = 0 is not a root of the characteristic
equation, so we try a polynomial of the same degree. Try

y1(t) = A+ Bt + Ct2 +Dt3.

Here A,B, C,D are the undetermined coefficients that give the method its name. You
compute

L[y1] = y′′1 + 3y′1 + 2y1

= (2C + 6Dt) + 3(B + 2Ct+ 3Dt2) + 2(A+ Bt+ Ct2 +Dt3)

= (2C + 3B + 2A) + (2B + 6C + 6D)t + (2C + 9D)t2 + 2Dt3.
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So to get L[y1] = t + t3 we must impose the equations

2D = 1, 2C + 9D = 0, 2B + 6C + 6D = 1, 2C + 6B + 2A = 0.

You can solve these equations one-by-one, with result

D = 1
2
, C = − 9

4
, B = − 23

4
, A = 87

8
,

and thus

y1(t) = 87
8

− 23
4
t− 9

4
t2 + 1

2
t3.

y2(t): We want y2(t) to satisfy L[y2] = −et. Since et = eat with a = 1, and a = 1 is not
a characteristic root, we simply try y2(t) = Aet. A quick calculation gives

L[y2] = Aet + 3Aet + 2Aet = 6Aet.

To achieve L[y2] = −et we therefore need 6A = −1, i.e. A = − 1
6
. Thus

y2(t) = − 1
6
et.

y3(t): We want y3(t) to satisfy L[y3] = −e−2t. Since e−2t = eat with a = −2, and a = −2
is a characteristic root, we can’t simply try y3(t) = Ae−2t. Instead you have to try
y3(t) = Ate−2t. Another calculation gives

L[y3] = (4t − 4)Ae−2t + 3(−2t + 2)Ae−2t + 2Ate−2t (factor out Ae−2t)

=
ˆ
(4 + 3(−2) + 2)t + (−4 + 3)

˜
Ae−2t

= −Ae−2t.

Note that all the terms with te−2t cancel: this is no accident, but a consequence of the
fact that a = −2 is a characteristic root.

To get L[y3] = 2e−2t we see we have to choose A = −2. We find

y3(t) = −2te−2t.

y4(t): Finally, we need a function y4(t) for which one has L[y4] = −e−t sin 2t. The list
tells us to try

y4(t) = e−t
`
A cos 2t+ B sin 2t

´
.

(Since −1 + 2i is not a root of the characteristic equation we are not in one of the
exceptional cases.)

Diligent computation yields

y4(t) = Ae−t cos 2t + Be−te−t sin 2t
y′4(t) = (−A+ 2B)e−t cos 2t + (−B − 2A)e−t sin 2t
y′′4 (t) = (−3A− 4B)e−t cos 2t + (−3B + 4A)e−t sin 2t

so that

L[y4] = (−4A+ 2B)e−t cos 2t + (−2A − 4B)e−t sin 2t.

We want this to equal −e−t sin 2t, so we have to find A,B with

−4A+ 2B = 0, −2A− 4B = −1.

The first equation implies B = 2A, the second then gives −10A = −1, so A = 1
10

and

B = 2
10

. We have found

y4(t) = 1
10
e−t cos 2t + 2

10
e−t sin 2t.

After all these calculations we get the following impressive particular solution of our differential

equation,

yp(t) = 87
8

− 23
4
t− 9

4
t2 + 1

2
t3 − 1

6
et − 2te−2t + 1

10
e−t cos 2t+ 2

10
e−t sin 2t

and the even more impressive general solution to the equation,

y(t) = yh(y) + yp(t)

= C1e
−t + C2e

−2t

+ 87
8

− 23
4
t− 9

4
t2 + 1

2
t3

− 1
6
et − 2te−2t + 1

10
e−t cos 2t + 2

10
e−t sin 2t.
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You shouldn’t be put off by the fact that the result is a pretty long formula, and that the compu-
tations took up two pages. The approach is to (i) break up the right hand side into terms which
are in the list at the beginning of this section, (ii) to compute the particular solutions for each of
those terms and (iii) to use the Superposition Principle (Theorem 37.5) to add the pieces together,
resulting in a particular solution for the whole right hand side you started with.

40. Applications of Second Order Linear Equations

40.1. Spring with a weight. In example 36.1 we showed that the height y(t) a mass m
suspended from a spring with constant k satisfies

(43) my′′(t) + ky(t) = mg, or y′′(t) +
k

m
y(t) = g.

This is a Linear Inhomogeneous Equation whose homogeneous equation, y′′ + k
m
y = 0 has

yh(t) = C1 cosωt+ C2 sinωt

as general solution, where ω =
p
k/m. The right hand side is a constant, which is a polynomial of

degree zero, so the method of “educated guessing” applies, and we can find a particular solution
by trying a constant yp = A as particular solution. You find that y′′p + k

m
yp = k

m
A, which will

equal g if A = mg
k

. Hence the general solution to the “spring with weight equation” is

y(t) =
mg

k
+ C1 cosωt + C2 sinωt.

To solve the initial value problem y(0) = y0 and y′(0) = v0 we solve for the constants C1 and C2

and get

y(t) =
mg

k
+
v0

ω
sin(ωt) +

`
y0 − mg

k

´
cos(ωt).

which you could rewrite as

y(t) =
mg

k
+ Y cos(ωt − φ)

for certain numbers Y, φ.

The weight in this model just oscillates up and down forever: this motion is called a simple
harmonic oscillation, and the equation (43) is called the equation of the Harmonic Oscillator.

40.2. The pendulum equation. In example 36.2 we saw that the angle θ(t) subtended
by a swinging pendulum satisfies the pendulum equation,

(38)
d2θ

dt2
+
g

L
sin θ(t) = 0.

This equation is not linear and cannot be solved by the methods you have learned in this course.
However, if the oscillations of the pendulum are small, i.e. if θ is small, then we can approximate
sin θ by θ. Remember that the error in this approximation is the remainder term in the Taylor
expansion of sin θ at θ = 0. According to Lagrange this is

sin θ = θ +R3(θ), R3(θ) = cos θ̃
θ3

3!
with |θ̃| ≤ θ.

When θ is small, e.g. if |θ| ≤ 10◦ ≈ 0.175 radians then compared to θ the error is at most
˛
˛
˛
˛

R3(θ)

θ

˛
˛
˛
˛ ≤

(0.175)2

3!
≈ 0.005,

in other words, the error is no more than half a percent.

So for small angles we will assume that sin θ ≈ θ and hence θ(t) almost satisfies the equation

(44)
d2θ

dt2
+
g

L
θ(t) = 0.

In contrast to the pendulum equation (38), this equation is linear, and we could solve it right now.

The procedure of replacing inconvenient quantities like sin θ by more manageable ones (like

θ) in order to end up with linear equations is called linearization. Note that the solutions to the
linearized equation (44), which we will derive in a moment, are not solutions of the Pendulum
Equation (38). However, if the solutions we find have small angles (have |θ| small), then the
Pendulum Equation and its linearized form (44) are almost the same, and “you would think that
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their solutions should also be almost the same.” I put that in quotation marks, because (1) it’s
not a very precise statement and (2) if it were more precise, you would have to prove it, which
is not easy, and not a topic for this course (or even Math 319 – take Math 419 or 519 for more
details.)

Let’s solve the linearized equation (44). Setting θ = ert you find the characteristic equation

r2 +
g

L
= 0

which has two complex roots, r± = ±i
q

g
L

. Therefore, the general solution to (44) is

θ(t) = A cos
`
r
g

L
t
´

+B sin
`
r
g

L
t
´
,

and you would expect the general solution of the Pendulum Equation (38) to be almost the same.
So you see that a pendulum will oscillate, and that the period of its oscillation is given by

T = 2π

s

L

g
.

Once again: because we have used a linearization, you should expect this statement to be valid only
for small oscillations. When you study the Pendulum Equation instead of its linearization (44),
you discover that the period T of oscillation actually depends on the amplitude of the oscillation:
the bigger the swings, the longer they take.

40.3. The effect of friction. A real weight suspended from a real spring will of course not
oscillate forever. Various kinds of friction will slow it down and bring it to a stop. As an example
let’s assume that air drag is noticeable, so, as the weight moves the surrounding air will exert
a force on the weight (To make this more likely, assume the weight is actually moving in some
viscous liquid like salad oil.) This drag is stronger as the weight moves faster. A simple model is
to assume that the friction force is proportional to the velocity of the weight,

Ffriction = −hy′(t).
This adds an extra term to the oscillator equation (43), and gives

my′′(t) = Fgrav + Ffriction = −ky(t) +mg − hy′(t)

i.e.

(45) my′′(t) + hy′(t) + ky(t) = mg.

This is a second order linear homogeneous differential equation with constant coefficients. A

m

gravity

F
springdrag

F

y(t)

salad dressing

F

particular solution is easy to find, yp = mg/k works again.

To solve the homogeneous equation you try y = ert, which leads to the characteristic equation

mr2 + hr + k = 0,

whose roots are

r± =
−h±

√
h2 − 4mk

2m

If friction is large, i.e. if h >
√

4km, then the two roots r± are real, and all solutions are of
exponential type,

y(t) =
mg

k
+ C+e

r+t + C−er−t.

Both roots r± are negative, so all solutions satisfy

lim
t→∞

y(t) = 0.

If friction is weak, more precisely, if h <
√

4mk then the two roots r± are complex numbers,

r± = − h

2m
± iω, with ω =

√
4km− h2

2m
.

The general solution in this case is

y(t) =
mg

k
+ e−

h

2m
t
“

A cosωt +B sinωt
”

.

These solutions also tend to zero as t→ ∞, but they oscillate infinitely often.
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40.4. Electric circuits. Many equations in physics and engineering have the form (45).
For example in the electric circuit in the diagram a time varying voltage Vin(t) is applied to a
resistor R, an inductance L and a capacitor C. This causes a current I(t) to flow through the
circuit. How much is this current, and how much is, say, the voltage across the resistor?

V   =

V
L

C
V

R outR

C

L

V
in

V

Electrical engineers will tell you that the total voltage Vin(t) must equal the sum of the voltages
VR(t), VL(t) and VC(t) across the three components. These voltages are related to the current
I(t) which flows through the three components as follows:

VR(t) = RI(t)

dVC(t)

dt
=

1

C
I(t)

VL(t) = L
dI(t)

dt
.

Surprisingly, these little electrical components know calculus! (Here R, C and L are constants
depending on the particular components in the circuit. They are measured in “Ohm,” “Farad,”
and “Henry.”)

Starting from the equation

Vin(t) = VR(t) + VL(t) + VC(t)

you get

V ′
in(t) = V ′

R(t) + V ′
L(t) + V ′

C(t)

= RI′(t) + LI′′(t) +
1

C
I(t)

In other words, for a given input voltage the current I(t) satisfies a second order inhomogeneous
linear differential equation

(46) L
d2I

dt2
+R

dI

dt
+

1

C
I = V ′

in(t).

Once you know the current I(t) you get the output voltage Vout(t) from

Vout(t) = RI(t).

In general you can write down a differential equation for any electrical circuit. As you add
more components the equation gets more complicated, but if you stick to resistors, inductances
and capacitors the equations will always be linear, albeit of very high order.

41. PROBLEMS

General Questions.

290. Classify each of the following as homogeneous linear, inhomogeneous linear, or nonlinear and
specify the order. For each linear equation say whether or not the coefficients are constant.

(i) y′′ + y = 0 (ii) xy′′ + yy′ = 0

(iii) xy′′ − y′ = 0 (iv) xy′′ + yy′ = x

(v) xy′′ − y′ = x (vi) y′ + y = xex.
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291. (i) Show that y = x2 + 5 is a solution of xy′′ − y′ = 0.

(ii) Show that y = C1x2 + C2 is a solution of xy′′ − y′ = 0.

292. (i) Show that y = (tan(c1x+ c2))/c1 is a solution of yy′′ = 2(y′)2 − 2y′.

(ii) Show that y1 = tan(x) and y2 = 1 are solutions of this equation, but that y1 + y2 is not.

(iii) Is the equation linear homogeneous?

Separation of Variables.

293. The differential equation

dy

dt
=

4 − y2

4
is called the Logistic Equation.

(a) Find the solutions y0, y1, y2, and
y3 which satisfy y0(0) = 0, y1(0) = 1,
y2(0) = 2 and y3(0) = 3.

(b) Find limt→∞ yk(t) for k = 1, 2, 3.

(c) Find limt→−∞ yk(t) for k = 1, 2, 3.

(d) Graph the four solutions y0, . . . ,
y3.

∗ ∗ ∗
In each of the following problems you should
find the function y of x which satisfies the
conditions (A is an unspecified constant:
you should at least indicate for which val-
ues of A your solution is valid.)

294.
dy

dx
+ x2y = 0, y(1) = 5.

295.
dy

dx
+ (1 + 3x2)y = 0, y(1) = 1.

296.
dy

dx
+ x cos2 y = 0, y(0) = π

3
.

297.
dy

dx
+

1 + x

1 + y
= 0, y(0) = A.

298.
dy

dx
+ 1 − y2 = 0, y(0) = A.

299.
dy

dx
+ 1 + y2 = 0, y(0) = A.

300.
dy

dx
− (cos x)y = esinx, y(0) = A.

301. y2
dy

dx
+ x3 = 0, y(0) = A.

302. Read Example 35.2 on “Leaky bucket
dating” again. In that example we assumed

that a
A

√
K = 2.

(a) Solve diffeq for h(t) without assum-

ing a
A

√
K = 2. Abbreviate C = a

A

√
K.

(b) If in an experiment one found that
the bucket empties in 20 seconds after being
filled to height 20 cm, then how much is the
constant C?

Linear Homogeneous.

303. (a) Show that y = 4ex+7e2x is a solution
of y′′ − 3y′ + 2y = 0.
(b) Show that y = C1ex + C2e2x is a solu-
tion of y′′ − 3y′ + 2y = 0.
(c) Find a solution of y′′−3y′ +2y = 0 such
that y(0) = 7 and y′(0) = 9.

304. (a) Find all solutions of dy
dx

+ 2y = 0.

(b) Find all solutions of dy
dx

+ 2y = e−x.

(c) Find y if dy
dx

+2y = e−x and y = 7 when
x = 0.

305. (a) Find all real solutions of

d2y

dt2
− 6

dy

dt
+ 10y = 0.

(b) Find y if

y′′ − 6y′ + 10y = 0,

and in addition y satisfies the initial condi-
tions y(0) = 7, and y′(0) = 11.

∗ ∗ ∗
Find the general solution y = y(x) of the
following differential equations

306.
d4y

dx4
= y

307.
d4y

dx4
+ y = 0

308.
d4y

dx4
− d2y

dx2
= 0

309.
d4y

dx4
+

d2y

dx2
= 0

310.
d3y

dx3
+ y = 0

311.
d3y

dx3
− y = 0
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312. y(4)(t) − 2y′′(t) − 3y(t) = 0

313. y(4)(t) + 4y′′(t) + 3y(t) = 0.

314. y(4)(t) + 2y′′(t) + 2y(t) = 0.

315. y(4)(t) + y′′(t) − 6y(t) = 0.

316. y(4)(t) − 8y′′(t) + 15y(t) = 0.

317. f ′′′(x) − 125f(x) = 0.

318. u(5)(x) − 32u(x) = 0.

319. u(5)(x) + 32u(x) = 0.

320. y′′′(t) − 5y′′(t) + 6y′(t) − 2y(t) = 0.

321. h(4)(t) − h(3)(t) + 4h′′(t) − 4h(t) = 0.

322. z′′′(x) − 5z′′(x) + 4z(x) = 0.

∗ ∗ ∗
Solve each of the following initial value prob-
lems. Your final answer should not use com-
plex numbers, but you may use complex
numbers to find it.

323. y′′ + 9y = 0, y(0) = 0, y′(0) = −3.

324. y′′ + 9y = 0, y(0) = −3, y′(0) = 0.

325. y′′ − 5y′ + 6y = 0, y(0) = 0, y′(0) = 1.

326. y′′ + 5y′ + 6y = 0, y(0) = 1, y′(0) = 0.

327. y′′ + 5y′ + 6y = 0, y(0) = 0, y′(0) = 1.

328. y′′ − 6y′ + 5y = 0, y(0) = 1, y′(0) = 0.

329. y′′ − 6y′ + 5y = 0, y(0) = 0, y′(0) = 1.

330. y′′ + 6y′ + 5y = 0, y(0) = 1, y′(0) = 0.

331. y′′ + 6y′ + 5y = 0, y(0) = 0, y′(0) = 1.

332. y′′ − 4y′ + 5y = 0, y(0) = 1, y′(0) = 0.

333. y′′ − 4y′ + 5y = 0, y(0) = 0, y′(0) = 1.

334. y′′ + 4y′ + 5y = 0, y(0) = 1, y′(0) = 0.

335. y′′ + 4y′ + 5y = 0, y(0) = 0, y′(0) = 1.

336. y′′ − 5y′ + 6y = 0, y(0) = 1, y′(0) = 0.

337. f ′′′(t) + f ′′(t) − f ′(t) + 15f(t) = 0,
with initial conditions f(0) = 0, f ′(0) =
1, f ′′(0) = 0.

Linear Inhomogeneous.

338. Find particular solutions of

y′′ − 3y′ + 2y = e3x

y′′ − 3y′ + 2y = ex

y′′ − 3y′ + 2y = 4e3x + 5ex

∗ ∗ ∗
Find the general solution y(t) of the fol-

lowing differential equations

339.
d2y

dt2
− y = 2

340.
d2y

dt2
− y = 2et

341.
d2y

dt2
+ 9y = cos 3t

342.
d2y

dt2
+ 9y = cos t

343.
d2y

dt2
+ y = cos t

344.
d2y

dt2
+ y = cos 3t.

345. Find y if

(a)
d2y

dx2
+ 2

dy

dx
+ y = 0 y(0) = 2, y′(0) = 3

(b)
d2y

dx2
+ 2

dy

dx
+ y = e−x y(0) = 0, y′(0) = 0

(c)
d2y

dx2
+ 2

dy

dx
+ y = xe−x y(0) = 0, y′(0) = 0

(d)
d2y

dx2
+ 2

dy

dx
+ y = e−x + xe−x y(0) = 2, y′(0) = 3.

Hint: Use the Superposition Principle to save work.

346. (i) Find the general solution of

z′′ + 4z′ + 5z = eit

using complex exponentials.

(ii) Solve
z′′ + 4z′ + 5z = sin t

using your solution to question (i).
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(iii) Find a solution for the equation

z′′ + 2z′ + 2z = 2e−(1−i)t

in the form z(t) = u(t)e−(1−i)t .

(iv) Find a solution for the equation

x′′ + 2x′ + 2x = 2e−t cos t.

Hint: Take the real part of the previous answer.

(v) Find a solution for the equation

y′′ + 2y′ + 2y = 2e−t sin t.

Applications.

347. A population of bacteria grows at a rate proportional to its size. Write and solve a differential
equation which expresses this. If there are 1000 bacteria after one hour and 2000 bacteria after
two hours, how many bacteria are there after three hours?

348. Rabbits in Madison have a birth rate of 5% per year and a death rate (from old age) of 2% per
year. Each year 1000 rabbits get run over and 700 rabbits move in from Sun Prairie. (i) Write
a differential equation which describes Madison’s rabbit population at time t.

(ii) If there were 12,000 rabbits in Madison in 1991, how many are there in 1994?

349. According to Newton’s law of cooling the rate dT/dt at which an object cools is proportional
to the difference T−A between its temperature T and the ambient temperature A. The differential
equation which expresses this is

dT

dt
= k(T −A)

where k < 0 and A are constants.

(i) Solve this equation and show that every solution satisfies

lim
t→∞

T = A.

(ii) A cup of coffee at a temperature of 180oF sits in a room whose temperature is 750F. In five
minutes its temperature has dropped to 150◦F. When will its temperature be 90◦F? What is the
limit of the temperature as t→ ∞?

350. Retaw is a mysterious living liquid; it grows at a rate of 5% of its volume per hour. A scientist
has a tank initially holding y0 gallons of retaw and removes retaw from the tank continuously at
the rate of 3 gallons per hour.

(i) Find a differential equation for the number y(t) of gallons of retaw in the tank at time t.

(ii) Solve this equation for y as a function of t. (The initial volume y0 will appear in your answer.)

(iii) What is limt→∞ y(t) if y0 = 100?

(iv) What should the value of y0 be so that y(t) remains constant?

351. A 1000 gallon vat is full of 25% solution of acid. Starting at time t = 0 a 40% solution of acid
is pumped into the vat at 20 gallons per minute. The solution is kept well mixed and drawn off
at 20 gallons per minute so as to maintain the total value of 1000 gallons. Derive an expression
for the acid concentration at times t > 0. As t→ ∞ what percentage solution is approached?

352. The volume of a lake is V = 109 cubic feet. Pollution P runs into the lake at 3 cubic feet per
minute, and clean water runs in at 21 cubic feet per minute. The lake drains at a rate of 24 cubic
feet per minute so its volume is constant. Let C be the concentration of pollution in the lake; i.e.
C = P/V .

(i) Give a differential equation for C.

(ii) Solve the differential equation. Use the initial condition C = C0 when t = 0 to evaluate the
constant of integration.

(iii) There is a critical value C∗ with the property that for any solution C = C(t) we have

lim
t→∞

C = C∗.
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Find C∗. If C0 = C∗, what is C(t)?

353. A philanthropist endows a chair. This means that she donates an amount of money B0 to the
university. The university invests the money (it earns interest) and pays the salary of a professor.
Denote the interest rate on the investment by r (e.g. if r = .06, then the investment earns interest
at a rate of 6% per year) the salary of the professor by a (e.g. a = $50, 000 per year), and the
balance in the investment account at time t by B.

(i) Give a differential equation for B.

(ii) Solve the differential equation. Use the initial condition B = B0 when t = 0 to evaluate the
constant of integration.

(iii) There is a critical value B∗ with the property that (1) if B0 < B∗, then there is a t > 0 with

B(t) = 0 (i.e. the account runs out of money) while (2) if B0 > B∗, then limt→∞B = ∞. Find
B∗.

(iv) This problem is like the pollution problem except for the signs of r and a. Explain.

354. A citizen pays social security taxes of a dollars per year for T1 years, then retires, then receives
payments of b dollars per year for T2 years, then dies. The account which receives and dispenses
the money earns interest at a rate of r% per year and has no money at time t = 0 and no money at
the time t = T1 + T2 of death. Find two differential equations for the balance B(t) at time t; one
valid for 0 ≤ t ≤ T1, the other valid for T1 ≤ t ≤ T1 +T2. Express the ratio b/a in terms of T1, T2,
and r. Reasonable values for T1, T2, and r are T1 = 40, T2 = 20, and r = 5% = .05. This model
ignores inflation. Notice that 0 < dB/dt for 0 < t < T1, that dB/dt < 0 for T1 < t < T1 + T2,
and that the account earns interest even for T1 < t < T1 + T2.

355. A 300 gallon tank is full of milk containing 2% butterfat. Milk containing 1% butterfat is
pumped in a 10 gallons per minute starting at 10:00 AM and the well mixed milk is drained off
at 15 gallons per minute. What is the percent butterfat in the milk in the tank 5 minutes later
at 10:05 AM? Hint: How much milk is in the tank at time t? How much butterfat is in the milk
at time t = 0?

356. A sixteen pound weight is suspended from the lower end of a spring whose upper end is attached
to a rigid support. The weight extends the spring by half a foot. It is struck by a sharp blow
which gives it an initial downward velocity of eight feet per second. Find its position as a function

of time.

357. A sixteen pound weight is suspended from the lower end of a spring whose upper end is attached
to a rigid support. The weight extends the spring by half a foot. The weight is pulled down one
feet and released. Find its position as a function of time.

358. The equation for the displacement y(t) from equilibrium of a spring subject to a forced vibration
of frequency ω is

(47)
d2y

dt2
+ 4y = sin(ωt).

(i) Find the solution y = y(ω, t) of (47) for ω 6= 2 if y(0) = 0 and y′(0) = 0.

(ii) What is limω→2 y(ω, t)?

(iii) Find the solution y(t) of

(48)
d2y

dt2
+ 4y = sin(2t)

if y(0) = 0 and y′(0) = 0. (Hint: Compare with (47).)

359. Suppose that an undamped spring is subjected to an external periodic force so that its position
y at time t satisfies the differential equation

d2y

dt2
+ ω2

0y = c sin(ωt).

(i) Show that the general solution is

y = C1 cos ω0t+ C2 sinω0t +
c

ω2 − ω2
0

sinωt.
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when ω0 6= ω.

(ii) Solve the equation when ω = ω0.

(iii) Show that in part (i) the solution remains bounded as t → ∞ but in part (ii) this is not so.
(This phenomenon is called resonance. To see an example of resonance try Googling “Tacoma
Bridge Disaster.”)

360. Have look at the electrical circuit equation (46) from §40.4.

(i) Find the general solution of (46), assuming that Vin(t) does not depend on time t. What is
limt→∞ I(t)?

(ii) Assume for simplicity that L = C = 1, and that the resistor has been short circuited, i.e. that
R = 0. If the input voltage is a sinusoidal wave,

Vin(t) = A sinωt, (ω 6= 1)

then find a particular solution, and then the general solution.

(iii) Repeat problem (ii) with ω = 1.

(iv) Suppose again that L = C = 1, but now assume that R > 0. Find the general solution when
Vin(t) is constant.

(v) Still assuming L = C = 1, R > 0 find a particular solution of the equation when the input
voltage is a sinusoidal wave

Vin(t) = A sinωt.
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Vectors

42. Introduction to vectors

42.1. Definition. A vector is a column of two, three, or more numbers, written as

~a =

„
a1
a2

«

or ~a =

0

@

a1
a2
a3

1

A or ~a =

0

B
B
@

a1
.
..
an

1

C
C
A

in general.

The length of a vector ~a =
“ a1
a2
a3

”

is defined by

‖~a‖ =

‚
‚
‚
‚
‚
‚

0

@

a1
a2
a3

1

A

‚
‚
‚
‚
‚
‚

=
q

a21 + a22 + a23.

We will always deal with either the two or three dimensional cases, in other words, the cases
n = 2 or n = 3, respectively. For these cases there is a geometric description of vectors which
is very useful. In fact, the two and three dimensional theories have their origins in mechanics
and geometry. In higher dimensions the geometric description fails, simply because we cannot
visualize a four dimensional space, let alone a higher dimensional space. Instead of a geometric
description of vectors there is an abstract theory called Linear Algebra which deals with “vector
spaces” of any dimension (even infinite!). This theory of vectors in higher dimensional spaces is
very useful in science, engineering and economics. You can learn about it in courses like math

320 or 340/341.

42.2. Basic arithmetic of vectors. You can add and subtract vectors, and you can mul-
tiply them with arbitrary real numbers. this section tells you how.

The sum of two vectors is defined by

(49)

„
a1
a2

«

+

„
b1
b2

«

=

„
a1 + b1
a2 + b2

«

,

and 0

@

a1
a2
a3

1

A +

0

@

b1
b2
b3

1

A =

0

@

a1 + b1
a2 + b2
a3 + b3

1

A .

The zero vector is defined by

~0 =

„
0
0

«

or ~0 =

0

@

0
0
0

1

A .

It has the property that

~a + ~0 = ~0 + ~a = ~a

no matter what the vector ~a is.

You can multiply a vector ~a =

0

@

a1
a2
a3

1

A with a real number t according to the rule

t~a =

0

@

ta1
ta2
ta3

1

A .
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In particular, “minus a vector” is defined by

−~a = (−1)~a =

0

@

−a1
−a2
−a3

1

A .

The difference of two vectors is defined by

~a− ~b = ~a + (−~b).

So, to subtract two vectors you subtract their components,

~a− ~b =

0

@

a1
a2
a3

1

A −

0

@

b1
b2
b3

1

A =

0

@

a1 − b1
a2 − b2
a3 − b3

1

A

42.3. Some GOOD examples.
„

2
3

«

+

„
−3
π

«

=

„
−1

3 + π

«

2

„
1
0

«

+ 3

„
0
1

«

=

„
2
3

«

“
1
0
3

”

−
„ −1

12√
2

«

=

„
2

−12

3−
√

2

«

a
“

1
0
0

”

+ b
“

0
1
0

”

+ c
“

0
0
1

”

=
“ a
b
c

”

0 ·
„

12
√

39
π2 − ln 3

«

=

„
0
0

«

= ~0

„
t+ t2

1 − t2

«

= (1 + t)

„
t

1 − t

«

42.4. Two very, very BAD examples. Vectors must have the same size to be added,
therefore

„
2
3

«

+

0

@

1
3
2

1

A = undefined!!!

Vectors and numbers are different things, so an equation like

~a = 3 is nonsense!

This equation says that some vector (~a) is equal to some number (in this case: 3). Vectors and
numbers are never equal!

42.5. Algebraic properties of vector addition and multiplication. Addition of vec-
tors and multiplication of numbers and vectors were defined in such a way that the following

always hold for any vectors ~a, ~b, ~c (of the same size) and any real numbers s, t

~a + ~b = ~b + ~a [vector addition is commutative](50)

~a + (~b + ~c) = (~a + ~b) + ~c [vector addition is associative](51)

t(~a + ~b) = t~a + t~b [first distributive property](52)

(s+ t)~a = s~a + t~a [second distributive property](53)

42.6. Prove (50). Let ~a =
“ a1
a2
a3

”

and ~b =

„
b1
b2
b3

«

be two vectors, and consider both possible

ways of adding them:
0

@

a1
a2
a3

1

A +

0

@

b1
b2
b3

1

A =

0

@

a1 + b1
a2 + b2
a3 + b3

1

A and

0

@

b1
b2
b3

1

A +

0

@

a1
a2
a3

1

A =

0

@

b1 + a1
b2 + a2
b3 + a3

1

A

We know (or we have assumed long ago) that addition of real numbers is commutative, so that
a1 + b1 = b1 + a1, etc. Therefore

~a + ~b =

„
a1+b1
a2+b2
a3+b3

«

=

„
b1+a1
b2+a2
b3+a3

«

= ~b + ~a.

This proves (50).
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42.7. Example. If ~v and ~w are two vectors, we define

~a = 2~v + 3~w, ~b = −~v + ~w.

Problem: Compute ~a + ~b and 2~a− 3~b in terms of ~v and ~w.

Solution:

~a + ~b = (2~v + 3~w) + (−~v + ~w) = (2 − 1)~v + (3 + 1)~w = ~v + 4~w

2~a− 3~b = 2(2~v + 3~w) − 3(−~v + ~w) = 4~w + 6~w + 3~v − 3~w = 7~v + 3~w.

Problem: Find s, t so that s~a + t~b = ~v.

Solution: Simplifying s~a + t~b you find

s~a + t~b = s(2~v + 3~w) + t(−~v + ~w) = (2s− t)~v + (3s+ t)~w.

One way to ensure that s~a + t~b = ~v holds is therefore to choose s and t to be the solutions of

2s− t = 1

3s+ t = 0

The second equation says t = −3s. The first equation then leads to 2s+ 3s = 1, i.e. s = 1
5
. Since

t = −3s we get t = − 3
5
. The solution we have found is therefore

1
5
~a− 3

5
~b = ~v.

42.8. Geometric description of vectors. Vectors originally appeared in mechanics, where
they represented forces: a force acting on some object has a magnitude and a direction. Thus a
force can be thought of as an arrow, where the length of the arrow indicates how strong the force
is (how hard it pushes or pulls).

So we will think of vectors as arrows: if you specify two points P and Q, then the arrow

pointing from P to Q is a vector and we denote this vector by
−−→
PQ.

The precise mathematical definition is as follows:

42.9. Definition. For any pair of points P and Q whose coordinates are (p1, p2, p3) and

(q1, q2, q3) one defines a vector
−−→
PQ by

−−→
PQ =

0

@

q1 − p1
q2 − p2
q3 − p3

1

A .

If the initial point of an arrow is the origin O, and the final point is any point Q, then the vector−−→
OQ is called the position vector of the point Q.

P

P

Q

Q

~p ~q

−−→
PQ

−−→
PQ

q1 − p1

q 2
−
p
2

two pictures of

the vector
−−→
PQ = ~q − ~pIf ~p and ~q are the position vectors of P and Q, then one can write

−−→
PQ as

−−→
PQ =

0

@

q1
q2
q3

1

A −

0

@

p1
p2
p3

1

A = ~q − ~p.

For plane vectors we define
−−→
PQ similarly, namely,

−−→
PQ =

“
q1−p1
q2−p2

”

. The old formula for the

distance between two points P and Q in the plane

distance from P to Q =
q

(q1 − p1)2 + (q2 − p2)2

says that the length of the vector
−−→
PQ is just the distance between the points P and Q, i.e.

distance from P to Q =
‚
‚
‚
−−→
PQ

‚
‚
‚ .

This formula is also valid if P and Q are points in space.

a1

a1

a2

a2

a3

~a

~a

A

A

O

O

position vectors in the plane

and in space



86

42.10. Example. The point P has coordinates (2, 3); the point Q has coordinates (8, 6).

The vector
−−→
PQ is therefore

−−→
PQ =

„
8 − 2
6 − 3

«

=

„
6
3

«

.

This vector is the position vector of the point R whose coordinates are (6, 3). Thus

−−→
PQ =

−→
OR =

„
6
3

«

.

The distance from P to Q is the length of the vector
−−→
PQ,

i.e.

distance P to Q =

‚
‚
‚
‚

„
6
3

«‚
‚
‚
‚ =

p

62 + 32 = 3
√

5.

2

3

4

5

6

2 3 4 5 6 7 81

1

P

Q

R

O

−−→
PQ

−→
OR

42.11. Example. Find the distance between the points A and B whose position vectors

are ~a =
“

1
1
0

”

and ~b =
“

0
1
1

”

respectively.

Solution: One has

distance A to B = ‖−→AB‖ = ‖~b − ~a‖ =

‚
‚
‚
‚
‚
‚

0

@

−1
0
1

1

A

‚
‚
‚
‚
‚
‚

=
q

(−1)2 + 02 + 12 =
√

2

42.12. Geometric interpretation of vector addition and multiplication. Suppose

you have two vectors ~a and ~b. Consider them as position vectors, i.e. represent them by vectors
that have the origin as initial point:

~a =
−→
OA, ~b =

−−→
OB.

Then the origin and the three endpoints of the vectors ~a, ~b and ~a + ~b form a parallelogram. See
figure 15.

To multiply a vector ~a with a real number t you multiply its length with |t|; if t < 0 you
reverse the direction of ~a.

~a ~a~b

~b

~a + ~b

~a + ~b

~a

~b

~a + ~b

x

y

z

Figure 15. Two ways of adding plane vectors, and an addition of space vectors

42.13. Example. In example 42.7 we assumed two vectors ~v and ~w were given, and then

defined ~a = 2~v + 3~w and ~b = −~v + ~w. In figure 17 the vectors ~a and ~b are constructed
geometrically from some arbitrarily chosen ~v and ~w. We also found algebraically in example 42.7

that ~a + ~b = ~v + 4~w. The third drawing in figure 17 illustrates this.

43. Parametric equations for lines and planes
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~a

2~a

−~a

~a

~b

~a− ~b

~b− ~a−~a

−~b

Figure 16. Multiples of a vector, and the difference of two vectors.

~a
~a ~a

~b
~b

~v ~v

~w

~w

~w

−~v

3
~w

3
~w

2~v

2~v ~a + ~b = ~v + 4~w

Figure 17. Picture proof that ~a + ~b = ~v + 4~w in example 42.13.
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A

B

X

−−→
AX

−→
AB

Given two distinct points A and B we consider the line segment AB.
If X is any given point on AB then we will now find a formula for the
position vector of X.

Define t to be the ratio between the lengths of the line segments AX
and AB,

t =
length AX

length AB
.

Then the vectors
−−→
AX and

−→
AB are related by

−−→
AX = t

−→
AB. Since AX is shorter than AB we have

0 < t < 1.

The position vector of the point X on the line segment AB is

−−→
OX =

−→
OA+

−−→
AX =

−→
OA+ t

−→
AB.

If we write ~a,~b, ~x for the position vectors of A,B,X, then we get

(54) ~x = (1 − t)~a + t~b = ~a + t(~b − ~a).

This equation is called the parametric equation for the line through A and B. In our derivation
the parameter t satisfied 0 ≤ t ≤ 1, but there is nothing that keeps us from substituting negative
values of t, or numbers t > 1 in (54). The resulting vectors ~x are position vectors of points X
which lie on the line ℓ through A and B.

43.1. Example. [Find the parametric equation for the line ℓ through the points A(2, 1) and
B(3,−1), and determine where ℓ intersects the x1 axis. ]
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O O

A A

BB X

~x

ℓℓ

~a~a

~b~b

−−→
AB

=
~b −

~a

t(
~b −

~a)

Figure 18. Constructing points on the line through A and B

2

1

3

3

1 2 x1

x2

A

B

Solution: The position vectors of A,B are ~a =
`

1
2

´
and ~b =

`
3
−1

´
, so the position vector of an arbitrary point on ℓ is given by

~x = ~a + t(~b − ~a) =

„
1
2

«

+ t

„
3 − 1
−1 − 2

«

=

„
1
2

«

+ t

„
2
−3

«

=

„
1 + 2t
2 − 3t

«

where t is an arbitrary real number.

This vector points to the point X = (1+2t, 2−3t). By definition,
a point lies on the x1-axis if its x2 component vanishes. Thus if the
point

X = (1 + 2t, 2 − 3t)

lies on the x1-axis, then 2 − 3t = 0, i.e. t = 2
3
. The intersection point X of ℓ and the x1-axis is

therefore X|t=2/3 = (1 + 2 · 2
3
, 0) = ( 5

3
, 0).

43.2. Midpoint of a line segment. If M is the midpoint of the line segment AB, then

the vectors
−−→
AM and

−−→
MB are both parallel and have the same direction and length (namely, half

the length of the line segment AB). Hence they are equal:
−−→
AM =

−−→
MB. If ~a, ~m, and ~b are the

position vectors of A , M and B, then this means

~m− ~a =
−−→
AM =

−−→
MB = ~b− ~m.

Add ~m and ~a to both sides, and divide by 2 to get

~m = 1
2
~a + 1

2
~b =

~a + ~b

2
.

43.3. Parametric equations for planes in space*. You can specify a plane in three
dimensional space by naming a point A on the plane P, and two vectors ~v and ~w parallel to the
plane P, but not parallel to each other. Then any point on the plane P has position vector ~x
given by

(55) ~x = ~a + s~v + t~w.

The following construction explains why (55) will give you any point on the plane through
A, parallel to ~v, ~w.

Let A, ~v, ~w be given, and suppose we want to express the position vector of some other point

X on the plane P in terms of ~a =
−→
OA, ~v, and ~w.

First we note that −−→
OX =

−→
OA+

−−→
AX.

Next, you draw a parallelogram in the plane P whose sides are parallel to the vectors ~v and ~w,
and whose diagonal is the line segment AX. The sides of this parallelogram represent vectors

which are multiples of ~v and ~w and which add up to
−−→
AX. So, if one side of the parallelogram is

s~v and the other t~w then we have
−−→
AX = s~v + t~w. With

−−→
OX =

−→
OA+

−−→
AX this implies (55).
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~v

~w

s~v

t~w
P

~a

~x
=
~a
+
s~v

+
t~w

O

A

X

Figure 19. Generating points on a plane P

44. Vector Bases

44.1. The Standard Basis Vectors. The notation for vectors which we have been us-
ing so far is not the most traditional. In the late 19th century Gibbs and Heavyside adapted
Hamilton’s theory of Quaternions to deal with vectors. Their notation is still popular in texts
on electromagnetism and fluid mechanics.

Define the following three vectors:

~i =

0

@

1
0
0

1

A , ~j =

0

@

0
1
0

1

A , ~k =

0

@

0
0
1

1

A .

Then every vector can be written as a linear combination of ~i, ~j and ~k, namely as follows:
0

@

a1
a2
a3

1

A = a1~i + a2~j + a3~k.

Moreover, there is only one way to write a given vector as a linear combination of {~i,~j, ~k}. This
means that

a1~i + a2~j + a3~k = b1~i + b2~j + b3~k ⇐⇒

8
><

>:

a1 = b1

a2 = b2

a3 = b3

For plane vectors one defines

~i =

„
1
0

«

, ~j =

„
0
1

«

and just as for three dimensional vectors one can write every (plane) vector ~a as a linear combi-

nation of ~i and ~j,
„
a1
a2

«

= a1~i + a2~j.

Just as for space vectors, there is only one way to write a given vector as a linear combination of
~i and ~j.

44.2. A Basis of Vectors (in general)*. The vectors~i,~j, ~k are called the standard basis
vectors. They are an example of what is called a “basis”. Here is the definition in the case of
space vectors:
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44.3. Definition. A triple of space vectors {~u, ~v, ~w} is a basis if every space vector ~a can
be written as a linear combination of {~u, ~v, ~w}, i.e.

~a = au~u + av~v + aw ~w,

and if there is only one way to do so for any given vector ~a (i.e. the vector ~a determines the
coefficients au, av , aw). For plane vectors the definition of a basis is almost the same, except
that a basis consists of two vectors rather than three:

44.4. Definition. A pair of plane vectors {~u, ~v} is a basis if every plane vector ~a can be
written as a linear combination of {~u, ~v}, i.e. ~a = au~u + av~v, and if there is only one way to
do so for any given vector ~a (i.e. the vector ~a determines the coefficients au, av).

45. Dot Product

45.1. Definition. The “inner product” or “dot product” of two vectors is given by
0

@

a1
a2
a3

1

A ···

0

@

b1
b2
b3

1

A = a1b1 + a2b2 + a3b3.

Note that the dot-product of two vectors is a number!

The dot product of two plane vectors is (predictably) defined by
„
a1
a2

«

···
„
b1
b2

«

= a1b1 + a2b2.

An important property of the dot product is its relation with the length of a vector:

(56) ‖~a‖2 = ~a···~a.

45.2. Algebraic properties of the dot product. The dot product satisfies the following
rules,

~a···~b = ~b···~a(57)

~a···(~b + ~c) = ~a···~b + ~a···~c(58)

(~b + ~c)···~a = ~b···~a + ~c···~a(59)

t(~a···~b) = (t~a)···~b(60)

which hold for all vectors ~a,~b,~c and any real number t.

45.3. Example. Simplify ‖~a + ~b‖2.

One has

‖~a + ~b‖2 = (~a + ~b)···(~a + ~b)

= ~a···(~a + ~b) + ~b···(~a + ~b)

= ~a···~a + ~a···~b + ~b···~a
| {z }

=2~a···~b by (57)

+~b···~b

= ‖~a‖2 + 2~a···~b + ‖~b‖2

O

A

B
C

45.4. The diagonals of a parallelogram. Here is an example of how you
can use the algebra of the dot product to prove something in geometry.

Suppose you have a parallelogram one of whose vertices is the origin. Label
the vertices, starting at the origin and going around counterclockwise, O, A, C and

B. Let ~a =
−→
OA, ~b =

−−→
OB, ~c =

−−→
OC. One has

−−→
OC = ~c = ~a + ~b, and

−→
AB = ~b− ~a.

These vectors correspond to the diagonals OC and AB
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45.5. Theorem. In a parallelogram OACB the sum of the squares of the
lengths of the two diagonals equals the sum of the squares of the lengths of all four
sides.

Proof. The squared lengths of the diagonals are

‖−−→OC‖2 = ‖~a + ~b‖2 = ‖~a‖2 + 2~a···~b + ‖~b‖2

‖−→AB‖2 = ‖~a− ~b‖2 = ‖~a‖2 − 2~a···~b + ‖~b‖2

Adding both these equations you get

‖−−→OC‖2 + ‖−→AB‖2 = 2
“

‖~a‖2 + ‖~b‖2
”

.

The squared lengths of the sides are

‖−→OA‖2 = ‖~a‖2, ‖−→AB‖2 = ‖~b‖2, ‖−−→BC‖2 = ‖~a‖2, ‖−−→OC‖2 = ‖~b‖2.

Together these also add up to 2
“

‖~a‖2 + ‖~b‖2
”

. �

b cos θ

b
si

n
θ

a

b c

a− b cos θ

O A

B

θ

Figure 20. Proof of the law of cosines

45.6. The dot product and the angle between two vectors. Here is the most impor-
tant interpretation of the dot product:

45.7. Theorem. If the angle between two vectors ~a and ~b is θ, then one has

~a···~b = ‖~a‖ · ‖~b‖ cos θ.

Proof. We need the law of cosines from high-school trigonometry. Recall that for a triangle
OAB with angle θ at the point O, and with sides OA and OB of lengths a and b, the length c of
the opposing side AB is given by

(61) c2 = a2 + b2 − 2ab cos θ.

In trigonometry this is proved by dropping a perpendicular line from B onto the side OA. The
triangleOAB gets divided into two right triangles, one of which has AB as hypotenuse. Pythagoras
then implies

c2 = (b sin θ)2 + (a− b cos θ)2 .

After simplification you get (61).

To prove the theorem you let O be the origin, and then observe that the length of the side

AB is the length of the vector
−→
AB = ~b− ~a. Here ~a =

−→
OA, ~b =

−−→
OB, and hence

c2 = ‖~b − ~a‖2 = (~b − ~a)···(~b− ~a) = ‖~b‖2 + ‖~a‖2 − 2~a···~b.
Compare this with (61), keeping in mind that a = ‖~a‖ and b = ‖~b‖: you are led to conclude that

−2~a···~b = −2ab cos θ, and thus ~a···~b = ‖~a‖ · ‖~b‖ cos θ. �
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~a

~x//
= λ~a

~x
~x
⊥

Given ~x and ~a, find ~x⊥
and ~x//.

45.8. Orthogonal projection of one vector onto another.
The following construction comes up very often. Let ~a 6= ~0 be a given
vector. Then for any other vector ~x there is a number λ such that

~x = λ~a + ~y

where ~y ⊥ ~a. In other words, you can write any vector ~x as the
sum of one vector parallel to ~a and another vector orthogonal to ~a.
The two vectors λ~a and ~y are called the parallel and orthogonal
components of the vector ~x (with respect to ~a), and sometimes the
following notation is used

~x// = λ~a, ~x⊥ = ~y,

so that
~x = ~x// + ~x⊥.

There are moderately simple formulas for ~x// and ~x⊥, but it is better to remember the following
derivation of these formulas.

Assume that the vectors ~a and ~x are given. Then we look for a number λ such that ~y = ~x−λ~a
is perpendicular to ~a. Recall that ~a ⊥ (~x − λ~a) if and only if

~a···(~x− λ~a) = 0.

Expand the dot product and you get this equation for λ

~a···~x− λ~a···~a = 0,

whence

(62) λ =
~a···~x
~a···~a

=
~a···~x
‖~a‖2

To compute the parallel and orthogonal components of ~x w.r.t. ~a you first compute λ according
to (62), which tells you that the parallel component is given by

~x// = λ~a =
~a···~x
~a···~a

~a.

The orthogonal component is then “the rest,” i.e. by definition ~x⊥ = ~x− ~x//, so

~x⊥ = ~x− ~x// = ~x− ~a···~x
~a···~a

~a.

45.9. Defining equations of lines. In § 43 we saw how to generate points on a line given
two points on that line by means of a “parametrization.” I.e. given points A and B on the line ℓ

the point whose position vector is ~x = ~a + t(~b− ~a) will be on ℓ for any value of the “parameter”
t.

~a

~n

~x
A

O

X

ℓ

Is X on ℓ?

In this section we will use the dot-product to give a different
description of lines in the plane (and planes in three dimensional
space.) We will derive an equation for a line. Rather than gener-
ating points on the line ℓ this equation tells us if any given point
X in the plane is on the line or not.

Here is the derivation of the equation of a line in the plane.
To produce the equation you need two ingredients:

1. One particular point on the line (let’s call this point A,
and write ~a for its position vector),

2. a normal vector ~n for the line, i.e. a nonzero vector
which is perpendicular to the line.

Now let X be any point in the plane, and consider the line segment AX.

• Clearly, X will be on the line if and only if AX is parallel to ℓ 8

• Since ℓ is perpendicular to ~n, the segment AX and the line ℓ will be parallel if and
only if AX ⊥ ~n.

• AX ⊥ ~n holds if and only if
−−→
AX···~n = 0.

8 From plane Euclidean geometry: parallel lines either don’t intersect or they coincide.
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So in the end we see that X lies on the line ℓ if and only if the following vector equation is satisfied:

(63)
−−→
AX···~n = 0 or (~x− ~a) ···~n = 0

This equation is called a defining equation for the line ℓ.

Any given line has many defining equations. Just by changing the length of the normal you
get a different equation, which still describes the same line.

45.10. Line through one point and perpendicular to another. Find a defining equa-
tion for the line ℓ which goes through A(1, 1) and is perpendicular to the line segment AB where
B is the point (3,−1).

−2

21

−1

3
0

1

2

ℓ

A

B

Solution. We already know a point on the line, namely A,
but we still need a normal vector. The line is required to be per-

pendicular to AB, so ~n =
−→
AB is a normal vector:

~n =
−→
AB =

„
3 − 1

(−1) − 1

«

=

„
2
−2

«

Of course any multiple of ~n is also a normal vector, for instance

~m = 1
2
~n =

„
1
−1

«

is a normal vector.

With ~a =
`

1
1

´
we then get the following equation for ℓ

~n···(~x − ~a) =

„
2
−2

«

···
„
x1 − 1
x2 − 1

«

= 2x1 − 2x2 = 0.

If you choose the normal ~m instead, you get

~m···(~x− ~a) =

„
1
−1

«

···
„
x1 − 1
x2 − 1

«

= x1 − x2 = 0.

Both equations 2x1 − 2x2 = 0 and x1 − x2 = 0 are equivalent.

45.11. Distance to a line. Let ℓ be a line in the plane and assume a point A on the line
as well as a vector ~n perpendicular to ℓ are known. Using the dot product one can easily compute
the distance from the line to any other given point P in the plane. Here is how:

Draw the line m through A perpendicular to ℓ, and drop a perpendicular line from P onto
m. let Q be the projection of P onto m. The distance from P to ℓ is then equal to the length of
the line segment AQ. Since AQP is a right triangle one has

AQ = AP cos θ.

Here θ is the angle between the normal ~n and the vector
−→
AP . One also has

~n···(~p− ~a) = ~n···−→AP = ‖−→AP‖ ‖~n‖ cos θ = AP ‖~n‖ cos θ.

Hence we get

dist(P, ℓ) =
~n···(~p− ~a)

‖~n‖
.

A

P

Q

~n

θ

ℓ

m

dist(P, ℓ)

θ <
π

2

A

P

Q

~n

θ

ℓ

m

dist(P, ℓ)

θ >
π

2
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This argument from a drawing contains a hidden assumption, namely that the point P lies on the

side of the line ℓ pointed to by the vector ~n. If this is not the case, so that ~n and
−→
AP point to

opposite sides of ℓ, then the angle between them exceeds 90◦, i.e. θ > π/2. In this case cos θ < 0,
and one has AQ = −AP cos θ. the distance formula therefore has to be modified to

dist(P, ℓ) = − ~n···(~p− ~a)

‖~n‖
.

A

X

−−→
AX

~n

~a

~x

45.12. Defining equation of a plane. Just as we
have seen how you can form the defining equation for a line
in the plane from just one point on the line and one normal
vector to the line, you can also form the defining equation
for a plane in space, again knowing only one point on the
plane, and a vector perpendicular to it.

If A is a point on some plane P and ~n is a vector per-
pendicular to P, then any other point X lies on P if and only

if
−−→
AX ⊥ ~n. In other words, in terms of the position vectors

~a and ~x of A and X,

the point X is on P ⇐⇒ ~n···(~x − ~a) = 0.

Arguing just as in § 45.11 you find that the distance of
a point X in space to the plane P is

(64) dist(X,P) = ± ~n···(~x − ~a)

‖~n‖
.

Here the sign is “+” if X and the normal ~n are on the same side of the plane P; otherwise the
sign is “−”.

45.13. Example. Find the defining equation for the plane P through the point A(1, 0, 2)

which is perpendicular to the vector
“

1
2
1

”

.

Solution: We know a point (A) and a normal vector ~n =
“

1
2
1

”

for P. Then any point X

with coordinates (x1, x2, x3), or, with position vector ~x =
“ x1
x2
x3

”

, will lie on the plane P if and

only if

~n···(~x− ~a) = 0 ⇐⇒

0

@

1
2
1

1

A ···

8
<

:

0

@

x1

x2

x3

1

A −

0

@

1
0
2

1

A

9
=

;
= 0

⇐⇒

0

@

1
2
1

1

A ···

0

@

x1 − 1
x2

x3 − 2

1

A = 0

⇐⇒ 1 · (x1 − 1) + 2 · (x2) + 1 · (x3 − 2) = 0

⇐⇒ x1 + 2x2 + x3 − 3 = 0.

45.14. Example continued. Let P be the plane from the previous example. Which of the
points P (0, 0, 1), Q(0, 0, 2), R(−1, 2, 0) and S(−1, 0, 5) lie on P? Compute the distances from the
points P,Q,R, S to the plane P. Separate the points which do not lie on P into two group of
points which lie on the same side of P.

Solution: We apply (64) to the position vectors ~p, ~q, ~r, ~s of the points P,Q,R, S. For each
calculation we need

‖~n‖ =
p

12 + 22 + 12 =
√

6.

The third component of the given normal ~n =
“

1
2
1

”

is positive, so ~n points “upwards.” Therefore,

if a point lies on the side of P pointed to by ~n, we shall say that the point lies above the plane.
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2 31

2

3

1

1

2

3

x1

x2

x3

A

~n =
“

1
2
1

”

P : ~p =
“

0
0
1

”

, ~p− ~a =

„
−1
0
−1

«

, ~n···(~p− ~a) = 1 · (−1) + 2 · (0) + 1 · (−1) = −2

~n···(~p− ~a)

‖~n‖
= − 2√

6
= −1

3

√
6.

This quantity is negative, so P lies below P. Its distance to P is 1
3

√
6.

Q: ~q =
“

0
0
2

”

, ~p− ~a =
“ −1

0
0

”

, ~n···(~p− ~a) = 1 · (−1) + 2 · (0) + 1 · (0) = −1

~n···(~p− ~a)

‖~n‖
= − 1√

6
= −1

6

√
6.

This quantity is negative, so Q also lies below P. Its distance to P is 1
6

√
6.

R: ~r =
“ −1

2
0

”

, ~p− ~a =

„
−2
2
−2

«

, ~n···(~p− ~a) = 1 · (−2) + 2 · (2) + 1 · (−2) = 0

~n···(~p− ~a)

‖~n‖
= 0.

Thus R lies on the plane P, and its distance to P is of course 0.

S: ~s =
“ −1

0
5

”

, ~p− ~a =
“ −2

0
3

”

, ~n···(~p− ~a) = 1 · (−1) + 2 · (0) + 1 · (3) = 2

~n···(~p− ~a)

‖~n‖
=

2√
6

=
1

3

√
6.

This quantity is positive, so S lies above P. Its distance to P is 1
3

√
6.

We have found that P and Q lie below the plane, R lies on the plane, and S is above the plane.

45.15. Where does the line through the points B(2, 0, 0) and C(0, 1, 2) intersect
the plane P from example 45.13? Solution: Let ℓ be the line through B and C. We set up

the parametric equation for ℓ. According to §43, (54) every point X on ℓ has position vector ~x
given by

(65) ~x = ~b + t(~c − ~b) =

0

@

2

0
0

1

A + t

0

@

0 − 2

1 − 0
2 − 0

1

A =

0

@

2 − 2t

t
2t

1

A

for some value of t.

The point X whose position vector ~x is given above lies on the plane P if ~x satisfies the
defining equation of the plane. In example 45.13 we found this defining equation. It was

(66) ~n···(~x − ~a) = 0, i.e. x1 + 2x2 + x3 − 3 = 0.
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So to find the point of intersection of ℓ and P you substitute the parametrization (65) in the
defining equation (66):

0 = x1 + 2x2 + x3 − 3 = (2 − 2t) + 2(t) + (2t) − 3 = 2t − 1.

This implies t = 1
2
, and thus the intersection point has position vector

~x = ~b + 1
2
(~c − ~b) =

0

@

2 − 2t
t
2t

1

A =

0

@

1
1
2
1

1

A ,

i.e. ℓ and P intersect at X(1, 1
2
, 1).

46. Cross Product

46.1. Algebraic definition of the cross product. Here is the definition of the cross-

product of two vectors. The definition looks a bit strange and arbitrary at first sight – it really
makes you wonder who thought of this. We will just put up with that for now and explore the
properties of the cross product. Later on we will see a geometric interpretation of the cross product
which will show that this particular definition is really useful. We will also find a few tricks that
will help you reproduce the formula without memorizing it.

46.2. Definition. The “outer product” or “cross product” of two vectors is given by

0

@

a1
a2
a3

1

A×××

0

@

b1
b2
b3

1

A =

0

@

a2b3 − a3b2
a3b1 − a1b3
a1b2 − a2b1

1

A

Note that the cross-product of two vectors is again a vector!

46.3. Example. If you set ~b = ~a in the definition you find the following important fact:

The cross product of any vector with itself is the zero vector:

~a××× ~a = ~0 for any vector ~a.

46.4. Example. Let ~a =
“

1
2
3

”

, ~b =
“ −2

1
0

”

and compute the cross product of these vectors.

Solution:

~a××× ~b =

0

@

1
2
3

1

A×××

0

@

−2
1
0

1

A =

0

B
@

2 · 0 − 3 · 1
3 · (−2) − 1 · 0

1 · 1 − 2 · (−2)

1

C
A =

0

@

−3
−6
5

1

A

××× ~i ~j ~k
~i ~0 ~k −~j
~j −~k ~0 ~i
~k ~j −~i ~0

i

jk

In terms of the standard basis vectors you can check the
multiplication table. An easy way to remember the multipli-

cation table is to put the vectors ~i,~j, ~k clockwise in a circle.
Given two of the three vectors their product is either plus or
minus the remaining vector. To determine the sign you step
from the first vector to the second, to the third: if this makes

you go clockwise you have a plus sign, if you have to go counterclockwise, you get a minus.

The products of ~i,~j and ~k are all you need to know to compute the cross product. Given

two vectors ~a and ~b write them as ~a = a1~i + a2~j + a3~k and ~b = b1~i+ b2~j + b3~k, and multiply as
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follows

~a××× ~b =(a1~i + a2~j + a3~k)××× (b1~i + b2~j + b3~k)

= a1~i××× (b1~i + b2~j + b3~k)

+a2~j ××× (b1~i + b2~j + b3~k)

+a3~k××× (b1~i + b2~j + b3~k)

= a1b1~i×××~i + a1b2~i××× ~j + a1b3~i××× ~k +

a2b1~j ×××~i + a2b2~j ××× ~j + a2b3~j ××× ~k +

a3b1~k×××~i + a3b2~k××× ~j + a3b3~k××× ~k

= a1b1~0 + a1b2~k − a1b3~j

−a2b1~k + a2b2~0 + a2b3~i +

a3b1~j − a3b2~i + a3b3~0

=(a2b3 − a3b2)~i + (a3b1 − a1b3)~j + (a1b2 − a2b1)~k

This is a useful way of remembering how to compute the cross product, particularly when many
of the components ai and bj are zero.

46.5. Example. Compute ~k××× (p~i + q~j + r~k):

~k××× (p~i + q~j + r~k) = p(~k×××~i) + q(~k××× ~j) + r(~k××× ~k) = −q~i + p~j.

There is another way of remembering how to find ~a×××~b. It involves the “triple product” and
determinants. See § 46.7.

46.6. Algebraic properties of the cross product. Unlike the dot product, the cross
product of two vectors behaves much less like ordinary multiplication. To begin with, the product
is not commutative – instead one has

(67) ~a××× ~b = −~b××× ~a for all vectors ~a and ~b.

This property is sometimes called “anti-commutative.”

~i××× (~i××× ~j) = ~i××× ~k = −~j,

(~i×××~i)××× ~j = ~0××× ~j = ~0
so “×××” is not associative

Since the crossproduct of two vectors is again a
vector you can compute the cross product of three vec-

tors ~a,~b,~c. You now have a choice: do you first multi-

ply ~a and ~b, or ~b and ~c, or ~a and ~c? With numbers it
makes no difference (e.g. 2 × (3 × 5) = 2 × 15 = 30 and (2 × 3) × 5 = 6 × 5 = also 30) but with
the cross product of vectors it does matter: the cross product is not associative, i.e.

~a××× (~b××× ~c) 6=6=6= (~a××× ~b)××× ~c for most vectors ~a,~b,~c.

The distributive law does hold, i.e.

~a××× (~b + ~c) = ~a××× ~b + ~a××× ~c, and (~b + ~c)××× ~a = ~b××× ~a + ~c××× ~a

is true for all vectors ~a,~b,~c.

Also, an associative law, where one of the factors is a number and the other two are vectors,
does hold. I.e.

t(~a××× ~b) = (t~a)××× ~b = ~a××× (t~b)

holds for all vectors ~a,~b and any number t. We were already using these properties when we

multiplied (a1~i + a2~j + a3~k)××× (b1~i + b2~j + b3~k) in the previous section.

Finally, the cross product is only defined for space vectors, not for plane vectors.

46.7. The triple product and determinants.
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46.8. Definition. The triple product of three given vectors ~a,~b, and ~c is defined to be

~a···(~b××× ~c).

In terms of the components of ~a,~b, and ~c one has

~a···(~b××× ~c) =

0

@

a1
a2
a3

1

A ···

0

@

b2c3 − b3c2
b3c1 − b1c3
b1c2 − b2c1

1

A

= a1b2c3 − a1b3c2 + a2b3c1 − a2b1c3 + a3b1c2 − a3b2c1.

This quantity is called a determinant, and is written as follows

(68)

˛
˛
˛
˛
˛
˛

a1 b1 c1
a2 b2 c2
a3 b3 c3

˛
˛
˛
˛
˛
˛

= a1b2c3 − a1b3c2 + a2b3c1 − a2b1c3 + a3b1c2 − a3b2c1

− − + ++−

a1a1a1a1a1 b1b1 c1

a2 a2a2 b2b2 c2

a3a3a3 b3b3 c3

There’s a useful shortcut for computing such a deter-
minant: after writing the determinant, append a fourth and
a fifth column which are just copies of the first two columns
of the determinant. The determinant then is the sum of six
products, one for each dotted line in the drawing. Each term
has a sign: if the factors are read from top-left to bottom-
right, the term is positive, if they are read from top-right to
bottom left the term is negative. This shortcut is also very
useful for computing the crossproduct. To compute the cross product of two given vectors ~a and
~b you arrange their components in the following determinant

(69) ~a××× ~b =

˛
˛
˛
˛
˛
˛
˛

~i a1 b1
~j a2 b2
~k a3 b3

˛
˛
˛
˛
˛
˛
˛

= (a2b3 − a3b2)~i + (a3b1 − a1b3)~j + (a1b2 − a2b1)~k.

This is not a normal determinant since some of its entries are vectors, but if you ignore that odd
circumstance and simply compute the determinant according to the definition (68), you get (69).

An important property of the triple product is that it is much more symmetric in the factors

~a,~b,~c than the notation ~a···(~b××× ~c) suggests.

46.9. Theorem. For any triple of vectors ~a,~b,~c one has

~a···(~b××× ~c) = ~b···(~c××× ~a) = ~c···(~a××× ~b),

and

~a···(~b××× ~c) = −~b···(~a××× ~c) = −~c···(~b××× ~a).

In other words, if you exchange two factors in the product ~a···(~b××× ~c) it changes its sign. If you

“rotate the factors,” i.e. if you replace ~a by ~b, ~b by ~c and ~c by ~a, the product doesn’t change at
all.

46.10. Geometric description of the cross product.

46.11. Theorem.

~a××× ~b ⊥ ~a,~b

~a

~b

~a××× ~b

θ

Proof. We use the triple product:

~a···(~a××× ~b) = ~b···(~a××× ~a) = ~0

since ~a×××~a = ~0 for any vector ~a. It follows that ~a×××~b is perpendicular
to ~a.

Similarly, ~b···(~a××× ~b) = ~a···(~b××× ~b) = ~0 shows that ~a···~b is perpen-

dicular to ~b. �
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46.12. Theorem.

‖~a××× ~b‖ = ‖~a‖ ‖~b‖ sin θ

Proof. Bruce9 just slipped us a piece of paper with the following formula on it:

(70) ‖~a××× ~b‖2 + (~a···~b)2 = ‖~a‖2‖~b‖2.

After setting ~a =
“ a1
a2
a3

”

and ~b =

„
b1
b2
b3

«

and diligently computing both sides we find that this

formula actually holds for any pair of vectors ~a,~b! The (long) computation which implies this
identity will be presented in class (maybe).

If we assume that Lagrange’s identity holds then we get

‖~a××× ~b‖2 = ‖~a‖2‖~b‖2 − (~a···~b)2 = ‖~a‖2‖~b‖2 − ‖~a‖2‖~b‖2 cos2 θ = ‖~a‖2‖~b‖2 sin2 θ

since 1 − cos2 θ = sin2 θ. The theorem is proved. �

These two theorems almost allow you to construct the cross product of two vectors geomet-

rically. If ~a and ~b are two vectors, then their cross product satisfies the following description:

(1) If ~a and ~b are parallel, then the angle θ between them vanishes, and so their cross

product is the zero vector. Assume from here on that ~a and ~b are not parallel.

(2) ~a×××~b is perpendicular to both ~a and ~b. In other words, since ~a and ~b are not parallel,
they determine a plane, and their cross product is a vector perpendicular to this plane.

(3) the length of the cross product ~a××× ~b is ‖~a‖ · ‖~b‖ sin θ.

~a

~b

~a××× ~b
There are only two vectors that satisfy conditions 2 and 3: to

determine which one of these is the cross product you must apply
the Right Hand Rule (screwdriver rule, corkscrew rule, etc.) for

~a,~b, ~a×××~b: if you turn a screw whose axis is perpendicular to ~a and
~b in the direction from ~a to ~b, the screw moves in the direction of

~a××× ~b.

Alternatively, without seriously injuring yourself, you should be
able to make a fist with your right hand, and then stick out your
thumb, index and middle fingers so that your thumb is ~a, your index

finger is ~b and your middle finger is ~a××× ~b. Only people with the most flexible joints can do this
with their left hand.

47. A few applications of the cross product

BA

D C

θ

base

h
e
ig

h
t

47.1. Area of a parallelogram. Let ABCD be a parallelogram.
Its area is given by “height times base,” a formula which should be familiar
from high school geometry.

If the angle between the sides AB and AD is θ, then the height of
the parallelogram is ‖−−→AD‖ sin θ, so that the area of ABCD is

(71) area of ABCD = ‖−→AB‖ · ‖−−→AD‖ sin θ = ‖−→AB×××−−→
AD‖ .

The area of the triangle ABD is of course half as much,

area of triangle ABD = 1
2
‖−→AB×××−−→

AD‖ .

These formulae are valid even when the points A,B, C, and D are
points in space. Of course they must lie in one plane for otherwise ABCD
couldn’t be a parallelogram.

9It’s actually called Lagrange’s identity. Yes, the same Lagrange who found the formula for the
remainder term.
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47.2. Example. Let the points A(1, 0, 2), B(2, 0, 0), C(3, 1,−1) and D(2, 1, 1) be given.

Show that ABCD is a parallelogram, and compute its area.

Solution: ABCD will be a parallelogram if and only if
−→
AC =

−→
AB +

−−→
AD. In terms of the

position vectors ~a,~b, ~c and ~d of A,B, C,D this boils down to

~c− ~a = (~b− ~a) + (~d− ~a), i.e. ~a + ~c = ~b + ~d.

For our points we get

~a + ~c =

0

@

1
0
2

1

A +

0

@

3
1
−1

1

A =

0

@

4
1
1

1

A , vb+ ~d =

0

@

2
0
0

1

A +

0

@

2
1
1

1

A =

0

@

4
1
1

1

A .

So ABCD is indeed a parallelogram. Its area is the length of

−→
AB×××−−→

AD =

0

@

2 − 1
0

0 − 2

1

A×××

0

@

2 − 2
1 − 0
1 − 0

1

A =

0

@

1
0
−2

1

A ×××

0

@

1
−1
−1

1

A =

0

@

−2
−1
−1

1

A .

So the area of ABCD is
p

(−2)2 + (−1)2 + (−1)2 =
√

6.

~a
~b

~n = ~a××× ~b
47.3. Finding the normal to a plane. If you know two vectors ~a

and ~b which are parallel to a given plane P but not parallel to each other,
then you can find a normal vector for the plane P by computing

~n = ~a××× ~b.

We have just seen that the vector ~n must be perpendicular to both ~a and ~b, and hence10 it is
perpendicular to the plane P.

This trick is especially useful when you have three points A, B and C, and you want to find
the defining equation for the plane P through these points. We will assume that the three points
do not all lie on one line, for otherwise there are many planes through A, B and C.

To find the defining equation we need one point on the plane (we have three of them), and a
normal vector to the plane. A normal vector can be obtained by computing the cross product of

two vectors parallel to the plane. Since
−→
AB and

−→
AC are both parallel to P, the vector ~n =

−→
AB×××−→

AC
is such a normal vector.

Thus the defining equation for the plane through three given points A, B and C is

~n···(~x− ~a) = 0, with ~n =
−→
AB×××−→

AC = (~b − ~a)××× (~c− ~a).

47.4. Example. Find the defining equation of the plane P through the points A(2,−1, 0),
B(2, 1,−1) and C(−1, 1, 1). Find the intersections of P with the three coordinate axes, and find
the distance from the origin to P.

Solution: We have

−→
AB =

0

@

0
2
−1

1

A and
−→
AC =

0

@

−3
2
1

1

A

so that

~n =
−→
AB×××−→

AC =

0

@

0
2
−1

1

A×××

0

@

−3
2
1

1

A =

0

@

4
3
6

1

A

is a normal to the plane. The defining equation for P is therefore

0 = ~n···(~x − ~a) =

0

@

4
3
6

1

A ···

0

@

x1 − 2
x2 + 1
x3 − 0

1

A

i.e.

4x1 + 3x2 + 6x3 − 5 = 0.

The plane intersects the x1 axis when x2 = x3 = 0 and hence 4x1 − 5 = 0, i.e. in the point

( 5
4
, 0, 0). The intersections with the other two axes are (0, 5

3
, 0) and (0, 0, 5

6
).

10This statement needs a proof which we will skip. Instead have a look at the picture
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The distance from any point with position vector ~x to P is given by

dist = ± ~n···(~x− ~a)

‖~n‖
,

so the distance from the origin (whose position vector is ~x = ~0 =
“

0
0
0

”

) to P is

distance origin to P = ± ~a···~n
‖~n‖

= ±2 · 4 + (−1) · 3 + 0 · 6√
42 + 32 + 62

=
5√
61

(≈ 1.024 · · · ).

47.5. Volume of a parallelepiped.

E

F

H

C

H

G

F

B

C

A

E

D
A

B

D

G

base

height

A parallelepiped is a three dimensional body whose sides are parallelograms. For instance, a cube
is an example of a parallelepiped; a rectangular block (whose faces are rectangles, meeting at right
angles) is also a parallelepiped. Any parallelepiped has 8 vertices (corner points), 12 edges and 6
faces.

Let ABCD
EFGH

be a parallelepiped. If we call one of the faces, say ABCD, the base of the
parallelepiped, then the other face EFGH is parallel to the base. The height of the parallelepiped

is the distance from any point in EFGH to the base, e.g. to compute the height of ABCD
EFGH

one

could compute the distance from the point E (or F , or G, or H) to the plane through ABCD.

The volume of the parallelepiped ABCD
EFGH

is given by the formula

Volume
ABCD

EFGH
= Area of base × height.

Since the base is a parallelogram we know its area is given by

Area of baseABCD = ‖−→AB×××−−→
AD‖

We also know that ~n =
−→
AB×××−−→

AD is a vector perpendicular to the plane through ABCD, i.e. per-
pendicular to the base of the parallelepiped. If we let the angle between the edge AE and the
normal ~n be ψ, then the height of the parallelepiped is given by

height = ‖−→AE‖ cosψ.

Therefore the triple product of
−→
AB,

−−→
AD,

−→
AE is

Volume
ABCD

EFGH
= height × Area of base

= ‖−→AE‖ cosψ ‖−→AB×××−−→
AD‖ ,

i.e.

Volume
ABCD

EFGH
=

−→
AE···(−→AB×××−−→

AD).
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48. Notation

In the next chapter we will be using vectors, so let’s take a minute to summarize the concepts
and notation we have been using.

Given a point in the plane, or in space you can form its position vector. So associated to a
point we have three different objects: the point, its position vector and its coordinates. here is
the notation we use for these:

Object Notation

Point. . . . . . . . . . . . . . . . . . . . Upper case letters, A, B, etc.

Position vector . . . . . . . . . . Lowercase letters with an arrow on top.

The position vector
−→
OA of the point A

should be ~a, so that letters match across
changes from upper to lower case.

Coordinates of a point. . . The coordinates of the point A are the same
as the components of its position vector ~a:

we use lower case letters with a subscript to
indicate which coordinate we have in mind:
(a1, a2).

49. PROBLEMS

Computing and drawing vectors.

361. Simplify the following

~a =

0

@

1
−2
3

1

A + 3

0

@

0
1
3

1

A ;

~b = 12

„
1

1/3

«

− 3

„
4
1

«

;

~c = (1 + t)

„
1

1 − t

«

− t

„
1
−t

«

,

~d = t

0

@

1
0
0

1

A + t2

0

@

0
−1
2

1

A −

0

@

0
0
1

1

A .

362. If ~a,~b,~c are as in the previous prob-
lem, then which of the following expressions
mean anything? Compute those expressions
that are well defined.

(i) ~a + ~b (ii) ~b + ~c (iii) π~a

(iv) ~b
2

(v) ~b/~c (vi) ‖~a‖ + ‖~b‖
(vii) ‖~b‖2 (viii) ~b/ ‖~c‖

363. Let ~u, ~v, ~w be three given vectors, and
suppose

~a = ~v + ~w, ~b = 2~u− ~w, ~c = ~u+ ~v + ~w.

(a) Simplify ~p = ~a + 3~b − ~c and ~q =
~c− 2(~u + ~a).

(b) Find numbers r, s, t such that r~a+ s~b+
t~c = ~u.

(c) Find numbers k, l,m such that k~a+ l~b+
m~c = ~v.

364. Prove the Algebraic Properties (50), (51),
(52), and (53) in section 42.5.

365. (a) Does there exist a number x such that
„

1
2

«

+

„
x
x

«

=

„
2
1

«

?

(b) Make a drawing of all points P whose
position vectors are given by

~p =

„
1
2

«

+

„
x
x

«

.

(c) Do there exist a numbers x and y such
that

x

„
1
2

«

+ y

„
1
1

«

=

„
2
1

«

?

366. Given points A(2, 1) and B(−1, 4) com-

pute the vector
−→
AB. Is

−→
AB a position vec-

tor?

367. Given: points A(2, 1), B(3, 2), C(4, 4)
and D(5, 2). Is ABCD a parallelogram?

368. Given: points A(0, 2, 1), B(0, 3, 2),
C(4, 1, 4) and D.

(a) If ABCD is a parallelogram, then what
are the coordinates of the point D?

(b) If ABDC is a parallelogram, then what
are the coordinates of the point D?
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369. You are given three points in the plane:
A has coordinates (2, 3), B has coordinates
(−1, 2) and C has coordinates (4,−1).

(a) Compute the vectors
−→
AB,

−→
BA,

−→
AC,

−→
CA,

−−→
BC and

−−→
CB.

(b) Find the points P,Q,R and S whose po-

sition vectors are
−→
AB,

−→
BA,

−→
AC, and

−−→
BC,

respectively. Make a precise drawing in fig-
ure 21.

370. Have a look at figure 22

(a) Draw the vectors 2~v + 1
2
~w, − 1

2
~v + ~w,

and 3
2
~v − 1

2
~w

(b) Find real numbers s, t such that s~v +
t~w = ~a.

(c) Find real numbers p, q such that p~v +

q ~w = ~b.

(d) Find real numbers k, l,m, n such that

~v = k~a + l~b, and ~w = m~a + n~w.

Figure 21. Your drawing for problem 369

O

A

B

Parametric Equations for a Line

371. In the figure above draw the points whose

position vectors are given by ~x = ~a+t(~b−~a)

for t = 0, 1, 1
3
, 3

4
,−1, 2. (as always, ~a =

−→
OA,

etc.)

372. In the figure above also draw the points
whose position vector are given by ~x =
~b + s(~a− ~b) for s = 0, 1, 1

3
, 3

4
,−1, 2.

373. (a) Find a parametric equation for the
line ℓ through the points A(3, 0, 1) and
B(2, 1, 2).

(b) Where does ℓ intersect the coordi-
nate planes?

374. Consider a triangle ABC and let ~a,~b,~c
be the position vectors of A,B, and C.
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(a) Compute the position vector of the
midpoint P of the line segment BC. Also
compute the position vectors of the mid-
points Q of AC and R of AB. (Make a
drawing.)

(b) Let M be the point on the line seg-
ment AP which is twice as far from A as it
is from P . Find the position vector of M .

(c) Show that M also lies on the line
segments BQ and CR.

375. Let ABCD be a tetrahedron, and let

~a,~b,~c, ~d be the position vectors of the points
A,B, C,D.

(i) Find position vectors of the midpoint P
of AB, the midpoint Q of CD and the mid-
point M of PQ.

(ii) Find position vectors of the midpoint R
of BC, the midpoint S of AD and the mid-
point N of RS.

D

A

B

C

Orthogonal decomposition of one
vector with respect to another

376. Given the vectors ~a =
“

2
1
3

”

and ~b =
“

1
1
0

”

find ~a//, ~a⊥, ~b
//
, ~b

⊥
for which

~a = ~a// + ~a⊥, with a////~b, a⊥ ⊥ ~b,

and

~b = ~b
//

+ ~b
⊥
, with b////~a, b⊥ ⊥ ~a.

~a

~b

~v

~w

Figure 22. Drawing for problem 370
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377. Bruce left his backpack on a hill, which in
some coordinate system happens to be the
line with equation 12x1 + 5x2 = 130.

The force exerted by gravity on the

backpack is ~fgrav =
`

0
−mg

´
. Decompose

this force into a part perpendicular to the
hill, and a part parallel to the hill.

378. An eraser is lying on the plane P with
equation x1 + 3x2 + x3 = 6. Gravity pulls
the eraser down, and exerts a force given by

~fgrav =

0

@

0
0

−mg

1

A .

(a) Find a normal ~n for the plane P.

(b) Decompose the force ~f into a part
perpendicular to the plane P and a part per-

pendicular to ~n.

The Dot Product

379. (i) Simplify ‖~a− ~b‖2.

(ii) Simplify ‖2~a− ~b‖2.

(iii) If ~a has length 3, ~b has length 7 and

~a···~b = −2, then compute ‖~a + ~b‖, ‖~a− ~b‖
and ‖2~a− ~b‖.

380. Simplify (~a + ~b)···(~a− ~b).

381. Find the lengths of the sides, and the an-
gles in the triangle ABC whose vertices are
A(2, 1), B(3, 2), and C(1, 4).

382. Given: A(1, 1), B(3, 2) and a point C
which lies on the line with parametric equa-
tion ~c =

`
0
3

´
+ t

`
1
−1

´
. If △ABC is a right

triangle, then where is C? (There are three
possible answers, depending on whether you
assume A, B or C is the right angle.)

383. (i) Find the defining equation and a nor-
mal vector ~n for the line ℓ which is the graph
of y = 1 + 1

2
x.

(ii) What is the distance from the origin to
ℓ?

(iii) Answer the same two questions for the
line m which is the graph of y = 2 − 3x.

(iv) What is the angle between ℓ and m?

384. Let ℓ and m be the lines with
parametrizations

ℓ : ~x =

„
2
0

«

+t

„
1
2

«

, m : ~x =

„
0
−1

«

+s

„
−2
3

«

Where do they intersect, and find the angle
between ℓ and m.

385. Let ℓ and m be the lines with

parametrizations

ℓ : ~x =

0

@

2
0
1

1

A+t

0

@

1
2
0

1

A , m : ~x =

0

@

0
1
−1

1

A+s

0

@

−2
0
3

1

A

Do ℓ and m intersect? Find the angle be-
tween ℓ and m.

386. Let ℓ and m be the lines with
parametrizations

ℓ : ~x =

0

@

2
α
1

1

A+t

0

@

1
2
0

1

A , m : ~x =

0

@

0
1
−1

1

A+s

0

@

−2
0
3

1

A

Here α is some unknown number.

If it is known that the lines ℓ and m
intersect, what can you say about α?

The Cross Product

387. Compute the following cross products

(i)

0

@

3
1
2

1

A ×××

0

@

3
2
1

1

A

(ii)

0

@

12
−71

3 1
2

1

A×××

0

@

12
−71

3 1
2

1

A

(iii)

0

@

1
0
0

1

A×××

0

@

1
1
0

1

A

(iv)

0

@

√
2

1
0

1

A×××

0

@

0√
2

0

1

A

(v) ~i××× (~i + ~j)

(vi) (
√

2~i + ~j)×××
√

2~j

(vii) (2~i + ~k)××× (~j − ~k)

(viii) (cos θ~i + sin θ~k)××× (sin θ~i− cos θ~k)
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388. (i) Simplify (~a + ~b)××× (~a + ~b).

(ii) Simplify (~a− ~b)××× (~a− ~b).

(iii) Simplify (~a + ~b)××× (~a− ~b).

389. True or False: If ~a ××× ~b = ~c ××× ~b and
~b 6= ~0 then ~a = ~c?

390. Given A(2, 0, 0), B(0, 0, 2) and C(2, 2, 2).
Let P be the plane through A, B and C.

(i) Find a normal vector for P.

(ii) Find a defining equation for P.

(iii) What is the distance from D(0, 2, 0) to
P? What is the distance from the origin
O(0, 0, 0) to P?

(iv) Do D and O lie on the same side of
P?

(v) Find the area of the triangle ABC.

(vi) Where does the plane P intersect the
three coordinate axes?

391. (i) Does D(2, 1, 3) lie on the plane P

through the points A(−1, 0, 0), B(0, 2, 1)
and C(0, 3, 0)?

(ii) The point E(1, 1, α) lies on P. What is
α?

392. Given points A(1,−1, 1), B(2, 0, 1) and
C(1, 2, 0).

(i) Where is the point D which makes
ABCD into a parallelogram?

(ii) What is the area of the parallelogram
ABCD?

(iii) Find a defining equation for the plane
P containing the parallelogram ABCD.

(iv) Where does P intersect the coordinate
axes?

393. Given points A(1, 0, 0), B(0, 2, 0) and
D(−1, 0, 1) and E(0, 0, 2).

(i) If P = ABCD
EFGH

is a parallelepiped, then
where are the points C,F,G and H?

(ii) Find the area of the base ABCD of
P.

(iii) Find the height of P.

(iv) Find the volume of P.

B C

A

E

F G

H

D

394. Let ABCD
EFGH

be the cube with A at the

origin, B(1, 0, 0), D(0, 1, 0) and E(0, 0, 1).

(i) Find the coordinates of all the points A,
B, C, D, E, F , G, H.

(ii) Find the position vectors of the mid-
points of the line segments AG, BH, CE
and DF . Make a drawing of the cube with
these line segments.

(iii) Find the defining equation for the plane
BDE. Do the same for the plane CFH.
Show that these planes are parallel.

(iv) Find the parametric equation for the
line through AG.

(v) Where do the planes BDE and CFH
intersect the line AG?

(vi) Find the angle between the planes BDE
and BGH.

(vii) Find the angle between the planes
BDE and BCH. Draw these planes.
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Vector Functions and Parametrized Curves

50. Parametric Curves

50.1. Definition. A vector function ~f of one variable is a function of one real variable,

whose values ~f(t) are vectors. In other words for any value of t (from a domain of allowed

values, usually an interval) the vector function ~f produces a vector ~f(t). Write ~f in components:

~f(t) =

„
f1(t)
f2(t)

«

.

The components of a vector function ~f of t are themselves functions of t. They are ordinary
first-semester-calculus-style functions. An example of a vector function is

~f(t) =

„
t− 2t2

1 + cos2 πt

«

, so ~f(1) =

„
1 − 2(1)2

1 + (cos π)2

«

=

„
−1
2

«

(just to mention one.)

50.2. Definition. A parametric curve is a vector function ~x = ~x(t) of one real variable t.
The variable t is called the parameter. Synonyms: “Parametrized curve,” or “parametriza-
tion,” or “vector function (of one variable).”

Logically speaking a parametrized curve is the same thing as a vector function. The name
“parametrized curve” is used to remind you of a very natural and common interpretation of the
concept “parametric curve.” In this interpretation a vector function, or parametric curve ~x(t)
describes the motion of a point in the plane or space. Here t stands for time, and ~x(t) is the
position vector at time t of the moving point.

−1.0

0.5

1.0

1.5

2.0

2.5

3.5

3.0
t=−1.5

t=0.0

−0.5

A picture of a vector function.

Instead of writing a parametrized curve as a vector function, one sometimes specifies the two
(or three) components of the curve. Thus one will say that a parametric curve is given by

x1 = x1(t), x2 = x2(t), (and x3 = x3(t) if we have a space curve).

51. Examples of parametrized curves

51.1. An example of Rectilinear Motion. Here’s a parametric curve:

(72) ~x(t) =

„
1 + t
2 + 3t

«

.

The components of this vector function are

(73) x1(t) = 1 + t, x2(t) = 2 + 3t.

Both components are linear functions of time (i.e. the parameter t), so every time t increases by
an amount ∆t (every time ∆t seconds go by) the first component increases by ∆t, and the x2

component increases by 3∆t. So the point at ~x(t) moves horizontally to the left with speed 1,
and it moves vertically upwards with speed 3.
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t = 0

t = 1

t = −1

∆t

3∆t

Which curve is traced out by this vector function? In this example
we can find out by eliminating the parameter, i.e. solve one of the two
equations (73) for t, and substitute the value of t you find in the other
equation. Here you can solve x1 = 1 + t for t, with result t = x1 − 1.
From there you find that

x2 = 2 + 3t = 2 + 3(x1 − 1) = 3x1 − 1.

So for any t the vector ~x(t) is the position vector of a point on the
line x2 = 3x1 − 1 (or, if you prefer the old fashioned x, y coordinates,
y = 3x− 1).

Conclusion: This particular parametric curve traces out a straight
line with equation x2 = 3x1 − 1, going from left to right.

51.2. Rectilinear Motion in general. This example generalizes
the previous example. The parametric equation for a straight line from
the previous chapter

~x(t) = ~a + t~v,

is a parametric curve. We had ~v = ~b − ~a in §43. At time t = 0 the object is at the point with
position vector ~a, and every second (unit of time) the object translates by ~v. The vector ~v is the
velocity vector of this motion.

In the first example we had ~a =
`

1
2

´
, and ~v =

`
1
3

´
.

51.3. Going back and forth on a straight line. Consider

~x(t) = ~a + sin(t)~v.

At each moment in time the object whose motion is described by this parametric curve finds itself

on the straight line ℓ with parametric equation ~x = ~a + s(~b − ~a), where ~b = ~a + ~v.

However, instead of moving along the line from one end to the other, the point at ~x(t) keeps
moving back and forth along ℓ between ~a + ~v and ~a− ~v.

51.4. Motion along a graph. Let y = f(x) be some function of one variable (defined for
x in some interval) and consider the parametric curve given by

~x(t) =

„
t

f(t)

«

= t~i + f(t)~j.

At any moment in time the point at ~x(t) has x1 coordinate equal to t, and x2 = f(t) = f(x1),
since x1 = t. So this parametric curve describes motion on the graph of y = f(x) in which the
horizontal coordinate increases at a constant rate.

~x(θ)

θ
51.5. The standard parametrization of a circle. Consider

the parametric curve

~x(θ) =

„
cos θ
sin θ

«

.

The two components of this parametrization are

x1(θ) = cos θ, x2(θ) = sinθ,

and they satisfy

x1(θ)
2 + x2(θ)

2 = cos2 θ + sin2 θ = 1,

so that ~x(θ) always points at a point on the unit circle.

As θ increases from −∞ to +∞ the point will rotate through the circle, going around infinitely
often. Note that the point runs through the circle in the counterclockwise direction, which is
the mathematician’s favorite way of running around in circles.
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51.6. The Cycloid. The Free Ferris Wheel Foundation is an organization whose goal is to
empower fairground ferris wheels to roam freely and thus realize their potential. With blatant
disregard for the public, members of the F2WF will clandestinely unhinge ferris wheels, thereby
setting them free to roll throughout the fairground and surroundings.

Suppose we were to step into the bottom of a ferris wheel at the moment of its liberation:
what would happen? Where would the wheel carry us? Let our position be the point X, and let
its position vector at time t be ~x(t). The parametric curve ~x(t) which describes our motion is
called the cycloid.

C
C

θ

θ

AA

X

X

O

O A

B

C

X
θ

In this example we are given a description of a motion, but no formula for the parametrization
~x(t). We will have to derive this formula ourselves. The key to finding ~x(t) is the fact that the
arc AX on the wheel is exactly as long as the line segment OA on the ground (i.e. the x1 axis).
The length of the arc AX is exactly the angle θ (“arc = radius times angle in radians”), so the
x1 coordinate of A and hence the center C of the circle is θ. To find X consider the right triangle
BCX. Its hypothenuse is the radius of the circle, i.e. CX has length 1. The angle at C is θ, and
therefore you get

BX = sin θ, BC = cos θ,

and

x1 = OA− BX = θ − sin θ, x2 = AC −BC = 1 − cos θ.

So the parametric curve defined in the beginning of this example is

~x(θ) =

„
θ − sin θ
1 − cos θ

«

.

Here the angle θ is the parameter, and we can let it run from θ = −∞ to θ = ∞.
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x1

x2

x3

θ

height = aθ

θ = 0

θ = 2π

θ = 4π

51.7. A three dimensional example: the Helix. Consider the vector function

~x(θ) =

0

@

cos θ
sin θ
aθ

1

A

where a > 0 is some constant.

If you ignore the x3 component of this vector function you get the parametrization of the
circle from example 51.5. So as the parameter θ runs from −∞ to +∞, the x1, x2 part of ~x(θ) runs
around on the unit circle infinitely often. While this happens the vertical component, i.e. x3(θ)
increases steadily from −∞ to ∞ at a rate of a units per second.

52. The derivative of a vector function

If ~x(t) is a vector function, then we define its derivative to be

~x′(t) =
d~x

dt
= lim
h→0

~x(t + h) − ~x(t)

h
.

This definition looks very much like the first-semester-calculus-definition of the derivative of a
function, but for it to make sense in the context of vector functions we have to explain what the

limit of a vector function is.

By definition, for a vector function ~f(t) =
“
f1(t)
f2(t)

”

one has

lim
t→a

~f(t) = lim
t→a

„
f1(t)
f2(t)

«

=

„
limt→a f1(t)
limt→a f2(t)

«

In other words, to compute the limit of a vector function you just compute the limits of its
components (that will be our definition.)

Let’s look at the definition of the velocity vector again. Since

~x(t+ h) − ~x(t)

h
=

1

h

„
x1(t+ h)
x2(t+ h)

«

−
„
x1(t)
x2(t)

«ff

=

0

B
@

x1(t + h) − x1(t)

h
x2(t + h) − x2(t)

h

1

C
A
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we have

~x′(t) = lim
h→0

~x(t+ h) − ~x(t)

h

=

0

B
@

lim
h→0

x1(t + h) − x1(t)

h

lim
h→0

x2(t + h) − x2(t)

h

1

C
A

=

„
x′1(t)
x′2(t)

«

So: To compute the derivative of a vector function you must differentiate its components.

52.1. Example. Compute the derivative of

~x(t) =

„
cos t
sin t

«

and of ~y(t) =

„
t− sin t
1 − cos t

«

.

Solution:

~x′(t) =
d

dt

„
cos t
sin t

«

=

„
− sin t
cos t

«

~y′(t) =
d

dt

„
t− sin t
1 − cos t

«

=

„
1 − cos t

sin t

«

.

53. Higher derivatives and product rules

If you differentiate a vector function ~x(t) you get another vector function, namely ~x′(t), and
you can try to differentiate that vector function again. If you succeed, the result is called the
second derivative of ~x(t). All this is very similar to how the second (and higher) derivative of
ordinary functions were defined in 1st semester calculus. One even uses the same notation:11

~x′′(t) =
d~x′(t)

dt
=

d2~x

dt2
=

„
x′′1 (t)
x′′2 (t)

«

.

53.1. Example. Compute the second derivative of

~x(t) =

„
cos t
sin t

«

and of ~y(t) =

„
t− sin t
1 − cos t

«

.

Solution: In example 52.1 we already found the first derivatives, so you can use those. You find

~x′′(t) =
d

dt

„
− sin t
cos t

«

=

„
− cos t
− sin t

«

~y′′(t) =
d

dt

„
1 − cos t

sin t

«

=

„
sin t

− cos t

«

.

Note that our standard parametrization ~x(t) of the circle satisfies

~x′′(t) = −~x(t).

After defining the derivative in first semester calculus one quickly introduces the various rules
(sum, product, quotient, chain rules) which make it possible to compute derivatives without ever
actually having to use the limit-of-difference-quotient-definition. For vector functions there are
similar rules which also turn out to be useful.

The Sum Rule holds. It says that if ~x(t) and ~y(t) are differentiable12 vector functions, then
so is ~z(t) = ~x(t) ± ~y(t), and one has

d~x(t) ± ~y(t)

dt
=

d~x(t)

dt
± d~y(t)

dt
.

The Product Rule also holds, but it is more complicated, because there are several different forms
of multiplication when you have vector functions. The following three versions all hold:

11Not every function has a derivative, so it may happen that you can find ~x′(t) but not ~x′′(t)
12A vector function is differentiable if its derivative actually exists, i.e. if all its components are

differentiable.
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If ~x(t) and ~y(t) are differentiable vector functions and f(t) is an ordinary differentiable
function, then

df(t)~x(t)

dt
= f(t)

d~x(t)

dt
+

df(t)

dt
~x(t)

d~x(t)···~y(t)

dt
= ~x(t)···d~y(t)

dt
+

d~x(t)

dt
···~y(t)

d~x(t)××× ~y(t)

dt
= ~x(t)××× d~y(t)

dt
+

d~x(t)

dt
××× ~y(t)

I hope these formulae look plausible because they look like the old fashioned product rule, but
even if they do, you still have to prove them before you can accept their validity. I will prove one
of these in lecture. You will do some more as an exercise.

As an example of how these properties get used, consider this theorem:

53.2. Theorem. Let ~f(t) be a vector function of constant length (i.e. ‖~f(t)‖ is constant.)

Then ~f
′
(t) ⊥ ~f(t).

Proof. If ‖~f‖ is constant, then so is ~f(t)···~f(t) = ‖~f(t)‖2. the derivative of a constant
function is zero, so

0 =
d

dt

`
‖~f(t)‖2´

=
d

dt

`
‖~f(t)‖ ··· ‖~f(t)‖

´
= 2~f(t)···d

~f(t)

dt
.

So we see that ~f···~f′
= 0 which means that ~f

′ ⊥ ~f . �

54. Interpretation of ~x′(t) as the velocity vector

~x(t)

~x(t + h)

~x(t + h) − ~x(t)

Figure 23. The vector velocity of a motion in the plane.

Let ~x(t) be some vector function and interpret it as describing the motion of some point in
the plane (or space). At time t the point has position vector ~x(t); a little later, more precisely, h
seconds later the point has position vector ~x(t+ h). Its displacement is the difference vector

~x(t + h) − ~x(t).

Its average velocity vector between times t and t+ h is

displacement vector

time lapse
=
~x(t + h) − ~x(t)

h
.

If the average velocity between times t and t + h converges to one definite vector as h → 0, then
this limit is a reasonable candidate for the velocity vector at time t of the parametric curve ~x(t).

Being a vector, the velocity vector has both magnitude and direction. The length of the
velocity vector is called the speed of the parametric curve. We use the following notation: we
always write

~v(t) = ~x′(t)

for the velocity vector, and
v(t) = ‖~v(t)‖ = ‖~x′(t)‖

for its length, i.e. the speed.
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The speed v is always a nonnegative number; the velocity is always a vector.

54.1. Velocity of linear motion. If ~x(t) = ~a + t~v, as in examples 51.1 and 51.2, then

~x(t) =

„
a1 + tv1
a2 + tv2

«

so that

~x′(t) =

„
v1
v2

«

= ~v.

So when you represent a line by a parametric equation ~x(t) = ~a+ t~v, the vector ~v is the velocity
vector. The length of ~v is the speed of the motion.

In example 51.1 we had ~v =
`

1
3

´
, so the speed with which the point at ~x(t) =

“
1+t
1+3t

”

traces

out the line is v = ‖~v‖ =
√

12 + 32 =
√

10.

R~v(t)

~x(t)

ωt
54.2. Motion on a circle. Consider the parametrization

~x(t) =

„
R cos ωt
R sinωt

«

.

The point X at ~x(t) is on the circle centered at the origin with radius
R. The segment from the origin to X makes an angle ωt with the
x-axis; this angle clearly increases at a constant rate of ω radians
per second. The velocity vector of this motion is

~v(t) = ~x′(t) =

„
−ωR sinωt
ωR cosωt

«

= ωR

„
sinωt
cosωt

«

.

This vector is not constant. however, if you calculate the speed of the point X, you find

v = ‖~v(t)‖ = ωR

‚
‚
‚
‚

„
sinωt
cos ωt

«‚
‚
‚
‚ = ωR.

So while the direction of the velocity vector ~v(t) is changing all the time, its magnitude is constant.
In this parametrization the point X moves along the circle with constant speed v = ωR.

54.3. Velocity of the cycloid. Think of the dot X on the wheel in the cycloid example
51.6. We know its position vector and velocity at time t

~x(t) =

„
t− sin t
1 − cos t

«

, ~x′(t) =

„
1 − cos t

sin t

«

.

The speed with which X traces out the cycloid is

v = ‖~x′(t)‖

=
q

(1 − cos t)2 + (sin t)2

=
p

1 − 2 cos t+ cos2 t+ sin2 t

=
p

2(1 − cos t).

You can use the double angle formula cos 2α = 1 − 2 sin2 α with α = t
2

to simplify this to

v =
q

4 sin2 t
2

= 2

˛
˛
˛
˛sin

t

2

˛
˛
˛
˛ .

The speed of the point X on the cycloid is therefore always between 0 and 2. At times t = 0 and

other multiples of 2π we have ~x′(t) = ~0. At these times the point X has come to a stop. At times
t = π + 2kπ one has v = 2 and ~x′(t) =

`
2
0

´
, i.e. the point X is moving horizontally to the right

with speed 2.
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55. Acceleration and Force

Just as the derivative ~x′(t) of a parametric curve can be interpreted as the velocity vector
~v(t), the derivative of the velocity vector measures the rate of change with time of the velocity
and is called the acceleration of the motion. The usual notation is

~a(t) = ~v′(t) =
d~v(t)

dt
=

d2~x

dt2
= ~x′′(t).

Sir Isaac Newton’s law relating force and acceleration via the formula “F = ma” has a vector
version. If an object’s motion is given by a parametrized curve ~x(t) then this motion is the result

of a force ~F being exerted on the object. The force ~F is given by

~F = m~a = m
d2~x

dt2

where m is the mass of the object.

Somehow it is always assumed that the mass m is a positive number.

55.1. How does an object move if no forces act on it? If ~F (t) = ~0 at all times, then,

assuming m 6= 0 it follows from ~F = m~a that ~a(t) = ~0. Since ~a(t) = ~v′(t) you conclude that the
velocity vector ~v(t) must be constant, i.e. that there is some fixed vector ~v such that

~x′(t) = ~v(t) = ~v for all t.

This implies that

~x(t) = ~x(0) + t~v.

So if no force acts on an object, then it will move with constant velocity vector along a straight
line (said Newton – Archimedes long before him thought that the object would slow down and
come to a complete stop unless there were a force to keep it going.)

55.2. Compute the forces acting on a point on a circle. Consider an object moving
with constant angular velocity ω on a circle of radius R, i.e. consider ~x(t) as in example 54.2,

~x(t) =

„
R cosωt
R sinωt

«

= R

„
cosωt
sinωt

«

.

Then its velocity and acceleration vectors are

~v(t) = ωR

„
− sinωt
cos ωt

«

and

~a(t) = ~v′(t) = ω2R

„
− cosωt
− sinωt

«

= −ω2R

„
cosωt
sinωt

«

~F
θ

~v

Since both
`

cos θ
sin θ

´
and

` − sin θ
cos θ

´
are unit vectors, we see that the

velocity vector changes its direction but not its size: at all times
you have v = ‖~v‖ = ωR. The acceleration also keeps changing its
direction, but its magnitude is always

a = ‖~a‖ = ω2R =
“ v

R

”2
R =

v2

R
.

The force which must be acting on the object to make it go through
this motion is

~F = m~a = −mω2R

„
cos ωt
sinωt

«

.

To conclude this example note that you can write this force as

~F = −mω2~x(t)

which tells you which way the force is directed: towards the center of the circle.
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55.3. How does it feel, to be on the Ferris wheel? In other words, which force acts
on us if we get carried away by a “liberated ferris wheel,” as in example 51.6?

AO

C

X
~a

t

Well, you get pushed around by a force ~F , which according to

Newton is given by ~F = m~a, where m is your mass and ~a is your
acceleration, which we now compute:

~a(t) = ~v′(t)

=
d

dt

„
1 − cos t

sin t

«

=

„
sin t
cos t

«

.

This is a unit vector: the force that’s pushing you around is con-
stantly changing its direction but its strength stays the same. If you

remember that t is the angle ∠ACX you see that the force ~F is always

pointed at the center of the wheel: its direction is given by the vector
−−→
XC.

56. Tangents and the unit tangent vector

Here we address the problem of finding the tangent line at a point on a parametric curve.

Let ~x(t) be a parametric curve, and let’s try to find the tangent line at a particular point X0,
with position vector ~x(t0) on this curve. We follow the same strategy as in 1st semester calculus:
pick a point Xh on the curve near X0, draw the line through X0 and Xh and let Xh → X0.

The line through two points on a curve is often called a secant to the curve. So we are going
to construct a tangent to the curve as a limit of secants.

The point X0 has position vector ~x(t0), the point Xh is at ~x(t0 + h). Consider the line ℓh
parametrized by

(74) ~y(s;h) = ~x(t0) + s
~x(t0 + h) − ~x(t0)

h
,

in which s is the parameter we use to parametrize the line.

ℓ ℓh

X0

Xh

ℓ

X0

O

~x′(t0)

~x(t0)

The line ℓh contains both X0 (set s = 0) and Xh (set s = h), so it is the line through X0

and Xh, i.e. a secant to the curve.

Now we let h→ 0, which gives

~y(s)
def
= lim

h→0
~y(s; h) = ~x(t0) + s lim

h→0

~x(t0 + h) − ~x(t0)

h
= ~x(t0) + s~x′(t0),

In other words, the tangent line to the curve ~x(t) at the point with position vector ~x(t0) has
parametric equation

~y(s) = ~x(t0) + s~x′(t0),

and the vector ~x′(t0) = ~v(t0) is parallel to the tangent line ℓ. Because of this one calls the vector
~x′(t0) a tangent vector to the curve. Any multiple λ~x′(t0) with λ 6= 0 is still parallel to the
tangent line ℓ and is therefore also called a tangent vector.
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A tangent vector of length 1 is called a unit tangent vector. If ~x′(t0) 6= 0 then there are
exactly two unit tangent vectors. They are

~T (t0) = ± ~v(t)

‖~v(t)‖
= ±~v(t)

v(t)
.

56.1. Example. Find Tangent line, and unit tangent vector at ~x(1), where ~x(t) is the
parametric curve given by

~x(t) =

„
t
t2

«

, so that ~x′(t) =

„
1
2t

«

.

1

1

10.5

1

0.5

1.5 ~T

−~T

parabola with tangent line parabola with unit tangent vectors

Circle with radius 1

Solution: For t = 1 we have ~x′(1) =
`

1
2

´
, so the tangent line has parametric equation

~y(s) = ~x(1) + s~x′(1) =

„
1
1

«

+ s

„
1
2

«

=

„
1 + s
1 + 2s

«

.

In components one could write this as y1(s) = 1 + s, y2(s) = 1 + 2s. After eliminating s you find
that on the tangent line one has

y2 = 1 + 2s = 1 + 2(y1 − 1) = 2y1 − 1.

The vector ~x′(1) =
`

1
2

´
is a tangent vector to the parabola at ~x(1). To get a unit tangent vector

we normalize this vector to have length one, i.e. we divide i by its length. Thus

~T (1) =
1√

12 + 22

„
1
2

«

=

„ 1
5

√
5

2
5

√
5

«

is a unit tangent vector. There is another unit tangent vector, namely

−~T (1) = −
„ 1

5

√
5

2
5

√
5

«

.

56.2. Tangent line and unit tangent vector to Circle. In example 51.5 and 52.1 we
had parametrized the circle and found the velocity vector of this parametrization,

~x(θ) =

„
cos θ
sin θ

«

, ~x′(θ) =

„
− sin θ
cos θ

«

.

If we pick a particular value of θ then the tangent line to the circle at ~x(θ0) has parametric
equation

~y(s) = ~x(θ0) + s~x′(θ0) =

„
cos θ + s sin θ
sin θ − s cos θ

«
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This equation completely describes the tangent line, but you can try to write it in a more familiar
form as a graph

y2 = my1 + n.

To do this you have to eliminate the parameter s from the parametric equations

y1 = cos θ + s sin θ, y2 = sin θ − s cos θ.

When sin θ 6= 0 you can solve y1 = cos θ + s sin θ for s, with result

s =
y1 − cos θ

sin θ
.

So on the tangent line you have

y2 = sin θ − s cos θ = sin θ − cos θ
y1 − cos θ

sin θ

which after a little algebra (add fractions and use sin2 θ+ cos2 θ = 1) turns out to be the same as

y2 = − cot θ y1 +
1

sin θ
.

θ

π

2
− θ

1
1

sin θ

The tangent line therefore hits the vertical axis when y1 = 0, at height n = 1/ sin θ, and it has
slope m = − cot θ.

For this example you could have found the tangent line without using any calculus by studying
the drawing above carefully.

Finally, let’s find a unit tangent vector. A unit tangent is a multiple of ~x′(θ) whose length is

one. But the vector ~x′(θ) =
` − sin θ

cos θ

´
already has length one, so the two possible unit vectors are

~T (θ) = ~x′(θ) =

„
− sin θ
cos θ

«

and − ~T (θ) =

„
sin θ

− cos θ

«

.

57. Sketching a parametric curve

For a given parametric curve, like

(75) ~x(t) =

„
1 − t2

3t− t3

«

you might want to know what the curve looks like. The most straightforward way of getting a
picture is to compute x1(t) and x2(t) for as many values of t as you feel like, and then plotting
the computed points. This computation is the kind of repetitive task that computers are very
good at, and there are many software packages and graphing calculators that will attempt to do
the computation and drawing for you.

If the vector function has a constant whose value is not (completely) known, e.g. if we wanted
to graph the parametric curve

(76) ~x(t) =

„
1 − t2

3at − t3

«

(a is a constant)
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then plugging parameter values and plotting the points becomes harder, since the unknown con-
stant a shows up in the computed points.

On a graphing calculator you would have to choose different values of a and see what kind
of pictures you get (you would expect different pictures for different values of a).

In this section we will use the information stored in the derivative ~x′(t) to create a rough
sketch of the graph by hand.

Let’s do the specific curve (75) first. The derivative (or velocity vector) is

~x′(t) =

„
−2t

3 − 3t2

«

, so


x′1(t) = −2t
x′1(t) = 3(1 − t2)

We see that x′1(t) changes its sign at t = 0, while x′2(t) = 2(1− t)(1 + t) changes its sign twice, at
t = − and then at t = +1. You can summarize this in a drawing:

−+ + ++ + −−−−− −+ − −

−+ + + + −− −− − − − − + + +

t = −1 t = 0 t = 1

sign of x′1(t)

sign of x′2(t)

The arrows indicate the wind direction of the velocity vector ~x′(t) for the various values of t.

For instance, when t < −1 you have x′1(t) > 0 and x′2(t) < 0, so that

the vector ~x′(t) =
“
x′1(t)

x′2(t)

”

=
` +
−

´
points in the direction “South-

East.” You see that there are three special t values at which ~x′(t)
is either purely horizontal or vertical. Let’s compute ~x(t) at those
values

t = −1 ~x(−1) =
`

0
−2

´
~x′(−1) =

`
2
0

´

t = 0 ~x(0) =
`

1
0

´
~x′(0) =

`
0
3

´

t = −1 ~x(1) =
`

0
2

´
~x′(1) =

` −2
0

´

This leads you to the following sketch:

?

? 1

1

1

-2

2

`
0
3

´

` −2
0

´

`
2
0

´

If you use a plotting program like Gnuplot you get this picture
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58. Length of a curve

If you have a parametric curve ~x(t), a ≤ t ≤ b, then there is a formula for the length of the
curve it traces out. We’ll go through a brief derivation of this formula before stating it.

t = a

t = b

~x(ti−1)

~x(ti)

To compute the length of the curve {~x(t) : a ≤
t ≤ b} we divide it into lots of short pieces. If the
pieces are short enough they will be almost straight
line segments, and we know how do compute the length
of a line segment. After computing the lengths of all
the short line segments, you add them to get an ap-
proximation to the length of the curve. As you divide
the curve into finer & finer pieces this approximation
should get better & better. You can smell an integral
in this description of what’s coming. Here are some
more details:

Divide the parameter interval into N pieces,

a = t0 < t1 < t2 < · · · < tN−1 < tN = b.

Then we approximate the curve by the polygon with vertices at ~x(t0) = ~x(a), ~x(t1), . . . , ~x(tN ).
The distance between to consecutive points at ~x(ti−1) and ~x(ti) on this polygon is

‖~x(ti) − ~x(ti−1)‖ .
Since we are going to take ti−1 − ti “very small,” we can use the derivative to approximate the
distance by

~x(ti) − ~x(ti−1) =
~x(ti) − ~x(ti−1)

ti − ti−1

`
ti − ti−1

´
≈ ~x′(ti)

`
ti − ti−1

´
,

so that

‖~x(ti) − ~x(ti−1)‖ ≈
‚
‚~x′(ti)

‚
‚

`
ti − ti−1

´
.

Now add all these distances and you get

Length polygon ≈
NX

i=1

‚
‚~x′(ti)

‚
‚

`
ti − ti−1

´
≈

Z b

t=a

‚
‚~x′(t)

‚
‚ dt.

This is our formula for the length of a curve.

Just in case you think this was a proof, it isn’t! First, we have used the symbol ≈ which
stands for “approximately equal,” and we said “very small” in quotation marks, so there are
several places where the preceding discussion is vague. But most of all, we can’t prove that this
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integral is the length of the curve, since we don’t have a definition of “the length of a curve.” This
is an opportunity, since it leaves us free to adopt the formula we found as our formal definition of
the length of a curve. Here goes:

58.1. Definition. If {~x(t) : a ≤ t ≤ b} is a parametric curve, then its length is given by

Length =

Z b

a

‚
‚~x′(t)

‚
‚ dt

provided the derivative ~x′(t) exists, and provided ‖~x′(t)‖ is a Riemann-integrable function. In

this course we will not worry too much about the two caveats about differentiability and integra-
bility at the end of the definition.

58.2. Length of a line segment. How long is the line segment AB connecting two points
A(a1, a2) and B(b1, b2)?

Solution: Parametrize the segment by

~x(t) = ~a + t(~b − ~a), (0 ≤ t ≤ 1).

Then

‖~x′(t)‖ = ‖~b − ~a‖ ,
and thus

Length(AB) =

Z 1

0
‖~x′(t)‖ dt =

Z 1

0
‖~b− ~a‖ dt = ‖~b− ~a‖ .

In other words, the length of the line segment AB is the distance between the two points A and
B. It looks like we already knew this, but no, we didn’t: what this example shows is that the
length of the line segment AB as defined in definition 58.1 is the distance between the points A
and B. So definition 58.1 gives the right answer in this example. If we had found anything else
in this example we would have had to change the definition.

58.3. Perimeter of a circle of radius R. What is the length of the circle of radius R
centered at the origin? This is another example where we know the answer in advance. The
following computation should give us 2πR or else there’s something wrong with definition 58.1.

We parametrize the circle as follows:

~x(t) = R cos θ~i + R sin θ~j, (0 ≤ θ ≤ 2π).

Then

~x′(θ) = −R sin θ~i + R cos θ~j, and ‖~x′(θ)‖ =
p

R2 sin2 θ + R2 cos2 θ = R.

The length of this circle is therefore

Length of circle =

Z 2π

0
Rdθ = 2πR.

Fortunately we don’t have to fix the definition!

And now the bad news: The integral in the definition of the length looks innocent enough
and hasn’t caused us any problems in the two examples we have done so far. It is however a
reliable source of very difficult integrals. To see why, you must write the integral in terms of the
components x1(t), x2(t) of ~x(t). Since

~x′(t) =

„
x′1(t)
x′2(t)

«

and thus ‖~x′(t)‖ =
q

x′1(t)
2 + x′2(t)

2

the length of the curve parametrized by {~x(t) : a ≤ t ≤ b} is

Length =

Z b

a

q

x′1(t)
2 + x′2(t)

2 dt.

For most choices of x1(t), x2(t) the sum of squares under the square root cannot be simplified,
and, at best, leads to a difficult integral, but more often to an impossible integral.

But, chin up, sometimes, as if by a miracle, the two squares add up to an expression whose
square root can be simplified, and the integral is actually not too bad. Here is an example:
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58.4. Length of the Cycloid. After getting in at the bottom of a liberated ferris wheel we
are propelled through the air along the cycloid whose parametrization is given in example 51.6,

~x(θ) =

„
θ − sin θ
1 − cos θ

«

.

How long is one arc of the Cycloid?

Solution: Compute ~x′(θ) and you find

~x′(θ) =

„
1 − cos θ

sin θ

«

so that

‖~x′(θ)‖ =
q

(1 − cos θ)2 + (sin θ)2 =
√

2 − 2 cos θ.

This doesn’t look promising (this is the function we must integrate!), but just as in example 54.3

we can put the double angle formula cos θ = 1 − 2 sin2 θ
2

to our advantage:

‖~x′(θ)‖ =
√

2 − 2 cos θ =

r

4 sin2 θ

2
= 2

˛
˛
˛
˛sin

θ

2

˛
˛
˛
˛ .

We are concerned with only one arc of the Cycloid, so we have 0 ≤ θ < 2π, which implies
0 ≤ θ

2
≤ π, which in turn tells us that sin θ

2
> 0 for all θ we are considering. Therefore the length

of one arc of the Cycloid is

Length =

Z 2π

0
‖~x′(θ)‖ dθ

=

Z 2π

0
2

˛
˛
˛
˛sin

θ

2

˛
˛
˛
˛ dθ

= 2

Z 2π

0
sin

θ

2
dθ

=

»

−4 cos
θ

2

–2π

0

= 8.

To visualize this answer: the height of the cycloid is 2 (twice the radius of the circle), so the length
of one arc of the Cycloid is four times its height (Look at the drawing on page 122.)

59. The arclength function

X(t)
X(t0)

s(t)

If you have a parametric curve ~x(t) and you pick a particular
point on this curve, say, the point corresponding to parameter value
t0, then one defines the arclength function (starting at t0) to be

(77) s(t) =

Z t

t0

‖~x′(τ)‖ dτ

Thus s(t) is the length of the curve segment {~x(τ) : t0 ≤ τ ≤ t}. (τ is a dummy variable.)

If you interpret the parametric curve ~x(t) as a description of the motion of some object, then
the length s(t) of the curve {~x(τ) : t0 ≤ τ ≤ t} is the distance traveled by the object since time
t0.

If you differentiate the distance traveled with respect to time you should get the speed, and
indeed, by the Fundamental Theorem of Calculus one has

s′(t) =
d

dt

Z t

t0

‖~x′(τ)‖ dτ = ‖~x′(t)‖ ,

which we had called the speed v(t) in § 54.
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60. Graphs in Cartesian and in Polar Coordinates

Cartesian graphs. Most of first-semester-calculus deals with a particular kind of curve,
namely, the graph of a function, “y = f(x)”. You can regard such a curve as a special kind of
parametric curve, where the parametrization is

~x(t) =

„
t

f(t)

«

and we switch notation from “(x, y)” to “(x1, x2).”

For this special case the velocity vector is always given by

~x′(t) =

„
1

f ′(t)

«

,

the speed is

v(t) = ‖~x′(t)‖ =
q

1 + f ′(t)2,

and the length of the segment between t = a and t = b is

Length =

Z b

a

q

1 + f ′(t)2 dt.

r
P

θ

Polar graphs. Instead of choosing Cartesian coordinates (x1, x2)
one can consider so-called Polar Coordinates in the plane. We have seen
these before in the section on complex numbers: to specify the location
of a point in the plane you can give its x1, x2 coordinates, but you could
also give the absolute value and argument of the complex number x1 + ix2 (see §24.) Or, to say
it without mentioning complex numbers, you can say where a point P in the plane is by saying
(1) how far it is from the origin, and (2) how large the angle between the line segment OP and a
fixed half line (usually the positive x-axis) is.

The Cartesian coordinates of a point with polar coordinates (r, θ) are

(78) x1 = r cos θ, x2 = r sin θ,

or, in our older notation,

x = r cos θ, y = r sin θ.

These are the same formulas as in §24, where we had “ r = |z| and θ = arg z.”

r = f(θ)

θ

X

x1

x2Often a curve is given as a graph in polar coordinates,
i.e. for each angle θ there is one point (X) on the curve,
and its distance r to the origin is some function f(θ) of the
angle. In other words, the curve consists of all points whose
polar coordinates satisfy the equation r = f(θ). You can
parametrize such a curve by

(79) ~x(θ) =

„
r cos θ
r sin θ

«

=

„
f(θ) cos θ
f(θ) sin θ

«

.

or,

~x(θ) = f(θ) cos θ~i + f(θ) sin θ~j.

You can apply the formulas for velocity, speed and arclength to this parametrization, but instead
of doing the straightforward calculation, let’s introduce some more notation. For any angle θ we
define the vector

~u(θ) =

„
cos θ
sin θ

«

= cos θ~i + sin θ~j.

~u(θ) θ

~u′(θ)

The derivative of ~u is

~u′(θ) =

„
− sin θ
cos θ

«

= − sin θ~i + cos θ~j.

The vectors ~u(θ) and ~u′(θ) are perpendicular unit vectors.

Then we have

~x(θ) = f(θ)~u(θ),
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so by the product rule one has

~x′(θ) = f ′(θ)~u(θ) + f(θ)~u′(θ).

~x′(θ)

~x′(θ)

f ′(θ)~u(θ)

f(θ)~u′(θ)

~x′(θ)

~u(θ)

~u′(θ)
ψ

ψ

Since ~u(θ) and ~u′(θ) are perpendicular unit vectors this implies

v(θ) = ‖~x′(θ)‖ =
q

f ′(θ)2 + f(θ)2.

The length of the piece of the curve between polar angles α and β is therefore

(80) Length =

Z β

α

q

f ′(θ)2 + f(θ)2 dθ.

You can also read off that the angle ψ between the radius OX and the tangent to the curve
satisfies

tanψ =
f(θ)

f ′(θ)
.

61. PROBLEMS

Sketching Parametrized Curves.
Sketch the curves which are traced out by
the following parametrizations. Describe
the motion (is the curve you draw traced out
once or several times? In which direction?)

In all cases the parameter is allowed to
take all values from −∞ to ∞.

If a curve happens to be the graph of
some function x2 = f(x1) (or y = f(x) if
you prefer), then find the function f(· · · ).

Is there a geometric interpretation of
the parameter as an angle, or a distance,
etc?

395. ~x(t) =

„
1 − t
2 − t

«

396. ~x(t) =

„
3t+ 2
3t+ 2

«

397. ~x(t) =

„
et

et

«

398. ~x(t) =

„
et

t

«

399. ~x(t) =

„
et

e−t

«

400. ~x(t) =

„
t
t2

«

401. ~x(t) =

„
sin t
t

«

402. ~x(t) =

„
sin t
cos 2t

«

403. ~x(t) =

„
sin 25t
cos 25t

«

404. ~x(t) =

„
1 + cos t
1 + sin t

«

405. ~x(t) =

„
2 cos t
sin t

«

406. ~x(t) =

„
t2

t3

«

∗ ∗ ∗

Find parametric equations for the curve
traced out by the X in each of the following
descriptions.

407. A circle of radius 1 rolls over the x1 axis,
and X is a point on a spoke of the circle at a
distance a > 0 from the center of the circle
(the case a = 1 gives the cycloid.)

408. A circle of radius r > 0 rolls on the out-
side of the unit circle. X is a point on the
rolling circle (These curves are called epicy-
cloids.)
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409. A circle of radius 0 < r < 1 rolls on the
inside of the unit circle. X is a point on the
rolling circle.

410. Let O be the origin, A the point (1, 0),
and B the point on the unit circle for which
the angle ∠AOB = θ. Then X is the point

on the tangent to the unit circle through B
for which the distance BX equals the length
of the circle arc AB.

411. X is the point where the tangent line at
~x(θ) to the helix of example 51.7 intersects
the x1x2 plane.

Product rules.

412. If a moving object has position vector ~x(t) at time t, and if it’s speed is constant, then show
that the acceleration vector is always perpendicular to the velocity vector. [Hint: differentiate
v2 = ~v···~v with respect to time and use some of the product rules from §53.]

413. If a charged particle moves in a magnetic field ~B, then the laws of electromagnetism say that
the magnetic field exerts a force on the particle and that this force is given by the following
miraculous formula:

~F = q~v××× ~B.

where q is the charge of the particle, and ~v is its velocity.

Not only does the particle know calculus (since Newton found ~F = m~a), it also knows vector
geometry!

Show that even though the magnetic field is pushing the particle around, and even though
its velocity vector may be changing with time, its speed v = ‖~v‖ remains constant.

414. Newton’s law of gravitation states that the Earth pulls any object of mass m towards its center
with a force inversely proportional to the squared distance of the object to the Earth’s center.

(i) Show that if the Earth’s center is the origin, and ~r is the position vector of the object of mass
m, then the gravitational force is given by

~F = −C ~r

‖~r‖3
(C is a positive constant.)

[No calculus required. You are supposed to check that this vector satisfies the description in the
beginning of the problem, i.e. that it has the right length and direction.]

(ii) If the object is moving, then its angular momentum is defined in physics books by the

formula ~L = m~r ××× ~v. Show that, if the Earth’s gravitational field is the only force acting on

the object, then its angular momentum remains constant. [Hint: you should differentiate ~L with
respect to time, and use a product rule.]

Curve sketching, using the tangent vector.

415. Consider a triangle ABC and let ~a,~b and
~c be the position vectors of A,B and C.

(i) Show that the parametric curve given by

~x(t) = (1 − t)2~a + 2t(1 − t)~b + t2~c,

goes through the points A and C, and that
at these points it is tangent to the sides of
the triangle. Make a drawing. (ii) At
which point on this curve is the tangent par-
allel to the side AC of the triangle?

416. Let ~a,~b,~c, ~d be four given vectors. Con-
sider the parametric curve (known as a
Bezier curve)

~x(t) = (1−t)3~a+3t(1−t)2~b+3t2(1−t)~c+t3~d

where 0 ≤ t ≤ 1.

Compute ~x(0), ~x(1), ~x′(0), and ~x′(1).

The characters in most fonts (like the
fonts used for these notes) are made up of
lots of Bezier curves.
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417. Sketch the following curves by finding all
points at which the tangent is either hori-
zontal or vertical (in these problems, a is a
positive constant.)

(i) ~x(t) =

„
1 − t2

t+ 2t2

«

(ii) ~x(t) =

„
sin t
sin 2t

«

(iii) ~x(t) =

„
cos t
sin 2t

«

(iv) ~x(t) =
„

1 − t2

3at− t3

«

(v) ~x(t) =

„
1 − t2

3at + t3

«

(vi) ~x(t) =
„

cos 2t
sin 3t

«

(vii) ~x(t) =

„
t/(1 + t2)

t2

«

(viii) ~x(t) =
„
t2

sin t

«

(ix) ~x(t) =

„
1 + t2

2t4

«

Lengths of curves.

418. Find the length of each of the following curve segments. An “
R
” indicates a difficult but

possible integral which you should do; “
RR

” indicates that the resulting integral cannot reasonably
be done with the methods explained in this course – you may leave an integral in your answer
after simplifying it as much as you can. All other problems lead to integrals that shouldn’t be too
hard.

(i) The cycloid ~x(θ) =
“
R(θ−sin θ)
R(1−cos θ)

”

, with 0 ≤ θ ≤ 2π.

(ii)
ˆRR ˜

The ellipse ~x(t) =

„
cos t
A sin t

«

with 0 ≤ t ≤ 2π.

(iii)
ˆR ˜

The parabola ~x(t) =

„
t
t2

«

with 0 ≤ t ≤ 1.

(iv)
ˆRR ˜

The Sine graph ~x(t) =

„
t

sin t

«

with 0 ≤ t ≤ π.

(v) The evolute of the circle ~x =

„
cos t+ t sin t
sin t − t cos t

«

(with 0 ≤ t ≤ L).

(vi) The Catenary, i.e. the graph of y = cosh x =
ex + e−x

2
for −a 6 x 6 a.

(vii) The Cardioid, which in polar coordinates is given by r = 1 + cos θ, (|θ| < π), so ~x(θ) =
„

(1 + cos θ) cos θ
(1 + cos θ) sin θ

«

.

(viii) The Helix from example 51.7, ~x(θ) =

0

@

cos θ
sin θ
aθ

1

A, 0 ≤ θ ≤ 2π.

419. Below are a number of parametrized curves. For each of these curves find all points with
horizontal or vertical tangents; also find all points for which the tangent is parallel to the diagonal.
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Finally, find the length of the piece of these curves corresponding to the indicated parameter
interval (I tried hard to find examples where the integral can be done).

(i) ~x(t) =

„
t1/3 − 9

20
t5/3

t

«

0 ≤ t ≤ 1

(ii) ~x(t) =

„
t2

t2
√
t

«

1 ≤ t ≤ 2

(iii) ~x(t) =

„
t2

t− t3/3

«

0 ≤ t ≤ √
3

(iv) ~x(t) =

„
8 sin t

7t− sin t cos t

«

|t| ≤ π

2

(v) ~x(t) =

„
t√

1 + t

«

0 ≤ t ≤ 1

(The last problem is harder, but it can be done. In all the other ones the quantity under the
square root that appears when you set up the integral for the length of the curve is a perfect
square.)

420. Consider the polar graph r = ekθ, with −∞ < θ < ∞, where k is a positive constant. This
curve is called the logarithmic spiral.

(i) Find a parametrization for the polar graph of r = ekθ.

(ii) Compute the arclength function s(θ) starting at θ0 = 0.

(iii) Show that the angle between the radius and the tangent is the same at all points on the
logarithmic spiral.

(iv) Which points on this curve have horizontal tangents?

421. The Archimedean spiral is the polar graph of r = θ, where θ ≥ 0.

(i) Which points on the part of the spiral with 0 < θ < π have a horizontal tangent? Which have
a vertical tangent?

(ii) Find all points on the whole spiral (allowing all θ > 0) which have a horizontal tangent.

(iii) Show that the part of the spiral with 0 < θ < π is exactly as long as the piece of the parabola

y = 1
2
x2 between x = 0 and x = π. (It is not impossible to compute the lengths of both curves,

but you don’t have to to answer this problem!)



127

Answers and Hints

(71)

Z

xn lnx dx =
xn+1 lnx

n+ 1
− xn+1

(n+ 1)2
+ C.

(72)

Z

eax sin bx dx =
eax

a2 + b2
(a sin bx− b cos bx) + C.

(73)

Z

eax cos bx dx =
eax

a2 + b2
(a cos bx+ b sin bx) + C.

(77)
R π
0

sin14 xdx = 13·11·9·7·5·3·1
14·12·10·8·6·4·2 π

(78)
R

cosn xdx = 1
n

sinx cosn−1 x+ n−1
n

R
cosn−2 xdx;

R π/4
0

cos4 xdx = 7
16

+ 3
32
π

(79) Hint: first integrate xm.

(80) x lnx− x+ C

(81) x(lnx)2 − 2x lnx+ 2x+ C

(83) Substitute u = lnx.

(84)
R π/4
0 tan5 xdx = 1

4
(1)4 − 1

2
(1)2 +

R π/4
0 tanxdx = − 1

4
+ ln 1

2

√
2

(90) 1 + 4
x3−4

(91) 1 + 2x+4
x3−4

(92) 1 − x2+x+1
x3−4

(93) x3−1
x2−1

= x+ x−1
x2−1

. You can simplify this further: x3−1
x2−1

= x+ x−1
x2−1

= x+ 1
x+1

.

(94) x2 + 6x + 8 = (x + 3)2 − 1 = (x + 4)(x + 2) so 1
x2+6x+8

=
1/2
x+2

+
−1/2
x+4

and
R

dx
x2+6x+8

=
1
2

ln(x+ 2) − 1
2

ln(x+ 4) + C.

(95)
R

dx
x2+6x+10

= arctan(x+ 3) + C.

(96) 1
5

R
dx

x2+4x+5
= 1

5
arctan(x+ 2) + C

(97) We add

A

x
+

B

x+ 1
+

C

x− 1
=

A(x+ 1)(x − 1) +Bx(x− 1) + Cx(x+ 1)

x(x+ 1)(x − 1)

=
(A+B + C)x2 + (C − B)x− A

x(x+ 1)(x− 1)
.

The numerators must be equal, i.e.

x2 + 3 = (A+ B + C)x2 + (C −B)x− A

for all x, so equating coefficients gives a system of three linear equations in three unknowns A, B,
C: 8

><

>:

A+B + C = 1

C −B = 0

−A = 3

so A = −3 and B = C = 2, i.e.

x2 + 3

x(x+ 1)(x − 1)
= − 3

x
+

2

x+ 1
+

2

x− 1
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and hence
Z

x2 + 3

x(x+ 1)(x − 1)
dx = −3 ln |x| + 2 ln |x+ 1| + 2 ln |x− 1| + constant.

(98) To solve
x2 + 3

x(x+ 1)(x − 1)
=
A

x
+

B

x+ 1
+

C

x− 1
,

multiply by x:
x2 + 3

(x+ 1)(x − 1)
= A+

Bx

x+ 1
+

Cx

x− 1

and plug in x = 0 to get A = −3; then multiply by x+ 1:

x2 + 3

x(x− 1)
=
A(x+ 1)

x
+ B +

C(x+ 1)

x− 1

and plug in x = −1 to get B = 2; finally multiply by x− 1:

x2 + 3

x(x+ 1)
=
A(x− 1)

x
+
B(x− 1)

x+ 1
+ C,

and plug in x = 1 to get C = 2.

(99) Apply the method of equating coefficients to the form

x2 + 3

x2(x− 1)
=
A

x
+
B

x2
+

C

x− 1
.

In this problem, the Heaviside trick can still be used to find C and B; we get B = −3 and C = 4.
Then

A

x
− 3

x2
+

4

x− 1
=
Ax(x− 1) + 3(x− 1) + 4x2

x2(x− 1)

so A = −3. Hence
Z

x2 + 3

x2(x− 1)
dx = −3 ln |x| + 3

x
+ 4 ln |x− 1| + constant.

(117)
R a
0 x sinxdx = sin a− a cos a

(118)
R a
0 x2 cos xdx = (a2 + 2) sina + 2a cos a

(119)
R 4
3

x dx√
x2−1

=
h√
x2 − 1

i4

3
=

√
15 −√

8

(120)
R 1/3
1/4

x dx√
1−x2

=
h

−
√

1 − x2
i1/3

1/4
= 1

4

√
15 − 1

3

√
8

(121) same as previous problem after substituting x = 1/t

(153) Use Taylor’s formula : Q(x) = 43 + 19(x − 7) + 11
2

(x− 7)2.

A different, correct, but more laborious (clumsy) solution is to say that Q(x) = Ax2 + Bx + C,,
compute Q′(x) = 2Ax+ B and Q′′(x) = 2A. Then

Q(7) = 49A+ 7B + C = 43, Q′(7) = 14A+ B = 19, Q′′(7) = 2A = 11.

This implies A = 11/2, B = 19 − 14A = 19 − 77 = −58, and C = 43 − 7B − 49A = 179 1
2
.

(168) T∞et = 1 + t+ 1
2!
t2 + · · · + 1

n!
tn + · · ·

(169) T∞eαt = 1 + αt + α2

2!
t2 + · · · + αn

n!
tn + · · ·

(170) T∞ sin(3t) = 3t − 33

3!
t3 + 35

5!
t5 + · · · + (−1)k32k+1

(2k+1)!
t2k+1 + · · ·

(171) T∞ sinh t = t+ 1
3!
t3 + · · · + 1

(2k+1)!
t2k+1 + · · ·

(172) T∞ cosh t = 1 + 1
2!
t2 + · · · + 1

(2k)!
t2k + · · ·

(173) T∞ 1
1+2t

= 1 − 2t+ 22t2 − · · · + (−1)n2ntn + · · ·

(174) T∞ 3
(2−t)2 = 3

22 + 3·2
23 t + 3·3

24 t
2 + 3·4

25 t
3 + · · · + 3·(n+1)

2n+2 tn + · · · (note the cancellation of

factorials)
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(175) T∞ ln(1 + t) = t− 1
2
t2 + 1

3
t3 + · · · + (−1)n+1

n
tn + · · ·

(176) T∞ ln(2+2t) = T∞ ln[2·(1+t)] = ln 2+ln(1+t) = ln 2+t− 1
2
t2+ 1

3
t3+ · · ·+ (−1)n+1

n
tn+ · · ·

(177) T∞ ln
√

1 + t = T∞ 1
2

ln(1 + t) = 1
2
t− 1

4
t2 + 1

6
t3 + · · · + (−1)n+1

2n
tn + · · ·

(178) T∞ ln(1 + 2t) = 2t− 22

2
t2 + 23

3
t3 + · · · + (−1)n+12n

n
tn + · · ·

(179) T∞ ln
√`

1+t
1−t

´
= T∞

ˆ
1
2

ln(1 + t) − 1
2

ln(1 − t)
˜

= t+ 1
3
t3 + 1

5
t5 + · · · + 1

2k+1
t2k+1 + · · ·

(180) T∞ 1
1−t2 = T∞

h
1/2
1−t + 1/2

1+t

i

= 1+t2 +t4 + · · ·+t2k+ · · · (you could also substitute x = −t2

in the geometric series 1/(1 + x) = 1 − x+ x2 + · · · , later in this chapter we will use “little-oh”
to justify this point of view.)

(181) T∞ t
1−t2 = T∞

h
1/2
1−t −

1/2
1+t

i

= t + t3 + t5 + · · · + t2k+1 + · · · (note that this function is t

times the previous function so you would think its Taylor series is just t times the taylor series of

the previous function. Again, “little-oh” justifies this.)

(182) The pattern for the nth derivative repeats every time you increase n by 4. So we indicate
the the general terms for n = 4m, 4m + 1, 4m+ 2 and 4m+ 3:

T∞ (sin t+ cos t) = 1+t− 1

2!
t2− 1

3!
t3+

1

4!
t4+· · ·+ t4m

(4m)!
+

t4m+1

(4m + 1)!
− t4m+2

(4m + 2)!
− t4m+3

(4m + 3)!
+· · ·

(183) Use a double angle formula

T∞ (2 sin t cos t) = sin 2t = 2t− 23

3!
t3 + · · · + 24m+1

(4m + 1)!
t4m+1 − 24m+3

(4m + 3)!
t4m+3 + · · ·

(184) T3 tan t = t+ 1
3
t3. There is no simple general formula for the nth term in the Taylor series

for tan x.

(185) T∞
ˆ
1 + t2 − 2

3
t4

˜
= 1 + t2 − 2

3
t4

(186) T∞[(1 + t)5] = 1 + 5t + 10t2 + 10t3 + 5t4 + t5

(187) T∞ 3
√

1 + t = 1 +
1/3
1!
t+

(1/3)(1/3−1)
2!

t2 + · · · + (1/3)(1/3−1)(1/3−2)···(1/3−n+1)
n!

tn + · · ·
(188) Because of the addition formula

sin(α+ β) = sinα cos β + sinβ cosα

you should get the same answer for f and g, since they are the same function!

The solution is

T∞ sin(x+ a) = sina+ cos(a)x − sina

2!
x2 − cos a

3!
x3 + · · ·

· · · + sina

(4n)!
x4n +

cos a

(4n+ 1)!
x4n+1 − sin a

(4n+ 2)!
x4n+2 − cos a

(4n+ 3)!
x4n+3 + · · ·

(191)

f(x) = f(4)(x) = cos x, f ′(x) = f(5)(x) = − sinx, f ′′(x) = − cos x, f(3)(x) = sinx,

so

f(0) = f(4)(0) = 1, f ′(0) = f(3)(0) = 0, f ′′(0) = −1.

and hence the fourth degree Taylor polynomial is

T4{cos x} =
4X

k=0

f(k)(0)xk

k!
= 1 − x2

2!
+
x4

4!
.

The error is

R4{cos x} =
f(5)(ξ)x5

5!
=

(− sin ξ)x5

5!
for some unknown ξ between 0 and x. As | sin ξ| ≤ 1 we have

˛
˛
˛
˛cos x−

„

1 − x2

2!
+
x4

4!

«˛
˛
˛
˛ = |R4(x)| ≤

|x5|
5!

<
1

5!
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for |x| < 1.

(208) The PFD of g is g(x) =
1

x− 2
− 1

x− 1
.

g(x) = 1
2

+
`
1 − 1

22

´
x+

`
1 − 1

23

´
x2 + · · · +

`
1 − 1

2n+1

´
xn + · · · .

So gn = 1 − 1/2n+1 and g(n)(0) is n! times that.

(209) You could repeat the computations from problem 208, and this would get you the right
answer with the same amount of work. In this case you could instead note that h(x) = xg(x) so
that

h(x) = 1
2
x+

`
1 − 1

22

´
x2 +

`
1 − 1

23

´
x3 + · · · +

`
1 − 1

2n+1

´
xn+1 + · · ·

Therefore hn = 1 − 1/2n.

The PFD of k(x) is

k(x) =
2 − x

(x− 2)(x − 1)

cancel!
=

1

1 − x
,

the Taylor series of k is just the Geometric series.

(211) T∞eat = 1 + at +
a2

2!
t2 + · · · + an

n!
tn + · · · .

(212) e1+t = e · et so T∞e1+t = e+ et+ e
2!
t2 + · · · + e

n!
tn + · · ·

(213) Substitute u = −t2 in the Taylor series for eu.

T∞e−t
2

= 1 − t2 +
1

2!
t4 − 1

3!
t6 + · · · + (−1)n

(2n)!
t2n + · · ·

(214) PFD! The PFD of 1+t
1−t is 1+t

1−t = −1 + 2
1−t . Remembering the Geometric Series you get

T∞
1 + t

1 − t
= 1 + 2t+ 2t2 + 2t3 + · · · + 2tn + · · ·

(215) Substitute u = −2t in the Geometric Series 1/(1 − u). You get

T∞
1

1 + 2t
= 1 − 2t+ 22t2 − 23t3 + · · · + · · · + (−1)n2ntn + · · ·

(216)

T∞
ln(1 + x)

x
=
x− 1

2
x2 + 1

3
x3 + · · · + (−1)n−1 1

n
xn + · · ·

x

= 1 − 1

2
x+

1

3
x2 + · · · + (−1)n−1 1

n
xn−1 + · · ·

(217)

T∞
et

1 − t
= 1 + 2t +

`
1 + 1 + 1

2!

´
t2 +

`
1 + 1 + 1

2!
+ 1

3!

´
t3 + · · · +

`
1 + 1 + 1

2!
+ · · · + 1

n!

´
tn + · · ·

(218) 1/
√

1 − t = (1 − t)−1/2 so

T∞
1√

1 − t
= 1 + 1

2
t+

1
2

3
2

1 · 2
t2 +

1
2

3
2

5
2

1 · 2 · 3
t3 + · · ·

(be careful with minus signs when you compute the derivatives of (1 − t)−1/2.)

You can make this look nicer if you multiply top and bottom in the nth term with 2n:

T∞
1√

1 − t
= 1 +

1

2
t+

1 · 3
2 · 4 t

2 +
1 · 3 · 5
2 · 4 · 6 t

3 + · · · + 1 · 3 · · · (2n− 1)

2 · 4 · · · 2n tn + · · ·

(219)

T∞
1√

1 − t2
= 1 +

1

2
t2 +

1 · 3
2 · 4

t4 +
1 · 3 · 5
2 · 4 · 6

t6 + · · · + 1 · 3 · · · (2n− 1)

2 · 4 · · · 2n
t2n + · · ·
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(220)

T∞ arcsin t = t+
1

2

t3

3
+

1 · 3
2 · 4

t5

5
+

1 · 3 · 5
2 · 4 · 6

t7

7
+ · · · + 1 · 3 · · · (2n− 1)

2 · 4 · · · 2n
t2n+1

2n+ 1
+ · · ·

(221) T4[e−t cos t] = 1 − t+ 1
3
t3 − 1

6
t4.

(222) T4[e−t sin 2t] = t − t2 +
1

3
t3 + o(t4) (the t4 terms cancel).

(223) PFD of 1/(2 − t− t2) = 1
(2+t)(1−t) =

− 1
3

2+t
+

1
3

1−t . Use the geometric series.

(224) 3
√

1 + 2t+ t2 = 3
p

(1 + t)2 = (1 + t)2/3. This is very similar to problem 218. The answer
follows from Newton’s binomial formula.

(227) 1/2

(228) Does not exist (or “+∞”)

(229) 1/2

(230) −1

(231) 0

(232) Does not exist (or “−∞”) because e > 2.

(233) 0.

(234) 0.

(235) 0 (write the limit as limn→∞ n!+1
(n+1)!

= limn→∞ n!
(n+1)!

+ limn→∞ 1
(n+1)!

= limn→∞ 1
n+1

+

limn→∞ 1
(n+1)!

).

(237) Use the explicit formula (13) from Example 16.13. The answer is the Golden Ratio φ.

(239) The kth derivative of g(x) = sin(2x) is g(k)(x) = ±2ksoc(2x). Here soc(θ) is either sin θ or
cos θ, depending on k. Therefore kth remainder term is bounded by

|Rk[sin 2x]| ≤ |g(k+1)(c)|
(k + 1)!

|x|k+1 =
2k+1|x|k+1

(k + 1)!
|soc(2x)| ≤ |2x|k+1

(k + 1)!
.

Since limk→∞
|2x|k+1

(k+1)!
= 0 we can use the Sandwich Theorem and conclude that

limk→∞Rk [g(x)] = 0, so the Taylor series of g converges for every x.

(243) Read the example in §18.4.

(244) −1 ≤ x < 1.

(245) −1 < x < 1.

(246) −1 ≤ x ≤ 1.

(247) − 3
2
< x ≤ 3

2
. Write f(x) as f(x) = 1

2
1

3
2
−(−x) and use the Geometric Series.

(262) (a) arg(1 + i tan θ) = θ + 2kπ, with k any integer.

(b) zw = 1 − tan θ tan φ+ i(tan θ + tan φ)

(c) arg(zw) = arg z + argw = θ + φ (+ a multiple of 2π.)

(d) tan(arg zw) = tan(θ + φ) on one hand, and tan(arg zw) =
tan θ + tan φ

1 − tan θ tanφ
on the other hand.

The conclusion is that

tan(θ + φ) =
tan θ + tanφ

1 − tan θ tan φ

(263) cos 4θ = real part of (cos θ + i sin θ)4. Expand, using Pascal’s triangle to get

cos 4θ = cos4 θ − 6 cos2 θ sin2 θ + sin4 θ.

sin 4θ = 4 cos3 θ sin θ − 4 cos θ sin3 θ.

cos 5θ = cos5 θ − 10 cos3 θ sin2 θ + 5 cos θ sin4 θ

sin 6θ = 6 cos5 θ sin θ − 20 cos3 θ sin3 θ + 6 cos θ sin5 θ.
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(266) To prove or disprove the statements set z = a+bi, w = c+di and substitute in the equation.
Then compare left and right hand sides.

(a) Re(z) + Re(w) = Re(z + w) TRUE, because:
Re(z + w) = Re(a + bi+ c+ di) = Re[(a + c) + (b + d)i] = a+ c and
Re(z) + Re(w) = Re(a + bi) + Re(c+ di) = a+ c.

The other proofs go along the same lines.

(b) z +w = z̄ + w̄ TRUE. Proof: if z = a + bi and w = c+ di with a, b, c, d real numbers, then

Re(z) = a, Re(w) = c =⇒ Re(z) + Re(w) = a + c

z + w = a+ c+ (b+ d)i =⇒ Re(z +w) = a + c.

So you see that Re(z) + Re(w) and Re(z +w) are equal.

(c) Im(z) + Im(w) = Im(z + w) TRUE. Proof: if z = a + bi and w = c + di with a, b, c, d real
numbers, then

Im(z) = b, Im(w) = d =⇒ Im(z) + Im(w) = b+ d

z +w = a+ c+ (b + d)i =⇒ Im(z +w) = b+ d.

So you see that Im(z) + Im(w) and Im(z +w) are equal.

(d) zw = (z̄)(w̄) TRUE

(e) Re(z)Re(w) = Re(zw) FALSE. Counterexample: Let z = i and w = i. Then Re(z)Re(w) =
0 · 0 = 0, but Re(zw) = Re(i · i) = Re(−1) = −1.

(f) z/w = (z̄)/(w̄) TRUE

(g) Re(iz) = Im(z) FALSE (almost true though, only off by a minus sign)

(h) Re(iz) = iRe(z) FALSE. The left hand side is a real number, the right hand side is an
imaginary number: they can never be equal (except when z = 0.)

(i) Re(iz) = Im(z) same as (g), sorry.

(j) Re(iz) = iIm(z) FALSE

(k) Im(iz) = Re(z) TRUE

(l) Re(z̄) = Re(z) TRUE

(267) The number is either 1
5

√
5 + 2

5
i
√

5 or − 1
5

√
5 − 2

5
i
√

5.

(268) ’t is 1
3

√
3 + i.

(270) e(ln 2)(1+i) = eln 2+i ln 2 = eln 2(cos ln 2 + i sin ln 2) so the real part is 2 cos ln 2 and the
imaginary part is 2 sin ln 2.

(271) ez can be negative, or any other complex number except zero.

If z = x+ iy then ez = ex(cos y + i sin y), so the absolute value and argument of ez are |z| = ex

and arg ez = y. Therefore the argument can be anything, and the absolute value can be any
positive real number, but not 0.

(272)
1

eit
=

1

cos t+ i sin t
=

1

cos t+ i sin t

cos t− i sin t

cos t− i sin t
=

cos t− i sin t

cos2 t+ sin2 t
= cos t− i sin t = e−it.

(275) Aeiβt+Be−iβt = A(cos βt+ i sinβt)+B(cos βt− i sinβt) = (A+B) cos βt+ i(A−B) sinβt.

So Aeiβt + Be−iβt = 2 cos βt + 3 sinβt holds if A + B = 2, i(A − B) = 3. Solving these two

equations for A and B we get A = 1 − 3
2
i, B = 1 + 3

2
i.

(281) (a) z2 + 6z + 10 = (z + 3)2 + 1 = 0 has solutions z = −3 ± i.

(b) z3 + 8 = 0 ⇐⇒ z3 = −8. Since −8 = 8eπi+2kπ we find that z = 81/3e
π

3
i+ 2

3
kπi (k any

integer). Setting k = 0, 1, 2 gives you all solutions, namely

k = 0 : z = 2e
π

3
i = 1 + i

√
3

k = 1 : z = 2e
π

3
i+2πi/3 = −2

k = 2 : z = 2e
π

3
i+4πi/3 = 1 − i

√
3

(c) z3 − 125 = 0: z0 = 5, z1 = − 5
2

+ 5
2
i
√

3, z2 = − 5
2
− 5

2
i
√

3
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(d) 2z2 + 4z + 4 = 0: z = −1 ± i.

(e) z4 + 2z2 − 3 = 0: z2 = 1 or z2 = −3, so the four solutions are ±1,±i
√

3.

(f) 3z6 = z3 + 2: z3 = 1 or z3 = − 2
3
. The six solutions are therefore

− 1
2
± i

2

√
3, 1 (from z3 = 1)

− 3
q

2
3
, 3
q

2
3

`
1
2
± i

2

√
3

´
, (from z3 = − 2

3
)

(g) z5 − 32 = 0: The five solutions are

2, 2 cos 2
5
π ± 2i sin 2

5
π, 2 cos 4

5
π ± 2i sin 4

5
π.

Note that 2 cos 6
5
π+2i sin 6

5
π = 2 cos 4

5
π−2i sin 4

5
π, and likewise, 2 cos 8

5
π+2i sin 8

5
π = 2 cos 2

5
π−

2i sin 2
5
π. (Make a drawing of these numbers to see why).

(h) z5 − 16z = 0: Clearly z = 0 is a solution. Factor out z to find the equation z4 − 16 = 0 whose
solutions are ±2, ±2i. So the five solutions are 0, ±2, and ±2i

(282) f ′(x) = −1
(x+i)2

. In this computation you use the quotient rule, which is valid for complex

valued functions.

g′(x) = 1
x

+ i
1+x2

h′(x) = 2ixeix
2
. Here we are allowed to use the Chain Rule because h(x) is of the form h1(h2(x)),

where h1(y) = eiy is a complex valued function of a real variable, and h2(x) = x2 is a real valued
function of a real variable (a “221 function”).

(283) (a) Use the hint:

Z
`
cos 2x

´4
dx =

Z „
e2ix + e−2ix

2

«4

dx

= 1
16

Z
`
e2ix + e−2ix

´4
dx

The fourth line of Pascal’s triangle says (a+ b)4 = a4 + 4a3b+6a2b2 +4ab3 + b4. Apply this with
a = e2ix, b = e−2ix and you get

Z
`
cos 2x

´4
dx =

1

16

Z
˘
e8ix + 4e4ix + 6 + 4e−4ix + e−8ix

¯
dx

=
1

16

˘ 1

8i
e8ix +

4

4i
e4ix + 6x+

4

−4i
e−4ix +

1

−8i
e−8ix

¯
+ C.

We could leave this as the answer since we’re done with the integral. However, we are asked to
simplify our answer, and since we know ahead of time that the answer is a real function we should
rewrite this as a real function. There are several ways of doing this, one of which is to carefully
match complex exponential terms with their complex conjugates (e.g. e8ix with e−8ix.) This gives
us

Z
`
cos 2x

´4
dx =

1

16

˘e8ix − e−8ix

8i
+
e4ix − e−4ix

i
+ 6x

¯
+ C.

Finally, we use the formula sin θ = eiθ−e−iθ

2i
to remove the complex exponentials. We end up

with the answer
Z

`
cos 2x

´4
dx =

1

16

˘
1
4

sin 8x+ 2 sin 4x+ 6x
¯

+ C = 1
64

sin 8x+ 1
8

sin 4x+ 3
8
x+ C.



134

(b) Use sin θ = (eiθ − e−iθ)/(2i):
Z

e−2x
`
sinax

´2
dx =

Z

e−2x
` eiax − e−iax

2i

´2
dx

=
1

(2i)2

Z

e−2x
`
e2iax − 2 + e−2iax

´
dx

= − 1
4

Z
`
e(−2+2ia)x − 2 + e(−2−2ia)x

´
dx

= − 1
4

˘e(−2+2ia)x

−2 + 2ia
| {z }

A

−2x+
e(−2−2ia)x

−2 − 2ia
| {z }

B

¯
+ C.(†)

We are done with integrating. The answer must be a real function (being the integral of a real
function), so we have to be able to write our answer in a real form. To get this real form we must
expand the complex exponentials above, and do the division by −2 + 2ia and −2 − 2ia. This is
still a fair amount of work, but we can cut the amount of work in half by noting that the terms
A and B are complex conjugates of each other, i.e. they are the same, except for the sign in front
of i: you get B from A by changing all i’s to −i’s. So once we have simplified A we immediately
know B.

We compute A as follows

A =
−2 − 2ia

(−2 − 2ia)(−2 + 2ia)

`
e−2x+2iax

´

=
(−2 − 2ia)e−2x(cos 2ax+ i sin 2ax)

(−2)2 + (−2a)2

=
e−2x

4 + 4a2
(−2 cos 2ax+ 2a sin 2ax) + i

e−2x

4 + 4a2
(−2a cos 2ax− 2 sin 2ax).

Hence

B =
e−2x

4 + 4a2
(−2 cos 2ax+ 2a sin 2ax) − i

e−2x

4 + 4a2
(−2a cos 2ax− 2 sin 2ax).

and

A+B =
2e−2x

4 + 4a2
(−2 cos 2ax+ 2a sin 2ax) =

e−2x

1 + a2
(− cos 2ax+ a sin 2ax).

Substitute this in (†) and you get the real form of the integral
Z

e−2x
`
sinax

´2
dx = − 1

4

e−2x

1 + a2
(− cos 2ax + a sin 2ax) +

x

2
+ C.

(284) (a) This one can be done with the double angle formula, but if you had forgotten that,
complex exponentials work just as well:

Z

cos2 xdx =

Z
`eix + e−ix

2

´2
dx

= 1
4

Z
˘
e2ix + 2 + e−2ix

¯
dx

= 1
4

˘
1
2i
e2ix + 2x+ 1

−2i
e−2ix

¯
+ C

= 1
4

˘e2ix − e−2ix

2i
+ 2x

¯
+ C

= 1
4

˘
sin 2x+ 2x

¯
+ C

= 1
4

sin 2x+
x

2
+ C.

(c), (d) using complex exponentials works, but for these integrals substituting u = sinx works
better, if you use cos2 x = 1 − sin2 x.

(e) Use (a − b)(a + b) = a2 − b2 to compute

cos2 x sin2 x =
(eix + e−ix)2

22

(eix − e−ix)2

(2i)2
= 1

−16
(e2ix + e−2ix)2 = 1

−16
(e4ix + 2 + e−4ix)
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First variation: The integral is
Z

cos2 x sin2 x dx = 1
−16

( 1
4i
e4ix + 2x+ 1

−4i
e−4ix) + C = 1

−32
sin 4x− 1

8
x+ C.

Second variation: Get rid of the complex exponentials before integrating:

1
−16

(e4ix + 2 + e−4ix) = 1
−16

(2 cos 4x+ 2) = − 1
8
(cos 4x+ 1),

If you integrate this you get the same answer as above.

(j) and (l): Substituting complex exponentials will get you the answer, but for these two
integrals you’re much better off substituting u = cos x (and keep in mind that sin2 x = 1−cos2 x.)

(k) See (e) above.

(293) y(t) = 2
Aet + 1

Aet − 1

(294) y = Ce−x
3/3, C = 5e1/3

(295) y = Ce−x−x
3
, C = e2

(296) Implicit form of the solution tan y = −x2

2
+ C, so C = tan π/3 =

√
3.

Solution y(x) = arctan
`√

3 − x2/3
´

(297) Implicit form of the solution: y + 1
2
y2 + x+ 1

2
x2 = A+ 1

2
A2. If you solve for y you get

y = −1 ±
p

A2 + 2A+ 1 − x2 − 2x

Whether you need the “+” or “−” depends on A.

(298) Integration gives
1

2
ln

˛
˛
˛
˛

y − 1

y + 1

˛
˛
˛
˛ = x+ C. Solve for y to get y−1

y+1
= ±e2x+2C =

`
±e2C

´
e2x.

Let B = ±e2C be the new constant and you get
y − 1

y + 1
= Be2x whence y =

1 + Be2x

1 − Be2x
.

The initial value y(0) = A tells you that B = A−1
A+1

, and therefore the solution with initial value

y(0) = A is y =
A+ 1 + (A− 1)e2x

A+ 1 − (A− 1)e2x
.

(299) y(x) = tan
`
arctan(A) − x

´
.

(300) y = xesinx + Aesinx

(301) Implicit form of the solution 1
3
y3 + 1

4
x4 = C; C = 1

3
A3. Solution is y = 3

q

A3 − 3
4
x4.

(305) General solution: y(t) = Ae3t cos t+Be3t sin t. Solution with given initial values has A = 7,
B = −10.

(306) y = Aet + Be−t + C cos t +D sin t

(307) The characteristic roots are r = ± 1
2

√
2 ± 1

2

√
2, so the general solution is

y = Ae
1
2

√
2t cos 1

2

√
2t +Be

1
2

√
2t sin 1

2

√
2t+ Ce−

1
2

√
2t cos 1

2

√
2t+De−

1
2

√
2t sin 1

2

√
2t.

(308) The characteristic equation is r4 − r2 = 0 whose roots are r = ±1 and r = 0 (double).
Hence the general solution is y = A+Bt + Cet +De−t.

(309) The characteristic equation is r4+r2 = 0 whose roots are r = ±i and r = 0 (double). Hence
the general solution is y = A+ Bt+ C cos t+D sin t.

(310) The characteristic equation is r3 + 1 = 0, so we must solve

r3 = −1 = e(π+2kπ)i.

The characteristic roots are

r = e(
π

3
+ 2

3
kπ)i
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where k is an integer. The roots for k = 0, 1, 2 are different, and all other choices of k lead to one
of these roots. They are

k = 0 : r = eπi/3 = cos
π

3
+ i sin

π

3
=

1

2
+
i

2

√
3

k = 1 : r = eπi = cos π + i sinπ = −1

k = 2 : r = e5πi/3 = cos
5π

3
+ i sin

5π

3
=

1

2
− i

2

√
3

1

2
+

i

2

√

3

1

2
−

i

2

√

3

−1

1

2

The real form of the general solution of the differential equation is therefore

y = Ae−t +Be
1
2
t cos

√
3

2
t+ Ce

1
2
t sin

√
3

2
t

(311) y = Aet + Be−
1
2
t cos

√
3

2
t+ Ce−

1
2
t sin

√
3

2
t

(312) y(t) = c1e
√

3t + c2e−
√

3t +A cos t+ B sin t.

(313) Characteristic polynomial: r4 + 4r2 + 3 =
`
r2 + 3

´`
r2 + 1

´
.

Characteristic roots: −i
√

3,−i, i, i
√

3.

General solution: y(t) = A1 cos
√

3t+B1 sin
√

3t +A2 cos t+B2 sin t.

(314) Characteristic polynomial: r4 + 2r2 + 2 =
`
r2 + 1

´2
+ 1.

Characteristic roots: r21,2 = −1 + i, r23,4 = −1 − i.

Since −1+i =
√

2eπi/4+2kπ (k an integer) the square roots of −1+i are ±21/4eπi/8 = 21/4 cos π
8

+

i21/4 sin π
8
. The angle π/8 is not one of the familiar angles so we don’t simplify cos π/8, sinπ/8.

Similarly, −1−i =
√

2e−πi/4+2kπi so the square roots of −1−i are ±21/4e−πi/8 = ±21/4
`
cos π

8
−

i sin π
8

´
.
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If you abbreviate a = 21/4 cos π
8

and b = 21/4 sin π
8
, then the four characteristic roots which we

have found are

r1 = 21/4 cos
π

8
+ i21/4 sin

π

8
= a+ bi

r2 = 21/4 cos
π

8
− i21/4 sin

π

8
= a− bi

r3 = −21/4 cos
π

8
+ i21/4 sin

π

8
= −a+ bi

r4 = −21/4 cos
π

8
− i21/4 sin

π

8
= −a− bi

The general solution is

y(t) = A1e
at cos bt+ B1e

at sin bt+ A2e
−at cos bt+ B2e

−at sin bt

(317) Characteristic equation is r3−125 = 0, i.e. r3 = 125 = 125e2kπi. The roots are r = 5e2kπi/3,
i.e.

5, 5(− 1
2

+ i
2

√
3) = − 5

2
+ 5

2
i
√

3, and 5(− 1
2
− i

2

√
3) = − 5

2
− 5

2
i
√

3.

The general solution is

f(x) = c1e
5x + c2e

− 5
2
x cos 5

2

√
3x+ c3e

− 5
2
x sin 5

2

√
3x.

(318) Try u(x) = erx to get the characteristic equation r5 = 32 which has solutions

r = 2, 2e
2
5
πi, 2e

4
5
πi, 2e

6
5
πi, 2e

8
5
πi,

i.e.

r0 = 2

r1 = 2 cos 2
5
π + 2i sin 2

5
π

r2 = 2 cos 4
5
π + 2i sin 4

5
π

r3 = 2 cos 6
5
π + 2i sin 6

5
π

r4 = 2 cos 8
5
π + 2i sin 8

5
π.

r0

r1=a+bi

r4=a-bi

r2=p+qi

r3=p-qi

1-1 2

i

-i

Remember that the roots come in complex conjugate pairs. By making a drawing of the roots
you see that r1 and r4 are complex conjugates of each other, and also that r2 and r3 are complex
conjugates of each other. So the roots are

2, 2 cos 2
5
π ± 2i sin 2

5
π, and 2 cos 4

5
π ± 2i sin 4

5
π.

The general solution of the differential equation is

u(x) = c1e
2x + c2e

ax cos bx+ c3e
ax sin bx+ c3e

px cos qx+ c3e
px sin qx.
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Here we have abbreviated

a = 2 cos 2
5
π, b = 2 sin 2

5
π, p = 2 cos 4

5
π, q = 2 sin 4

5
π.

(320) Characteristic polynomial is r3 − 5r2 + 6r − 2 = (r − 1)(r2 − 4r + 2), so the characteristic

roots are r1 = 1, r2,3 = 2 ±
√

2. General solution:

y(t) = c1e
t + c2e

(2−
√

2)t + c3e
(2+

√
2)t.

(322) Characteristic polynomial is r3 − 5r2 + 4 = (r − 1)(r2 − 4r − 4). Characteristic roots are

r1 = 1, r2,3 = 2 ± 2
√

2. General solution

z(x) = c1e
x + c2e

(2+2
√

2)x + c3e
(2−2

√
2)x.

(323) General: y(t) = A cos 3t +B sin 3t . With initial conditions: y(t) = sin 3t

(324) General: y(t) = A cos 3t +B sin 3t. With initial conditions: y(t) = −3 cos 3t

(325) General: y(t) = Ae2t +Be3t. With initial conditions: y(t) = e3t − e2t

(326) General: y(t) = Ae−2t +Be−3t. With initial conditions: y(t) = 3e−2t − 2e−3t

(327) General: y(t) = Ae−2t +Be−3t. With initial conditions: y(t) = e−2t − e−3t

(328) General: y(t) = Aet + Be5t. With initial conditions: y(t) = 5
4
et − 1

4
e5t

(329) General: y(t) = Aet + Be5t. With initial conditions: y(t) = (e5t − et)/4

(330) General: y(t) = Ae−t + Be−5t. With initial conditions: y(t) = 5
4
e−t − 1

4
e−5t

(331) General: y(t) = Ae−t + Be−5t. With initial conditions: y(t) = 1
4

`
e−t − e−5t

´

(332) General: y(t) = e2t
`
A cos t+B sin t

´
. With initial conditions: y(t) = e2t

`
cos t− 2 sin t

´

(333) General: y(t) = e2t
`
A cos t+B sin t

´
. With initial conditions: y(t) = e2t sin t

(334) General: y(t) = e−2t
`
A cos t+B sin t

´
. With initial conditions: y(t) = e−2t

`
cos t+ 2 sin t

´

(335) General: y(t) = e−2t
`
A cos t+B sin t

´
. With initial conditions: y(t) = e−2t sin t

(336) General: y(t) = Ae2t +Be3t. With initial conditions: y(t) = 3e2t − 2e3t

(337) Characteristic polynomial: r3 + r2 − r + 15 = (r + 3)(r2 − 2r + 5). Characteristic roots:
r1 = −3, r2,3 = 1 ± 2i. General solution (real form) is

f(t) = c1e
−3t + Aet cos 2t +Bet sin 2t.

The initial conditions require

f(0) = c1 + A = 0, f ′(0) = −3c1 +A+ 2B = 1, f ′′(0) = 9c1 − 3A+ 4B = 0.

Solve these equations to get c1 = −1/10, A = 1/10, B = 3/10, and thus

f(t) = − 1
10
e−3t + 1

10
et cos 2t+ 3

10
et sin 2t.

(339) y = −2 + Aet +Be−t

(340) y = Aet + Be−t + tet

(341) y = A cos t+ B sin t+ 1
6
t sin t

(342) y = A cos 3t +B sin 3t+ 1
8

cos t

(343) y = A cos t+ B sin t+ 1
2
t sin t

(344) y = A cos t+ B sin t− 1
8

cos 3t

(346) (i) Homogeneous equation: try z(t) = ert, get characteristic equation r2 + 4r + 5 = 0,
with roots r1,2 = −2 ± i. The general solution of the homogenous equation is therefore zh(t) =
c1e−2t cos t+ c2e−2t sin t.

To find a particular solution try zp(t) = Aeit. You get (i2 + 4i+ 5)Aeit = eit, i.e. (4 + 4i)A = 1,

so A = 1
4+4i

= 1
4

1
1+i

= 1
4

1−i
2

= 1
8
− i

8
. So the general solution to the inhomogeneous problem is

z(t) =
1 − i

8
eit + c1e

−2t cos t+ c2e
−2t sin t.
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(348) Let X(t) be the rabbit population size at time t. The rate at which this population grows
is dX/dt rabbits per year.

5
100

X from growth at 5% per year
2

100
X from death at 2% per year

−1000 car accidents
+700 immigration from Sun Prairie

Together we get
dX

dt
=

3

100
X − 300.

This equation is both separable and first order linear, so you can choose from two methods to find
the general solution, which is

X(t) = 10, 000 + Ce0.03t.

If X(1991) = 12000 then

10, 000 + Ce0.03×1991 = 12, 000 =⇒ C = 2, 000e−0.03×1991(don’t simplify yet!)

Hence

X(1994) = 10, 000+2, 000e−0.03×1991e0.03×1994 = 10, 000+2, 000e0.03×(1994−1991) = 10, 000+2, 000e0.09 ≈ 12, 188. . . .

(349) (a) Separate variables or find an integrating factor ( dT
dt

− kT = −kA). Both methods

work here. You get T (t) = A + Cekt, where C is an arbitrary constant. Since k < 0 one has
limt→∞ ekt = 0, and hence limt→∞ T (t) = limt→∞ A+ Cekt = A+ C · 0 = A.

(b) Given T (0) = 180, A = 75, and T (5) = 150. This gives the following equations:

A+ C = 180, A+ Ce5k = 105 =⇒ C = 105, 5k = ln
75

105
= ln

5

7
= − ln

7

5
.

When is T = 90? Solve T (t) = 90 for t using the values for A,C, k found above (k is a bit ugly so
we substitute it at the end of the problem):

T (t) = A+ Cekt = 75 + 105ekt = 90 =⇒ ekt =
15

105
=

1

7
.

Hence

t =
ln 1/7

k
= − ln 7

k
=

ln7

ln 7/5
.

The limit as t→ ∞ of the temperature is A = 75 degrees.

(350) (a) Let y(t) be the amount of “retaw” (in gallons) in the tank at time t. Then

dy

dt
=

5

100
y

| {z }

growth

− 3
| {z }

removal

.

(b) y(t) = 60 + Cet/20 = 60 + (y0 − 60)et/20.

(c) If y0 = 100 then y(t) = 60 + 40et/20 so that limt→∞ y(t) = +∞.

(d) y0 = 60.

(351) Finding the equation is the hard part. Let A(t) be the volume of acid in the vat at time t.
Then A(0) = 25% of 1000 = 250gallons.

A′(t) = the volume of acid that gets pumped in minus the volume that gets extracted per minute.
Per minute 40% of 20 gallons, i.e. 8 gallons of acid get added. The vat is well mixed, and A(t) out

of the 1000gallons are acid, so if 20 gallons get extracted, then A
1000

× 20 of those are acid. Hence

dA

dt
= 8 − A

1000
× 20 = 8 − A

50
.

The solution is A(t) = 400 + Ce−t/50 = 400 + (A(0) − 400)e−t/50 = 400 − 150e−t/50.

The concentration at time t is

concentration =
A(t)

total volume
=

400 − 150e−t/50

1000
= 0.4 − 0.15r−t/50.
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If you wait for very long the concentration becomes

concentration = lim
t→∞

A(t)

1000
= 0.4.

(352) P is the volume of polluted water in the lake at time t. At any time the fraction of the lake

water which is polluted is P/V , so if 24 cubic feet are drained then P
V

× 24 of those are polluted.

Here V = 109; for simplicity we’ll just write V until the end of the problem. We get

dP

dt
= ”in minus out” = 3 − P

V
× 24

whose solution is P (t) = 1
8
V +Ke−

24
V
t. Here K is an arbitrary constant (which we can’t call C

because in this problem C is the concentration).

The concentration at time t is

C(t) =
P (t)

V
=

1

8
+
K

V
e−

24
V
t =

1

8
+

`
C0 − 1

8

´
e−

24
V
t.

No matter what C0 is you always have

lim
t→∞

C(t) = 0

because limt→∞ e−
24
V
t = 0.

If C0 = 1
8

then the concentration of polluted water remains constant: C(t) = 1
8
.

(365) (a) Since

„
1
2

«

+

„
x
x

«

=

„
1 + x
2 + x

«

the number x would have to satisfy both 1 + x = 2 and

2 + x = 1. That’s impossible, so there is no such x.

(b) No drawing, but ~p =

„
1
2

«

+

„
x
x

«

=

„
1
2

«

+x

„
1
1

«

is the parametric representation of a straight

line through the points (1, 2) (when x = 0) and (2, 3) (when x = 1).

(c) x and y must satisfy

„
x+ y
2x+ y

«

=

„
2
1

«

. Solve x+ y = 2, 2x+ y = 1 to get x = −1, y = 3.

(366) Every vector is a position vector. To see of which point it is the position vector translate it
so its initial point is the origin.

Here
−→
AB =

„
−3
3

«

, so
−→
AB is the position vector of the point (−3, 3).

(367) One always labels the vertices of a parallelogram counterclockwise (see §45.4).

ABCD is a parallelogram if
−→
AB +

−−→
AD =

−→
AC.

−→
AB =

„
1
1

«

,
−→
AC =

„
2
3

«

,
−−→
AD =

„
3
1

«

. So

−→
AB +

−−→
AD 6= −→

AC, and ABCD is not a parallelogram.

(368) (a) As in the previous problem, we want
−→
AB+

−−→
AD =

−→
AC. If D is the point (d1, d2, d3) then

−→
AB =

0

@

0
1
1

1

A,
−−→
AD =

0

@

d1
d2 − 2
d3 − 1

1

A,
−→
AC =

0

@

4
−1
3

1

A, so that
−→
AB +

−−→
AD =

−→
AC will hold if d1 = 4, d2 = 0

and d3 = 3.

(b) Now we want
−→
AB +

−→
AC =

−−→
AD, so d1 = 4, d2 = 2, d3 = 5.

(373) (a) ~x =

0

@

3
0
1

1

A + t

0

@

−1
1
1

1

A =

0

@

3 − t
t

1 + t

1

A.

(b) Intersection with xy plane when z = 0, i.e. when t = −1, at (4,−1, 0). Intersection with xz
plane when y = 0, when t = 0, at (3, 0, 1) (i.e. at A). Intersection with yz plane when x = 0,
when t = 3, at (0, 3, 4).
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(374) (a) ~p = (~b + ~c)/2, ~q = (~a + ~c)/2, ~r = (~a + ~b)/2.

(b) ~m = ~a + 2
3
(~p − ~a) (See Figure 18, with AX twice as long as XB). Simplify to get ~m =

1
3
~a + 1

3
~b + 1

3
~c.

(c) Hint : find the point N on the line segment BQ which is twice as far from B as it is from Q.
If you compute this carefully you will find that M = N .

(376) To decompose ~b set ~b = ~b⊥ + ~b//, with ~b// = t~a for some number t. Take the dot product

with ~a on both sides and you get ~a···~b = t‖~a‖2, whence 3 = 14t and t = 3
14

. Therefore

~b// =
3

14
~a, ~b⊥ = ~b− 3

14
~a.

To find ~b// and ~b− ⊥ you now substitute the given values for ~a and ~b.

The same procedure leads to ~a⊥ and ~a//: ~a// = 3
2
~b, ~a⊥ = ~a− 3

2
~b.

(377) This problem is of the same type as the previous one, namely we have to decompose one
vector as the sum of a vector perpendicular and a vector parallel to the hill’s surface. The only
difference is that we are not given the normal to the hill so we have to find it ourselves. The
equation of the hill is 12x1 + 5x2 = 130 so the vector ~n =

`
12
5

´
is a normal.

The problem now asks us to write ~fgrav = ~f⊥ + ~f//, where ~f⊥ = t~n is perpendicular to the

surface of the hill, and ~f// id parallel to the surface.

Take the dot product with ~n, and you find t‖~n‖2 = ~n···~fgrav =⇒ 169t = −5mg =⇒ t =

− 5
169

mg. Therefore

~f⊥ = − 5

169
mg

„
12
5

«

=

„
− 60

169
mg

− 25
169

mg

«

, ~f// = ~fgrav − ~f⊥ =

„
− 60

169
mg

144
169

mg

«

,

(379) (i) ‖~a−~b‖2 = ‖~a‖2−2~a···~b+‖~b‖2; (ii) ‖2~a−~b‖2 = 4‖~a‖2−4~a···~b+‖~b‖2; (iii) ‖~a + ~b‖ =
√

54,

‖~a− ~b‖ =
√

62 and ‖2~a− ~b‖ =
√

130.

(381) Compute
−→
AB = −−→

BA =

„
1
1

«

,
−−→
BC = −−−→

CB =

„
−2
2

«

,
−→
AC = −−→

CA =

„
−1
3

«

. Hence

‖−→AB‖ =
√

2, ‖−−→BC‖ =
√

8 = 2
√

2, ‖−→AC‖ =
√

10.

And also
−→
AB···−→AC = 2 =⇒ cos ∠A =

−−→
AB···−−→AC

‖−−→AB‖ ‖−−→AC‖
= 2√

20
= 1√

5
.

A similar calculation gives cos ∠B = 0 so we have a right triangle; and cos ∠C = 2√
5
.

(382)
−→
AB =

`
2
1

´
,
−→
AC =

“
t−1
2−t

”

,
−−→
BC =

“
t−3
1−t

”

.

If the right angle is at A then
−→
AB···−→AC = 0, so that we must solve 2(t− 1) + (2− t) = 0. Solution:

t = 0, and C = (0, 3).

If the right angle is at B then
−→
AB···−−→BC = 0, so that we must solve 2(t− 3) + (1− t) = 0. Solution:

t = 5, and C = (5,−2).

If the right angle is at C then
−→
AC···−−→BC = 0, so that we must solve (t−1)(t−3)+(2− t)(1− t) = 0.

Note that this case is different in that we get a quadratic equation, and in that there are two
solutions, t = 1, t = 5

2
.

This is a complete solution of the problem, but it turns out that there is a nice picture of the
solution, and that the four different points C we find are connected with the circle whose diameter
is the line segment AB:
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A(1,1)

B(1,1)

C (t=0)

C (t=5)

C (t=1.0)

C (t=2.5)

(383.i) ℓ has defining equation − 1
2
x + y = 1 which is of the form ~n···~x =constant if you choose

~n =
“

−1/2
1

”

.

(383.ii) The distance to the point D with position vector ~d from the line ℓ is
~n···(~d−~a)

‖~n‖ where ~a is the

position vector of any point on the line. In our case ~d = ~0 and the point A(0, 1), ~a =
−→
OA =

`
0
1

´
,

is on the line. So the distance to the origin from the line is
−~n···~a
‖~n‖ =

1
p

(1/2)2 + 12
= 2/

√
5.

(383.iii) 3x+ y = 2, normal vector is ~m =
`

3
1

´
.

(383.iv) Angle between ℓ and m is the angle θ between their normals, whose cosine is cos θ =
~n··· ~m

‖~n‖ ‖ ~m‖ = −1/2√
5/4

√
10

= − 1√
50

= − 1
10

√
2.

(388.i) ~0 (the cross product of any vector with itself is the zero vector).

(388.iii) (~a + ~b)××× (~a− ~b) = ~a××× ~a + ~b××× ~a− ~a××× ~b − ~b××× ~b = −2~a××× ~b.

(389) Not true. For instance, the vector ~c could be ~c = ~a + ~b, and ~a××× ~b would be the same as

~c××× ~b.

(390.i) A possible normal vector is ~n =
−→
AB ××× −→

AC =

„
−4
4
−4

«

. Any (non zero) multiple of this

vector is also a valid normal. The nicest would be 1
4
~n =

„
−1
1
−1

«

.

(390.ii) ~n···(~x−~a) = 0, or ~n···~x = ~n···~a. Using ~n and ~a from the first part we get −4x1+4x2−4x3 =

−8. Here you could replace ~a by either ~b or ~c. (Make sure you understand why; if you don’t think
about it, then ask someone).
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(390.iii) Distance from D to P is
~n···(~d−~a)

‖~n‖ = 4/
√

3 = 4
3

√
3. There are many valid choices of

normal ~n in part (i) of this problem, but they all give the same answer here.

Distance from O to P is
~n···(~0−~a)

‖~n‖ = 2
3

√
3.

(390.iv) Since ~n···(~0 − ~a) and ~n···(~d− ~a) have the same sign the point D and the origin lie on the
same side of the plane P.

(390.v) The area of the triangle is 1
2
‖−→AB×××−→

AC‖ = 2
√

3.

(390.vi) Intersection with x axis is A, the intersection with y-axis occurs at (0,−2, 0) and the
intersection with the z-axis is B.

(391.i) Since ~n =
−→
AB×××−→

AC =
“ −3

1
1

”

the plane through A,B, C has defining equation −3x+y+z =

3. The coordinates (2, 1, 3) of D do not satisfy this equation, so D is not on the plane ABC.

(391.ii) If E is on the plane through A,B, C then the coordinates of E satisfy the defining equation
of this plane, so that −3 · 1 + 1 · 1 + 1 · α = 3. This implies α = 5.

(392.i) If ABCD is a parallelogram then the vertices of the parallelogram are labeled A, B, C, D
as you go around the parallelogram in a counterclockwise fashion. See the figure in §43.2. Then−→
AB +

−−→
AD =

−→
AC. Starting from this equation there are now two ways to solve this problem.

(first solution) If D is the point (d1, d2, d3) then
−−→
AD =

„
d1−1
d2+1
d3−1

«

, while
−→
AB =

“
1
1
0

”

and

−→
AC =

“
0
3
−1

”

. Hence
−→
AB +

−−→
AD =

−→
AC implies

„
d1
d2+2
d3−1

«

=
“

0
3
−1

”

, and thus d1 = 0, d2 = 1 and

d3 = 0.

(second solution) Let ~a,~b,~c, ~d be the position vectors of A,B, C,D. Then
−→
AB = ~b − ~a, etc.

and
−→
AB +

−−→
AD =

−→
AC is equivalent to ~b − ~a + ~d− ~a = ~c − ~a. Since we know ~a,~b,~c we can solve

for ~d and we get ~d = ~c− ~b + ~a =
“

1
−1
1

”

−
“

2
0
1

”

+
“

1
2
0

”

=
“

0
1
0

”

.

(392.ii) The area of the parallelogram ABCD is ‖−→AB ×××−−→
AD‖ =

‚
‚
‚

“ −1
1
3

”‚
‚
‚ =

√
11.

(392.iii) In the previous part we computed
−→
AB ××× −−→

AD =
“ −1

1
3

”

, so this is a normal to the plane

containing A,B,D. The defining equation for that plane is −x + y + 3z = 1. Since ABCD is a
parallelogram any plane containing ABD automatically contains C.

(392.iv) (−1, 0, 0), (0, 1, 0), (0, 0, 1
3
).

(393.i) Here is the picture of the parallelepiped (which you can also find on page 103):

base

H

A

C

B

F

G

D

E

Knowing the points A,B,D we get
−→
AB =

“ −1
2
0

”

,
−−→
AD =

“ −2
0
1

”

. Also, since EFGH
ABCD

is a paral-

lelepiped, we know that all its faces are parallelogram, and thus
−−→
EF =

−→
AB, etc. Hence: we find

these coordinates for the points A, B, . . .

A(1, 0, 0), (given); B(0, 2, 0), (given); C(−2, 2, 1), since
−→
AC =

−→
AB +

−−→
AD =

“ −3
2
1

”

; D(−1, 0, 1),

(given); E(0, 0, 2), (given)

F (−1, 2, 2), since we know E and
−−→
EF =

−→
AB =

“ −1
2
0

”
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G(−3, 2, 3), since we know F and
−→
FG =

−−→
EH =

−−→
AD =

“ −2
0
1

”

H(−2, 0, 3), since we know E and
−−→
EH =

−−→
AD =

“ −2
0
1

”

.

(393.ii) The area of ABCD is ‖−→AB×××−−→
AD‖ =

√
21.

(393.iii) The volume of P is the product of its height and the area of its base, which we compute

in the previous and next problems. So height= volume
area base

= 6√
21

= 2
7

√
21.

(393.iv) The volume of the parallelepiped is
−→
AE···(−→AB×××−−→

AD) = 6.

Sketching Parametrized Curves

(395) The straight line y = x+ 1, traversed
from the top right to the bottom left as t
increases from −∞ to +∞.

(396) The diagonal y = x traversed from left
to right, from upwards.

(397) The diagonal y = x again, but since
x = et can only be positive we only get the
part in the first quadrant. At t = −∞ we
start at the origin, as t → +∞ both x and
y go to +∞.

(398) The graph of y = lnx, or x = ey (same
thing), traversed in the upwards direction.

(399) The part of the graph of y = 1/x
which is in the first quadrant, traversed from
left to right.

(400) The standard parabola y = x2, from
left to right.

(401) The graph x = sin y. This is the usual
Sine graph, but on its side.

(402) We remember that cos 2α = 1 −
2 sin2 α, so that ~x(t) traces out a part of the
parabola y = 1−x2. Looking at x(t) = sin t
we see ~x(t) goes back and forth on the part

of the parabola y = 1−2x2 between x = −1
and x = +1.

(403) The unit circle, traversed clockwise,
25 times every 2π time units. Note that the
angle θ = 25t is measured from the y-axis
instead of from the x-axis.

(404) Circle with radius 1 and center (1, 1)
(it touches the x and y axes). Traversed in-
finitely often in counterclockwise fashion.

(1,1)

t

(405) Without the 2 this would be the stan-
dard unit circle (dashed curve below). Mul-
tiplying the x component by 2 stretches this



145

circle to an ellipse. So ~x(t) traces out an
ellipse, infinitely often, counterclockwise.

(406) For each y = t3 there is exactly one

t, namely, t = y1/3. So the curve is a
graph (with x as a function of y instead of
the other way around). It is the graph of

x = y2/3 = 3
p
y2.

y = x3/2

y = −x3/2

The curve is called Neil’s parabola.

(407) If θ is the angle through which
the wheel has turned, then ~x(θ) =
„
θ − a sin θ
1 − a cos θ

«

.

(410) Here’s the picture:

The arc AB has length θ, and we are told
the line segment BX has the same length.

From this you get

~x(θ) =

„
cos θ + θ sin θ
sin θ − θ cos θ

«

This curve is called the evolute of the cir-
cle.

(415.i) ~x(0) = ~a, ~x(1) = ~c so the curve goes
from A to C as t increases from t = 0 to
t = 1. ~x′(0) = 2(~b − ~a) so the tangent at
t = 0 is parallel to the edge AB, and point-

ing from A to B. ~x′(1) = 2(~c − ~b) so the

tangent at t = 1 is parallel to the edge BC,
and pointing from B to C. For an animation
of the curve in this problem visit Wikipedia
at

http://en.wikipedia.org/wiki/File:Bezier_2_big.gif

(415.ii) At t = 1/2. If you didn’t get this,
you can still get partial credit by checking
that this answer is correct.

(417.i) Horizontal tangents: t = 1/4; Ver-
tical tangents: t = 0; Directions: South-
East −∞ < t < 1/4, NorthEast 1/4 < t <
0, NorthWest 0 < t < ∞.

(417.ii) This vector function is 2π periodic,
so we only look at what happens for 0 ≤ t ≤
2π (or you could take −π ≤ t ≤ π, or any
other interval of length 2π).

Horizontal tangents: t = π
4
, 3π

4
, 5π

4
, 7π

4
;

Vertical tangents: t = π
2
, 3π

2
;

Directions: NE 0 < t < π
4
, SE π

4
< t < π

2
,

SW π
2
< t < 3π

4
, NW 3π

4
< t < 5π

4
,

SW 5π
4
< t < 3π

2
, SE 3π

2
< t < 7π

4
, NE

7π
4
< t < 2π.

The curve traced out is a figure eight on its
side, i.e. the symbol for infinity “∞”.

(417.iii) Very similar to the previous prob-
lem. In fact both this vector function and
the one from the previous problem trace out
exactly the same curve. They just assign dif-
ferent values of the parameter t to points on
the curve.

(417.iv) Horizontal points: t = ±√
a;

Vertical points: t = 0; . Directions: SE
−∞ < t < −√

a, NE −√
a < t < 0, NW

0 < t <
√
a, SW

√
a < t < ∞.

The curve looks like a “fish” (with some
imagination.)

(417.v) No horizontal points; Vertical
point: t = 0. Directions: NE −∞ < t < 0,
NW 0 < t <∞.

(417.vi) This one has lots of horizon-
tal and vertical tangents. If you re-
place the numbers 2 and 3 by other

http://en.wikipedia.org/wiki/File:Bezier_2_big.gif
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integers you get curves called “Lis-
sajous figures”. Get a graphing calcu-
lator/program and draw some. Or go to
http://en.wikipedia.org/wiki/Lissajous_curve

.

(417.vii) Horizontal point: t = 0; Verti-
cal points: t = ±1; . Directions: SW
−∞ < t < −1, SE −1 < t < 0, NE
0 < t < 1, NW 1 < t < ∞.

It sort of looks like this

(But this is really the graph of ~x(t) =
“
t/(1+t4)

t2

”

.)

(417.ix) This vector function traces out the
right half of the parabola y = 2(x− 1)2 (i.e.
the part with x ≥ 1), going from right to left
for −∞ < t < 0, and then back up again,
from left to right for 0 < t <∞.

http://en.wikipedia.org/wiki/Lissajous_curve
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GNU Free Documentation License

Version 1.3, 3 November 2008

Copyright c© 2000, 2001, 2002, 2007, 2008 Free Software Foundation, Inc.

〈http://fsf.org/〉

Everyone is permitted to copy and distribute verbatim copies of this license document, but changing it is not allowed.

Preamble

The purpose of this License is to make a manual, text-
book, or other functional and useful document “free”
in the sense of freedom: to assure everyone the effec-
tive freedom to copy and redistribute it, with or with-
out modifying it, either commercially or noncommer-
cially. Secondarily, this License preserves for the au-
thor and publisher a way to get credit for their work,
while not being considered responsible for modifica-
tions made by others.

This License is a kind of “copyleft”, which means that
derivative works of the document must themselves be
free in the same sense. It complements the GNU Gen-
eral Public License, which is a copyleft license designed
for free software.

We have designed this License in order to use it for
manuals for free software, because free software needs
free documentation: a free program should come with
manuals providing the same freedoms that the soft-
ware does. But this License is not limited to software
manuals; it can be used for any textual work, regard-
less of subject matter or whether it is published as a
printed book. We recommend this License principally
for works whose purpose is instruction or reference.

1. APPLICABILITY AND DEFINITIONS

This License applies to any manual or other work, in
any medium, that contains a notice placed by the copy-
right holder saying it can be distributed under the
terms of this License. Such a notice grants a world-
wide, royalty-free license, unlimited in duration, to use
that work under the conditions stated herein. The
“Document”, below, refers to any such manual or
work. Any member of the public is a licensee, and
is addressed as “you”. You accept the license if you
copy, modify or distribute the work in a way requiring
permission under copyright law.

A “Modified Version” of the Document means any
work containing the Document or a portion of it, either
copied verbatim, or with modifications and/or trans-
lated into another language.

A “Secondary Section” is a named appendix or a
front-matter section of the Document that deals ex-
clusively with the relationship of the publishers or au-
thors of the Document to the Document’s overall sub-
ject (or to related matters) and contains nothing that
could fall directly within that overall subject. (Thus,
if the Document is in part a textbook of mathematics,
a Secondary Section may not explain any mathemat-
ics.) The relationship could be a matter of historical
connection with the subject or with related matters, or
of legal, commercial, philosophical, ethical or political
position regarding them.

The “Invariant Sections” are certain Secondary Sec-
tions whose titles are designated, as being those of In-
variant Sections, in the notice that says that the Doc-
ument is released under this License. If a section does
not fit the above definition of Secondary then it is not
allowed to be designated as Invariant. The Document
may contain zero Invariant Sections. If the Document
does not identify any Invariant Sections then there are
none.

The “Cover Texts” are certain short passages of text
that are listed, as Front-Cover Texts or Back-Cover
Texts, in the notice that says that the Document is
released under this License. A Front-Cover Text may

be at most 5 words, and a Back-Cover Text may be at
most 25 words.

A “Transparent” copy of the Document means a
machine-readable copy, represented in a format whose
specification is available to the general public, that
is suitable for revising the document straightforwardly
with generic text editors or (for images composed of
pixels) generic paint programs or (for drawings) some
widely available drawing editor, and that is suitable
for input to text formatters or for automatic transla-
tion to a variety of formats suitable for input to text
formatters. A copy made in an otherwise Transpar-
ent file format whose markup, or absence of markup,
has been arranged to thwart or discourage subsequent
modification by readers is not Transparent. An image
format is not Transparent if used for any substantial
amount of text. A copy that is not “Transparent” is
called “Opaque”.

Examples of suitable formats for Transparent copies
include plain ASCII without markup, Texinfo input
format, LaTeX input format, SGML or XML using a
publicly available DTD, and standard-conforming sim-
ple HTML, PostScript or PDF designed for human
modification. Examples of transparent image formats
include PNG, XCF and JPG. Opaque formats include
proprietary formats that can be read and edited only
by proprietary word processors, SGML or XML for
which the DTD and/or processing tools are not gen-
erally available, and the machine-generated HTML,
PostScript or PDF produced by some word processors
for output purposes only.

The “Title Page” means, for a printed book, the title
page itself, plus such following pages as are needed to
hold, legibly, the material this License requires to ap-
pear in the title page. For works in formats which do
not have any title page as such, “Title Page” means
the text near the most prominent appearance of the
work’s title, preceding the beginning of the body of
the text.

The “publisher” means any person or entity that dis-
tributes copies of the Document to the public.

A section “Entitled XYZ” means a named subunit
of the Document whose title either is precisely XYZ
or contains XYZ in parentheses following text that
translates XYZ in another language. (Here XYZ
stands for a specific section name mentioned be-
low, such as “Acknowledgements”, “Dedications”,
“Endorsements”, or “History”.) To “Preserve the

Title” of such a section when you modify the Docu-
ment means that it remains a section “Entitled XYZ”
according to this definition.

The Document may include Warranty Disclaimers next
to the notice which states that this License applies to
the Document. These Warranty Disclaimers are con-
sidered to be included by reference in this License, but
only as regards disclaiming warranties: any other im-
plication that these Warranty Disclaimers may have is
void and has no effect on the meaning of this License.

2. VERBATIM COPYING

You may copy and distribute the Document in any
medium, either commercially or noncommercially, pro-
vided that this License, the copyright notices, and the
license notice saying this License applies to the Docu-
ment are reproduced in all copies, and that you add no
other conditions whatsoever to those of this License.
You may not use technical measures to obstruct or con-
trol the reading or further copying of the copies you
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make or distribute. However, you may accept compen-
sation in exchange for copies. If you distribute a large
enough number of copies you must also follow the con-
ditions in section 3.

You may also lend copies, under the same conditions
stated above, and you may publicly display copies.

3. COPYING IN QUANTITY

If you publish printed copies (or copies in media that
commonly have printed covers) of the Document, num-
bering more than 100, and the Document’s license no-
tice requires Cover Texts, you must enclose the copies
in covers that carry, clearly and legibly, all these Cover
Texts: Front-Cover Texts on the front cover, and Back-
Cover Texts on the back cover. Both covers must also
clearly and legibly identify you as the publisher of
these copies. The front cover must present the full
title with all words of the title equally prominent and
visible. You may add other material on the covers in
addition. Copying with changes limited to the covers,
as long as they preserve the title of the Document and
satisfy these conditions, can be treated as verbatim
copying in other respects.

If the required texts for either cover are too volumi-
nous to fit legibly, you should put the first ones listed
(as many as fit reasonably) on the actual cover, and
continue the rest onto adjacent pages.

If you publish or distribute Opaque copies of the Doc-
ument numbering more than 100, you must either in-
clude a machine-readable Transparent copy along with
each Opaque copy, or state in or with each Opaque
copy a computer-network location from which the gen-
eral network-using public has access to download using
public-standard network protocols a complete Trans-
parent copy of the Document, free of added material.
If you use the latter option, you must take reason-
ably prudent steps, when you begin distribution of
Opaque copies in quantity, to ensure that this Trans-
parent copy will remain thus accessible at the stated
location until at least one year after the last time you
distribute an Opaque copy (directly or through your
agents or retailers) of that edition to the public.

It is requested, but not required, that you contact the
authors of the Document well before redistributing any
large number of copies, to give them a chance to pro-
vide you with an updated version of the Document.

4. MODIFICATIONS

You may copy and distribute a Modified Version of
the Document under the conditions of sections 2 and 3
above, provided that you release the Modified Version
under precisely this License, with the Modified Ver-
sion filling the role of the Document, thus licensing
distribution and modification of the Modified Version
to whoever possesses a copy of it. In addition, you
must do these things in the Modified Version:

A. Use in the Title Page (and on the cov-
ers, if any) a title distinct from that of
the Document, and from those of previ-
ous versions (which should, if there were
any, be listed in the History section of the
Document). You may use the same title
as a previous version if the original pub-
lisher of that version gives permission.

B. List on the Title Page, as authors, one
or more persons or entities responsible
for authorship of the modifications in the
Modified Version, together with at least
five of the principal authors of the Doc-
ument (all of its principal authors, if it
has fewer than five), unless they release
you from this requirement.

C. State on the Title page the name of the
publisher of the Modified Version, as the
publisher.

D. Preserve all the copyright notices of the
Document.

E. Add an appropriate copyright notice for
your modifications adjacent to the other
copyright notices.

F. Include, immediately after the copyright
notices, a license notice giving the pub-
lic permission to use the Modified Ver-
sion under the terms of this License, in
the form shown in the Addendum below.

G. Preserve in that license notice the full
lists of Invariant Sections and required
Cover Texts given in the Document’s li-
cense notice.

H. Include an unaltered copy of this License.

I. Preserve the section Entitled “History”,
Preserve its Title, and add to it an item
stating at least the title, year, new au-
thors, and publisher of the Modified Ver-
sion as given on the Title Page. If there is
no section Entitled “History” in the Doc-
ument, create one stating the title, year,
authors, and publisher of the Document
as given on its Title Page, then add an
item describing the Modified Version as
stated in the previous sentence.

J. Preserve the network location, if any,
given in the Document for public access
to a Transparent copy of the Document,
and likewise the network locations given
in the Document for previous versions it
was based on. These may be placed in
the “History” section. You may omit a
network location for a work that was pub-
lished at least four years before the Docu-
ment itself, or if the original publisher of
the version it refers to gives permission.

K. For any section Entitled “Acknowledge-
ments” or “Dedications”, Preserve the
Title of the section, and preserve in
the section all the substance and tone
of each of the contributor acknowledge-
ments and/or dedications given therein.

L. Preserve all the Invariant Sections of the
Document, unaltered in their text and
in their titles. Section numbers or the
equivalent are not considered part of the
section titles.

M. Delete any section Entitled “Endorse-
ments”. Such a section may not be in-
cluded in the Modified Version.

N. Do not retitle any existing section to be
Entitled “Endorsements” or to conflict in
title with any Invariant Section.

O. Preserve any Warranty Disclaimers.

If the Modified Version includes new front-matter sec-
tions or appendices that qualify as Secondary Sections
and contain no material copied from the Document,
you may at your option designate some or all of these
sections as invariant. To do this, add their titles to
the list of Invariant Sections in the Modified Version’s
license notice. These titles must be distinct from any
other section titles.

You may add a section Entitled “Endorsements”, pro-
vided it contains nothing but endorsements of your
Modified Version by various parties—for example,
statements of peer review or that the text has been
approved by an organization as the authoritative def-
inition of a standard.

You may add a passage of up to five words as a Front-
Cover Text, and a passage of up to 25 words as a
Back-Cover Text, to the end of the list of Cover Texts
in the Modified Version. Only one passage of Front-
Cover Text and one of Back-Cover Text may be added
by (or through arrangements made by) any one entity.
If the Document already includes a cover text for the
same cover, previously added by you or by arrange-
ment made by the same entity you are acting on be-
half of, you may not add another; but you may replace
the old one, on explicit permission from the previous
publisher that added the old one.

The author(s) and publisher(s) of the Document do
not by this License give permission to use their names
for publicity for or to assert or imply endorsement of
any Modified Version.

5. COMBINING DOCUMENTS

You may combine the Document with other documents
released under this License, under the terms defined
in section 4 above for modified versions, provided that
you include in the combination all of the Invariant Sec-
tions of all of the original documents, unmodified, and
list them all as Invariant Sections of your combined
work in its license notice, and that you preserve all
their Warranty Disclaimers.

The combined work need only contain one copy of this
License, and multiple identical Invariant Sections may
be replaced with a single copy. If there are multiple
Invariant Sections with the same name but different
contents, make the title of each such section unique by
adding at the end of it, in parentheses, the name of the
original author or publisher of that section if known,
or else a unique number. Make the same adjustment
to the section titles in the list of Invariant Sections in
the license notice of the combined work.

In the combination, you must combine any sections
Entitled “History” in the various original documents,
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forming one section Entitled “History”; likewise com-
bine any sections Entitled “Acknowledgements”, and
any sections Entitled “Dedications”. You must delete
all sections Entitled “Endorsements”.

6. COLLECTIONS OF DOCUMENTS

You may make a collection consisting of the Document
and other documents released under this License, and
replace the individual copies of this License in the var-
ious documents with a single copy that is included in
the collection, provided that you follow the rules of
this License for verbatim copying of each of the docu-
ments in all other respects.

You may extract a single document from such a collec-
tion, and distribute it individually under this License,
provided you insert a copy of this License into the ex-
tracted document, and follow this License in all other
respects regarding verbatim copying of that document.

7. AGGREGATION WITH INDEPENDENT WORKS

A compilation of the Document or its derivatives with
other separate and independent documents or works,
in or on a volume of a storage or distribution medium,
is called an “aggregate” if the copyright resulting from
the compilation is not used to limit the legal rights
of the compilation’s users beyond what the individ-
ual works permit. When the Document is included in
an aggregate, this License does not apply to the other
works in the aggregate which are not themselves de-
rivative works of the Document.

If the Cover Text requirement of section 3 is applica-
ble to these copies of the Document, then if the Doc-
ument is less than one half of the entire aggregate,
the Document’s Cover Texts may be placed on cov-
ers that bracket the Document within the aggregate,
or the electronic equivalent of covers if the Document
is in electronic form. Otherwise they must appear on
printed covers that bracket the whole aggregate.

8. TRANSLATION

Translation is considered a kind of modification, so you
may distribute translations of the Document under the
terms of section 4. Replacing Invariant Sections with
translations requires special permission from their
copyright holders, but you may include translations
of some or all Invariant Sections in addition to the
original versions of these Invariant Sections. You may
include a translation of this License, and all the li-
cense notices in the Document, and any Warranty Dis-
claimers, provided that you also include the original
English version of this License and the original ver-
sions of those notices and disclaimers. In case of a
disagreement between the translation and the original
version of this License or a notice or disclaimer, the
original version will prevail.

If a section in the Document is Entitled “Acknowledge-
ments”, “Dedications”, or “History”, the requirement
(section 4) to Preserve its Title (section 1) will typi-
cally require changing the actual title.

9. TERMINATION

You may not copy, modify, sublicense, or distribute
the Document except as expressly provided under this
License. Any attempt otherwise to copy, modify, sub-
license, or distribute it is void, and will automatically
terminate your rights under this License.

However, if you cease all violation of this License, then
your license from a particular copyright holder is rein-
stated (a) provisionally, unless and until the copyright
holder explicitly and finally terminates your license,

and (b) permanently, if the copyright holder fails to
notify you of the violation by some reasonable means
prior to 60 days after the cessation.

Moreover, your license from a particular copyright
holder is reinstated permanently if the copyright
holder notifies you of the violation by some reasonable
means, this is the first time you have received notice
of violation of this License (for any work) from that
copyright holder, and you cure the violation prior to
30 days after your receipt of the notice.

Termination of your rights under this section does not
terminate the licenses of parties who have received
copies or rights from you under this License. If your
rights have been terminated and not permanently re-
instated, receipt of a copy of some or all of the same
material does not give you any rights to use it.

10. FUTURE REVISIONS OF THIS LICENSE

The Free Software Foundation may publish new, re-
vised versions of the GNU Free Documentation License
from time to time. Such new versions will be sim-
ilar in spirit to the present version, but may differ
in detail to address new problems or concerns. See
http://www.gnu.org/copyleft/.

Each version of the License is given a distinguishing
version number. If the Document specifies that a par-
ticular numbered version of this License “or any later
version” applies to it, you have the option of follow-
ing the terms and conditions either of that specified
version or of any later version that has been published
(not as a draft) by the Free Software Foundation. If
the Document does not specify a version number of
this License, you may choose any version ever pub-
lished (not as a draft) by the Free Software Founda-
tion. If the Document specifies that a proxy can de-
cide which future versions of this License can be used,
that proxy’s public statement of acceptance of a ver-
sion permanently authorizes you to choose that version
for the Document.

11. RELICENSING

“Massive Multiauthor Collaboration Site” (or “MMC
Site”) means any World Wide Web server that pub-
lishes copyrightable works and also provides promi-
nent facilities for anybody to edit those works. A pub-
lic wiki that anybody can edit is an example of such
a server. A “Massive Multiauthor Collaboration” (or
“MMC”) contained in the site means any set of copy-
rightable works thus published on the MMC site.

“CC-BY-SA” means the Creative Commons
Attribution-Share Alike 3.0 license published by Cre-
ative Commons Corporation, a not-for-profit corpora-
tion with a principal place of business in San Fran-
cisco, California, as well as future copyleft versions of
that license published by that same organization.

“Incorporate” means to publish or republish a Docu-
ment, in whole or in part, as part of another Docu-
ment.

An MMC is “eligible for relicensing” if it is licensed un-
der this License, and if all works that were first pub-
lished under this License somewhere other than this
MMC, and subsequently incorporated in whole or in
part into the MMC, (1) had no cover texts or invari-
ant sections, and (2) were thus incorporated prior to
November 1, 2008.

The operator of an MMC Site may republish an MMC
contained in the site under CC-BY-SA on the same site
at any time before August 1, 2009, provided the MMC
is eligible for relicensing.
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