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Methods of Integration

1. The indefinite integral

We recall some facts about integration from first semester calculus.

1.1. Definition. A function y = F(x) is called an antiderivative of another func-
tion y = f(z) if F'(x) = f(x) for all .

1.2. Example. Fi(z) = z? is an antiderivative of f(z) = 2z.
Fp(z) = 2 + 2004 is also an antiderivative of f(z) = 2z.

G(t) = 3 sin(2t + 1) is an antiderivative of g(t) = cos(2t + 1).

The Fundamental Theorem of Calculus states that if a function y = f(x) is continuous
on an interval a < x < b, then there always exists an antiderivative F(x) of f, and one
has

(1) / f(z)dz = F(b) — F(a).

The best way of computing an integral is often to find an antiderivative I’ of the given
function f, and then to use the Fundamental Theorem (1). How you go about finding an
antiderivative F' for some given function f is the subject of this chapter.

The following notation is commonly used for antiderivates:

(2) F@) = [ fa)de.

The integral which appears here does not have the integration bounds a and b. It is
called an indefinite integral, as opposed to the integral in (1) which is called a definite
integral. It’s important to distinguish between the two kinds of integrals. Here is a list
of differences:

INDEFINITE INTEGRAL

DEFINITE INTEGRAL

[ f(z)dz is a function of .

By definition [ f(z)dz is any function
of © whose derivative is f(x).

x is not a dummy variable, for example,
J2zdz = 2°+C and [2tdt = t*+C are
functions of diffferent variables, so they
are not equal.

f: f(z)dz is a number.

f: f(z)dz was defined in terms of Rie-
mann sums and can be interpreted as
“area under the graph of y = f(x)”, at
least when f(z) > 0.

r is a dummy variable, for example,
1 1

fo 2ezde = 1, and fo 2tdt = 1, so

fol 2zdx = fol 2tdt.



2. You can always check the answer

Suppose you want to find an antiderivative of a given function f(z) and after a long
and messy computation which you don’t really trust you get an “answer”, F'(x). You can
then throw away the dubious computation and differentiate the F'(x) you had found. If
F’(z) turns out to be equal to f(z), then your F(z) is indeed an antiderivative and your
computation isn’t important anymore.

2.1. Example. Suppose we want to find [Inzdz. My cousin Bruce says it might
be F(x) = zlnx — z. Let’s see if he’s right:

%(xlnx—x) ::c~%—|—1-lnx—1:1n:c.
Who knows how Bruce thought of this', but he’s right! We now know that fln rdx =
zlnx —x+ C.

3. About “+C”

Let f(z) be a function defined on some interval a < z < b. If F'(x) is an antiderivative
of f(x) on this interval, then for any constant C' the function F(z) = F(z)+ C will also be
an antiderivative of f(z). So one given function f(z) has many different antiderivatives,
obtained by adding different constants to one given antiderivative.

3.1. Theorem. If Fi(z) and F>(x) are antiderivatives of the same function f(x) on
some interval a < x < b, then there is a constant C' such that F\(z) = Fa(x) + C.

Proor. Consider the difference G(z) = Fi(z)— Fa(x). Then G’ (z) = Fi(x)— Fy(z) =
f(z) — f(z) = 0, so that G(z) must be constant. Hence Fi(z) — Fz>(z) = C for some
constant. g

It follows that there is some ambiguity in the notation [ f(z)dz. Two functions Fi(z)
and F»(z) can both equal [ f(z) dz without equaling each other. When this happens, they
(F1 and F») differ by a constant. This can sometimes lead to confusing situations, e.g.
you can check that

/QSinxcosmdx =sin’z
/2sin:ccos:cd:c =—cos’x
are both correct. (Just differentiate the two functions sin? 2 and — cos?z!) These two

answers look different until you realize that because of the trig identity sin? z +cos®>z = 1
they really only differ by a constant: sin? z = — cos®z + 1.

To avoid this kind of confusion we will from now on
never forget to include the “arbitrary constant +C” in
our answer when we compute an antiderivative.

He integrated by parts.



4. Standard Integrals

Here is a list of the standard derivatives and hence the standard integrals everyone
should know.

/f(:c)d:c:F(:c)-i-C’

" anrl
/:c d:c:n+1+C’ for all n # —1
1
/—d:c:ln|x|—|—C’
T
sinzdx = —cosx + C

/cosxd:czsinx—b—C’

tanzdr = —Incosz + C

/ 1—‘—1502 dz = arctanx + C'

1 T

———dx = arcsinz + C = — —arccosx + C

/\/1—:02 ( 2 )
/ de 1, 14sinz

T T
cosx_ilnl—sinx+c for—§<ac<§.

All of these integrals are familiar from first semester calculus (like Math 221), except for
the last one. You can check the last one by differentiation (using In ¢ = In a—In b simplifies
things a bit).

5. Method of substitution

The chain rule says that
P — r(6w) - ¢/,
so that

/F'(G(:c)) -G'(z)dx = F(G(x)) + C.

5.1. Example. Consider the function f(x) = 2xsin(z? 4 3). It does not appear in
the list of standard integrals we know by heart. But we do notice® that 2z = dd—gc(x2 +3).
So let’s call G(x) = x? + 3, and F(u) = — coswu, then

F(G(z)) = —cos(z® + 3)

and dF (G
dF(G(@)) _ sin(z® +3)- 2z = f(x),
dx —_——
Fr(G(x) @)
so that

/2:0 sin(z® + 3) dz = — cos(z® + 3) + C.

The most transparent way of computing an integral by substitution is by introducing
new variables. Thus to do the integral

/ F(G(@)G (2) da

2 You will start noticing things like this after doing several examples.



where f(u) = F’(u), we introduce the substitution u = G(x), and agree to write du =
dG(z) = G'(z) dz. Then we get

/f(G(:c))G'(:c) dz = /f(u) du = F(u) + C.
At the end of the integration we must remember that u really stands for G(zx), so that
/f(G(m))G'(m) dz = F(u)+ C = F(G(x)) + C.
For definite integrals this implies
/a ' HG@)G (@) da = FG) — F(G(a)).

which you can also write as

b G(b)
3) / F(G(@)G () da = / £(u) du.

G(a)
5.2. Example. [Substitution in a definite integral. ] As an example we compute

1
/ :c dx,
0o 1+a2

using the substitution v = G(x) = 1 + 2. Since du = 2z dz, the associated indefinite
integral is

To find the definite integral you must compute the new integration bounds G(0) and G(1)
(see equation (3).) If z runs between 2 = 0 and = = 1, then u = G(z) = 1 + 2* runs
between u =1+ 02 =1 and u =1 + 12 = 2, so the definite integral we must compute is

1 2
/ x2d:c:%/ ldu7
o 1+=z U

which is in our list of memorable integrals. So we find
1 2
T 1 2
de = L Zdu=11 =12
/0 T+2" 2/1 u 2[““}1 2

6. The double angle trick

If an integral contains sin? z or cos® , then you can remove the squares by using the
double angle formulas from trigonometry.

Recall that
2 .2 2 .2
cos“a —sin“a =cos2a and cos"a+sin“a=1,
Adding these two equations gives

1
cos’ a = 5 (cos2a + 1)

while substracting them gives

sin® a = % (1 — cos2a).



6.1. Example. The following integral shows up in many contexts, so it is worth
knowing;:

/0052 zdx = % /(1 + cos 2z)dx

1 1 .
—§{x+551n2:c}+0

:g—i—isian’—i—C.

Since sin 2z = 2sin x cos = this result can also be written as

/costd:c: g —|—%sinxcosx+0.

If you don’t want to memorize the double angle formulas, then you can use “Complex
Exponentials” to do these and many similar integrals. However, you will have to wait
until we are in §28 where this is explained.

7. Integration by Parts

The product rule states

d _ dF(x) dG(x)
= (F0)G@) = 26 () + Fa) S5
and therefore, after rearranging terms,
dG(x) d dF(x)

F@) "2 = S (F@)G@) - “126(@).

This implies the formula for integration by parts

/ F(z) d(jff) dz = F(2)G(x) — / dljh(:)G(x) dz.

7.1. Example — Integrating by parts once.

z e de= x € — e 1 de=uzxe®—e"+C.
NN NN — =
F(z) G'(x) F(z) G(z) G(z) F'(x)

Observe that in this example e was easy to integrate, while the factor z becomes an easier
function when you differentiate it. This is the usual state of affairs when integration by
parts works: differentiating one of the factors (F(z)) should simplify the integral, while
integrating the other (G’(z)) should not complicate things (too much).

Another example: sinz = <L (- cosz) so
/xsinmd:c =x(—cosz) — /(—cosm) -ldx == —zcosz +sinz + C.

7.2. Example — Repeated Integration by Parts. Sometimes one integration by

parts is not enough: since e** = £ (1¢%*) one has
2x 2x
22 ¥ dr=2"" - [ S22 dx
N~ 2 2
F(z) G ()
2z 2z 2z
=222 1% 9 [ € o4
2 4
2z 2z 2z
s€ e e
=222 1% 9 & 94c
T 2 { 1 T + }
_ 1 26290 lerac _"_l 2x —_C



(Be careful with all the minus signs that appear when you integrate by parts.)

The same procedure will work whenever you have to integrate

/ P(z)e" da

where P(x) is a polynomial, and a is a constant. Each time you integrate by parts, you
get this
eax
/P e’ dr = P(x )——/—P()d:c

= —P — /P )e dex.

You have replaced the integral [ P(z)e®® dz with the integral [ P'(z)e®® dz. This is the
same kind of integral, but it is a little easier since the degree of the derivative P’(x) is less
than the degree of P(x).

7.3. Example — My cousin Bruce’s computation. Sometimes the factor G'(z)
is “invisible”. Here is how you can get the antiderivative of In z by integrating by parts:

/lnmd:c:/lnm~ 1 dz
= =~

F(z) G'(x)

zln:c-x—/lwr:dx
T

::clnx—/ld:c

=zlnz—x+C.

You can do [ P(z)Inz dz in the same way if P(z) is a polynomial.

8. Reduction Formulas

_I,,L :/ n ll(L' dm
Integration by parts gives you

1 1
I, =xz"=e" — | nz" = dx
a

Consider the integral

We haven’t computed the integral, and in fact the integral that we still have to do is of
the same kind as the one we started with (integral of 2"~ 'e®® instead of z™¢”). What
we have derived is the following reduction formula

1 n
I, =~=z"e"™ — =1I,_ R
axe " 1 (R)

which holds for all n.
For n = 0 the reduction formula says

1 1
Ip = —e%, ie. /e” de = =e* 4+ C.
a a

When n # 0 the reduction formula tells us that we have to compute I,,—1 if we want to
find I,,. The point of a reduction formula is that the same formula also applies to I,,—1,
and I,_2, etc., so that after repeated application of the formula we end up with Iy, i.e.,
an integral we know.
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8.1. Example. To compute f z%e%® dz we use the reduction formula three times:
1 3
Ig = —:E36az — —Iz
a a

1 1 2
_ _xBeaz _ § {_xZeaz _ _Il}
a a a a

1 3 ax 3 {1 2 ax 2 (1 ax 1 )}
—z'e —=—q -z — = —ze"" — 1o
a a la a \a a

Insert the known integral Ip = ie‘” + C and simplify the other terms and you get

1 3 6 6
/xSeax dr = _x?)eaac _ _xQeax 4 _:Ceaac _ _eaac 4 C.
a a? a? a*
8.2. Reduction formula requiring two partial integrations. Consider
S, = /:c" sin z dz.

Then for n > 2 one has

-1
Sn:—x"cosx+n/xn cos z dx

= —z"cosx 4 nz" sinz —n(n —1) /1:"72 sin z dz.
Thus we find the reduction formula
Sy = —a"cosx +nx" Lsinx — n(n —1)Sp—2.

Each time you use this reduction, the exponent n drops by 2, so in the end you get either
S1 or Sp, depending on whether you started with an odd or even n.

8.3. A reduction formula where you have to solve for I,,. We try to compute
I, = /(Sinx)n dx
by a reduction formula. Integrating by parts twice we get

I, = /(sin:c)"i1 sinx dx

= —(sinz)" ' cosx — /(— cosz)(n —1)(sinz)" ? cos z dx

= —(sinz)" ' cosz+ (n —1) /(sin )" 2 cos® zdz.

2 2

We now use cos” z = 1 — sin” x, which gives

I, = —(sinz)" ' cosz + (n — 1) / {sin" 2 —sin"z} dz
= —(sinz)" 'cosz+ (n— D2 — (n—1)1,.
You can think of this as an equation for I,,, which, when you solve it tells you
nl, = —(sinz)" ' cosz 4+ (n —1)I,_2
and thus implies
1. n—1 n—1
I, = ——sin rcosr + —— 1, o. (8)
n n

Since we know the integrals
Iy = /(sin:c)odx = /dm =z+Cand [ = /sin:cdx = —cosz +C

the reduction formula (8) allows us to calculate I,, for any n > 0.
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8.4. A reduction formula which will be handy later. In the next section you
will see how the integral of any “rational function” can be transformed into integrals of
easier functions, the hardest of which turns out to be

dz
I,= [ ——.
/ (1 + $2)7l

When n =1 this is a standard integral, namely

I = / 1 f—xx? = arctanz + C.

When n > 1 integration by parts gives you a reduction formula. Here’s the computation:

I, = /(1 +2°) " dx

T

2y —n—1
:m—/x(—n)(l+x) 2z dx
2
T x
= 4o [ ————d
e o |
Apply
z? 1422 -1 1 1

(1+x2)n+1 - (1+x2)n+1 - (1—|—LE2)" (1—|—1’2)"+1
to get

/de—/ LI L dw =1, — I
(1+ 22)nt1 - (I+a22)r (A +a2)nt! =in n+l.

Our integration by parts therefore told us that

T

I, = m + Qn(ln — 1n+1)7
which you can solve for I,,4+1. You find the reduction formula
1 x 2n —1

L.

Inpi = —
o (1+a2)n * 2n

As an example of how you can use it, we start with [ = arctanx + C, and conclude
that

dx
/a:;?zb:h“
1 T 2-1—-1

T+ 2.1
1

I

Apply the reduction formula again, now with n = 2, and you get

dz
/ﬁ?ﬁ?zh:b“

1 v 22-1,
2.2 (1+a2)? 2.2 7

=1 :C +301 :C + Larctan
4(1+ZL’2)2 4 21—|—ZL’2 2

_ 1 i 3_ 7T 3

71(1—&—1:2)2 +§1—|—:c2 + g arctanz + C.
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9. Partial Fraction Expansion

A rational function is one which is a ratio of polynomials,

P(x)  pnx™ +pn12™ '+ -+ prz + po
Q(x) a4+ ga—124 1+ -+ qrz +qo

Such rational functions can always be integrated, and the trick which allows you to do
this is called a partial fraction expansion. The whole procedure consists of several
steps which are explained in this section. The procedure itself has nothing to do with
integration: it’s just a way of rewriting rational functions. It is in fact useful in other
situations, such as finding Taylor series (see Part 2 of these notes) and computing “inverse
Laplace transforms” (see MATH 319.)

9.1. Reduce to a proper rational function. A proper rational function is a
rational function P(z)/Q(x) where the degree of P(z) is strictly less than the degree of
Q(x). the method of partial fractions only applies to proper rational functions. Fortu-
nately there’s an additional trick for dealing with rational functions that are not proper.

If P/Q isn’t proper, i.e. if degree(P) > degree(®), then you divide P by Q, with
result
P(z) R(x)
Q(x) Q(z)
where S(z) is the quotient, and R(x) is the remainder after division. In practice you would
do a long division to find S(z) and R(x).

= S(x) +

9.2. Example. Consider the rational function

x> — 22 +2
2 -1

fx) =

Here the numerator has degree 3 which is more than the degree of the denominator (which
is 2). To apply the method of partial fractions we must first do a division with remainder.
One has

2 —z |2 —2x 42
2 —a?
x? —2x
x? —x
-z +2 =R(z)
so that
3
x° — 2x + 2 —x+2
= = 1
f(@) 2 -1 T +xz—1

When we integrate we get

% — 22 42 —x+2
| /{“” xz—l}dx

2
T —x 4+ 2

The rational function which still have to integrate, namely %7 is proper, i.e. its numer-

ator has lower degree than its denominator.
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9.3. Partial Fraction Expansion: The Easy Case. To compute the partial frac-
tion expansion of a proper rational function P(x)/Q(x) you must factor the denominator
Q(x). Factoring the denominator is a problem as difficult as finding all of its roots; in
Math 222 we shall only do problems where the denominator is already factored into linear
and quadratic factors, or where this factorization is easy to find.

In the easiest partial fractions problems, all the roots of Q(z) are real and distinct,
so the denominator is factored into distinct linear factors, say

P(z) _ P(z)
Q@) G-a@—a2) (@ —an)
To integrate this function we find constants Ai, Asa, ..., A, so that
P(:C) _ A1 A2 An
Qlz) z—a1 x—as .”+:c—an' (#)

Then the integral is

/P(x) de=AiIn|z —ai|+ A2In|z —az2| + - -+ AxIn|z — an| + C.
Q(z)

One way to find the coefficients A; in (#) is called the method of equating coeffi-
cients. In this method we multiply both sides of (#) with Q(x) = (x — a1) -+ - (x — an).
The result is a polynomial of degree n on both sides. Equating the coefficients of these
polynomial gives a system of n linear equations for Ay, ..., A,. You get the A; by solving
that system of equations.

Another much faster way to find the coefficients A; is the Heaviside trick®. Multiply
equation (#) by = — a; and then plug in* = a;. On the right you are left with A; so
W P@—a)| P(a)
' Q(x) vea, (@i—a1) (i —ai1)(ai — aiv1) - (@i —an)’

— 2
9.4. Previous Example continued. To integrate Qx—+1 we factor the denomi-
72 —

nator,
2 —1=(z—1(z+1).

. X .
The partial fraction expansion of — then is
x

xfjlzz(x—lx)zi_cz—ﬁ-l)::cill+xfl‘ (1)
Multiply with (z — 1)(z + 1) to get
—z+2=A(x+1)+B(zx—1)=(A+ B)x+ (A— B).
The functions of z on the left and right are equal only if the coefficient of x and the
constant term are equal. In other words we must have

A+B=—-1and A— B=2.

These are two linear equations for two unknowns A and B, which we now proceed to solve.
Adding both equations gives 24 = 1, so that A = %; from the first equation one then
ﬁndsB:—l—A:—%. So

—x+2  1/2 3/2

2 -1 xr—1 z+1

3 Named after OLIVER HEAVISIDE, a physicist and electrical engineer in the late 19th and early 20ieth
century.

4 More properly, you should take the limit  — a;. The problem here is that equation (#) has
x — a; in the denominator, so that it does not hold for x = a;. Therefore you cannot set x equal to a;
in any equation derived from (#), but you can take the limit  — a;, which in practice is just as good.
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Instead, we could also use the Heaviside trick: multiply (f) with z — 1 to get

—z+2 rz—1
=A+B
z+1 + z+1
Take the limit x — 1 and you find
-1+42 . 1
——— =A, ie. A==,
T+1 2 1€ 2

Similarly, after multiplying (1) with = + 1 one gets
—x+2 z+1

=A B
x—1 a1
and letting x — —1 you find
p-_h+2_ 3
(-1)—1 2

as before.
Either way, the integral is now easily found, namely,

3 2
x’ —2x+1 T —x+2
/de:7+“/xz_1dx

2

L 1/2 3/2

77+x+/{x—1—x+l}dx
x

:7+x+%ln|x—1|—%ln|x+1|+a

N

9.5. Partial Fraction Expansion: The General Case. Buckle up.

When the denominator Q(z) contains repeated factors or quadratic factors (or both)
the partial fraction decomposition is more complicated. In the most general case the
denominator Q(x) can be factored in the form

(4) Qz) = (z—a)™ - (z —an)" (@® + brz + 1) - (@ + bz + €)™

Here we assume that the factors x — a1, ..., * — a, are all different, and we also assume
that the factors x2 + bix + Cly o nny 22 + bypx + ¢ are all different.

It is a theorem from advanced algebra that you can always write the rational function
P(x)/Q(x) as a sum of terms like this
P(z A Bz +C

Qw T tTemar T T @rhrt o)

How did this sum come about?

For each linear factor (z — @) in the denominator (4) you get terms
Aq As Ak
+ R P

r—a (r—a)
in the decomposition. There are as many terms as the exponent of the linear factor that
generated them.
For each quadratic factor (22 + bz + ¢)® you get terms

Bixz + Cy Box + Co R Bpx + Cp,

22 +br+c (224 bz +c)? (22 + bz + )t
Again, there are as many terms as the exponent ¢ with which the quadratic factor appears
in the denominator (4).

In general, you find the constants A, B... and C .. by the method of equating coef-
ficients.



15

9.6. Example. To do the integral

/ 2?43
dx
x2(z+ 1) (22 +1)2

apply the method of equating coefficients to the form

:E2 +3 . A Ao A3 Bix + Cq Box 4+ Cs
:cz(:c—i—l)(mz—&—l)z_?—’_ﬁ—’_:c—&—l x2 41 (z2+1)2°
Solving this last problem will require solving a system of seven linear equations in the seven
unknowns Ai, Az, A3, B1,C4, B2, C3. A computer program like Maple can do this easily,
but it is a lot of work to do it by hand. In general, the method of equating coefficients
requires solving n linear equations in n unknowns where n is the degree of the denominator

Q).

See Problem 99 for a worked example where the coefficients are found.

(€X)

Unfortunately, in the presence of quadratic factors or repeated linear
factors the Heaviside trick does not give the whole answer; you must use
the method of equating coefficients.

e
o —m

Once you have found the partial fraction decomposition (£X) you still have to inte-
grate the terms which appeared. The first three terms are of the form [ A(z —a) P dz
and they are easy to integrate:

Adu =Al|z—a|+C
T—a
and
Adx A
e e R

if p > 1. The next, fourth term in (€X) can be written as
%dx:BlfﬁLﬂdx—kCl/ﬂd—j_l
= % In(z”® + 1) + C1 arctan & + Cintegration const.
While these integrals are already not very simple, the integrals
/ % dx with p > 1

which can appear are particularly unpleasant. If you really must compute one of these,
then complete the square in the denominator so that the integral takes the form

Ax + B
/ (CEDEETE

After the change of variables u = x 4+ b and factoring out constants you have to do the

integrals
/ du and / wdu
(@ +a?) W +a?)

Use the reduction formula we found in example 8.4 to compute this integral.

An alternative approach is to use complex numbers (which are on the menu for this
semester.) If you allow complex numbers then the quadratic factors z? + bz + ¢ can be
factored, and your partial fraction expansion only contains terms of the form A/(z — a)?,
although A and a can now be complex numbers. The integrals are then easy, but the
answer has complex numbers in it, and rewriting the answer in terms of real numbers
again can be quite involved.
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10. PROBLEMS
Basic Integrals.
The following integrals are straightforward provided you know the list of standard antideriva-

tives. They can be done without using substitution or any other tricks, and you learned them in
first semester calculus.

5 1 -
/{6:(:" —2c 4 — 7z 21. / (\/4 x5 + V :(:4) dx
0
+3/x — 544" + 7"} dx .
-1
22. / S
2. /(x/a—i—a/:c-i—x“—i—ax-l—ax)d:c 1 Va2
/3
3. _ ¥ —6e® +1Vd 23. / sintdt
/{ﬁ e \/_ et e /4
1
4. /{2z+(§)x} dzx 24. / (cos@ + 2sin6) do
Yo
5 /; v Tde (hm.....) 25. / (cos 6 + sin 20) do
. 0
6. /; t=2dt ()] 2. /"’r tanx
27/3 COS.CE
4
7. / R () "2 ot
' 27. /
o /3 sinz
8. / (5y* — 692 + 14) dy
_3 V3 o6
28. / dx
3/1 1 1 l+a?
9. / — — — | dt
1 \t2 4 0.5 i
246 2 29 /o V1 — a2
10. / dt
1 t4 8
2,24 30. /1 (1/z) dx
11. dx
1 VT In 6
2 31. / 8e” dx
12. / (@3 —1)2 dx In3
0 9
2 32. / 2! dt
13. / (x +1/x)% d 8
1
3 33 /76 §d:E
14. / Vb +2dx Tz
371 s
15. / (z — 1)(3z + 2) dz 34. [g‘x — 1 dz
1
4 2 5
16. /(\/2—2/\/Z)dt 35. /l\w—w | do
L -
8 \3/_ 1 2
17. / < r+ —) dr 36. / (z — 2|x|) dz
1 Ir -1
0 3 2
18. / (x+1)"dw 37. / (2% — |z —1|) da
caxlta+1 2
19. / —dz 38. / f(z) de where
1 x 0
9 1\2 @) z* fo<z<l,
= ) =
20 /; <ﬁ+\/5) e 25, ifl<z<2
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™
39. / f(z) dx where integrate each term.
- (if) Use the substitution v = 1 + x2.
@) x, if —r<z<0,
T) =
sinz, if0<z <. 41. Compute
40. Compute ) I, = /2w(1+x2)ndm.
I= / 2m(1 +x2)3dm
0
in two different ways: 42. If f/(z) =z — 1/2% and f(1) = 1/2 find
(i) Expand (14 22)3, multiply with 2z, and f(x).

Basic Substitutions.

Use a substitution to evaluate the following integrals.

2 d 1
43. / uau 49. / V1= 22dz
1 0

1+ u?
2 21n2
44. / vdr 50. / 2T e
1 1+502 1 xr
/e V2 2110
45. / sin? 6 cos 0 dO 51. / (14 262)10ge
/4 £=0
3 1 3
46. / ,dr 52. / sinp(cos 2p)4 dp
o rinr 2
47. /ﬂd:c 53. /oze")‘2 da
1+ cos?x
1
in2 1
48. /&dz 54. /idt
1+sinz t2

Review of the Inverse Trigonometric Functions.

55. The inverse sine function is the inverse function to the (restricted) sine function, i.e. when
7/2 <6 < 7/2 we have
0 = arcsin(y) <= y =sinb.
The inverse sine function is sometimes called Arc Sine function and denoted 6 = arcsin(y). We
avoid the notation sin~!(z) which is used by some as it is ambiguous (it could stand for either
arcsinz or for (sinz)~! = 1/(sinx)).

(i) If y = sin 0, express sin 6, cosf, and tan 6 in terms of y when 0 <6 < 7/2.
(if) If y = sin 6, express sin6, cos 6, and tan 6 in terms of y when 7/2 < 6 < 7.

(iii) If y = sin ), express sinf, cosf, and tan 6 in terms of y when —7/2 < 6 < 0.
N
1—y2

56. Express in simplest form:

(iv) Evaluate using the substitution y = sin 8, but give the final answer in terms of

Y.

1

1
(i) cos(sin™!(x)); (i) tan {arcsin 111_146} ; (iif) sin(2arctan o)
n

57. Draw the graph of y = f(z) = arcsin(sin(z)), for —27 < z < +2m. Make sure you get the
same answer as your graphing calculator.

V3/2 g
58. Use the change of variables formula to evaluate / first using the substitution

172 V1—2a2
z = sinu and then using the substitution = = cosu.
59. The inverse tangent function is the inverse function to the (restricted) tangent function, i.e.
for m/2 < 0 < /2 we have
0 = arctan(w) <= w = tan6.
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The inverse tangent function is sometimes called Arc Tangent function and denoted 6 = arctan(y).
We avoid the notation tan~!(x) which is used by some as it is ambiguous (it could stand for either
arctan z or for (tanz)~! = 1/(tan x)).

(i) If w = tan 0, express sinf and cos 6 in terms of w when

(i) 0 <0 < 7/2 (iif) /2 < 0 < m; (iv) —7m/2<6<0.

(v) Evaluate / 1 dw

> using the substitution w = tan €, but give the final answer in terms of w.
w

Evaluate these integrals:

1 d /
60. | =X _dz 68. ,
/\/1—m2 64. /;11/4—322 7 + 3x2

61. /79” o5 v3/2 gy
_ 2 . —_—
V4 —x /0 =22 /

rdz 69-
62. —— 66 / dz
\/1 — 4z . SC2 +17

63 /1/2 do _de 70.
' —1/2 V4 —x? 67. /‘1224-&27 / m2+a2

Integration by Parts and Reduction Formulae.

71. Evaluate /x" Inx dz where n # —1.
72. Evaluate /eam sinbx dz where a? + b2 # 0. [Hint: Integrate by parts twice.]
73. Evaluate /e“z cos bz dz where a® + b2 # 0.

/m"e’” dz = z2"e® — n/m"fle’c dz

and use it to evaluate /mzez dx.

74. Prove the formula

75. Prove the formula

) 1 o n—1 e
/sm" zdz = ——coszsin" ta+ sin" 2 z dz, n#0
n n

76. Evaluate /‘sin2 xdx. Show that the answer is the same as the answer you get using the half

angle formula.

us
7T, Evaluate/ sin™ z dz.
0

78. Prove the formula

1 . _ n—1 _
/Cos" zdz = —sinzcos" 1l x + cos" 2 zdx, n#0
n n

/4
and use it to evaluate / cos? z dz.
0

79. Prove the formula

m—+1 1 n
/xm(lnm)" dr =2 (Inz) -z /wm(lnm)nil dz, m # —1,
m+1 m+1

and use it to evaluate the following integrals:

80. /lnxdx
81. /(lnm)zdx




82. /:(:3(ln z)2da

83. Evaluate /x71 Inz d by another method. [Hint: the solution is short!]

84. For an integer n > 1 derive the formula

1
/tan"xd:c:
n—1

tan” 1z — /tan"72 zdx

/4
Using this, find / tan® z dz by doing just one explicit integration.
0

Use the reduction formula from example 8.4 to compute these integrals:

85 / dz
) (14 22)3

86 / dz
’ (1+22)4

87. /% [Hint: [2/(1 + 22)"dz is easy.]
T

1
88 +x2 :c

AR
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89. The reduction formula from example 8.4 is valid for all n # 0. In particular, n does not have
to be an integer, and it does not have to be positive.

Find a relation between / V1422

Express each of the following rational
functions as a polynomial plus a proper ra-
tional function. (See §9.1 for definitions.)

Completing the square.

Write az? + bz + ¢ in the form a(z +
p)? + g, i.e. find p and ¢ in terms of a, b,
and c¢ (this procedure, which you might re-
member from high school algebra, is called
“completing the square.”). Then evaluate
the integrals

dx
94. [ ——“F
z2 + 62+ 8
dzx
95. _
22 + 62 + 10

/ dz
96. -_ .
522 4+ 20x + 25

97. Use the method of equating coefficients
to find numbers A, B, C such that

z2+3 A B C

z(x+1)(z —1) m+m+1+m—1

d d/ dz
T an ——
V1+ 22

Integration of Rational Functions.

by setting n =

91, L2
x3 —4
-2 —x-5
92, ——
x3 —4
93 z3 -1
Tx2-1
and then evaluate
z2 +3

/

et )@

1
o

the

integral

98. Do the previous problem using the Heav-
iside trick.

99. Find the integral/m

100.

101.

102.

103.

/

/
/
/

z2 4+ 3

dz.

Evaluate the following integrals:

2241
5 :(:2+1
3 dz
4 +1
x5 dx
2 -1

x5 dx
4 —1

dx
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e3® da / 1
110. d
e [ 27 @-De-2@-3 "
e’ dz 22+ 1
105. —_— 111. /
V1+ e2® (z —1)(z — 2)(z — 3)
z 341
106. / _etde 112. / v do
€2 4 2T 4 2 (z — 1)@ —2)(x —3)
2 d
107. /dix 113. (a) Compute / — % wherehisa
x(z2 4+ 1) 1 x(x—h)
d small positive number.
x
108. / —— 3 (b) What happens to your answer to (i)
2 2
(@* +1) when h — 01 ?
dz 2 dx
109. —_ — .
/m2(x— ) (c) Computc/1 =

Miscellaneous and Mixed Integrals.

114. Find the area of the region bounded by the curves
2 2?2 — 8z +7

=1, =2, = =) = .
* * Y= 2 _aw+s Y= 2 “8r+ 16

115. Let P be the piece of the parabola y = 22 on which 0 < z < 1.
(i) Find the area between P, the z-axis and the line z = 1.

(if) Find the length of P.

116. Let a be a positive constant and

x
F(x) :/ sin(af) cos(6) d6.
0
[Hint: use a trig identity for sin A cos B, or wait until we have covered complex exponentials and
then come back to do this problem.]
(i) Find F(z) if a # 1.
(if) Find F(z) if a = 1. (Don’t divide by zero.)

Evaluate the following integrals:

a 4
117. / rsinxdz 125. / _r dz
0 36 — z2
126. —_—
118. /(; z“ cos x dx /(36—m2)3/2 x
2
4 d (z# +1)dz
119. [ 25 127. |~ 2
= zt—x
2 d
s g 128, [(@+3)dz
120. / I ot — 202
i Vioa

120, [—d¢
: (x2 _ 3)1/2

121 /4 e
’ Nz
3 avas —1 130. /ez(x + cos(z)) dz

/ rdx
122. —_—
2 + 2z + 17 131. /(ez + In(z)) dz
xt d
123. / ———dz 132. z
(z2 — 36)1/2 3 (x4 5)Vz2 + bz
24

2 _
124. / dz 133. / E
z2 — 36 3 —1
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4 e
134. /xid:c 139. / zlnz dx
z4 — 16 1

3
e

135. / T dz 140. / z2Inzdz
(z—1)3 e?

€
4 141. / z(Inz)® dz
136. —d 1

/<w—1>3<m+1> ;
142. /arctan(ﬁ) dz
1

137. /7dx 5

V1 -2z — 2?2 143. /:c(cos x)“ dx

™
144. / V1 + cos(6w) dw

0

dx
138. /7
Vr2 +2x+3

145. Find

/ dx
z(zx —1)(xz —2)(x — 3)

/ (z3 +1)dx

z(zx —1)(xz —2)(x — 3)

146. You don’t always have to find the antiderivative to find a definite integral. This problem gives
you two examples of how you can avoid finding the antiderivative.

(i) To find
I—/ﬂ/z sinx dz
0

sinz + cosx

and

you use the substitution u = 7/2 — x. The new integral you get must of course be equal to the
integral I you started with, so if you add the old and new integrals you get 21. If you actually do
this you will see that the sum of the old and new integrals is very easy to compute.

/2
(if) Use the same trick to find / sin? z dx
0

2 2 2
147. Graph the equation 3 + y3 = a3. Compute the area bounded by this curve.

148. THE Bow-TIiE GrRAPH. Graph the equation y? = z? — 2%. Compute the area bounded by this
curve.

149. THE FAN-TAILED FisH. Graph the equation

11—z
2 _ 2
y ==z (1+x)'

Find the area enclosed by the loop. (HINT: Rationalize the denominator of the integrand.)

150. Find the area of the region bounded by the curves

x
T =2, y =0, y:xlni

151. Find the volume of the solid of revolution obtained by rotating around the x—axis the region
bounded by the lines x = 5, x = 10, y = 0, and the curve
T

V= e

152. How to find the integral of f(x) =
cos

(i) Verify the answer given in the table in the lecture notes.

(if) Note that
1 cosx cos T

cosz cos2x 1—sin?

)
xT
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and apply the substitution s = sinz followed by a partial fraction decomposition to compute
f dzx
cosx
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Taylor’s Formula and Infinite Series

All continuous functions which vanish at x = a
are approximately equal at x = a,
but some are more approximately equal than others.

11. Taylor Polynomials

Suppose you need to do some computation with a complicated function y = f(z), and suppose
that the only values of x you care about are close to some constant * = a. Since polynomials
are simpler than most other functions, you could then look for a polynomial y = P(x) which
somehow “matches” your function y = f(x) for values of x close to a. And you could then replace
your function f with the polynomial P, hoping that the error you make isn’t too big. Which
polynomial you will choose depends on when you think a polynomial “matches” a function. In
this chapter we will say that a polynomial P of degree n matches a function f at  =a if P has
the same value and the same derivatives of order 1, 2, ..., n at x = a as the function f.
The polynomial which matches a given function at some point x = a is the Taylor polynomial of
f. It is given by the following formula.

11.1. Definition. The Taylor polynomial of a function y = f(x) of degree n at a point a
is the polynomial

© ‘Wﬂ@=fwwﬁmw@—@+fg@

(Recall that n! =1-2-3---n, and by definition 0! = 1.

f (a)
n!

(z—a)® 4+ (z—a)"

11.2. Theorem. The Taylor polynomial has the following property: it is the only polyno-

maal P(x) of degree n whose value and whose derivatives of orders 1, 2, ..., and n are the same
as those of f, i.e. it’s the only polynomial of degree n for which

P(a) = f(a), P'(a)=f(a), P"(a)=f"(a), ..., P™(a)=f"(a)
holds.

ProOOF. We do the case a = 0, for simplicity. Let n be given, consider a polynomial P(x) of
degree n, say,
P(z) =ap+ a1z + asz? + a3z + -+ apa™,
and let’s see what its derivatives look like. They are:

Pz) = a + aiz + asx? + azxz® + asxt +

Pl(z) = a1+ 202z + 3azx? + daqa? 4+
PP (z) = 1-2a2 + 2:3aszx + 3-dagx? 4
PO (z) = 1-2-3a3 + 2-3-dagz +---
PW@) = 1-2-3-4ag +---

When you set z = 0 all the terms which have a positive power of x vanish, and you are left with
the first entry on each line, i.e.

P(0) =ap, P'(0)=a1, PP (0)=2a2, P (0)=2-3a3, etc.

and in general
P(k)(O) = klay for 0 < k < n.
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For k > n + 1 the derivatives p*) (z) all vanish of course, since P(z) is a polynomial of degree n.

Therefore, if we want P to have the same values and derivatives at x = 0 of orders 1,,..., n
as the function f, then we must have klay = P*)(0) = f()(0) for all k < n. Thus
(k)
aszk—l(o) for 0 < k <n.
O

12. Examples

Note that the zeroth order Taylor polynomial is just a constant,
15 f(z) = f(a),
while the first order Taylor polynomial is
Ti f(z) = f(a) + f'(a)(z — a).
This is exactly the linear approzimation of f(x) for z close to a which was derived in 1st semester
calculus.

The Taylor polynomial generalizes this first order approximation by providing “higher order
approximations” to f.

Most of the time we will take @ = 0 in which case we write T}, f(z) instead of T2 f(x), and
we get a slightly simpler formula

(7 Tnf(x) = f(0) + f

You will see below that for many functions f(z) the Taylor polynomials T, f(z) give better and

better approximations as you add more terms (i.e. as you increase n). For this reason the limit
when n — oo is often considered, which leads to the infinite sum
" 0 1" 0

T (@) = FO) + 1O + L1202 4 110

At this point we will not try to make sense of the “sum of infinitely many numbers”.

7 (n)
(0)z + f—(o)xQ 4.+ f—(o)mn
2! n!

34 ...

12.1. Example: Compute the Taylor polynomials of degree 0, 1 and 2 of f(z) = e*
at a =0, and plot them. One has

fl@)=e" = f(z)=¢" = f(x) =",
so that
fO)=1 f0 =1, f'0)=1

Therefore the first three Taylor polynomials of e” at a = 0 are

y = f(z)

y=Tof(x)

7

/

Figure 1. The Taylor polynomials of degree 0, 1 and 2 of f(z) = ¢* at a = 0.
The zeroth order Taylor polynomial has the right value at * = 0 but it doesn't
know whether or not the function f is increasing at « = 0. The first order Taylor
polynomial has the right slope at z = 0, but it doesn't see if the graph of f is
curved up or down at z = 0. The second order Taylor polynomial also has the
right curvature at x = 0.
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Tof(z) =1
Tif(z)=1+=

Tof(z)=1+x+ %wz.

The graphs are found in Figure 2. As you can see from the graphs, the Taylor polynomial Ty f(z)
of degree 0 is close to e” for small x, by virtue of the continuity of e*

The Taylor polynomial of degree 0, i.e. Tof(xz) = 1 captures the fact that e® by virtue of its
continuity does not change very much if z stays close to z = 0.

The Taylor polynomial of degree 1, i.e. T} f(z) = 1 + x corresponds to the tangent line to
the graph of f(xz) = e¥, and so it also captures the fact that the function f(z) is increasing near
z = 0.

Clearly T f(x) is a better approximation to e® than Ty f(z).
The graphs of both y = To f(x) and y = T4 f(x) are straight lines, while the graph of y = e”
is curved (in fact, convex). The second order Taylor polynomial captures this convexity. In fact,

the graph of y = Th f(z) is a parabola, and since it has the same first and second derivative at
x = 0, its curvature is the same as the curvature of the graph of y = e* at x = 0.

So it seems that y = Th f(x) = 1 + 2 + 22 /2 is an approximation to y = e which beats both
Tof(x) and T4 f(x).

Figure 2. The top edge of the shaded region is the graph of y = e”. The graphs
are of the functions y = 1+ x 4+ Cz? for various values of C'. These graphs all are
tangent at z = 0, but one of the parabolas matches the graph of y = e” better
than any of the others.
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12.2. Example: Find the Taylor polynomials of f(z) = sinz. When you start com-
puting the derivatives of sinz you find

f(z) =sinz, f'(z)=cosz, f'(z)=—sinz, fO(z)=—cosz,
and thus
f®(z) =sinz.
So after four derivatives you're back to where you started, and the sequence of derivatives of sinx
cycles through the pattern

sinx, cosx, —sinx, —coszx, sinx, cosx, —sinx, —cosx, sinz, ...
on and on. At 2 = 0 you then get the following values for the derivatives f() (0),
i |if2|s]4|5)6]7|8 |-
O fofrfof-1fof1fof-1]-.
This gives the following Taylor polynomials

Tof(z) =0
Tif(z) ==
Tof(z) ==

3
Tgf(w)=r—z—!

3
T4f($):$—z—!

3 5
Tsf(x)::c—:;—!—i-%

Note that since f(2)(0) = 0 the Taylor polynomials 71 f(z) and T f(x) are the same! The second
order Taylor polynomial in this example is really only a polynomial of degree 1. In general the
Taylor polynomial Ty, f(x) of any function is a polynomial of degree at most n, and this example
shows that the degree can sometimes be strictly less.

T1f(x) Tsf(x) Tof(x)

y =sinz
™ 27r/>-

A

T

T3f(x) Trf(z) Tuf(z)

Figure 3. Taylor polynomials of f(z) =sinz

12.3. Example — Compute the Taylor polynomials of degree two and three of
f@) =1+z+ 22+ 23 at a = 3. Solution: Remember that our notation for the nt® degree
Taylor polynomial of a function f at a is T,2 f(x), and that it is defined by (6).

We have

fl(x) =142z +32% f'(x)=2+6x, ["(z)=6
Therefore f(3) = 40, f'(3) = 34, f”(3) = 20, f"(3) = 6, and thus
20
(8) Ts f(z) = 40 + 34(z — 3) + E(m —3)2 =40 + 34(z — 3) 4+ 10(z — 3)2.
Why don’t we expand the answer? You could do this (i.e. replace (x—3)? by 2 —6x+9 throughout
and sort the powers of ), but as we will see in this chapter, the Taylor polynomial T'¢ f(z) is used
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as an approximation for f(z) when z is close to a. In this example T3 f(z) is to be used when
x is close to 3. If x — 3 is a small number then the successive powers = — 3, (z — 3)?, (z — 3)3,
... decrease rapidly, and so the terms in (8) are arranged in decreasing order.

We can also compute the third degree Taylor polynomial. It is
T3 f(x) = 40 + 34(z — 3) + ?(m -3)2+ g(x —3)3
=40 + 34(x — 3) + 10@ -3)2+ (ac'— 3)3.
If you expand this (this takes a little work) you find that
40 +34(x —3)+10(x —3)% + (z —3)° =1+ + 2% + 2.

So the third degree Taylor polynomial is the function f itself! Why is this so? Because of Theorem
11.2! Both sides in the above equation are third degree polynomials, and their derivatives of order
0, 1, 2 and 3 are the same at © = 3, so they must be the same polynomial.

13. Some special Taylor polynomials

Here is a list of functions whose Taylor polynomials are sufficiently regular that you can write
a formula for the nth term.

2 3 n
T __ - —_ _
Tne® =1+4a+ oo oo ot
) IOc. S S ¢ L a2t
e A A TR T T ]
22 g4 46 L a2
Ten{eosa} =1=or+p =g -+ U5
1
Tn{l }:1+m+m2+m3+x4+--v+m” (Geometric Series)
-z
I ™
To{ln(l4+2)}=2— — 4+ — - — ... 4 (-1
2 3 4 n

All of these Taylor polynomials can be computed directly from the definition, by repeatedly
differentiating f(z).

Another function whose Taylor polynomial you should know is f(z) = (14 x)%, where a is a
constant. You can compute Ty, f(x) directly from the definition, and when you do this you find

(@-1) » ala-1@-2) ,

a
9) Th{(1 =1
©) Tu{(l+2)"} =1+aa+ 0 e

a(a—l)-v-(a—n—i-l)mn
1-2---n

This formula is called Newton’s binomial formula. The coefficient of ™ is called a binomzial

coefficient, and it is written

ot

. ()=t

a

When a is an integer (n

) is also called “a choose n.”

Note that you already knew special cases of the binomial formula: when a is a positive integer
the binomial coefficients are just the numbers in Pascal’s triangle. When a = —1 the binomial
formula is the Geometric series.

14. The Remainder Term

The Taylor polynomial Ty, f(x) is almost never exactly equal to f(z), but often it is a good
approximation, especially if x is small. To see how good the approximation is we define the “error
term” or, “remainder term”.
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14.1. Definition. If f is an n times differentiable function on some interval containing a,
then

Ry f(z) = f(z) — Ty f ()
is called the n'* order remainder (or error) term in the Taylor polynomial of f. Tf a = 0, as will
be the case in most examples we do, then we write

R f(z) = f(z) — Tn f(z).
14.2. Example. If f(z) = sinz then we have found that T3 f(z) =z — %ms, so that
Ra{sinz} =sinz —x + %x3.

This is a completely correct formula for the remainder term, but it’s rather useless: there’s nothing
about this expression that suggests that z — %x3 is a much better approximation to sinz than,
say, * + %:c3.

The usual situation is that there is no simple formula for the remainder term.

14.3. An unusual example, in which there is a simple formula for R, f(z). Consider
f)=1-—z+322 - 1525

Then you find
Tof(x) =1 —a+3x2, sothat Rof(z) = f(z) — Taf(z) = —152°.

The moral of this example is this: Given a polynomial f(z) you find its n™ degree Taylor poly-
nomial by taking all terms of degree < m in f(x); the remainder Ry, f(x) then consists of the
remaining terms.

14.4. Another unusual, but important example where you can compute R, f(z).
Consider the function

1
@)= —.
Then repeated differentiation gives
1 1-2 1-2-3
I'@ =g (@) = T O () = Tt
and thus
1-2-3---n
(n) -2
f n ({E) = (1 — m)’rLJrl .
Consequently,

1
F™0) =nt = —f™M0) =1,
n!
and you see that the Taylor polynomials of this function are really simple, namely
Tof(x)=14+ac+a?+22+at+.. 42"

But this sum should be really familiar: it is just the Geometric Sum (each term is z times the
previous term). Its sum is given by®

2 3 4 n_ 1— gntl
Tnf(z)=1+z+z"+2°+a°+- +z =1L

which we can rewrite as

1 mn+1 mn+1

T, = — = _
nfl@)=g— -7 =f@) - 7—
The remainder term therefore is
Z.nJrl
Ruf(@) = f(2) = Taf(e) = T

5Multiply both sides with 1 — = to verify this, in case you had forgotten the formulal!
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15. Lagrange’s Formula for the Remainder Term

15.1. Theorem. Let f be an n + 1 times differentiable function on some interval I con-
taining x = 0. Then for every x in the interval I there is a § between 0 and = such that

FUE) nga

R = >rgntl

@) = e

(€ between 0 and x means either 0 < & < x or x < £ < 0, depending on the sign of ©.) This
theorem (including the proof) is similar to the Mean Value Theorem. The proof is a bit involved,
and I've put it at the end of this chapter.

There are calculus textbooks which, after presenting this remainder formula, give a whole
bunch of problems which ask you to find & for given f and x. Such problems completely miss the
point of Lagrange’s formula. The point is that even though you usually can’t compute the mystery
point & precisely, Lagrange’s formula for the remainder term allows you to estimate it. Here is
the most common way to estimate the remainder:

15.2. Estimate of remainder term. If f is an n+ 1 times differentiable function on an
interval containing x = 0, and if you have a constant M such that

() ’f("Jrl)(t)’ < M for all t between 0 and x,
then
M‘x‘nJrl
R Qe E—
Bnd @) < 1)

PRrROOF. We don’t know what & is in Lagrange’s formula, but it doesn’t matter, for wherever
it is, it must lie between 0 and x so that our assumption (1) implies |f("+1)(¢)| < M. Put that
in Lagrange’s formula and you get the stated inequality. O

15.3. How to compute e in a few decimal places. Consider f(z) =e”. We computed
the Taylor polynomials before. If you set = 1, then you get e = f(1) = T f(1) + Rnf(1), and
thus, taking n = 8,

1 1 1 1 1 1 1

1
mﬂ+ﬁ+5+§+ﬂ+5+a+ﬁ+§+&m~

By Lagrange’s formula there is a £ between 0 and 1 such that

FO) 1o _ €

W= "=5
(remember: f(x) = e¥, so all its derivatives are also e”.) We don’t really know where ¢ is, but
since it lies between 0 and 1 we know that 1 < e§ < e. So the remainder term Rg(1) is positive
and no more than e/9!. Estimating e < 3, we find

1 3
§<R8(1)<§
Thus we see that
1 1 1 1 1 1 1 1 1 1 1 1 1 3
+E+§+§+~'+ﬁ+§+§<e< +ﬂ+5+a+'~+ﬁ+§+g

or, in decimals,

2.718281... < e < 2.718287...



30

15.4. Error in the approximation sinz =~ x. In many calculations involving sinz for
small values of x one makes the simplifying approximation sinx =~ z, justified by the known limit
sinz

lim =
x—0 g

Question: How big is the error in this approximation?
To answer this question, we use Lagrange’s formula for the remainder term again.

Let f(z) =sinz. Then the first degree Taylor polynomial of f is
Tif(z) = .

The approximation sinz & z is therefore exactly what you get if you approximate f(z) = sinz by
its first degree Taylor polynomial. Lagrange tells us that

f@)=Tif(z) + R1f(x), ie. sinz=z+ R f(z),
where, since f”(z) = —sinz,

Rif(x) = %gﬁ = —%sinﬁvx2

for some & between 0 and .
As always with Lagrange’s remainder term, we don’t know where £ is precisely, so we have
to estimate the remainder term. The easiest way to do this (but not the best: see below) is to

say that no matter what £ is, sin¢& will always be between —1 and 1. Hence the remainder term
is bounded by

(N |R1f(2)] < 32%,

and we find that
T — %xz <sinzx <z + %mz.
Question: How small must we choose = to be sure that the approximation sinz & x isn’t off by
more than 1% ?
If we want the error to be less than 1% of the estimate, then we should require %xz to be
less than 1% of |z, i.e.
12% <0.01|z| & |z| < 0.02
So we have shown that, if you choose |z| < 0.02, then the error you make in approximating sin z

by just z is no more than 1%.

A final comment about this example: the estimate for the error we got here can be improved
quite a bit in two different ways:

(1) You could notice that one has |sinz| < x for all z, so if § is between 0 and z, then
|siné| < €] < |z|, which gives you the estimate

|R1f(z)] < %|m|3 instead of %xz as in (7).
(2) For this particular function the two Taylor polynomials T f(x) and T» f(x) are the same
(because f”(0) =0). So T>f(z) = x, and we can write
sinz = f(z) =« + Raf(z),

In other words, the error in the approximation sin z & x is also given by the second order remainder
term, which according to Lagrange is given by

—cosé | cosg|<1
3 —

Raf(@) = —5

|R2f(2)] < §lzf?,

which is the best estimate for the error in sin z ~ x we have so far.
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16. The limit as © — 0, keeping n fixed

16.1. Little-oh. Lagrange’s formula for the remainder term lets us write a function y =
f(x), which is defined on some interval containing = 0, in the following way

oo T2 FO0) L FIE
(11) F(@) = FO) + 'Oz + = e oo T " SR

The last term contains the £ from Lagrange’s theorem, which depends on z, and of which you
only know that it lies between 0 and z. For many purposes it is not necessary to know the last
term in this much detail — often it is enough to know that “in some sense” the last term is the
2 n
,or,...,orz":

smallest term, in particular, as x — 0 it is much smaller than z, or =

16.2. Theorem. If the n + 1st derivative f("*t1(x) is continuous at & = 0 then the re-
mainder term Ry f(x) = fTD (€)a"t1/(n 4 1)! satisfies

I Ry f(x)
im ————=

=0
r—0 xk

for any k=10,1,2,...,n.
PROOF. Since £ lies between 0 and x, one has limz;_0 f("+1)(£) = f("+1)(0)7 and therefore
R7 n+1
lim %(I) = lim f("+1)(5)x—k = lim FOAD (&) gtk = 4D (g).0 = 0.
T r—

x—0 €T x—0

So we can rephrase (11) by saying

(2) (n)
f(z) = f0) + f(0)x + fT(O)mz + -+ ! n'(O) z"™ + remainder

where the remainder is much smaller than z™, "1, .. 2

., x%, x or 1. In order to express the con-

”»

dition that some function is “much smaller than x™,” at least for very small xz, Landau introduced

the following notation which many people find useful.

16.3. Definition. “o(z™)” is an abbreviation for any function h(xz) which satisfies

lim M

z—0 g

=0.

So you can rewrite (11) as

2)(o (n) (0
1@ =1+ r@w+ Doz g T Oy o)

The nice thing about Landau’s little-oh is that you can compute with it, as long as you obey the
following (at first sight rather strange) rules which will be proved in class

z" - o(z™) = o(z™t™)

o(z™) - o(z™) = o(z™T™)
™ = o(z") ifn<m
o(z™) + o(z™) = o(x™) ifn<m
o(Cz™) = o(z™) for any constant C

16.4. Example: prove one of these little-oh rules. Let’s do the first one, i.e. let’s show
that 2™ - o(z™) is o(z"t™) as z — 0.

Remember, if someone writes ™ -o(x™), then the o(z™) is an abbreviation for some function

h(z) which satisfies limy o h(z)/z™ = 0. So the z™ - o(z™) we are given here really is an
abbreviation for " h(x). We then have
"h h
lim 2"h(z) = lim hlz) =0, since h(z) = o(z™).

z—0 gntm z—0 g™m



32

Figure 4. How the powers stack up. All graphs of y = z™ (n > 1) are tangent
to the x-axis at the origin. But the larger the exponent n the “flatter” the graph
of y =a™ is.

16.5. Can you see that 2 = o(z?) by looking at the graphs of these functions?
A picture is of course never a proof, but have a look at figure 4 which shows you the graphs of
y =z, 2, 23, 2%, 2% and z'9. As you see, when z approaches 0, the graphs of higher powers of

x approach the z-axis (much?) faster than do the graphs of lower powers.

You should also have a look at figure 5 which exhibits the graphs of y = 22, as well as several
linear functions y = Cz (with C = 1,%, % and 1—10) For each of these linear functions one has
z? < Cz if x is small enough; how small is actually small enough depends on C. The smaller the
constant C, the closer you have to keep z to 0 to be sure that 22 is smaller than Cz. Nevertheless,
no matter how small C is, the parabola will eventually always reach the region below the line

y=Czx.

16.6. Example: Little-oh arithmetic is a little funny. Both z2 and z3 are functions
which are o(z), i.e.
22 =o(z) and z°=o(x)
Nevertheless z2 # z3. So in working with little-oh we are giving up on the principle that says
that two things which both equal a third object must themselves be equal; in other words, a = b
and b = ¢ implies a = ¢, but not when you’re using little-ohs! You can also put it like this: just
because two quantities both are much smaller than z, they don’t have to be equal. In particular,

you can never cancel little-ohs!!!

In other words, the following is pretty wrong

o(z?) — o(z?) = 0.
Why? The two o(22)’s both refer to functions h(x) which satisfy lim;—o h(x)/z? = 0, but there
are many such functions, and the two o(z2)’s could be abbreviations for different functions h(z).

Contrast this with the following computation, which at first sight looks wrong even though
it is actually right:
o(z?) — o(z?) = o(z?).
In words: if you subtract two quantities both of which are negligible compared to x2 for small =
then the result will also be negligible compared to z2 for small x.

16.7. Computations with Taylor polynomials. The following theorem is very useful
because it lets you compute Taylor polynomials of a function without differentiating it.
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Figure 5. z2 is smaller than any multiple of z, if = is small enough. Compare
the quadratic function y = 22 with a linear function y = Cz. Their graphs are a
parabola and a straight line. Parts of the parabola may lie above the line, but as
2\, 0 the parabola will always duck underneath the line.

16.8. Theorem. If f(z) and g(z) are n + 1 times differentiable functions then
(12) Tnf(z) =Tug(z) <= [f(z) = g(z) + o(z").

In other words, if two functions have the same nth degree Taylor polynomial, then their difference
is much smaller than =™, at least, if x is small.

In principle the definition of T, f(x) lets you compute as many terms of the Taylor polynomial
as you want, but in many (most) examples the computations quickly get out of hand. To see what
can happen go though the following example:

16.9. How NOT to compute the Taylor polynomial of degree 12 of f(z) =1/(1 +
2?). Diligently computing derivatives one by one you find

f(z) = ﬁ so f(0)=1
fl(x) = % so f'(0) =0
e = o 1(0) = =2
F® () = 24% so f3(0) =0
F@ () = 24% so fH(0) =24 = 41
7O (2) = 240%5;2?“5 so fM(0) =0

—1+4 2122 — 352% + 726
(14 x2)7

O (z) = —720 so f(0) = 720 = 6!
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I'm getting tired of differentiating — can you find f(12) (z)? After a lot of work we give up at the
sixth derivative, and all we have found is

L _ 2 4 6
T6{1+—I2}_ —xf 4z —x°.

By the way,

1 —78z2 + 715 2% — 1716 25 + 1287 28 — 286 10 4 13 212

(12) () = 479001600
[ (=) (14 22)13

and 479001600 = 12!.

16.10. The right approach to finding the Taylor polynomial of any degree of
f(x) = 1/(1 4+ x2). Start with the Geometric Series: if g(t) = 1/(1 — t) then

gt) =1+t + 2+ 3+t 4 1"+ o(t7).
Now substitute ¢ = —z2 in this limit,
g(—z)=1—-a?+2* -5+ ...+ (=D)"z 40 ((—:c2)n)
Since o ((—22)") = o(z?") and

!
1—(—22) 1422’

g(=a?) =

we have found
1
st e b (1) o)

By Theorem (16.8) this implies

1
Tgn{1+m2}:1—:22+x4—m6+~-+(—1)"m2".

16.11. Example of multiplication of Taylor series. Finding the Taylor series of e2* /(1+

z) directly from the definition is another recipe for headaches. Instead, you should exploit your
knowledge of the Taylor series of both factors e?* and 1/(1 + x):
2242 2343 244
2! + 3! * 4!

4 2
=1+2z+ 222+ §x3+§x4+o(m4)

e =142z + + o(z?)

! =1—z+2>—2%+2* +o(z?).
1+z
Then multiply these two
e . ! :(1+2m+2x2+éw3+2x4+0(x4))v(l—m+m2—m3+x4+o(m4))
1+ 3 3

=1 - = + 22 - 23 4+ 2t 4+ o@=h
+ 2z — 222 4+ 223 — 22* 4+ o(z?)
+ 222 — 223 4+ 22t 4 oz
+ %ms — A4 4 o(z*)
+ %m4 +  o(z%)

1 1
1+x+x2+§x3+§m4+o(m4) (z — 0)
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16.12. Taylor’s formula and Fibonacci numbers. The Fibonacci numbers are defined
as follows: the first two are fo = 1 and f1 = 1, and the others are defined by the equation

(Fib) fn = fn—l + fn72
So

fo=h+fo=1+1=2,
fa=fotfi=2+1=3,
fa=fs+f2=3+2=5,
etc.
The equation (Fib) lets you compute the whole sequence of numbers, one by one, when you are

given only the first few numbers of the sequence (fo and fi in this case). Such an equation for
the elements of a sequence is called a recursion relation.

Now consider the function

1
f@)=1——02s"
Let
Toof(z) =co + 1 +coz? ezt + -
be its Taylor series.
Due to Lagrange’s remainder theorem you have, for any n,
ﬁl_ﬂ =co+c1x + cox? +c3x® + -+ cpaz™ 4 o(a™) (@ — 0).

Multiply both sides with 1 — z — 22 and you get

1=01—-z—a2) (co+c1z+c2z’> 4+ -+ cn+o0@") (z—0)
= ¢ + caxr -+ 621‘2 + - + cpz™ + O(xn)
- cx — cxZ — - — cp_z™ +  o(z™)
— cox? — - — cp_22™ — oz (z —0)
=co+ (c1—co)r+ (ca —c1 — o)z + (c3 —ca —c1)a® + -+
~oF(en —cn—1 — cn—2)x" +o(z™) (x —0)
Compare the coefficients of powers =¥ on both sides for k =0,1,...,n and you find

co=1, ¢c1—cg=0 = c1=co=1, c2—c1—co=0 = ca=c1+cop=2
and in general
Cpn—Cpn—1—Cpn—2=0 = cn =cp—1+cn—2
Therefore the coefficients of the Taylor series Too f(x) are exactly the Fibonacci numbers:
cn = fnforn=0,1,2,3,...
Since it is much easier to compute the Fibonacci numbers one by one than it is to compute the

derivatives of f(z) = 1/(1 —x —2?), this is a better way to compute the Taylor series of f(z) than
just directly from the definition.

16.13. More about the Fibonacci numbers. In this example you’ll see a trick that lets
you compute the Taylor series of any rational function. You already know the trick: find the
partial fraction decomposition of the given rational function. Ignoring the case that you have
quadratic expressions in the denominator, this lets you represent your rational function as a sum
of terms of the form

A
(x —a)yr’
These are easy to differentiate any number of times, and thus they allow you to write their Taylor

series.

Let’s apply this to the function f(z) = 1/(1—z —2?) from the example 16.12. First we factor
the denominator.
-1+£V5

l—z—22=0 <= 2242-1=0 < z= 2
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The number

1 5
¢ = +2\/_ ~ 1.61803398874989...
is called the Golden Ratio. Tt satisfies®
1
¢+ - =5
¢
The roots of our polynomial 2 + = — 1 are therefore
-1-+5 —-14+v5 1
T =——=—0¢, Tp=——"=—.
2 2 ¢

and we can factor 1 — x — 2 as follows
1—m—m2:—(w2+x—1):—(m—x,)(m—er):—(w—%)(w—i—qﬁ).

So f(z) can be written as

PV B —1 _ A B
_l—x—:vQ_(x—é)(x—l—(f))_x—% T+ ¢

The Heaviside trick will tell you what A and B are, namely,
—1 —1 1 1
A= = —, B=-— = ___
st V5 s+t Vb

The nth derivative of f(x) is

A(—=1)"n! B(—1)"n!
1 n+1 w+¢ n+1

T

7 (@) =

Setting = 0 and dividing by n! finally gives you the coefficient of ™ in the Taylor series of f(z).
The result is the following formula for the nth Fibonacci number

_ M) LAY 1 BED Ty L\
Tl Ty Al =—as - (5)
¢

Using the values for A and B you find

1 " 1
(13) Jn=cn= ﬁ {d) +_ pnt1 }

16.14. Differentiating Taylor polynomials. If
Tnf(z)=ao+ a1z + asx? + -+ anz™
is the Taylor polynomial of a function y = f(z), then what is the Taylor polynomial of its derivative
f(@)?
16.15. Theorem. The Taylor polynomial of degree n — 1 of f'(x) is given by
Tn_1{f (x)} = a1 + 2a2x + - - - + nanz™ 1.

In other words, “the Taylor polynomial of the derivative is the derivative of the Taylor polyno-
mial.”

PRrROOF. Let g(z) = f/(x). Then g*)(0) = f(5+1)(0), so that

xnfl

(n—1)!
n—1

(n—1)!

22

o 4+ g D(0)

Tn-19(z) = g(0) + ¢’ (0)z + g™ (0)

2
21

®) = ') + POz + FD©O) 5 + -+ £ (0)

12 2 1-V5 1445
¢ 1+v5 1+V51-+v5 2

6To prove this, use
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On the other hand, if Ty f(2) = ag + a1z + -+ + ana™, then ap = f(¥)(0)/k!, so that

_ Kk _ f®(0)
T (k- 1) (k-1

15 (0)

kay,

In other words,
30

1-a1 = f(0), 2a2 = f(0), 3a3 = 21

, etc.
So, continuing from ($) you find that
Tno1{f'(z)} = Th—19(z) = a1 + 2a2z + - + nanz™ 1

as claimed. O

16.16. Example. We compute the Taylor polynomial of f(z) = 1/(1 — x)? by noting that
1

f(z) = F'(z), where F(z) = Tt

Since
Th+1F(z) = 1+x+x2+x3+~~-+x"+1,
theorem 16.15 implies that

1
Tnd ———t=1+224+32% +423 + - + (n + 1a"
(1—x)?

16.17. Example. [Example: Taylor polynomials of arctanz. | Let f(x) = arctanz. Then

know that .
/ _
7@ = =

By substitution of ¢t = —x2 in the Taylor polynomial of 1/(1 — t) we had found

Ton{f'(x)} = Tan { } =1-a?42* 25+ + (D" 4o (xzn) .

1+ 22
This Taylor polynomial must be the derivative of Ta,41f(x), so we have

3 5 2n+1
Ton+1 {arctanz} =z — % + % 4ot (D) x

n+1

17. The limit n — oo, keeping z fixed

17.1. Sequences and their limits. We shall call a sequence any ordered sequence of
numbers a1, ag,as,...: for each positive integer n we have to specify a number a.

17.2. Examples of sequences.

definition first few number in the sequence
1 !
an =n 1,2,3,4,
bn = 0,0,0,0,
1 111 1
Cn = — 1299314
n= 17273714
=(-4H" 11 _ 1 1
n 3 3907 27781’
_ 1 1 1 1 1 92 917 543
En_1+i+i+§+ +E 1,2,25,25,255,255,- - -
3 2n+41 3 3 5
- i e T T T
Sn=Tonga{sine} =2 = 5 4+ (=) 5 =y, TR TR

The last two sequences are derived from the Taylor polynomials of e* (at z = 1) and sinxz
(at any z). The last example S, really is a sequence of functions, i.e. for every choice of x you
get a different sequence.
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17.3. Definition. A sequence of numbers (an)52

there is a number N such that for all n > Ne one has

;1 converges to a limit L, if for every e > 0

lan — L] < e.
One writes

lim a, =L
n—o0

1
17.4. Example: lim — = 0. The sequence ¢, = 1/n converges to 0. To prove this let
n—oo

n
€ > 0 be given. We have to find an N¢ such that
len| < e for all n > Ne.

The ¢y, are all positive, so |¢n| = ¢n, and hence
1 1
len| <e &= —<e <= n> -,
n €

which prompts us to choose Ne = 1/e. The calculation we just did shows that if n > % = Ng,
then |cn| < €. That means that limp,—co ¢n = 0.

17.5. Example: lim a" = 0 if |a] < 1. As in the previous example one can show that
n—oo
limy— o0 27" = 0, and more generally, that for any constant a with —1 < a < 1 one has

lim a"™ = 0.
n—oo

Indeed,

la™| = |a|™ = ennlal ¢
holds if and only if

nlnja| < Ine.

Since |a] < 1 we have In |a|] < 0 so that dividing by In |a| reverses the inequality, with result

"] < e <= n> Ine

In|al

The choice Ne = (In€)/(Ina|) therefore guarantees that |a™| < ¢ whenever n > Ne.

One can show that the operation of taking limits of sequences obeys the same rules as taking
limits of functions.

17.6. Theorem. If

lim an, = A and lim b, = B,
n—o0 n—oo

then one has
lim an b, = A+ B

n—oo

lim anb, = AB

n—00

A
lim I =2 (assuming B #0).

n—oo b, B

The so-called “sandwich theorem” for ordinary limits also applies to limits of sequences. Namely,
one has

17.7. “Sandwich theorem”. If ay, is a sequence which satisfies by, < an < cn for all n,
and if limp— oo by = limy— 00 ¢ = 0, then limy— o0 an, = 0. Finally, one can show this:

17.8. Theorem. If f(z) is a function which is continuous at x = A, and an is a sequence
which converges to A, then

Jim f(an) = £ (Jim_an) = f(A).
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17.9. Example. Since lim, .o 1/n = 0 and since f(z) = cosz is continuous at z = 0 we
have

1
lim cos — = cos0 = 1.
n—oo n

17.10. Example. You can compute the limit of any rational function of n by dividing
numerator and denominator by the highest occurring power of n. Here is an example:
2
M2 —1 2—(£)° 2-0?

lim n

lim = = =

17.11. Example. [Application of the Sandwich theorem. | We show that limy,— oo 1 =

vV n2+41

0 in two different ways.

Method 1: Since vn2 + 1 > vn? = n we have
0< ! < !
VrZ+1l n
The sequences “0” and % both go to zero, so the Sandwich theorem implies that 1/v/n% + 1 also
goes to zero.

Method 2: Divide numerator and denominator both by n to get

I 1 where f(z) = ——2
a7l_\/1+(1/n)2_f(n)7 here /() VI+aZ

Since f(z) is continuous at = 0, and since % — 0 as n — oo, we conclude that a, converges to

0.

n
17.12. Example: lim m_' = 0 for any real number z. If |z| < 1 then this is easy, for
n—oo

we would have |27 < 1 for all n > 0 and thus

z" 1 1 - 1 !
n'|~n! 1.2.3.--(n—1)-n~ 1-2.2...2.2 2n-1
N— ——— —

n—1 factors n—1 factors

n

which shows that limy, oo % = 0, by the Sandwich Theorem.

For arbitrary x you first choose an integer N > 2z. Then for all n > N one has

A B ol R A R Gl N
BT use |z] < —
n! 1-2-3---n 2
<NNNNN 1\"
- 1-2-3---n 2

Split fraction into two parts, one containing the first N factors from both numerator and denom-
inator, the other the remaining factors:

N N N N N N NN N N N <NN
1 2 3 N N+1 n N N+1 N+2 n — N!
R —— —— =~
=NN/N! <1 <1 <1
Hence we have

n N n

) N7 (1

n!'|— N! 2

if 2|z < N and n > N.

Here everything is independent of n, except for the last factor (%)" which causes the whole
thing to converge to zero as n — co.
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18. Convergence of Taylor Series

18.1. Definition. Lety = f(x) be some function defined on an interval a < x < b contain-
ing 0. We say the Taylor series Too f(x) converges to f(x) for a given xz if

nlew Tnf(xz) = f(x).

The most common notations which express this condition are

oo .Tk
fl@) = I; FRO)7
or
3

T

2
F@) = f0) + f'(0)z + £ (0) 57 + F®(0)

In both cases convergence justifies the idea that you can add infinitely many terms, as sug-
gested by both notations.

There is no easy and general criterion which you could apply to a given function f(z) that
would tell you if its Taylor series converges for any particular z (except z = 0 — what does the
Taylor series look like when you set @ = 07). On the other hand, it turns out that for many
functions the Taylor series does converge to f(z) for all z in some interval —p < z < p. In this
section we will check this for two examples: the “geometric series” and the exponential function.

Before we do the examples I want to make this point about how we’re going to prove that
the Taylor series converges: Instead of taking the limit of the T}, f(z) as n — oo, you are usually
better off looking at the remainder term. Since T, f(z) = f(z) — Rn f(x) you have

7L1me Tnf(z) = flz) < nlew Rnf(z) =0

So: to check that the Taylor series of f(z) converges to f(z) we must show that the remainder
term Ry, f(x) goes to zero as n — oo.

18.2. Example: The Geometric series converges for —1 <z < 1. If f(z) =1/(1 —z)
then by the formula for the Geometric Sum you have

1
f@) = —
1_Z.n+1+xn+1
11—z
xn+1
=l+z+a®+ 42"+
11—z
mn+1
=Tnf(z)+ .
1—x

We are not dividing by zero since |z| < 1 so that 1 —x # 0. The remainder term is

Z.'n,«b»l
Rnf(z) = .
1—-2x
Since |z| < 1 we have
R T P 0
lim |Rnf(z)| = lim 2" _ lima—oo ™17 _ —0.
n—oo n—oo |1 — x| [1— x| [1— x|

Thus we have shown that the series converges for all —1 < x < 1, i.e.

1
= lim {1+z+2> 4+ +a2"}=1+z+2? +2°+ -

1—2xo n—oo
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18.3. Convergence of the exponential Taylor series. Let f(z) = e®. It turns out the
Taylor series of e® converges to e® for every value of . Here’s why: we had found that
2 n
Tnef”:1_;_gv_i_gc__;_,.,_|_“7:_7
2! n!

and by Lagrange’s formula the remainder is given by
n+1
Rpe® = eﬁx—7
(n+1)!
where £ is some number between 0 and x.

If z > 0 then 0 < £ < z so that €f < e?; if 2 < 0 then z < & < 0 implies that ef < €0 = 1.
Either way one has ef < el®l, and thus
|m|n+1
(n+1)!"
We have shown before that limp—oo 2”71/(n + 1)! = 0, so the Sandwich theorem again implies
that limy —oo |Rne®| = 0.

|Rne®| < el®!

Conclusion:

s _ ) 502 " . 502 :1,‘3 :1,‘4
e _ni»moo +$+§++F = +I+§+§+E+

Do Taylor series always converge? And if the series of some function y = f(z) converges,
must it then converge to f(x)? Although the Taylor series of most function we run into converge
to the functions itself, the following example shows that it doesn’t have to be so.

18.4. The day that all Chemistry stood still. The rate at which a chemical reaction
“A—B” proceeds depends among other things on the temperature at which the reaction is taking
place. This dependence is described by the Arrhenius law which states that the rate at which a
reaction takes place is proportional to

AE
J(r) = e ¥F
where AFE is the amount of energy involved in each reaction, k is Boltzmann’s constant, and T'
is the temperature in degrees Kelvin. If you ignore the constants AE and k (i.e. if you set them
equal to one by choosing the right units) then the reaction rate is proportional to
f(T)=e VT,

If you have to deal with reactions at low temperatures you might be inclined to replace this
function with its Taylor series at T' = 0, or at least the first non-zero term in this series. If you
were to do this you’d be in for a surprise. To see what happens, let’s look at the following function,

ez g>0
flz) =
0 z<0
This function goes to zero very quickly as x — 0. In fact one has

flw) . eTle

lim = lim = lim t"e" ' =0. (set t =1/x)
z\,0 ™ z\,0 ™ t— o0
This implies
f(@) =o(z") (z—0)
for anyn =1,2,3.... As x — 0, this function vanishes faster than any power of x.

If you try to compute the Taylor series of f you need its derivatives at = 0 of all orders.
These can be computed (not easily), and the result turns out to be that all derivatives of f
vanish at x =0,

£(0) = f/(0) = £"(0) = fP(0) =--- =0.
The Taylor series of f is therefore
x? x?
Toof(x) =04+0-2+0- §+0~§+~~=0.

Clearly this series converges (all terms are zero, after all), but instead of converging to the function
f(z) we started with, it converges to the function g(z) = 0.
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The Taylor series at
this point does not
converge to f

Figure 6. An innocent looking function with an unexpected Taylor series. See
example 18.4 which shows that even when a Taylor series of some function f
converges you can't be sure that it converges to f — it could converge to a different
function.

What does this mean for the chemical reaction rates and Arrhenius’ law? We wanted to
“simplify” the Arrhenius law by computing the Taylor series of f(T') at T' = 0, but we have just
seen that all terms in this series are zero. Therefore replacing the Arrhenius reaction rate by its
Taylor series at 1" = 0 has the effect of setting all reaction rates equal to zero.

19. Leibniz’ formulas for In2 and 7 /4

Leibniz showed that

1 1 n 1 1 n 1 In2
4y _ 4y —In
1 2 3 4 5
and
1 1 n 1 1 n 1 oo
1 3 5 7 9 T4
Both formulas arise by setting x = 1 in the Taylor series for
x?  x3 2t
In(1 =r— — 4+ — 4+ — —
n(l+z)==x 3 + 3 + B
x3  a® a7
t — o4
arctanz = x 3 + 5 + 7

This is only justified if you show that the series actually converge, which we’ll do here, at least for
the first of these two formulas. The proof of the second is similar. The following is not Leibniz’
original proof.
You begin with the geometric sum

1 1 n+1wn+1
1_1,_,’_1,2_:03_’_.“_,’_(_1)'”1,'”: +( )

14z 1+
Then you integrate both sides from z = 0 to x = 1 and get

1 1 1 1 1 dz 1 gntldy
L I 4 (=]D" = _1”+1/ ]
1 2+3 + )n+1 /ol+m+( ) o l+uw

1x”+1d:v
=In2+ (-1 "H/ ——
n2+(-1) . 11z

(Use fol zhde = L) Instead of computing the last integral you estimate it by saying

k+1
n+1 1 ,.n+1 1
OSI Sx"+1:>0§/w§/x"ﬂdx: !
14z o l+4+=z 0 n+ 2
Hence
1 7L+1d
lim (—1)"“/ oy,
n— oo 0 14+
and we get
1 1 1 1 L gntldg
lim = — =4+ — 4 (=1)"—— =In2+ lim (-1 ”“/ _—
nsool 2 3 ( )n—l-l i (=) o l+=z

=1In2.
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20. Proof of Lagrange’s formula

For simplicity assume x > 0. Consider the function

" (n)
g(t) = f(0) + £ (0)t + fT(O)tZ ot fT'(O)t" + Kt — f(b),

where

(n)
of f(0)+f/(0)I+"'+fT;(0)In—f(x)
(14) K LI

We have chosen this particular K to be sure that

g(z) =0.
Just by computing the derivatives you also find that
9(0) =¢'(0) = ¢"(0) = --- = g (0) = 0,
while
(15) gt () = (n+ 1)K — FHD (1),

We now apply Rolle’s Theorem n times:

e since g(t) vanishes at ¢ = 0 and at ¢ = x there exists an 1 with 0 < 1 < x such that
g'(z1) =0

e since ¢/(t) vanishes at ¢t = 0 and at ¢ = x1 there exists an z2 with 0 < x2 < 1 such
that ¢’(z2) =0

e since g’/(t) vanishes at ¢ = 0 and at t = z2 there exists an z3 with 0 < z3 < x2 such
that ¢’ (xz3) =0

e since g(")(t) vanishes at ¢ = 0 and at t = x, there exists an x, 41 with 0 < zp41 < zn
such that g(")(xn+1) =0.

We now set & = @11, and observe that we have shown that g("t1(£) = 0, so by (15) we get
(n+1)
o FE
(n+1)!
Apply that to (14) and you finally get

Q) L FOE)

@) = FO) + F' @+ + TS

21. Proof of Theorem 16.8

21.1. Lemma. If h(z) is a k times differentiable function on some interval containing 0,

and if for some integer k < n one has h(0) = h’/(0) = --- = R(k=1)(0) = 0, then
. h(z)  h(R(0)
(16) AR T TR

PROOF. Just apply I’Hopital’s rule k times. You get

M@ <§ . W@

—0 k(k — 1){2’“72

Il
lloie

. h(kfl)(x) h(k)(O)

11m

=0 k(k —1)---2z1 k(k—1)---2-1
O

Il
llos
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First define the function h(z) = f(z) — g(z). If f(z) and g(z) are n times differentiable, then

so is h(x).
The condition Ty, f(z) = Thg(x) means that

f(0) =9(0), f'(0) =g'(0),

which says, in terms of h(z),

F(0) = g™™(0),

1) h(0) = 1'(0) = h"(0) = -+ = h{™(0) = 0,

i.e.

Trh(z) =0.
We now prove the first pat of the theorem: suppose f(z) and g(z) have the same nth degree
Taylor polynomial. Then we have just argued that Tph(z) = 0, and Lemma 21.1 (with k = n)

says that lim, .o h(z)/z™ = 0, as claimed.

To conclude we show the converse also holds. So suppose that limg_.g h(z)/z"™ = 0. We’'ll
show that (1) follows. If (1) were not true then there would be a smallest integer & < n such that

h(0) = K/ (0) = h"(0) = --- = h*=D(0) = 0, but L") (0) # 0.

This runs into the following contradiction with Lemma 21.1

OO _ o ha)

— 2 = lim —~* = lim

h n
M=) 2 o i ek — 0,

k! z—0 z—0 gh xk z—0

Here the limit (%) exists because n > k.

S
(%)

22. PROBLEMS

Taylor’s formula.

153. Find a second order polynomial (i.e. a
quadratic function) Q(z) such that Q(7) =
43,Q'(7) =19,Q"(7) = 11.

154. A fourth order polynomial P(x) sat-
isfies P(0) = 1,P'(0) = -3,P"(0) =
—8, P"""(0) = 24. Find P(z).

155. Let f(z) = v/ +25. Find the poly-
nomial P(z) of degree three such that
P (0) = f*)(0) for k =0,1,2,3.

156. Let f(z) = 1 + 2 — 22 — 23. Com-
pute and graph Tof(z), Tif(z), Tof(z),
Tsf(x), and Ty f(z), as well as f(z) itself (so,
for each of these functions find where they
are positive or negative, where they are in-
creasing/decreasing, and find the inflection
points on their graph.)

157. Find T3 sinxz and T5sinz.

Graph T3sinz and Ty sinxz as well as
y = sinz in one picture. (As before, find
where these functions are positive or neg-
ative, where they are increasing/decreasing,
and find the inflection points on their graph.
This problem can&should be done without
a graphing calculator.)

Compute T f(x), T{ f(x) and T3 f(x)
for the following functions.

158. f(z) = 23, a = 0; then for a = 1 and
a=2.

1
159. f(z)=—,a=1. Alsodoa=2.
x

160. f

161. f 2

162. f(z) =In\/z,a=1.

163. f(z) =sin(2z), a =0, also a = /4.
164. f(z) = cos(z), a = .

165. f(z)=(r—1)?,a=0, and also a = 1.

1
166. f(z)=—,a=0.
efE
167. Find the nth degree Taylor polynomial
T f(z) of the following functions f(x)

n_a f(x)

2 0 1+z—2a°
3 0 14+2—2a3
25 0 1+z—2a8
25 2 1+z—2a3
2 1 1+z—2ad
1 1 22

2 1 x?

5 1 1/x

5 0 1/(14x)
3 0 1/(1—3z+22?)



172.
173.

174.

175.
176.
177.
178.

179.

180.

181.

182.
183.
184.

185.

186.

For which of these combinations (n,a, f(x))
is T2 f(x) the same as f(x)?

k) ok ok

Compute the Taylor series T f(t) for the
following functions (« is a constant). Give a
formula for the coefficient of =™ in T f ().
(Be smart. Remember properties of the log-
arithm, definitions of the hyperbolic func-
tions, partial fraction decomposition.)

168. &t

169. et
170.
171.

sin(3t)
sinh ¢

cosh t
1

142t
_3
(2-1)2
In(1 +t)
In(2 + 2t)
Inv1+4t¢
In(1 4+ 2t)

1+t
Iny/——
1-—t

[hint:PFD!]

1—t2
t
1—1t2
sint + cost
2sintcost

tant (3 terms only)

2
142 — Z¢t
3

(1+1¢)5

Lagrange’s formula for the remainder.

191. Find the fourth degree Taylor polynomial

Tx{cos z} for the function f(x) = cosz and
estimate the error | cos z — Ps(x)| for |z| < 1.

192. Find the 4th degree Taylor polynomial

Ta{sinz} for the function f(z) = sinz. Es-
timate the error |sinz — Tu{sinz}| for |z| <
1.

193. (Computing the cube root of 9) The cube

root of 8 = 2X2x21is easy, and 9 is only one
more than 8. So you could try to compute

{9 by viewing it as /8 + 1.
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Y1+t

188. Compute the Taylor series of the follow-
ing two functions

187.

f(z) =sinacosz + cosasinz

and
g(z) = sin(a + )
where a is a constant.

189. Compute the Taylor series of the follow-
ing two functions

h(xz) = cosacosx — sinasinz

and
k(z) = cos(a + x)

where a is a constant.

190. The following questions ask you to redis-
cover Newton’s Binomial Formula, which
is just the Taylor series for (1 + x)™. New-
ton’s formula generalizes the formulas for
(a + b)?, (a + b)3, etc that you get using
Pascal’s triangle. It allows non integer ex-
ponents which are allowed to be either pos-
itive and negative. Reread section 13 before
doing this problem.

(a) Find the Taylor series of f(z) =
VITE (= (1 +2)1)

(b) Find the coefficient of 2% in the Tay-
lor series of f(z) = (1 4+ )™ (don’t do the
arithmetic!)

(¢) Let p be any real number. Com-

pute the terms of degree 0, 1, 2 and 3 of the
Taylor series of

f() = (1 +2)P

(d) Compute the Taylor polynomial of
degree n of f(x) = (1+ z)P.

(e) Write the result of (d) for the expo-
nents p = 2,3 and also, for p = —1,—-2,—-3
and finally for p = 1. The Binomial The-
orem states that this series converges when
|z < 1.

(a) Let f(z) = ¥/8+ . Find Txf(z),
and estimate the error |9 — To f(1)].

(b) Repeat part (i) for “n 37,
i.e. compute T3f(z) and estimate |V/9 —
T3f(1)].

(c) Follow the method of problem 193
to compute v/10:

(d) Use Taylor’s formula with f(z)

V9+ 1z, n = 1, to calculate /10 approx-
imately. Show that the error is less than
1/216.
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(e) Repeat with n = 2. Show that the
error is less than 0.0003.

194. Find the eighth degree Taylor polyno-
mial Tg f(x) about the point 0 for the func-
tion f(z) = cosz and estimate the error
|cosx — Tg f(z)| for |z| < 1.

Now find the ninth degree Taylor poly-
nomial, and estimate |cosz — Ty f(z)| for
lz[ < 1.

Little-oh and manipulating Taylor polynomials.

Are the following statements True or
False? In mathematics this means that you
should either show that the statement al-
ways holds or else give at least one coun-
terezample, thereby showing that the state-
ment is not always true.

195. (14222 —1=o(z)?
196. (1+2%)% —1 = o(z?)?
197. Vi+z—+V1I—z=o(z)?
198. o(z) + o(x) = o(z)?

199. o(z) —o(z) = o(x)?

200. o(z)-o(z) = o(x) ?

201. o(z?)

202. o(x?) — o(z?) = o(2®)?
203. o(2z) =o(x) ?

204. o(z) + o(x?) = o(x)?
= o(z?)?
206. 1—cosz = o(x)?

207. For which value(s) of k is V1 + a2
14 o(zF) (as  — 0)?
For which value(s) of k is ¥/1+ z2 =
14 o(z*) (as  — 0)?
For which value(s) of k is 1 — cos 22 =
o(z¥) (as z — 0)?

208. Let gn be the coefficient of ™ in the Tay-
lor series of the function

(@) :
)= —"—
g 2—3x+x2

)
205. o(z) + o(x?)

(a) Compute go and g1 directly from
the definition of the Taylor series.

(b) Show that the recursion relation
gn = 39n—1 — 2gn—2 holds for all n > 2.

(c) Compute g2, g3, g, g5-

(d) Using a partial fraction decomposi-
tion of g(z) find a formula for g(™ (0), and
hence for gn.

209. Answer the same questions as in the pre-
vious problem, for the functions

x
h =
@) 2 -3z + 22

and

2—x
k =
@) 2 —3x+ x2

210. Let hy, be the coefficient of ™ in the Tay-

lor series of
1
h(z) = — 1%

2 — 5z + 222
(a) Find a recursion relation for the hs,.
(b
(c) Derive a formula for h,, valid for all
n, by using a partial fraction expansion.

)
)

Compute ho, hi, ..., hg.

(d) Is hagog more or less than a million?
A billion?
Find the Taylor series for the follow-

ing functions, by substituting, adding, mul-

tiplying, applying long division and/or dif-
1

ferentiating known series for s e”, sinx,
cosz and Inz.
211.
212, 'T
213. et
14+t
214, !
1—t
1
215.
142t
In(1
216, 1)
T
t
217, =
1—t
1
218.
1—1¢
1 .
219. ——— (recommendation: use the an-

V1—t2

swer to problem 218)

220. arcsint
(use problem 218 again)

221. Compute Tyle ‘cost] (See example
16.11.)
222. Tyle *sin2t]
1

223. —
2 —t—t2



224. Y1+2t+1¢2
225. In(1 —t?)

Limits of Sequences.

Compute the following limits:

227. lim
n—oo 2n — 3
n2
228. lim
n—oo 2n — 3
n2
229. lim ————
n—oo 2n2 +n — 3
2" + 1
230. lim *
2" 4+ 1
231. lim +
n—oo | — 3"
41
232, lim

n—oo 1 — 2"

Convergence of Taylor Series.

238. Prove that the Taylor series for f(z) =
cos z converges to f(z) for all real numbers
z (by showing that the remainder term goes
to zero as n — 00).

239. Prove that the Taylor series for g(z) =
sin(2z) converges to g(z) for all real num-
bers x .

240. Prove that the Taylor series for h(z) =
cosh(z) converges to h(z) for all real num-
bers x .

241. Prove that the Taylor series for k(z) =
€213 converges to k(x) for all real numbers
T .

242. Prove that the Taylor series for /(x) =
cos(z— %) converges to £(z) for all real num-
bers x.

243. If the Taylor series of a function y = f(z)
converges for all z, does it have to converge
to f(x), or could it converge to some other
function?

244. For which real numbers z does the Taylor

1
series of f(z) = 1 converge to f(x)?
-z

245. For which real numbers = does the Tay-

lor series of f(z) = ——
1—a2
(hint: a substitution may help.)

converge to f(z)?

246. For which real numbers z does the Taylor

1
series of f(z) = T2 converge to f(z)?
x
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226. sintcost

n2
233. lim ——
n—o0 (1.01)"

1 3

234. lim 000
I+1

235. n

nlimw (n+1)!
(n1)?
(2n)!

the factors in numerator and denominator.]

236. Compute lim [Hint: write out all
n—oo

237. Let fn be the nth Fibonacci number.
Compute
. fn
lim
n—oo fn71

247. For which real numbers = does the Taylor

series of f(x) = converge to f(x)?

3+ 2z

248. For which real numbers = does the Tay-

lor series of f(z) = converge to

22—z —g?
f(z)? (hint: use PFD and the Geometric Se-

ries to find the remainder term.)

249. Show that the Taylor series for f(z) =
In(1 4+ z) converges when —1 < = < 1 by
integrating the Geometric Series

1
— = 1—t+t2 -4
1+t
tn+1
n+1

+ (=)™ + (—1) T

from ¢t =0 to t = x. (See §19.)

250. Show that the Taylor series for f(z) =
2

e~ converges for all real numbers z. (Set
t = —a? in the Taylor series with remainder
for et.)

251. Show that the Taylor series for f(z) =
sin(z*) converges for all real numbers z.
(Set t = z* in the Taylor series with remain-
der for sint.)

252. Show that the Taylor series for f(z) =
1/(1 + 2?) converges whenever —1 < z < 1
(Use the GEOMETRIC SERIES.)

253. For which x does the Taylor series of
f(x) = 2/(1 + 422) converge? (Again, use
the GEOMETRIC SERIES.)
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254. The error function from statistics is de-
fined by

1 x
erf(z) = ﬁ/o et/2 at

(a) Find the Taylor series of the error
function from the Taylor series of f(r) =e”
(set 7 = —t%/2 and integrate).

Approximating integrals.

256. (a) Compute T>{sint} and give an upper
bound for Ra{sint} for 0 <t < 0.5

(b) Use part (a) to approximate
0.5
sin(mz)dw, and give an upper bound
0
for the error in your approximation.

0.1
257. Approximato/ arctan x dr and esti-
0

mate the error in your approximation by
analyzing T f(t) and Raf(t) where f(t) =
arctant.

(b) Estimate the error term and show
that the Taylor series of the error function
converges for all real x.

255. Prove Leibniz’ formula for T by mimick-

ing the proof in section 19. Specifically, find
a formula for the remainder in :
1

1+ t2
and integrate this from ¢t =0 to t = 1.

=1—124 -+ (=1)™>" 4+ Ron ()

0.1 5
258. Approximate / z2e™ dz and esti-
0

mate the error in your approximation by
analyzing T3f(t) and R3f(t) where f(t) =
te~t.

0.5
259. Estimate / v/ 1+ z4 dx with an error
0

of less than 104,

0.1

260. Estimate arctan x dr with an error

0
of less than 0.001.
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Complex Numbers and the Complex Exponential

23. Complex numbers

The equation z2 + 1 = 0 has no solutions, because for any real number x the square z? is

nonnegative, and so 22 4+ 1 can never be less than 1. In spite of this it turns out to be very useful
to assume that there is a number ¢ for which one has

(17) i?=—1.
Any complex number is then an expression of the form a + bi, where a and b are old-fashioned
real numbers. The number a is called the real part of a + bi, and b is called its ¢maginary part.

Traditionally the letters z and w are used to stand for complex numbers.

Since any complex number is specified by two real numbers one can visualize them by plotting
a point with coordinates (a, b) in the plane for a complex number a + bi. The plane in which one
plot these complex numbers is called the Complex plane, or Argand plane.

A
b=0m(z)d - - oo ______ z=a+bi
v E
o g :
=
) !
) \‘0 =argz :
\ I
1 by -
a = Re(z)

Figure 7. A complex number.

You can add, multiply and divide complex numbers. Here’s how:
To add (subtract) z =a+ bi and w = c+ di
z4+w=(a+bi)+ (c+di) = (a+c)+ (b+d)i,
z—w=(a+bi)— (c+di)=(a—c)+ (b—d)i.
To multiply z and w proceed as follows:
zw = (a + bi)(c + di)
= a(c+ di) + bi(c + di)
= ac + adi + bci + bdi?
= (ac — bd) + (ad + be)i

where we have use the defining property i2 = —1 to get rid of 2.
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To divide two complex numbers one always uses the following trick.

a+bi  a+bi c—di
c+di  c+di c—di
~ (a+bi)(c—di)

o (e +di)(c — di)

Now
(c+ di)(c —di) = % — (di)? = ® — d?2 = 2 + d?,
so
a+bi  (ac+bd)+ (bc — ad)i

c+di: c2 +d2
ac+bd bc—ad .
= + —1
02+d2 c2+d2

Obviously you do not want to memorize this formula: instead you remember the trick, i.e. to

divide ¢ 4+ di into a + bi you multiply numerator and denominator with ¢ — di.

For any complex number w = ¢ + di the number ¢ — di is called its complex conjugate.
Notation:

w=c+di, w=c—di.
A frequently used property of the complex conjugate is the following formula
(18) ww = (c+ di)(c — di) = & — (di)? = ¢ + d°.

The following notation is used for the real and imaginary parts of a complex number z. If
z = a+ bi then

a = the Real Part of z = Re(z), b = the Imaginary Part of z = Jm(z).

Note that both fPRez and Jmz are real numbers. A common mistake is to say that Jmz = bi. The
“¢” should not be there.

24. Argument and Absolute Value

For any given complex number z = a + bi one defines the absolute value or modulus to be
12 = Va2 + 2,
so |z| is the distance from the origin to the point z in the complex plane (see figure 7).
The angle 6 is called the argument of the complex number z. Notation:
argz = 6.

The argument is defined in an ambiguous way: it is only defined up to a multiple of 2. E.g. the
argument of —1 could be 7, or —m, or 37, or, etc. In general one says arg(—1) = 7 + 2k7, where
k may be any integer.

From trigonometry one sees that for any complex number z = a + bi one has

a=|z|cosf, and b = |z|sin¥,

so that
|z| = |z| cos 0 + i|z|sin @ = |z|(cos 0 + isin6).
and
tanf = sin 0 = b
cosf a

24.1. Example: Find argument and absolute value of z = 2 + i. Solution: |z| =
V22 +12 = /5. z lies in the first quadrant so its argument 6 is an angle between 0 and /2.

1
From tan6 = % we then conclude arg(2 + ¢) = 6 = arctan 5
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Figure 8. Addition of z=a +bi and w =c+ di

25. Geometry of Arithmetic

Since we can picture complex numbers as points in the complex plane, we can also try to
visualize the arithmetic operations “addition” and “multiplication.” To add z and w one forms

the parallelogram with the origin, z and w as vertices. The fourth vertex then is z +w. See figure
8.

A

iz=—b+ ai

z=a+bi

Figure 9. Multiplication of a + bi by i.

To understand multiplication we first look at multiplication with 7. If z = a + bi then
iz =i(a + bi) = ia + bi% = ai — b = —b + ai.

Thus, to form ¢z from the complex number z one rotates z counterclockwise by 90 degrees. See
figure 9.

If a is any real number, then multiplication of w = ¢+ di by a gives
aw = ac + adi,

so aw points in the same direction, but is a times as far away from the origin. If a < 0 then aw
points in the opposite direction. See figure 10.

Next, to multiply z = a + bi and w = ¢ + di we write the product as
zw = (a + bi)w = aw + biw.

Figure 11 shows a + bi on the right. On the left, the complex number w was first drawn, then

aw was drawn. Subsequently iw and biw were constructed, and finally zw = aw + biw was drawn
by adding aw and biw.

One sees from figure 11 that since iw is perpendicular to w, the line segment from 0 to biw is
perpendicular to the segment from 0 to aw. Therefore the larger shaded triangle on the left is a
right triangle. The length of the adjacent side is a|w|, and the length of the opposite side is b|w|.
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3z
2z

Y

—2z

Figure 10. Multiplication of a real and a complex number

aw+DIw
biw

aw

e"'*,‘w \cb W

Figure 11. Multiplication of two complex numbers

a+bi

The ratio of these two lengths is a : b, which is the same as for the shaded right triangle on the
right, so we conclude that these two triangles are similar.

The triangle on the left is |w| times as large as the triangle on the right. The two angles
marked 6 are equal.

Since |zw| is the length of the hypothenuse of the shaded triangle on the left, it is |w| times
the hypothenuse of the triangle on the right, i.e. |zw| = |w]| - |z|.

The argument of zw is the angle 6 + ¢; since § = argz and ¢ = argw we get the following
two formulas

(19) |zw| = |2| - |w]
(20) arg(zw) = arg z + arg w,
in other words,

when you multiply complex numbers, their lengths get multiplied
and their arguments get added.

26. Applications in Trigonometry

26.1. Unit length complex numbers. For any 6 the number z = cos § +isin 6 has length
1: it lies on the unit circle. Its argument is argz = 6. Conversely, any complex number on the
unit circle is of the form cos ¢ + i sin ¢, where ¢ is its argument.
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26.2. The Addition Formulas for Sine & Cosine. For any two angles € and ¢ one can
multiply z = cos€ + isinf and w = cos¢ + isin¢. The product zw is a complex number of
absolute value |zw| = |z| - |w| = 1- 1, and with argument arg(zw) = arg z + argw = 0 + ¢. So zw
lies on the unit circle and must be cos(f + ¢) + isin(6 + ¢). Thus we have

(21) (cos B + isin6)(cos ¢ + isin @) = cos(f + ¢) + isin(6 + ¢).
By multiplying out the Left Hand Side we get
(22) (cos @ + isin@)(cos ¢ + isin¢) = cos 0 cos ¢ — sin @ sin ¢

+ i(sin 0 cos ¢ + cos @ sin ).

Compare the Right Hand Sides of (21) and (22), and you get the addition formulas for Sine and
Cosine:

cos(0 + ¢) = cos cos ¢ — sinfsin ¢
sin(0 + ¢) = sin 6 cos ¢ + cos Osin ¢

26.3. De Moivre’s formula. For any complex number z the argument of its square 22 is

arg(z?) = arg(z - 2) = argz + arg z = 2arg z. The argument of its cube is arg 23 = arg(z - 22) =
arg(z) 4+ arg 22 = argz + 2arg z = 3arg z. Continuing like this one finds that

(23) argz" =n argz
for any integer n.

Applying this to z = cos € + isin @ you find that z™ is a number with absolute value |z
|[z]™ = 1™ =1, and argument nargz = nf. Hence 2™ = cosnf + isinnf. So we have found

(24) (cos B +isin€)™ = cosnb + isinnh.

7L|:

This is de Moivre’s formula.
For instance, for n = 2 this tells us that
cos 20 + isin 20 = (cos 0 + isin )2 = cos? 0 — sin? 6 + 2i cos O sin 0.
Comparing real and imaginary parts on left and right hand sides this gives you the double angle
formulas cos @ = cos? @ — sin? § and sin 20 = 25sin  cos 6.
For n = 3 you get, using the Binomial Theorem, or Pascal’s triangle,
(cos @ + isin®)® = cos® 0 + 3i cos? 0sin 0 + 3i2 cos 0 sin? 6 + i3 sin® 0
= cos® 0 — 3 cos Osin 0 + i(3 cos? O sin O — sin® )
so that
cos 30 = cos® 0 — 3cos Osin? 0
and
sin 30 = cos? @ sin 0 — sin® 0.

In this way it is fairly easy to write down similar formulas for sin 46, sin 50, etc.. ..

27. Calculus of complex valued functions

A complex valued function on some interval I = (a,b) C R is a function f: I — C. Such a
function can be written as in terms of its real and imaginary parts,

(25) f(@) = u(z) + iv(z),
in which u,v : I — R are two real valued functions.

One defines limits of complex valued functions in terms of limits of their real and imaginary
parts. Thus we say that
lim f(x) =1L

T—x(0
if f(z) =u(z) +iv(z), L = A+ iB, and both
lim u(z) = A and lim v(z) =B

T—x( T—T

hold. From this definition one can prove that the usual limit theorems also apply to complex
valued functions.
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e = cosf + isinf

L3

Figure 12. Euler’s definition of ¢%?

27.1. Theorem. Iflim; .z, f(z) = L and limz .., g(x) = M, then one has
lim f(z)+g(x) =L+ M,
T—IT(
Jim f@)g@) = L,

L
lim M = —, provided M # 0.
z—xo g(z) M

The derivative of a complex valued function f(x) = u(z)+ tv(x) is defined by simply differ-
entiating its real and imaginary parts:

(26) f'(@) = ' (z) + i (2).

Again, one finds that the sum,product and quotient rules also hold for complex valued functions.

27.2. Theorem. If f,g : I — C are complex valued functions which are differentiable at

some xg € I, then the functions f +g, fg and f/g are differentiable (assuming g(xo) # 0 in the
case of the quotient.) One has

(f £ 9) (z0) = f'(w0) £ ¢’ (z0)
(f9) (z0) = f'(z0)g(z0) + f(z0)g’ (z0)
(z)’ (o) = £/ E0)9(@0) = F(w0)g/(z0)
g g(z0)?

Note that the chain rule does not appear in this list! See problem 289 for more about the chain
rule.

28. The Complex Exponential Function

We finally give a definition of e®t?. First we consider the case a = 0:

28.1. Definition. For any real number t we set

it

e’ =cost+ isint.
See Figure 12.
28.2. Example. e™ = cos7 + isinm = —1. This leads to Euler’s famous formula,
e™ 4 1=0,

which combines the five most basic quantities in mathematics: e, 7, 7, 1, and 0.

Reasons why the definition 28.1 seems a good definition.

Reason 1. We haven’t defined e before and we can do anything we like.
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Reason 2. Substitute it in the Taylor series for e”:

I N
=1t — o i i
=1—t2/20 4+ t*/a — ...

+i(t—t3/31 47 /50 —.)

= cost + ¢sint.
This is not a proof, because before we had only proved the convergence of the Taylor series for e”
if  was a real number, and here we have pretended that the series is also good if you substitute
T = 1t.
Reason 3. As a function of ¢ the definition 28.1 gives us the correct derivative. Namely,
using the chain rule (i.e. pretending it still applies for complex functions) we would get
it
de’ =ie't.
dt
Indeed, this is correct. To see this proceed from our definition 28.1:

de®t dcost +isint

dt dt
-~ dcost .dsint

i
dt + dt
—sint +icost

= i(cost + isint)

Reason 4. The formula e® - e¥ = etV still holds. Rather, we have ettis = ¢iteis, To

check this replace the exponentials by their definition:

e’ = (cost + isint)(cos s + isins) = cos(t + s) + isin(t + s) = e (t+9),

Requiring e -e¥ = e*1¥ to be true for all complex numbers helps us decide what e® 1% shoud
be for arbitrary complex numbers a + bi.

28.3. Definition. For any complex number a + bi we set
e thi — ¢0 . ¢ — ¢(cos b 4 isinb).
One verifies as above in “reason 3” that this gives us the right behaviour under differentiation.
Thus, for any complex number r» = a + bi the function
y(t) = et = e**(cos bt + isinbt)

satisfies
dert

dt

rt

y'(t) =

=re

29. Complex solutions of polynomial equations

29.1. Quadratic equations. The well-known quadratic formula tells you that the equation
(27) az? + bz +c=0
has two solutions, given by

-b+£vD
2a ’

If the coefficients a, b, ¢ are real numbers and if the discriminant D is positive, then this formula

does indeed give two real solutions z4 and z_. However, if D < 0, then there are no real solutions,

but there are two complex solutions, namely

—b , /=D

= —=xi
2a 2a

(28) T4 = D = b? — 4ac.

T+
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29.2. Example: solve z2 +2x+5 = 0. Solution: Use the quadratic formula, or complete
the square:
22420 +5=0
=l 424 1=—4
= (z4+1)2=-4
= z+1==x2
—z=-1+2.

So, if you allow complex solutions then every quadratic equation has two solutions, unless
the two solutions coincide (the case D = 0, in which there is only one solution.)

29.3. Complex roots of a number. For any given complex number w there is a method
of finding all complex solutions of the equation

(29) 2" =w

if n =2,3,4,--- is a given integer.
To find these solutions you write w in polar form, i.e. you find » > 0 and @ such that w = re®.
Then
2= T,l/nei&/n
is a solution to (29). But it isn’t the only solution, because the angle 6 for which w = 0 isn’t
unique — it is only determined up to a multiple of 27r. Thus if we have found one angle 6 for which

w = 7% then we can also write
w = ret0+2km) k=0,+1,42, -
The n*® roots of w are then
(0 ok
2 = Tl/nel(g+257r)

Here k can be any integer, so it looks as if there are infinitely many solutions. However, if you
increase k by n, then the exponent above increases by 2mi, and hence zj does not change. In a
formula:

Zn = 20, An+l = 21, Zn42 =22, ... Zk4n = 2k
So if you take k =0,1,2,--- ,n — 1 then you have had all the solutions.

The solutions zj always form a regular polygon with n sides.

29.4. Example: find all sixth roots of w = 1. We are to solve 26 = 1. First write 1 in
polar form,

1=1-€%=1.¢2km (k=0,+1,42,...).
Then we take the 6t root and find
2, = 11/02kmi/6 — okmi/3 (k=0,41,+2,...).
The six roots are
z0=1 =3 =14+13 =2/ =_1413
zz3=—1 z4:e”i/3:—%—%ﬁ 25:ewi/3:%_%’\/§

30. Other handy things you can do with complex numbers

30.1. Partial fractions. Consider the partial fraction decomposition
z2 4+ 3z —4 A Bz + C

= +
(z—2)(224+4) z-2 2244
The coefficient A is easy to find: multiply with x — 2 and set = 2 (or rather, take the limit
x — 2) to get

_2°+43-2-4
T 2244
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Figure 13. The sixth roots of 1. There are six of them, and they re arranged in
a regular hexagon.

Before we had no similar way of finding B and C' quickly, but now we can apply the same trick:
multiply with 2 + 4,
2 4 3z —4 A
— =Bz +C+ (z? +4)—,
(z —2) * (@ )m -2
and substitute = 2i. This make 22 4+ 4 = 0, with result
(24)2+3-2i—4

— 2B+ C.
(2i — 2) e

Simplify the complex number on the left:

(20)2+3-2i—4  —4+6i—4
(20 — 2) T 242
—8+ 6i
—2+42i
(=8 + 6i)(—2 — 2i)
e
28 + 4i
8
7

=_— 4 -
2 2

So we get 2iB + C = % + %; since B and C' are real numbers this implies

B=1 =T
4 2

30.2. Certain trigonometric and exponential integrals. You can compute

1= /631 cos 2zxdx
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by integrating by parts twice. You can also use that cos2x is the real part of e?**. Instead of
computing the real integral I, we look at the following related complex integral

J= /e3ze2izdx

which we get from I by replacing cos 2z with e2*?. Since e2'® = cos 2z + i sin 2z we have

J = /631 (cos 2z + isin2z)dx = /631 cos 2zdx + z'/e3z sin 2zdx

ie.,
J = I 4 something imaginary.
The point of all this is that J is easier to compute than I:
) ) ) e(3+2i)
J= /633062“6(:11‘ _ /63x+2zxdx — /e(3+21)mdx - _1C
3+ 2

where we have used that )

/e‘”dm = - 4+ C

a
holds even if a is complex is a complex number such as a = 3 + 2i.
To find I you have to compute the real part of J, which you do as follows:
e(3+20)z 3, COS 22 + isin 2z
=e
3+ 24 3+ 2
3 (COS 2 + isin 2z)(3 — 21)
=e
(34 24)(3 —2i)
35 3€08 2z + 2sin 2z + (- - -)
e
13

S0
/63” cos 2zdz = €3¢ (1—33 cos 2z + % sin 290) +C.

30.3. Complex amplitudes. A harmonic oscillation is given by
y(t) = Acos(wt — ¢),

where A is the amplitude, w is the frequency, and ¢ is the phase of the oscillation. If you add
two harmonic oscillations with the same frequency w, then you get another harmonic oscillation
with frequency w. You can prove this using the addition formulas for cosines, but there’s another
way using complex exponentials. It goes like this.

Let y(t) = Acos(wt — ¢) and 2(t) = Bcos(wt — ) be the two harmonic oscillations we wish
to add. They are the real parts of

Y (t) = A{cos(wt — @) + isin(wt — ¢)} = Ae™tTi¢ = AT iPeiwt

Z(t) = B {cos(wt — 8) + isin(wt — 6)} = Be'¥!~¥0 = Be~ 01wt
Therefore y(t) + 2(t) is the real part of Y (t) + Z(t), i.e.

y(t) + z(t) = Re(Y (1)) + Re(Z(t)) = Re(Y () + Z(1)).

The quantity Y (t) + Z(t) is easy to compute:

Y(t) + Z(t) = Ae Pt 4+ Be Wit = (Aeiid’ + Befw) et
If you now do the complex addition

Ae* 4 Be ¥ = Ce ™,
i.e. you add the numbers on the right, and compute the absolute value C' and argument — of
the sum, then we see that Y (t) + Z(t) = Ce*“t=%). Since we were looking for the real part of
Y(t) + Z(t), we get
y(t) + z(t) = Acos(wt — @) + Bcos(wt — 0) = C cos(wt — ).

The complex numbers Ae “?, Be~® and Ce ¥ are called the complex amplitudes for the har-
monic oscillations y(t), z(¢) and y(t) + z(¢).
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Y

The recipe for adding harmonic oscillations can therefore be summarized as follows: Add the

complex amplitudes.

31. PROBLEMS

Computing and Drawing Complex Numbers.

261. Compute the following complex numbers
by hand.

Draw all numbers in the complex (or
“Argand”) plane (use graph paper or quad
paper if necessary).

Compute absolute value and argument
of all numbers involved.

i%; i35 445 1/4

(1+24)(2 —i);

(T +4)(1 4+ 20)(1 + 34);
(3V2+5V2)% (5 + 5 V3%

1
— /(2 —1);
7o e
262. [Deriving the addition formula for
tan(f + ¢)] Let 6,¢ € (—%, %) be two an-
gles.

(a) What are the arguments of
z=141tan6 and w = 1 + i tan ¢?
(Draw both z and w.)
(b) Compute zw.
(c) What is the argument of zw?
(d) Compute tan(arg zw).
263. Find formulas for cos46, sin46, cos 56

and sin 66 in terms of cos and sin 6, by us-
ing de Moivre’s formula.

264. In the following picture draw 2w 3w, iw,

' Z
—2iw, (24 i)w and (2 —i)w. (Try to make

a nice drawing, use a ruler.)
Make a new copy of the picture, and
draw w, —w and —w.

Make yet another copy of the drawing.
Draw 1/w, 1/w, and —1/w. For this draw-
ing you need to know where the unit circle is
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in your drawing: Draw a circle centered at
the origin with radius of your choice, and let
this be the unit circle. [Depending on which
circle you draw you will get a different an-
swerl]

265. Verify directly from the definition of addi-
tion and multiplication of complex numbers
that

(a) z+tw=w+=z2
(b) 2w =wz
(¢) z(v+w) =2zv+ zw
holds for all complex numbers v, w, and z.
266. True or False? (In mathematics this
means that you should either give a proof
that the statement is always true, or else

give a counterexample, thereby showing that
the statement is not always true.)

For any complex numbers z and w one
has

(a) Re(z) + Re(w) = Re(z + w)

The Complex Exponential.

269. Compute and draw the following num-
bers in the complex plane

eTri/3; e‘rri/2; \/5637ri/4; elTmi/4,
el +1; etln2
H .

1 e~ Tl p2—mi/2

omi/A) omijd)  mij4
200973, 200971/2
—8e4mi/3 1 12e™ 4 e
270. Compute the absolute value and argu-
ment of e(n2)(1+7),
271. Suppose z can be any complex number.

(a) Is it true that e® is always a positive
number?

(b) Is it true that e* # 07

272. Verify directly from the definition that
; 1
—it __
=g
holds for all real values of t.
273. Show that
it 4 it eit _ o—it
Cost:f7 sint = ————

274. Show that

1
coshx = cosix, sinhx = — siniz.
i

M) z+w=z+w

(c) Im(z) + Im(w) = Im(z + w)
(d) 7@ = (2)(w)

(e) Me(z)Re(w) = Re(zw)

() z/w = (2)/ ()

(g) Re(iz) = Tm(z)

(h) MRe(iz) = iNRe(z)

(i) Me(iz) = Im(z)

(j) MRe(iz) = iTm(z)

(k) Jm(iz) = PRe(2)

(1) Re(2) = Re(2)

267. The imaginary part of a complex num-
ber is known to be twice its real part. The
absolute value of this number is 4. Which
number is this?

268. The real part of a complex number is
known to be half the absolute value of that
number. The imaginary part of the number
is 1. Which number is it?

275. The general solution of a second order
linear differential equation contains expres-
sions of the form AeP? + Be~0t, These can
be rewritten as C1 cos Bt 4+ C2 sin St.

If Ae?Pt + Be~ Pt = 2cos Bt + 3sin Gt
then what are A and B?

276. (a) Show that you can write a “cosine-
wave” with amplitude A and phase ¢ as fol-
lows

Acos(t — ¢) = Re (ze”) ,
where the “complex amplitude” is given by
2z = Ae™". (See §30.3).
(b) Show that a “sine-wave” with am-
plitude A and phase ¢ as follows

Asin(t — ¢) = Re (2e™),

where the “complex amplitude” is given by
z = —iAe P,

277. Find A and ¢ where Acos(t — ¢)
2 cos(t) + 2 cos(t — %7‘(‘)

278. Find A and ¢ where Acos(t — ¢)
12 cos(t — %W) + 12sin(t — %7‘(‘)

279. Find A and ¢ where Acos(t — ¢)
12 cos(t — 7/6) + 12 cos(t — w/3).

280. Find A and ¢ such that Acos(t — ¢) =
cos (t - éw) + /3 cos (t - %W)
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Real and Complex Solutions of Algebraic Equations.

281. Find and draw all real and complex so-

lutions of
(a) 22+62+10=0
(b) 22 +8=0

(c) 23 —125=0

(

(e)

(f) 328 =23 +2
(g) 2° —32 =
(h) 25 — 16z =

Calculus of Complex Valued Functions.

282. Compute the derivatives of the following

functions
1
flx) = - g(z) =logzx + iarctan
x4+
2 i+

h(z) = e'® k(z) = log

i —x
Try to simplify your answers.

283. (a) Compute

/(cos 290)4 dx

by using cos = %(ew + e~ %) and expand-
ing the fourth power.

(b) Assuming a € R, compute

/672% (sincwv)2 dx.

(same trick: write sin az in terms of complex
exponentials; make sure your final answer
has no complex numbers.)

284. Use cosa = (€' + ¢7%¥)/2, etc. to eval-
uate these indefinite integrals:

(@) / cos? z dz

(b) / cos x da,

(c) / cos? xsin z dz,

(d) / sin® & da,

(e) / cos? zsin’ z du,

(f) / sin® z da

) / sin(3z) cos(52) dz

(h) / sin?(2z) cos(3z) da
@) /0 " in(3w) cos(z) dx

/3
6) /0 sin®(z) cos?(x) da

/2
(k) /0 sin? () cos? () da:

/3
D /0 sin(z) cos?(z) dz

285. Compute the following integrals when
m # n are distinct integers.

27

(a) /0 sin(max) cos(nz) dx
27

(b) /O sin(nx) cos(nz) dx
27

(c) /0 cos(ma) cos(nzx) dz

(d) /(;W cos(max) cos(nzx) dx
27

(e) /0 sin(ma) sin(nz) dz

(f) /(;W sin(ma) sin(nz) dz

These integrals are basic to the the-
ory of Fourier series, which occurs in
many applications, especially in the study of
wave motion (light, sound, economic cycles,
clocks, oceans, etc.). They say that different
frequency waves are “independent”.

286. Show that cosz +sinz = C cos(z+ 3) for
suitable constants C' and 3 and use this to
evaluate the following integrals.

/ dx
a) [ ————
cosx + sinx
dz
W[
(cosx + sinx)

dz
© [
Acosxz + Bsinz

where A and B are any constants.

287. Compute the integrals
/2
/ sin® kz sin? lz dz,
0

where k and [ are positive integers.
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288. Show that for any integers k,l,m
™
/ sin kz sin lx sinmz dz = 0
0

if and only if k + [ + m is even.

289. (i) Prove the following version of the
CHAIN RULE: If f: I — C is a differentiable
complex valued function, and g : J — T
is a differentiable real valued function, then
h = fog:J — Cis a differentiable function,

and one has
r'(z) = f'(g(x))g' (2)-

(if) Let n > 0 be a nonnegative integer.
Prove that if f : I — C is a differentiable
function, then g(x) = f(z)" is also differen-
tiable, and one has

g'(@) =nf(@)" " f(2).

Note that the chain rule from part (a) does
not apply! Why?
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Differential Equations

32. What is a DiffEq?

A differential equation is an equation involving an unknown function and its derivatives.
The order of the differential equation is the order of the highest derivative which appears. A
linear differential equation is one of form

v +a1(@)y™ T 4+t an-1(@)y + an(@)y = k(@)

where the coefficients a1(z),...,an(z) and the right hand side k(x) are given functions of z and
y is the unknown function. Here
yo = &y
dzk

denotes the kth derivative of y so this equation has order n. We shall mainly study the case n = 1
where the equation has form

y' +a(@)y = k()
and the case n = 2 with constant coefficients where the equation has form
v’ +ay +by = k(z).

When the right hand side k(z) is zero the equation is called homogeneous linear and otherwise it
is called ¢nhomogeneous linear (or nonhomogeneous linear by some people). For a homogeneous
linear equation the sum of two solutions is a solution and a constant multiple of a solution is a
solution. This property of linear equations is called the principle of superposition.

33. First Order Separable Equations

A separable differential equation is a diffeq of the form

dy _

(30) V(@)= F@Ge), o = F@)6w).
To solve this equation divide by G(y(z)) to get
(31) aimngm.

Next find a function H(y) whose derivative with respect to y is

(32) H (y) = —— (solution: H(y) = / %)

G(y)
Then the chain rule implies that (31) can be written as
dH
W) _ gy
dx

In words: H(y(z)) is an antiderivative of F'(x), which means we can find H(y(z)) by integrating
F(x):

(33) Hy(x)) = /F(m)dw el

Once you've found the integral of F'(x) this gives you y(z) in implicit form: the equation (33)
gives you y(z) as an implicit function of x. To get y(x) itself you must solve the equation (33)
for y(z).

A quick way of organizing the calculation goes like this:
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d
To solve d—y = F(x)G(y) you first separate the variables,
x

dy = x X
@—F( ) dz,

dy _ z)dz
@—/F()d.

The result is an implicit equation for the solution y with one undetermined
integration constant.

and then integrate,

Determining the constant. The solution you get from the above procedure contains an
arbitrary constant C. If the value of the solution is specified at some given zg, i.e. if y(zo) is
known then you can express C' in terms of y(zo) by using (33).

A snag: You have to divide by G(y) which is problematic when G(y) = 0. This has as
consequence that in addition to the solutions you found with the above procedure, there are at
least a few more solutions: the zeroes of G(y) (see Example 33.2 below). In addition to the zeroes
of G(y) there sometimes can be more solutions, as we will see in Example 35.2 on “Leaky Bucket
Dating.”

33.1. Example. We solve

dz
—Z=1+22 t.
U (14 2%) cos

d
/ z :/Costdt,
1+ 22

arctan z = sint + C.

Separate variables and integrate

to get

Finally solve for z and you find the general solution

z(t) = tan(sin(t) + C).

33.2. Example: The snag in action. If you apply the method to y/'(z) = Ky with K
a constant, you get y(z) = eK(@+C)  No matter how you choose C' you never get the function
y(z) = 0, even though y(x) = 0 satisfies the equation. This is because here G(y) = Ky, and G(y)
vanishes for y = 0.

34. First Order Linear Equations

There are two systematic methods which solve a first order linear inhomogeneous equation

dy

&+ af@)y = ko). ®
x

You can multiply the equation with an “integrating factor”, or you do a substitution y(z) =
c(x)yo(z), where yo is a solution of the homogeneous equation (that’s the equation you get by
setting k(z) = 0).

34.1. The Integrating Factor. Let
Az) = /a(m) dez, m(z) = e2®),
Multiply the equation (i) by the “integrating factor” m(z) to get

d
m(@) 3 +a(@)m(@)y = m(@)k().
By the chain rule the integrating factor satisfies
d”;’—(m) = A'(z)m(z) = a(z)m(z).
x

Therefore one has
dm(z)y
dz

= m@) Y +a@m(e)y = mo) { L + a0l | = mke)
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Integrating and then dividing by the integrating factor gives the solution

mg:c) (/ m(z)k(z) dz + C) _

In this derivation we have to divide by m(z), but since m(z) = e(#) and since exponentials never

Yy =

vanish we know that m(z) # 0, no matter which problem we’re doing, so it’s OK, we can always
divide by m(x).

34.2. Variation of constants for 1st order equations. Here is the second method of
solving the inhomogeneous equation (f). Recall again that the homogeneous equation associated
with (f) is

dy

&+ a@y =0, M)

The general solution of this equation is
y(z) = Ce A,

where the coefficient C' is an arbitrary constant. To solve the inhomogeneous equation (1) we
replace the constant C' by an unknown function C(z), i.e. we look for a solution in the form

y = C(z)yo(x) where yo(z) €' e=A@),

(This is how the method gets its name: we are allowing the constant C' to vary.)
Then y§(z) + a(z)yo(z) = 0 (because yo(x) solves (1)) and
¥ (@) + a(@)y(x) = C'@)yo(@) + C@)yh(@) + a@)C(@)yo(@) = C' (@)yo (@)
so y(z) = C(x)yo(x) is a solution if C’(z)yo(z) = k(z), i.e.

_ [ k@)
@ = [ iy

1
Once you notice that yo(z) = T, you realize that the resulting solution
m(x
k(x
@) = C@wo(e) = (@) [ S az
Yo(x)

is the same solution we found before, using the integrating factor.

Either method implies the following:

34.3. Theorem. The initial value problem

Frs a(z)y =0, y(0) = yo,
X

has exactly one solution. It is given by
x
y = yoe 4@ where A(z) = / a(t) dt.
0

The theorem says three things: (1) there is a solution, (2) there is a formula for the solution, (3)
there aren’t any other solutions (if you insist on the initial value y(0) = yo.) The last assertion is
just as important as the other two, so I’'ll spend a whole section trying to explain why.

35. Dynamical Systems and Determinism

A differential equation which describes how something (e.g. the position of a particle) evolves
in time is called a dynamical system. In this situation the independent variable is time, so it
is customary to call it ¢ rather than x; the dependent variable, which depends on time is often
denoted by z. In other words, one has a differential equation for a function z = z(t). The simplest
examples have form

(34) % = f(=,¢).

In applications such a differential equation expresses a law according to which the quantity x(t)
evolves with time (synonyms: “evolutionary law”, “dynamical law”, “evolution equation for z”).
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A good law is deterministic, which means that any solution of (34) is completely determined
by its value at one particular time ¢o: if you know x at time ¢ = tg, then the “evolution law” (34)
should predict the values of z(t) at all other times, both in the past (¢ < tg) and in the future
(t > to).

Our experience with solving differential equations so far (§33 and §34) tells us that the general
solution to a differential equation like (34) contains an unknown integration constant C. Let’s call
the general solution z(¢; C') to emphasize the presence of this constant. If the value of x at some
time tp is known to be, say, xg, then you get an equation

(35) z(to; C) = xo

which you can try to solve for C. If this equation always has exactly one solution C' then the
evolutionary law (34) is deterministic (the value of z(to) always determines x(¢) at all other times
t); if for some prescribed value zo at some time tg the equation (35) has several solutions, then
the evolutionary law (34) is not deterministic (because knowing z(t) at time ¢o still does not
determine the whole solution z(t) at times other than t¢).

35.1. Example: Carbon Dating. Suppose we have a fossil, and we want to know how
old it is.

All living things contain carbon, which naturally occurs in two isotopes, Ci4 (unstable) and
Ci2 (stable). A long as the living thing is alive it eats & breaths, and its ratio of C12 to Cyyq is
kept constant. Once the thing dies the isotope C14 decays into Ci2 at a steady rate.

Let z(t) be the ratio of C14 to Ci2 at time ¢. The laws of radioactive decay says that there
is a constant k > 0 such that
dx(t)
dt
Solve this differential equation (it is both separable and first order linear: you choose your method)
to find the general solution

= —kx(t).

z(t;C) = Ce™kt,
After some lab work it is found that the current C14/Ci2 ratio of our fossil is Znow. Thus we have
Tnow = Ce Fnow — O = g onelnow.

Therefore our fossil’s C14/Ci2 ratio at any other time ¢ is/was

z(t) = Tnowe (tnow=1)

This allows you to compute the time at which the fossil died. At this time the C14/Cj2 ratio must
have been the common value in all living things, which can be measured, let’s call it zj;f. So at
the time tqemise Wwhen our fossil became a fossil you would have had z(tgemise) = Z1ife- Hence the
age of the fossil would be given by

1 Ty

k(t —t i life

Tlife = m(tdcmisc) = Znow€ (tnow ~tdemise) — | tnow — tdemise = E In Z
now

35.2. Example: On Dating a Leaky Bucket. A bucket is filled with water. There’s a
hole in the bottom of the bucket so the water streams out at a certain rate.

area = A

h(t) the height of water in the bucket
A area of cross section of bucket

a area of hole in the bucket _
v velocity with which water goes through the hole. l

h
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Figure 14. Several solutions h(t; C) of the Leaking Bucket Equation (36). Note
how they all have the same values when t > 1.

The amount of water in the bucket is A X h(t);
The rate at which water is leaving the bucket is a X v(t);

Hence
dAh(t)
dt
In fluid mechanics it is shown that the velocity of the water as it passes through the hole only
depends on the height A(t) of the water, and that, for some constant K,

o(t) = VEh(D).

The last two equations together give a differential equation for h(t), namely,
dh(t) a
—= = ——+/Kh(t).
dt A ®)

To make things a bit easier we assume that the constants are such that 4+ K = 2. Then h(t)
satisfies

(36) K (t) = —2v/h(t).

This equation is separable, and when you solve it you get
dh
— =1 = Vh{t)=—t+C.
2vh ®

This formula can’t be valid for all values of ¢, for if you take ¢ > C, the RHS becomes negative
and can’t be equal to the square root in the LHS. But when ¢t < C we do get a solution,

h(t;C) = (C — t)2.
This solution describes a bucket which is losing water until at time C' it is empty. Motivated by

the physical interpretation of our solution it is natural to assume that the bucket stays empty
when ¢t > C, so that the solution with integration constant C'is given by

hit) = {(C’—t)2 when t < C

= —av(t).

0 for t > C.

We now come to the question: is the Leaky Bucket Equation deterministic? The answer is:
NO. If you let C' be any negative number, then h(t; C') describes the water level of a bucket which
long ago had water, but emptied out at time C < 0. In particular, for all these solutions of the
diffeq (36) you have h(0) = 0, and knowing the value of h(t) at ¢ = 0 in this case therefore doesn’t
tell you what h(t) is at other times.

Once you put it in terms of the physical interpretation it is actually quite obvious why this
system can’t be deterministic: it’s because you can’t answer the question “If you know that the
bucket once had water and that it is empty now, then how much water did it hold one hour ago?”
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36. Higher order equations
After looking at first order differential equations we now turn to higher order equations.

36.1. Example: Spring with a weight. A body of mass m is suspended by a spring.
There are two forces on the body: gravity and the tension in the spring. Let F' be the sum of
these two forces. Newton’s law says that the motion of the weight satisfies F' = ma where a is the
acceleration. The force of gravity is mg where g=32ft/sec?; the quantity mg is called the weight
of the body. We assume Hooke’s law which says that the tension in the spring is proportional to
the amount by which the spring is stretched; the constant or proportionality is called the spring
constant. We write k for this spring constant.

The total force acting on the body is therefore
F =mg — ky(t).

According to Newton’s first/second/third law the acceleration a of the body satisfies F' = ma.
Since the acceleration a is the second derivative of position y we get the following differential
equation for y(t)

d2
(37) mgg =mg — ky(t).

36.2. Example: the pendulum.

: F string

F =mg
gravity

de
dat’
are two forces acting on the weight: gravity (strength mg; direction vertically down) and the

tension in the string (strength: whatever it takes to keep the weight on the circle of radius L and
center P; direction parallel to the string). Together they leave a force of size Fygravity - sin @ which
accelerates the weight. By Newton’s “F = ma” law you get

The velocity of the weight on the pendulum is L hence its acceleration is a = Ld?q/dt?. There

d2e
Fre il sin 0(t),
or, canceling ms,
d2e
(38) 9 sin(t) = 0.

de2 L
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37. Constant Coefficient Linear Homogeneous Equations

37.1. Differential operators. In this section we study the homogeneous linear differential
equation
(39) y™ +ary™ D 4+ tan1y +any =0

where the coefficients a1, ..., a, are constants.

37.2. Examples. The three equations
dy

2 _y=0,
dz Y

y' —y=0, ¢ +y=0
Yy —y =0
are homogeneous linear differential equations with constant coefficients. Their degrees are 1, 2, 2,

and 4.

It will be handy to have an abbreviation for the Left Hand Side in (39), so we agree to write
L[y] for the result of substituting a function y in the LHS of (39). In other words, for any given
function y = y(x) we set
Lll(@) = y™ (@) + ary™ @) + -+ an1y (@) + any(@).

We call L an operator. An operator is like a function in that you give it an input, it does a
computation and gives you an output. The difference is that ordinary functions take a number as
their input, while the operator L takes a function y(z) as its input, and gives another function
(the LHS of (39)) as its output. Since the computation of L[y] involves taking derivatives of y,
the operator L is called a differential operator.

37.3. Example. The differential equations in the previous example correspond to the dif-
ferential operators

Lilyl =y —v,
Lolyl =y" =y, Lalyl=9y"+y
Lalyl =y — .
So one has
d? sin 2z

L3[sin2z] = —qz sin2z = —4sin 2z — sin 2z = —5sin 2z.
x

37.4. The superposition principle. The following theorem is the most important prop-
erty of linear differential equations.

37.5. Superposition Principle. For any two functions y1 and y2 we have
Llyr +y2] = Lly] + Llya].

For any function y and any constant ¢ we have

Lley] = cLlyl.
The proof, which is rather straightforward once you know what to do, will be given in lecture.
It follows from this theorem that if y1, ..., yi are given functions, and ci, ..., ¢, are constants,
then

Llewyr + -+ + cpyn] = eallyr] + - - + en Llyl.

The importance of the superposition principle is that it allows you to take old solutions
to the homogeneous equation and make new ones. Namely, if y1, ..., yi are solutions to the
homogeneous equation L[y] = 0, then so is c1y1 + -+ + ¢y, for any choice of constants cy, ...,
Cl-
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37.6. Example. Consider the equation
y’ — 4y =0.

My cousin Bruce says that the two functions y1(z) = €2* and y2(z) = e~2% both are solutions to

this equations. You can check that Bruce is right just by substituting his solutions in the equation.

The Superposition Principle now implies that

y(x) = c1€?® + coe™ 2

also is a solution, for any choice of constants ci, ca.

37.7. The characteristic polynomial. This example contains in it the general method
for solving linear constant coefficient ODEs. Suppose we want to solve the equation (39), i.e.

Ly y™ 4 ary™ D 4ty + any =0.

Then the first thing to do is to see if there are any exponential functions y = e"*

the equation. Since
de™® _ d2emc 5 dSG'mc

re =r<e"?, =r3e",  etc. ...
dx dx? dx3

which satisfy

we see that
(40) Lle™] = (7“"+a17“"71 +ran—1r+an)e’.
The polynomial

P(ry=r"+ air" 4+ an_ir + an.
is called the characteristic polynomzal.

We see that y = e"* is a solution of L[y] = 0 if and only if P(r) = 0.

37.8. Example. We look for all exponential solutions of the equation
Yy — 4y = 0.
Substitution of y = e"* gives
Y — Ay =r2e" — 47T = (7“2 — 4) e,
The exponential e”® can’t vanish, so y”/ — 4y = 0 will hold exactly when 2 — 4 = 0, i.e. when

r = 42. Therefore the only exponential functions which satisfy y" — 4y = 0 are y; (z) = €2* and
ya(x) = e~ 2%,

37.9. Theorem. Suppose the polynomial P(r) has n distinct roots r1,72,...,rn. Then the
general solution of L[y] =0 is

y=c1e™® 4+ coe™® + . fcpe™”

where c1,ca,...,cn are arbitrary constants.

PROOF. We have just seen that the functions yi(z) = €%, ya(x) = e"2%, y3(z) = €"37,
etc. are solutions of the equation L[y] = 0. In Math 320 (or 319, or...) you prove that these are
all the solutions (it also follows from the method of variation of parameters that there aren’t any
other solutions).

d

37.10. Complex roots and repeated roots. If the characteristic polynomial has n dis-
tinct real roots then Theorem 37.9 tells you what the general solution to the equation L[y] = 0 is.
In general a polynomial equation like P(r) = 0 can have repeated roots, and it can have complex
roots.
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37.11. Example. Solve y” + 2y’ +y = 0.

The characteristic polynomial is P(r) = 72+ 2r + 1 = (r + 1)2, so the only root of the

characteristic equation r2 4+ 2r 41 = 0 is 7 = —1 (it’s a repeated root). This means that for this

equation we only get one exponential solution, namely y(z) = e~ *.

It turns out that for this equation there is another solution which is not exponential. It is
y2(x) = ze~®. You can check that it really satisfies the equation y"” + 2y’ +y = 0.

When there are repeated roots there are other solutions: if P(r) = 0, then t/e"t is a solution if
j is a nonnegative integer less than the multiplicity of r. Also, if any of the roots are complex, the
phrase general solution should be understood to mean general complex solution and the coefficients
c; should be complex. If the equation is real, the real and imaginary part of a complex solution
are again solutions. We only describe the case n = 2 in detail.

37.12. Theorem. Consider the differential equation

d?y dy
=7 = =0
daz? ta dx tazy )

and suppose that r1 and ro are the solutions of the characteristic equation of 72+ a1r + az = 0.
Then

(i): If r1 and ro are distinct and real, the general solution of (1) is
y=c1e1" + coe27,

(ii): If r1 = ro, the general solution of (}) is
y=cie"1? + cowe™”.

(iii): If r1 = a+ Bi and r2 = o — Bi, the general solution of (1) is

y = 17 cos(Bx) + c2e™® sin(Bx).
In each case c1 and c2 are arbitrary constants.
Case (i) and case (iii) can be subsumed into a single case using complex notation:

e(OEBNT — o0 06g B 4 e sin Bz,

(at+pBi)z (a—Bi)z (a+Bi)z _ p(a—PBi)x
e‘”cosﬁx:e —;—e , e‘”sinﬁx:e 2,6 .
i

38. Inhomogeneous Linear Equations

In this section we study the inhomogeneous linear differential equation

y™ a1y + ot an 1y +any = k(@)

where the coefficients a1,...,a, are constants and the function k(x) is a given function. In the
operator notation this equation may be written
Lly] = k().

The following theorem says that once we know one particular solution y, of the inhomogeneous
equation L[y] = k(z) we can find all the solutions y to the inhomogeneous equation Lly] = k(z)
by finding all the solutions y;, to the homogeneous equation L[y] = 0.

38.1. Another Superposition Principle. Assume Llyp] = k(z). Then Lly] = k(z) if
and only if y = yp + yn, where Lly,] = 0.

PROOF. Suppose L[yp] = k(z) and y = yp + yp,. Then
Lly] = Llyp +yn] = Llyp] + Llyn] = k() + Llyn]-
Hence L[y] = k(z) if and only if L[y,] = 0. O
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39. Variation of Constants

There is a method to find the general solution of a linear inhomogeneous equation of arbitrary
order, provided you already know the solutions to the homogeneous equation. We won’t explain
this method here, but merely show you the answer you get in the case of second order equations.

If y1 (z) and y2(x) are solutions to the homogeneous equation

y"(z) + a(x)y () + b(x)y(z) = 0

for which

W(z) € 1 (2)yh(2) — v (2)ya(z) #0,

then the general solution of the inhomogeneous equation
y" (@) + a(@)y (x) + b(2)y(z) = f(z)
is given by
_ y2(6) f(&) y1(§)f(©)
ve) = —mn(e) [ EEEae (o) [ L ae

For more details you should take a more advanced course like MaTn 319 or 320.

39.1. Undetermined Coefficients. The easiest way to find a particular solution y, to
the inhomogeneous equation is the method of undetermined coefficients or “educated guessing.”
Unlike the method of “variation of constants” which was (hardly) explained in the previous section,
this method does not work for all equations. But it does give you the answer for a few equations
which show up often enough to make it worth knowing the method.

The basis of the “method” is this: it turns out that many of the second order equations with
you run into have the form
Y’ +ay +by = f(1),
where a and b are constants, and where the righthand side f(t) comes from a fairly short list
of functions. For all f(t) in this list you memorize (yuck!) a particular solution y,. With the
particular solution in hand you can then find the general solution by adding it to the general
solution of the homogeneous equation.

Here is the list:

f(t) = polynomial in ¢: In this case you try yp(t) = some other polynomial in t with
the same degree as f(t).
Exceptions: if r = 0 is a root of the characteristic equation, then you must try a
polynomial y,(t) of degree one higher than f(¢);
if r = 0 is a double root then the degree of y,(t) must be two more than the degree
of f(t).
f(t) = e try yp(t) = Aedt.
Exceptions: if r = a is a root of the characteristic equation, then you must try
up(t) = Atea;
if 7 = a is a double root then try y,(t) = At2e®t.
f(t) =sinbt or f(t) = cosbt: In both cases, try yp(t) = Acosbt + B sin bt.
Exceptions: if r = bi is a root of the characteristic equation, then you should try
yp(t) = t(Acosbt + Bsinbt).
f(t) = e sinbt or f(t) = e cosbt: Try yp(t) = e (A cosbt + Bsinbt).
FExceptions: if r = a+ bi is a root of the characteristic equation, then you should
try yp(t) = te?t(Acosbt + Bsinbt).

39.2. Example. Find the general solution to the following equations
(41) Y +axy —y=2e"
(42) y' =2y +y=V1+a2

The first equation does not have constant coefficients so the method doesn’t apply. Sorry, but we
can’t solve this equation in this course.”

"Who says you can’t solve this equation? For equation (41) you can find a solution by computing
its Taylor series! For more details you should again take a more advanced course (like MATH 319), or,
in this case, give it a try yourself.
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The second equation does have constant coefficients, so we can solve the homogeneous equa-
tion (y” — 2y’ +y = 0), but the righthand side does not appear in our list. Again, the method
doesn’t work.

39.3. A more upbeat example. To find a particular solution of
y//_y/+y:3t2
we note that (1) the equation is linear with constant coefficients, and (2) the right hand side is a
polynomial, so it’s in our list of “right hand sides for which we know what to guess.” We try a

polynomial of the same degree as the right hand side, namely 2. We don’t know which polynomial,
so we leave its coefficients undetermined (whence the name of the method.) I.e. we try

yp(t) = A+ Bt + Ct2.
To see if this is a solution, we compute
yp(t) = B+ 2Ct, yy (t) = 2C,
so that
Y —yn +yp = (A — B+2C) + (B — 20)t + Ct*.
Thus y, —y, +yp = 3t2 if and only if
A-B+2C=0, B-2C=0, C=3.
Solving these equations leads to C' =3, B =2C =6 and A = B — 2C = 0. We conclude that
yp(t) = 6t + 3t2

is a particular solution.

39.4. Another example, which is rather long, but that’s because it is meant to
cover several cases. Find the general solution to the equation

y' 4+ 3y +2y=t+ t3 — et +2e72t — e tsin2t.
Solution: First we find the characteristic equation,
r243r4+2=(+2)(r+1)=0.

The characteristic roots are 1 = —1, and ro = —2. The general solution to the homogeneous
equation is

yn(t) = Cre™t 4 Coe™ 2L,
We now look for a particular solutions. Initially it doesn’t look very good as the righthand side
does not appear in our list. However, the righthand side is a sum of five terms, each of which is
in our list.

Abbreviate L[y] = y"" 4+ 3y’ 4+ 2y. Then we will find functions y1,...,ys for which one has
Ly =t +1t3, Llya] = —e', Llys] =272, Llya] = —e sin2t.
Then, by the Superposition Principle (Theorem 37.5) you get that y, def Y1 +y2 + y3 + ya satisfies
Llyp] = Lly1] + Lly2] + Llya] + Llya] =t + 12 — et + 2728 — e tsin2t.
So yp (once we find it) is a particular solution.

Now let’s find y1,...,y4.

y1(t): the righthand side t4t3 is a polynomial, and = = 0 is not a root of the characteristic
equation, so we try a polynomial of the same degree. Try

y1(t) = A+ Bt + Ct? + D,

Here A, B, C, D are the undetermined coefficients that give the method its name. You
compute

Lly1] = yi' + 395 + 21
= (2C + 6Dt) + 3(B + 2Ct + 3Dt?) + 2(A + Bt + Ct? + Dt%)
= (2C + 3B +24) + (2B + 6C + 6D)t + (2C + 9D)t* + 2Dt>.
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So to get L[y1] =t + ¢ we must impose the equations
2D =1, 2C4+9D =0, 2B+6C+6D=1, 2C+6B+24=0.
You can solve these equations one-by-one, with result
_ 1 __9 _ 23 _ 87
D=3, C=-3, B=-5, A=7%,
and thus
yi(t) =8 — 234 — 942 4 143
y2(t): We want y2(t) to satisfy L[ya] = —e’. Since e! = e with a = 1, and a = 1 is not
a characteristic root, we simply try y2(t) = Aet. A quick calculation gives

Lly2] = Aet + 3Ae! 4+ 24e = 6Aet.

To achieve L[yz] = —e! we therefore need 64 = —1, i.e. A = —%. Thus
_ 1.t
y2(t) = —ge'.
y3(t): We want y3(t) to satisfy L[ys] = —e~2t. Since e~2f = et with a = —2, and a = —2

67215

is a characteristic root, we can’t simply try y3(t) = A . Instead you have to try

y3(t) = Ate~2t. Another calculation gives

Llys] = (4t — 4)Ae™ 2t 4 3(—2t + 2) Ae ™2 + 24te™2¢ (factor out Ae~2t)
= [(4+3(=2) +2)t + (—4 + 3)] Ae™ %
= —Ae 2,

Note that all the terms with te 2% cancel: this is no accident, but a consequence of the
fact that a = —2 is a characteristic root.
To get Llys] = 2e~2t we see we have to choose A = —2. We find

y3(t) = —2te™ 2t
ya(t): Finally, we need a function y4(t) for which one has L[ys] = —e~tsin2t. The list
tells us to try
ya(t) = e *(Acos2t + Bsin2t).
(Since —1 + 2¢ is not a root of the characteristic equation we are not in one of the

exceptional cases.)
Diligent computation yields

ya(t) = Ae~tcos2t + Be lte tsin2t
yhyt) = (—A+2B)e tcos2t + (—B-—2A)e !sin2t
yi(t)= (-3A—4B)etcos2t + (—3B+4A)e tsin2t

so that
Llys] = (—4A 4+ 2B)e "t cos 2t + (—2A — 4B)e ! sin 2t.
We want this to equal —e~*sin 2¢, so we have to find A, B with
—4A+2B=0, —2A—-4B=—1.
The first equation implies B = 2A, the second then gives —10A = —1, s0 A =

B = 1% ‘We have found

1
10 and

ya(t) = %eft cos 2t + %eft sin 2¢.
After all these calculations we get the following impressive particular solution of our differential
equation,
yp(t) = %7 - 27431‘/ - %tz + %t3 - %et —2te” 2 4 %eft cos 2t + 1106775 sin 2t
and the even more impressive general solution to the equation,
y(t) = yn(y) + yp(t)
= Cleit + Cgeim
+ 87 23 942 4 143

1t —2t 1 —t 2 _—t
- g€ — 2te + 15€ coth-‘,—Ee sin 2¢.
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You shouldn’t be put off by the fact that the result is a pretty long formula, and that the compu-
tations took up two pages. The approach is to (i) break up the right hand side into terms which
are in the list at the beginning of this section, (ii) to compute the particular solutions for each of
those terms and (iii) to use the Superposition Principle (Theorem 37.5) to add the pieces together,
resulting in a particular solution for the whole right hand side you started with.

40. Applications of Second Order Linear Equations

40.1. Spring with a weight. In example 36.1 we showed that the height y(¢) a mass m
suspended from a spring with constant k satisfies
k
(43) my”(6) + ky(t) = mg, or y'(t)+ —y(t) =g.
This is a Linear Inhomogeneous Equation whose homogeneous equation, y” + %y =0 has
yn(t) = C1 coswt + Ca sinwt
as general solution, where w = /k/m. The right hand side is a constant, which is a polynomial of
degree zero, so the method of “educated guessing” applies, and we can find a particular solution
by trying a constant y, = A as particular solution. You find that yg + %yp = %A, which will
equal g if A = %. Hence the general solution to the “spring with weight equation” is
m
y(t) = Tg + C4 cos wt + C sinwt.
To solve the initial value problem y(0) = yo and y’(0) = vo we solve for the constants C and Co
and get
m v . m,
y(t) = mg + — sin(wt) + (yo — —g) cos(wt).
k w k
which you could rewrite as
y(t) = % + Y cos(wt — ¢)
for certain numbers Y, ¢.

The weight in this model just oscillates up and down forever: this motion is called a simple
harmonic oscillation, and the equation (43) is called the equation of the Harmonic Oscillator.

40.2. The pendulum equation. In example 36.2 we saw that the angle 6(¢) subtended

by a swinging pendulum satisfies the pendulum equation,
d2e

(38) oy % sin6(t) = 0.
This equation is not linear and cannot be solved by the methods you have learned in this course.
However, if the oscillations of the pendulum are small, i.e. if 6 is small, then we can approximate
sin@ by 6. Remember that the error in this approximation is the remainder term in the Taylor
expansion of sinf@ at # = 0. According to Lagrange this is

- 03 N
sin® = 6 + R3(0), R3(0) = cos 0 37 with |0] < 6.
When 0 is small, e.g. if [#] < 10° & 0.175 radians then compared to 6 the error is at most
R3(0 .175)2
Ra(O)| o O 4 005,
0 3!

in other words, the error is no more than half a percent.

So for small angles we will assume that sin ~ 6 and hence 6(t) almost satisfies the equation
d2e
de?

In contrast to the pendulum equation (38), this equation is linear, and we could solve it right now.

(44) + %G(t) =0.

The procedure of replacing inconvenient quantities like sin® by more manageable ones (like
0) in order to end up with linear equations is called linearization. Note that the solutions to the
linearized equation (44), which we will derive in a moment, are not solutions of the Pendulum
Equation (38). However, if the solutions we find have small angles (have |6| small), then the
Pendulum Equation and its linearized form (44) are almost the same, and “you would think that
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their solutions should also be almost the same.” I put that in quotation marks, because (1) it’s
not a very precise statement and (2) if it were more precise, you would have to prove it, which
is not easy, and not a topic for this course (or even MATH 319 — take MATH 419 or 519 for more
details.)

Let’s solve the linearized equation (44). Setting 6 = et you find the characteristic equation

2 g
Z =0
r—i—L

which has two complex roots, r4 = +i,/ %. Therefore, the general solution to (44) is

o(t) = Acos(\/%t) + Bsin(\/%t),

and you would expect the general solution of the Pendulum Equation (38) to be almost the same.
So you see that a pendulum will oscillate, and that the period of its oscillation is given by

T =2my | —.
g

Once again: because we have used a linearization, you should expect this statement to be valid only
for small oscillations. When you study the Pendulum Equation instead of its linearization (44),
you discover that the period T of oscillation actually depends on the amplitude of the oscillation:
the bigger the swings, the longer they take.

40.3. The effect of friction. A real weight suspended from a real spring will of course not
oscillate forever. Various kinds of friction will slow it down and bring it to a stop. As an example
let’s assume that air drag is noticeable, so, as the weight moves the surrounding air will exert
a force on the weight (To make this more likely, assume the weight is actually moving in some
viscous liquid like salad oil.) This drag is stronger as the weight moves faster. A simple model is
to assume that the friction force is proportional to the velocity of the weight,

Friction = —hy'(1).
This adds an extra term to the oscillator equation (43), and gives
my" (t) = Fgrav + Frriction = —ky(t) +mg — hy'(¢)
ie.
(45) my" (t) + hy'(t) + ky(t) = mg.
This is a second order linear homogeneous differential equation with constant coefficients. A
particular solution is easy to find, y, = mg/k works again.
To solve the homogeneous equation you try y = e”*, which leads to the characteristic equation
mr? +hr+k=0,

whose roots are

—h £ +vVh2 — 4mk

ry = —m———
2m

If friction is large, i.e. if h > V4km, then the two roots r4 are real, and all solutions are of

exponential type,

y(t) = % 4+ Cyett 4 Cemt

Both roots r+ are negative, so all solutions satisfy

tlim y(t) = 0.

If friction is weak, more precisely, if h < v/4mk then the two roots r4+ are complex numbers,

h . . Vakm — h?
ro =—— +iw, withw=—"-——.
2m 2m

The general solution in this case is
mg _hoy )
y(t) = _k + e 2m (Acoswt—l—Bsmwt).

These solutions also tend to zero as t — oo, but they oscillate infinitely often.
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40.4. Electric circuits. Many equations in physics and engineering have the form (45).
For example in the electric circuit in the diagram a time varying voltage Vjy, (t) is applied to a
resistor R, an inductance L and a capacitor C. This causes a current I(t) to flow through the
circuit. How much is this current, and how much is, say, the voltage across the resistor?

5

Electrical engineers will tell you that the total voltage Vi, (t) must equal the sum of the voltages
Vr(t), Vi (t) and Vi (t) across the three components. These voltages are related to the current
I(t) which flows through the three components as follows:

Vr(t) = RI(t)

dt C
VL(t) = Ld_;i(tt).

Surprisingly, these little electrical components know calculus! (Here R, C' and L are constants
depending on the particular components in the circuit. They are measured in “Ohm,” “Farad,”
and “Henry.”)

Starting from the equation
Vin(t) = Vr(t) + Vi(t) + Vo (t)
you get
Vin(t) = VR(t) + VL (1) + V& ()

= RI'(t) + LI"(t) + é[(t)

In other words, for a given input voltage the current I(¢) satisfies a second order inhomogeneous
linear differential equation
d?1 dr 1
46 L— +R— + —I=V{,(t).
(16) R ZT= VL
Once you know the current I(t) you get the output voltage Vout(t) from

Vout (t) = RI(t).
In general you can write down a differential equation for any electrical circuit. As you add

more components the equation gets more complicated, but if you stick to resistors, inductances
and capacitors the equations will always be linear, albeit of very high order.

41. PROBLEMS
General Questions.
290. Classify each of the following as homogeneous linear, inhomogeneous linear, or nonlinear and
specify the order. For each linear equation say whether or not the coefficients are constant.
(Hy" +y=0 (if) 2y” +yy' =0
(iii) zy"” —y' =0 (iv) zy" +yy =2
(v)ay' —y ==z (vi) Y +y = ze”.
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291. (i) Show that y = 22 + 5 is a solution of xy” —y’ = 0.
(if) Show that y = C122 + Cs is a solution of xy” —y’ = 0.

292. (i) Show that y = (tan(cix + ¢2))/c1 is a solution of yy” = 2(y")? — 2y'.

(if) Show that y; = tan(z) and y2 = 1 are solutions of this equation, but that yi + y2 is not.

(iii) Is the equation linear homogeneous?

Separation of Variables.

293. The differential equation
dy _4-y°
dt 4
is called the Logistic Equation.

(a) Find the solutions yo, y1, y2, and
ys which satisfy yo(0) = 0, y1(0) = 1,
y2(0) = 2 and y3(0) = 3.

(b) Find lim¢— oo yg(t) for k = 1,2, 3.

(¢) Find lim¢— — oo yi(t) for £ =1,2,3.

(d) Graph the four solutions yo, ...,
Y3.

* ok %
In each of the following problems you should
find the function y of & which satisfies the
conditions (A is an unspecified constant:
you should at least indicate for which val-
ues of A your solution is valid.)

d
204. Y + 2%y = 0,y(1) = 5.
dz

295. + (14 32%)y =0,y(1) = 1.

Y
dz
Linear Homogeneous.

303. (a) Show that y = 4e®+7e2® is a solution
of y" — 3y’ +2y = 0.
(b) Show that y = Cie® + Ce?® is a solu-
tion of y” — 3y’ + 2y = 0.
(¢) Find a solution of y"' — 3y’ +2y = 0 such
that y(0) =7 and y/(0) = 9.

304. (a) Find all solutions of g—z +2y =0.
(b) Find all solutions of % +2y=e"7".
(c¢) Find y if % +2y = e % and y = 7 when
rz=0.

305. (a) Find all real solutions of

d?y _dy
Y 6% Loy =o.
a2 Oqr T

(b) Find y if

y" — 6y’ +10y =0,

d
206. -7 +zcos’y = 0,y(0) = 3.

dz
dy 14z
297. = =0,y(0) = A.
dz + 1+y v(0)
dy 9 -~
298. —~ +1—y“=0,y(0) = A.
dz
dy 9 -~
299. — 4+ 14y~ =0,y(0) = A.
dz
d .
300. d_y — (cosz)y = ¥, y(0) = A.
x

d
301. 2L 443 = 0,4(0) = A.
dx
302. Read Example 35.2 on “Leaky bucket
dating” again. In that example we assumed
that GVK =2.
(a) Solve diffeq for h(t) without assum-
ing $V K =2. Abbreviate C = £V K.

(b) If in an experiment one found that
the bucket empties in 20 seconds after being
filled to height 20 cm, then how much is the
constant C?

and in addition y satisfies the initial condi-
tions y(0) = 7, and y’(0) = 11.

* ko ok

Find the general solution y = y(z) of the
following differential equations

306. %:y
307. %er:o
dty a2
308. de_deZ/:O
309. %Jr%:o
310. %er:o
311. @—yzo

dx3



312. yM(t) — 2y (t) — 3y(t) =0
313. y@ () +4y"(t) + 3y(t) = 0.
314. yW () +2y"(t) + 2y(t) = 0.
315. y () + 4" (t) — 6y(t) = 0.
316. y™M(t) — 8y (t) + 15y(t) = 0.
317. f"'(x) —125f(x) =

318. u®)(x) — 32u(z) =0

319. u®)(z)+ 32u(z) =0

— 5y’ (t) + 6y’ (t) — 2y(t) = 0.
— hB)(t) + 4h"' () — 4h(t) = 0.
(z) +4z(z) = 0.

320. o (1)
321. K9 (1)
322. '(x) — 52"

k ok ok

Solve each of the following initial value prob-
lems. Your final answer should not use com-
plex numbers, but you may use complex
numbers to find it.

Linear Inhomogeneous.

338. Find particular solutions of
"3y 2y =¢3®
//_3yl+2y:efll
"3y + 2y = 437 4 5e®

ko ok ok

Find the general solution y(¢) of the fol-
lowing differential equations
d2y
339. — —y=2
dt?

345. Find y if

d?y | _dy
(a) —5

da? da
d?y dy
dz? dx
d2y dy w
a7 gty
Py o,

hd =e"
a2 T ae YT

(b)
(c)
(d)

T+ e~
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323. vy +9y =0, y(0) =0,y'(0) = —3.
324. y"4+9y =0, y(0) =-3,y'(0) = 0.
325. y"’ — 5y +6y =0, y(0) =0,y'(0) =
826. y” +5y +6y =0, y(0) =1,4'(0) =
327. y' 45y +6y=0, y(0) =0,y'(0) =
328. y” — 6y +5y =0, y(0)=1,y'(0) =0.
329. y” — 6y +5y =0, y(0) =0,y (0) =
330. y"’ 46y +5y =0, y(0) = 1,9'(0) = 0.
331. y’" 46y +5y =0, y(0) =0,y'(0) = 1.
332. ¥ — 4y +5y=0,y(0)=1,4(0)=0
333. y’ — 4y’ +5y =0, y(0) =0,y (0) =
334. y" 4+ 4y +5y =0, y(0) =1,y'(0) = 0.
335. y’' 4+ 4y +5y =0, y(0) =0,y'(0) =
336. y" — 5y +6y =0, y(0) = 1,4/ (0) = 0.
337. () + f7() — f'(t) + 15f(t) = O,
with initial conditions f(0) = 0, f/(0) =
1, f(0) = 0.

340. % —y=2¢

d?y
341. el + 9y = cos 3t
342. % + 9y = cost
343. @ +y =cost

de?

d2?y
344. 1 + y = cos 3t.

y(0) =2, y'(0)=3

y(0) =0, y'(0)=0

y(0) =0, y'(0)=0

y(0) =2, y'(0)=3

Hint: Use the Superposition Principle to save work.

346. (i) Find the general solution of

2442 452 =¢

using complex exponentials.
(ii) Solve

2" 4+ 42 + 5z = sint

using your solution to question (i).
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(iii) Find a solution for the equation
2" 422" + 2z =2~ (170
in the form z(t) = u(t)e= (=9,
(iv) Find a solution for the equation
z" 42z’ 4 2z = 2¢~t cost.
Hint: Take the real part of the previous answer.
(v) Find a solution for the equation
Yy 4+ 2y + 2y = 2e " tsint.
Applications.

347. A population of bacteria grows at a rate proportional to its size. Write and solve a differential
equation which expresses this. If there are 1000 bacteria after one hour and 2000 bacteria after
two hours, how many bacteria are there after three hours?

348. Rabbits in Madison have a birth rate of 5% per year and a death rate (from old age) of 2% per
year. Each year 1000 rabbits get run over and 700 rabbits move in from Sun Prairie. (i) Write
a differential equation which describes Madison’s rabbit population at time ¢.

(if) If there were 12,000 rabbits in Madison in 1991, how many are there in 19947

349. According to Newton’s law of cooling the rate dT'/dt at which an object cools is proportional
to the difference T'— A between its temperature 7" and the ambient temperature A. The differential

equation which expresses this is
dT
— =k(T - A)
dt

where k < 0 and A are constants.

(i) Solve this equation and show that every solution satisfies

lim T = A.

t—oo

(if) A cup of coffee at a temperature of 180°F sits in a room whose temperature is 75°F. In five
minutes its temperature has dropped to 150°F. When will its temperature be 90°F? What is the
limit of the temperature as t — co?

350. Retaw is a mysterious living liquid; it grows at a rate of 5% of its volume per hour. A scientist
has a tank initially holding yo gallons of retaw and removes retaw from the tank continuously at
the rate of 3 gallons per hour.

(i) Find a differential equation for the number y(t) of gallons of retaw in the tank at time ¢.
(if) Solve this equation for y as a function of ¢. (The initial volume yo will appear in your answer.)
(iif) What is lim¢ o y(t) if yo = 1007
(iv) What should the value of yg be so that y(¢) remains constant?

351. A 1000 gallon vat is full of 25% solution of acid. Starting at time ¢t = 0 a 40% solution of acid
is pumped into the vat at 20 gallons per minute. The solution is kept well mixed and drawn off

at 20 gallons per minute so as to maintain the total value of 1000 gallons. Derive an expression
for the acid concentration at times ¢ > 0. As t — oo what percentage solution is approached?

352. The volume of a lake is V = 109 cubic feet. Pollution P runs into the lake at 3 cubic feet per
minute, and clean water runs in at 21 cubic feet per minute. The lake drains at a rate of 24 cubic

feet per minute so its volume is constant. Let C' be the concentration of pollution in the lake; i.e.
C=P/V.

(i) Give a differential equation for C.

(if) Solve the differential equation. Use the initial condition C' = Cp when ¢t = 0 to evaluate the
constant of integration.

(iif) There is a critical value C* with the property that for any solution C' = C(t) we have
lim C =C".

t—oo
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Find C*. If Cp = C*, what is C(t)?

353. A philanthropist endows a chair. This means that she donates an amount of money By to the
university. The university invests the money (it earns interest) and pays the salary of a professor.
Denote the interest rate on the investment by r (e.g. if » = .06, then the investment earns interest
at a rate of 6% per year) the salary of the professor by a (e.g. a = $50,000 per year), and the
balance in the investment account at time t by B.

(i) Give a differential equation for B.

(i) Solve the differential equation. Use the initial condition B = By when t = 0 to evaluate the
constant of integration.

(iii) There is a critical value B* with the property that (1) if By < B*, then there is a ¢ > 0 with
B(t) = 0 (i.e. the account runs out of money) while (2) if Bp > B*, then lim¢—.o B = oco. Find
B*.

(iv) This problem is like the pollution problem except for the signs of r and a. Explain.

354. A citizen pays social security taxes of a dollars per year for T} years, then retires, then receives
payments of b dollars per year for Th years, then dies. The account which receives and dispenses
the money earns interest at a rate of r% per year and has no money at time ¢ = 0 and no money at
the time ¢t = T} + T> of death. Find two differential equations for the balance B(t) at time t; one
valid for 0 < ¢ < T1, the other valid for T1 <t < Ty +T». Express the ratio b/a in terms of T1, T,
and r. Reasonable values for Ty, Th, and r are Ty = 40, T» = 20, and r = 5% = .05. This model
ignores inflation. Notice that 0 < dB/dt for 0 < ¢t < T4, that dB/dt < 0 for Th <t < T1 + Tb,
and that the account earns interest even for T7 <t <Ti + Ts.

355. A 300 gallon tank is full of milk containing 2% butterfat. Milk containing 1% butterfat is
pumped in a 10 gallons per minute starting at 10:00 AM and the well mixed milk is drained off
at 15 gallons per minute. What is the percent butterfat in the milk in the tank 5 minutes later
at 10:05 AM? Hint: How much milk is in the tank at time t? How much butterfat is in the milk
at time t = 07

356. A sixteen pound weight is suspended from the lower end of a spring whose upper end is attached
to a rigid support. The weight extends the spring by half a foot. It is struck by a sharp blow
which gives it an initial downward velocity of eight feet per second. Find its position as a function
of time.

357. A sixteen pound weight is suspended from the lower end of a spring whose upper end is attached
to a rigid support. The weight extends the spring by half a foot. The weight is pulled down one
feet and released. Find its position as a function of time.

358. The equation for the displacement y(t) from equilibrium of a spring subject to a forced vibration
of frequency w is

d?
(47) Fg + 4y = sin(wt).
(i) Find the solution y = y(w, t) of (47) for w # 2 if y(0) = 0 and y’(0) = 0.
(if) What is limy, 2 y(w, t)?
(iii) Find the solution y(t) of
d2
(48) gg + 4y = sin(2¢)
if y(0) = 0 and y/(0) = 0. (Hint: Compare with (47).)
359. Suppose that an undamped spring is subjected to an external periodic force so that its position
y at time ¢ satisfies the differential equation
d*y :
) + Wiy = csin(wt).
(i) Show that the general solution is
y = C'1 cos wot + Ca sinwot + 2; sin wt.
w2 —

2
wo
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when wo # w.
(if) Solve the equation when w = wy.
(iif) Show that in part (i) the solution remains bounded as t — oo but in part (ii) this is not so.
(This phenomenon is called resonance. To see an example of resonance try Googling “Tacoma
Bridge Disaster.”)

360. Have look at the electrical circuit equation (46) from §40.4.
(i) Find the general solution of (46), assuming that Vi, (¢) does not depend on time ¢. What is
lim¢— oo I(t)?
(if) Assume for simplicity that L = C' = 1, and that the resistor has been short circuited, i.e. that
R = 0. If the input voltage is a sinusoidal wave,

Via(t) = Asinwt,  (w#1)

then find a particular solution, and then the general solution.
(iii) Repeat problem (ii) with w = 1.
(iv) Suppose again that L = C' = 1, but now assume that R > 0. Find the general solution when
Vin(t) is constant.

(v) Still assuming L = C = 1, R > 0 find a particular solution of the equation when the input
voltage is a sinusoidal wave
Vin(t) = Asinwt.
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Vectors

42. Introduction to vectors

42.1. Definition. A wvector is a column of two, three, or more numbers, written as

ai

— ail — -

a= or a= |asz or a=
az

in general.

The length of a vector a = (gé) is defined by
3

al

[|al = || | a2 =4/a? + a3 + a2

as

We will always deal with either the two or three dimensional cases, in other words, the cases
n = 2 or n = 3, respectively. For these cases there is a geometric description of vectors which
is very useful. In fact, the two and three dimensional theories have their origins in mechanics
and geometry. In higher dimensions the geometric description fails, simply because we cannot
visualize a four dimensional space, let alone a higher dimensional space. Instead of a geometric
description of vectors there is an abstract theory called Linear Algebra which deals with “vector
spaces” of any dimension (even infinite!). This theory of vectors in higher dimensional spaces is
very useful in science, engineering and economics. You can learn about it in courses like MATH
320 or 340,/341.

42.2. Basic arithmetic of vectors. You can add and subtract vectors, and you can mul-
tiply them with arbitrary real numbers. this section tells you how.

The sum of two vectors is defined by
ay b1 a1 + b1
49 _
) () + () = (2 5m)
and
ay b1 a1 + by
az | + (b2 | = |azx+0b2
a3 + b3

The zero vector is defined by

It has the property that

i+0=0+d=a
no matter what the vector @ is.
al
You can multiply a vector @ = | a2 | with a real number t according to the rule
as
tay
ta = | tas
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In particular, “minus a vector” is defined by
—a1
—a=(-1)a= | —ao
—as

The difference of two vectors is defined by

- -,

G—b=ad-+(-b).

So, to subtract two vectors you subtract their components,

al b1 a; — by
a—b=|ax|—|b2] =|az2—0b2
as b3 a3 — b3

(5)+ (3= (3
()-(2)=(1 o(f) 4o (D) +e(t) = (5)
- (4s) = (6) = (Te)=a+a(,t)

42.4. Two very, very BAD examples. Vectors must have the same size to be added,
therefore

N——

(o)~ (1) - ()

N——

(=1}

9 1
( ) + | 3] = undefined!!!
3 2

Vectors and numbers are different things, so an equation like
a =3 is nonsense!

This equation says that some vector (@) is equal to some number (in this case: 3). Vectors and
numbers are never equal!

42.5. Algebraic properties of vector addition and multiplication. Addition of vec-
tors and multiplication of numbers and vectors were defined in such a way that the following
always hold for any vectors d@, b, é (of the same size) and any real numbers s, ¢

(50) a+b=b+a [vector addition is commutative]
(51) i+ (b+e=(@+b)+¢ [vector addition is associative]
(52) t(@+b) =ta+tb [first distributive property]

(53) (s+t)a=sa+ta [second distributive property]

- 3
42.6. Prove (50). Let @ = (gé ) and b = (b; ) be two vectors, and consider both possible
3 b3
ways of adding them:

ai b1 a1 + by b1 ay b1 + a1
az | + b2 | = | a2+ b2 and ba | + (a2 | =|b2+a2
as bs a3 + b3 b3 as b3 + a3

We know (or we have assumed long ago) that addition of real numbers is commutative, so that
a1 + b1 = b1 + a1, etc. Therefore

. - a1+by by+aq — _

a+b=|( ax+bs | = | batas | =b+a.
a3+b3 bz+as

This proves (50).
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42.7. Example. If ¥ and @ are two vectors, we define
d=27%+3w, b=-9+w.
Problem: Compute @ + b and 2@ — 3b in terms of ¥ and w.

Solution:

—1)B+ B+ 1) = B+ 4

=N

2G — 3b = 2(2T + 3W) — 3(—T + @) = 4W + 6@ + 3T — 3w = 7T + 3W.

Problem: Find s,t so that sa + th = .
Solution: Simplifying sa + tb you find
5@+ b = 5(2T + 3W) + t(—B + W) = (25 — 1) + (35 + 1) W.

One way to ensure that sa@ + tb = ¥ holds is therefore to choose s and # to be the solutions of

2s —t=1
3s+t=0
The second equation says t = —3s. The first equation then leads to 2s +3s =1, i.e. s = % Since
t = —3s we get t = —%. The solution we have found is therefore
1= 37 _ =
d—b=1.

42.8. Geometric description of vectors. Vectors originally appeared in mechanics, where
they represented forces: a force acting on some object has a magnitude and a direction. Thus a
force can be thought of as an arrow, where the length of the arrow indicates how strong the force
is (how hard it pushes or pulls).

So we will think of vectors as arrows: if you specify two points P and @, then the arrow
pointing from P to @ is a vector and we denote this vector by %

The precise mathematical definition is as follows:

42.9. Definition. For any pair of points P and Q whose coordinates are (p1,p2,p3) and
—
(q1,92,q3) one defines a vector PQ by

_, [(n-m
PQ=|q2—p2
43 — p3

If the initial point of an arrow is the origin O, and the final point is any point Q, then the vector
—
OQ is called the position vector of the point Q.

two pictures of

If p and g are the position vectors of P and @, then one can write P_>Q as the vector P-Q> —G-p
SN q1 P L.
PQ=|g|—-|p2)=a-p

q3 p3

For plane vectors we define P—Cj similarly, namely, P—Cj = (g; :z;). The old formula for the

distance between two points P and @ in the plane

distance from P to Q = \/(q1 —p1)?2 4 (g2 — p2)?
says that the length of the vector P—Q> is just the distance between the points P and @), i.e.
—_
distance from P to Q = HPQH .

This formula is also valid if P and @ are points in space.

position vectors in the plane

and in space
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42.10. Example. The point P has coordinates (2,3); the point @ has coordinates (8,6).
The vector P—Q) is therefore
== 8—2 6
ra=(-3) - ()

This vector is the position vector of the point R whose coordinates are (6,3). Thus

o

—_— — 6
PQ=0R= (3) .
—_—
The distance from P to @ is the length of the vector PQ), -
distance P to Q = H (g) H =62+ 32 = 3,/5. Ol 23 45678

PN w s U,

42.11. Example. Find the distance between the points A and B whose position vectors
. 1 - 0 .
are @ = ((1)) and b= (%) respectively.

Solution: One has

-1
distanccAmB:nE’n:na_an:H 0 ||l=/(-12+02+12=2
1

42.12. Geometric interpretation of vector addition and multiplication. Suppose
you have two vectors @ and b. Consider them as position vectors, i.e. represent them by vectors
that have the origin as initial point:

— - —
a=0A, b=OB.
Then the origin and the three endpoints of the vectors a, band @+ b form a parallelogram. See

figure 15.

To multiply a vector @ with a real number ¢ you multiply its length with |¢t|; if ¢ < 0 you
reverse the direction of a@.

a+b
A b
a b a

Figure 15. Two ways of adding plane vectors, and an addition of space vectors

42.13. Example. In example 42.7 we assumed two vectors ¥ and @ were given, and then
defined @ = 26 + 3@ and b = —% + w. In figure 17 the vectors @ and b are constructed
geometrically from some arbitrarily chosen ¥ and w. We also found algebraically in example 42.7
that @ -+ b= ¥ + 4. The third drawing in figure 17 illustrates this.

43. Parametric equations for lines and planes
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QL

5~
—Qa

Figure 16. Multiples of a vector, and the difference of two vectors.

Figure 17. Picture proof that a + b=79+4win example 42.13.

Given two distinct points A and B we consider the line segment AB.
If X is any given point on AB then we will now find a formula for the
position vector of X.

Define t to be the ratio between the lengths of the line segments AX
and AB,

_ length AX
" length AB’

—_— — —_— —
Then the vectors AX and AB are related by AX = tAB. Since AX is shorter than AB we have
0<t<l1.

The position vector of the point X on the line segment AB is
— — — — —
OX =0A+AX =0OA+tAB.
If we write a, I;, & for the position vectors of A, B, X, then we get
(54) F=(—-t)@a+tb=a+tb—a).

This equation is called the parametric equation for the line through A and B. In our derivation
the parameter t satisfied 0 < ¢ < 1, but there is nothing that keeps us from substituting negative
values of ¢, or numbers ¢t > 1 in (54). The resulting vectors & are position vectors of points X
which lie on the line £ through A and B.

43.1. Example. [Find the parametric equation for the line £ through the points A(2,1) and
B(3,—1), and determine where ¢ intersects the z; axis. |
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(@] @]

Figure 18. Constructing points on the line through A and B

Solution:  The position vectors of A, B are @ = (%) and b =
(—31 ), so the position vector of an arbitrary point on ¢ is given by

b0 () (- () (2)-072)

where ¢ is an arbitrary real number.

This vector points to the point X = (14 2t,2— 3t). By definition,
a point lies on the zj-axis if its 2 component vanishes. Thus if the
point

: X =(1+2t2—3t)
lies on the zi-axis, then 2 — 3t = 0, i.e. t = % The intersection point X of ¢ and the zi-axis is
therefore X|y—g/3 = (1 +2- %,0) =(3,0).

43.2. Midpoint of a line segment. If M is the midpoint of the line segment AB, then
the vectors AM and MB are both parallel and have the same direction and length (namely, half
the length of the line segment AB). Hence they are equal: AM = MB. If a, m, and b are the
position vectors of A, M and B, then this means

—_— — -
m—ada=AM = MB =b— m.
Add m and a to both sides, and divide by 2 to get
i+b

b= ——.

a —+ 2

=

m =

N[

43.3. Parametric equations for planes in space*. You can specify a plane in three
dimensional space by naming a point A on the plane P, and two vectors ¥ and w parallel to the
plane P, but not parallel to each other. Then any point on the plane P has position vector &
given by

(55) &=+ 5T+ tib.

The following construction explains why (55) will give you any point on the plane through
A, parallel to 9, w.

Let A, ¥, @ be given, and suppose we want to express the position vector of some other point
—
X on the plane P in terms of @ = OA, ¥, and .

First we note that
—_— — —_—
OX =0OA + AX.
Next, you draw a parallelogram in the plane P whose sides are parallel to the vectors ¥ and w,
and whose diagonal is the line segment AX. The sides of this parallelogram represent vectors
—_—
which are multiples of ¥ and w and which add up to AX. So, if one side of the parallelogram is
— — — —
s¥ and the other tw then we have AX = s9 + tw. With OX = OA + AX this implies (55).
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Figure 19. Generating points on a plane P

44. Vector Bases

44.1. The Standard Basis Vectors. The notation for vectors which we have been us-
ing so far is not the most traditional. In the late 19th century GIBBS and HEAVYSIDE adapted
HAMILTON’s theory of Quaternions to deal with vectors. Their notation is still popular in texts
on electromagnetism and fluid mechanics.

Define the following three vectors:

1 0 0
i=o], 7=[1], B=]o0
0 0 1

Then every vector can be written as a linear combination of ;':, 3 and E, namely as follows:

ai
az | = a1t +a23 + ask.
as

Moreover, there is only one way to write a given vector as a linear combination of {':, _; R I;} This
means that
a; = by

alg—l- a23+a3E:b1§+ b2;+ bgl_(; <— az = b

a3 = bs
(1 =_ (0
*=\o) 771

and just as for three dimensional vectors one can write every (plane) vector @ as a linear combi-

For plane vectors one defines

nation of % and 3,

(al) = a,1’-i:+ a2_7,

a2

Just as for space vectors, there is only one way to write a given vector as a linear combination of
o 2
2z and j.

44.2. A Basis of Vectors (in general)*. The vectors ;’:, ;, k are called the standard basis
vectors. They are an example of what is called a “basis”. Here is the definition in the case of
space vectors:
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44.3. Definition. A triple of space vectors {u, , W} is a basis if every space vector @ can
be written as a linear combination of {4, v, W}, i.e.

4 = ayt + ayV + ay,W,

and if there is only one way to do so for any given vector @ (i.e. the vector @ determines the
coefficients au,av,aw). For plane vectors the definition of a basis is almost the same, except
that a basis consists of two vectors rather than three:

44.4. Definition. A pair of plane vectors {4, ¥} is a basts if every plane vector @ can be

written as a linear combination of {4, ¥}, i.e. @ = aub + avD, and if there is only one way to
do so for any given vector @ (i.e. the vector @ determines the coefficients av, av ).

45. Dot Product

45.1. Definition. The “inner product” or “dot product” of two vectors is given by

al b1
az |+ | b2 | = a1br + a2b2 + asbs.
as b3

Note that the dot-product of two vectors is a number!

The dot product of two plane vectors is (predictably) defined by

<a1) . (bl) = a1b; + azbs.
a9 bo

An important property of the dot product is its relation with the length of a vector:
(56) l)|? = d-a.

45.2. Algebraic properties of the dot product. The dot product satisfies the following
rules,

(57) ab=>ba

(58) @ (b+@) =a-b+aé
(59) (b+@&)d=ba+ca
(60) t(d@-b) = (ta@)-b

which hold for all vectors a, l;, ¢ and any real number t.

45.3. Example. Simplify ||@ + b||2.
One has

B 45.4. The diagonals of a parallelogram. Here is an example of how you
can use the algebra of the dot product to prove something in geometry.
Suppose you have a parallelogram one of whose vertices is the origin. Label
'A  the vertices, starting at the origin and going around counterclockwise, O, A, C' and
o —_— - —_— —
O B. Let a =0A, b= 0B, é¢=0OC. One has
—_—

— —_— —
OC=¢é=ada+b, and AB=b-—a.
These vectors correspond to the diagonals OC and AB
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45.5. Theorem. In a parallelogram OACB the sum of the squares of the
lengths of the two diagonals equals the sum of the squares of the lengths of all four
sides.

PRrROOF. The squared lengths of the diagonals are
I0C? = lla+ 8]* = ||al]* + 245+ 5]
—_— - - -
I|AB|? = ||l& - b|* = [|@||* — 2d-b + [|b]?
Adding both these equations you get
— — -
IOCI? + | AB? = 2 (1a)1® + 18]%) .
The squared lengths of the sides are
— . — - — . — -
IOA|? = |l@|®, |IAB|*> = ||, |IBC|* =lal? OCI|* = |b]*.
Together these also add up to 2 (||6||2 + ||l;||2) d

Figure 20. Proof of the law of cosines

45.6. The dot product and the angle between two vectors. Here is the most impor-
tant interpretation of the dot product:

45.7. Theorem. If the angle between two vectors @ and b is 6, then one has

@b =@l - ||b| cos 6.

PROOF. We need the law of cosines from high-school trigonometry. Recall that for a triangle
OAB with angle 0 at the point O, and with sides OA and OB of lengths a and b, the length ¢ of
the opposing side AB is given by
(61) c? =a?+ b2 — 2abcos 6.
In trigonometry this is proved by dropping a perpendicular line from B onto the side OA. The
triangle O AB gets divided into two right triangles, one of which has AB as hypotenuse. Pythagoras
then implies

¢ = (bsin0)? + (a — beos 0)2.

After simplification you get (61).

To prove the theorem you let O be the origin, and then observe that the length of the side

— - — o —_—
AB is the length of the vector AB = b — a. Here @ = OA, b= OB, and hence
¢ = b—a|? = (6 a)(5—a) = B2 + a2 - 2B,

Compare this with (61), keeping in mind that a = ||@|| and b = ||b||: you are led to conclude that
—2@-b = —2abcos 6, and thus @b = ||@|| - ||b|| cos. ]
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45.8. Orthogonal projection of one vector onto another.
The following construction comes up very often. Let @ # 0 be a given
vector. Then for any other vector @& there is a number A such that

E=Na+Y
where ¥ L d@. In other words, you can write any vector & as the
sum of one vector parallel to @ and another vector orthogonal to a.
The two vectors A@ and ¥y are called the parallel and orthogonal
components of the vector & (with respect to @), and sometimes the
following notation is used

Given @ and a, find &,

a"://:)\&',, a":L:;Tj, and i//.

so that
z=a/ +a*.
There are moderately simple formulas for 2/ and :ﬁj‘, but it is better to remember the following
derivation of these formulas.
Assume that the vectors @ and @ are given. Then we look for a number A such that g = £—\a
is perpendicular to @. Recall that @ L (2 — A@) if and only if
a- (& — \a)=0.
Expand the dot product and you get this equation for A

a-@ — \a-a =0,
whence
a-x a-a
(62) A=——=—3
aa |aj

To compute the parallel and orthogonal components of & w.r.t. @ you first compute A according
to (62), which tells you that the parallel component is given by

a-x
&/ =)d === a.
a-a
The orthogonal component is then “the rest,” i.e. by definition - = & — 55//, )
Ft-z-a/-5-2%3
a-a

45.9. Defining equations of lines. In § 43 we saw how to generate points on a line given
two points on that line by means of a “parametrization.” I.e. given points A and B on the line £
the point whose position vector is & = @+ t(b — @) will be on ¢ for any value of the “parameter”
t.

In this section we will use the dot-product to give a different X
description of lines in the plane (and planes in three dimensional
space.) We will derive an equation for a line. Rather than gener-
ating points on the line £ this equation tells us if any given point
X in the plane is on the line or not.

Here is the derivation of the equation of a line in the plane.
To produce the equation you need two ingredients:

1. One particular point on the line (let’s call this point A,
and write @ for its position vector),

O
Is X on £7

2. a normal vector 1 for the line, i.e. a nonzero vector
which is perpendicular to the line.

Now let X be any point in the plane, and consider the line segment AX.
e Clearly, X will be on the line if and only if AX is parallel to £ 8
e Since ¢ is perpendicular to 73, the segment AX and the line £ will be parallel if and
only if AX 1 n.
—
e AX 1 7 holds if and only if AX-1, = 0.

8 From plane Euclidean geometry: parallel lines either don’t intersect or they coincide.
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So in the end we see that X lies on the line ¢ if and only if the following vector equation is satisfied:
(63) AXi=0 or (F—a)H=0
This equation is called a defining equation for the line (.

Any given line has many defining equations. Just by changing the length of the normal you
get a different equation, which still describes the same line.

45.10. Line through one point and perpendicular to another. Find a defining equa-
tion for the line ¢ which goes through A(1,1) and is perpendicular to the line segment AB where
B is the point (3, —1).

Solution.  We already know a point on the line, namely A,
but we still need a normal vector. The line is required to be per-
—
pendicular to AB, so 1 = AB is a normal vector:

a=an=(570) = (%)

Of course any multiple of 71 is also a normal vector, for instance

1. (1
m_§n_<_1

is a normal vector.

With a = (%) we then get the following equation for ¢

(2 1 — 1) _ B _
—a)—(_2) <x2_1)_2x1 2x2 = 0.

If you choose the normal M instead, you get

(@ — &) = (_11)@;:1) — 21— 22 =0.

Both equations 2z1 — 2x2 = 0 and 1 — 2 = 0 are equivalent.

e

wl

45.11. Distance to a line. Let £ be a line in the plane and assume a point A on the line
as well as a vector 73 perpendicular to £ are known. Using the dot product one can easily compute
the distance from the line to any other given point P in the plane. Here is how:

Draw the line m through A perpendicular to ¢, and drop a perpendicular line from P onto
m. let Q be the projection of P onto m. The distance from P to ¢ is then equal to the length of
the line segment AQ. Since AQP is a right triangle one has

AQ = AP cos?.
Here 0 is the angle between the normal 7i and the vector AP. One also has
— —
7-(p — d) = 1i- AP = ||AP)|| ||73|| cos @ = AP ||7i|| cos 6.

Hence we get
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This argument from a drawing contains a hidden assumption, namely that the point P lies on the
side of the line £ pointed to by the vector 7. If this is not the case, so that 72 and ﬁ point to
opposite sides of ¢, then the angle between them exceeds 90°, i.e. @ > 7/2. In this case cos 6 < 0,
and one has AQ = —AP cosf. the distance formula therefore has to be modified to

7 (P — @)

dist(P, £) = T

45.12. Defining equation of a plane. Just as we
have seen how you can form the defining equation for a line
in the plane from just one point on the line and one normal -
vector to the line, you can also form the defining equation
for a plane in space, again knowing only one point on the

<

Si

plane, and a vector perpendicular to it.

If A is a point on some plane P and 7i is a vector per-

pendicular to P, then any other point X lies on P if and only

—
if AX 1 7. In other words, in terms of the position vectors
a and @ of A and X,
the point X is on P <= 7i-(2& —a) = 0.

Arguing just as in § 45.11 you find that the distance of

a point X in space to the plane P is

(64) dist(X, P) = i%
[0

Here the sign is “+” if X and the normal 7¢ are on the same side of the plane P; otherwise the

sign is “—7.

45.13. Example. Find the defining equation for the plane P through the point A(1,0,2)
which is perpendicular to the vector (%)

Solution: We know a point (A) and a normal vector 7 = ( ) for P. Then any point X

with coordinates (z1,x2,23), or, with position vector & (%é ), will lie on the plane P if and
3
only if
1 1 1
i (E—ad)=0 < |2 2| — |0
1 T3 2
1 xy — 1
— |2 T2 =0
1 xr3 — 2

< 1-(x1—1)+2-(x2)+1~(x3—2):0
< 1 +2x2+2x3—3=0.

45.14. Example continued. Let P be the plane from the previous example. Which of the
points P(0,0,1), Q(0,0,2), R(—1,2,0) and S(—1,0,5) lie on P? Compute the distances from the
points P, @, R, S to the plane P. Separate the points which do not lie on P into two group of
points which lie on the same side of P.

Solution: We apply (64) to the position vectors P, g, 7, § of the points P, Q, R, S. For each

calculation we need
7] = V12 + 22 + 12 = /6.

s . _, 1y . s _, .
The third component of the given normal 7 = (2) is positive, so 72 points “upwards.” Therefore,

if a point lies on the side of P pointed to by 7i, we shall say that the point lies above the plane.
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T3

2

3
z1
P ﬁ:(%),ﬁ—&:(E)i),ﬁ-(ﬁ—&):1-(—1)+2-(0)+1v(—1):—2
P-4 2 1
TEr o ve s sv®

This quantity is negative, so P lies below P. Its distance to P is %\/6
_ 0y . -1 Lo oo
@ d=(9)p-a=(¢) aE-a=1-(-)+2-)+1-(0)=—1
ri-(p— a 1 1
wp-d) 11 g
[l V6~ 6

This quantity is negative, so @ also lies below P. Its distance to P is %\/6.
1 -2
R: #= ( 2 ),f;—&: (32), AB-a)=1-(-2)+2 (2)+1-(-2)=0
(5 — )
7l
Thus R lies on the plane P, and its distance to P is of course 0.
I AN G N ) ) o
$:5=(" ). p-a=(g ) mB-a=1-(-1)+2-(0)+1-(3) =2
n(p—a) 2 1
[I72] V6 3
This quantity is positive, so S lies above P. Its distance to P is %\/6

V6.

We have found that P and @ lie below the plane, R lies on the plane, and S is above the plane.

45.15. Where does the line through the points B(2,0,0) and C(0,1,2) intersect
the plane P from example 45.137 Solution: Let ¢ be the line through B and C. We set up
the parametric equation for ¢. According to §43, (54) every point X on ¢ has position vector &

given by

2 0-2 22t
(65) B=b+t@—b=|0|+t|{1-0]=| ¢
0 2-0 2

for some value of t.
The point X whose position vector @ is given above lies on the plane P if & satisfies the
defining equation of the plane. In example 45.13 we found this defining equation. It was

(66) n- (& —a) =0, i.e. x1 +2w2 + 23 —3=0.
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So to find the point of intersection of ¢ and P you substitute the parametrization (65) in the
defining equation (66):

0= +2m9+ a3 —3=(2—2t) +2(t) + (2t) —3 =2t — 1.

This implies t = %, and thus the intersection point has position vector

22t 1
F=b+1(@E-b)= t =3,
2t 1

i.e. £ and P intersect at X (1, %, ).

46. Cross Product

46.1. Algebraic definition of the cross product. Here is the definition of the cross-
product of two vectors. The definition looks a bit strange and arbitrary at first sight — it really
makes you wonder who thought of this. We will just put up with that for now and explore the
properties of the cross product. Later on we will see a geometric interpretation of the cross product
which will show that this particular definition is really useful. We will also find a few tricks that
will help you reproduce the formula without memorizing it.

46.2. Definition. The “outer product” or “cross product” of two vectors is given by

ai b1 azbz — azbs
az | X [ b2 | = | asby —a1b3
as b3 a1bs — asby

Note that the cross-product of two vectors is again a vector!

46.3. Example. If you set b = @ in the definition you find the following important fact:
The cross product of any vector with itself is the zero vector:

ax a=0 for any vector a.

1\ » —2
46.4. Example. Let @ = (g), b= ( (1) ) and compute the cross product of these vectors.
Solution:

1 9 2-0-3-1 _3

axb=|2]|x[1]=]3(-2-1-0 = | -6

3 1-1—-2-(-2) 5
x 7 5’ i P I N _In _torms of the standard basis vectors you can chcck.th.c
K G k= K multiplication table. An easy way to remember the multipli-
|l _E 6 ; | cation table is to put the vectors 4, j, k clockwise in a circle.
‘7’2 - 76 Given two of the three vectors their product is either plus or

7 —1

minus the remaining vector. To determine the sign you step
from the first vector to the second, to the third: if this makes
you go clockwise you have a plus sign, if you have to go counterclockwise, you get a minus.

The products of 'Z,; and k are all you need to know to compute the cross product. Given
two vectors @ and b write them as @ = a1%+ a2j + azk and b = b1 + baj + b3k, and multiply as
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follows

X g:(alz?-i- az;-{- a3l€) X (bl’LT-i- bz_;'-i- bgl_é)
= aﬁx (b1§+b2§+bgﬁ)
+azj x (b1i+ b2 + bsk)
+ask X (bli + b2g + bgk)

QL

= alblfx{ + albzix;’ + albgfxﬁ +
azblfxi + azszxi + azbgix E +
a3b1’;;)< ; + a3b2EX; + a3b3fé)< E;

= a1b16 + aleE — albgj
—azbﬂ; + a2b26 + azbgg +

agbl_; — a3b2{ + a3b36

=(a2bs — azb2)i + (azb1 — a1b3)j + (a1bs — a2b1)k

This is a useful way of remembering how to compute the cross product, particularly when many
of the components a; and b; are zero.

46.5. Example. Compute k x (p’l?-i— qj" + rﬁ):
Ex (pi+qj+rk)=plkxi) +qlkxj) +rkxk)=—qi+pj.

There is another way of remembering how to find @ x b. It involves the “triple product” and
determinants. See § 46.7.

46.6. Algebraic properties of the cross product. Unlike the dot product, the cross
product of two vectors behaves much less like ordinary multiplication. To begin with, the product
is not commutative — instead one has

(67) @xb=—-bxd for all vectors @ and b.

This property is sometimes called “anti-commutative.”

Since the crossproduct of two vectors is again a iX(ixg)=txk=—j,
vector you can compute the cross product of three vec- (txt)xXg= O0xj=0
tors @, b, é. You now have a choice: do you first multi- so “X” is not associative

ply @ and l;, or b and é, or @ and ¢é? With numbers it
makes no difference (e.g. 2 X (3 x5) =2 x 15 =30 and (2 X 3) x 5 =6 x 5 = also 30) but with
the cross product of vectors it does matter: the cross product is not associative, i.e.

@x (bx & # (@xb)x& for most vectors @, b, &.

The distributive law does hold, i.e.

S

ix (b+d) =dxb+dxé and (b+&xad@=bxa+éxa
is true for all vectors a, l;, é.

Also, an associative law, where one of the factors is a number and the other two are vectors,
does hold. ILe.

(@ x b) = (t@) x b= a x (tb)

holds for all vectors a, b and any number t. We were already using these properties when we
multiplied (a1% + a2j + azk) X (b1t + bag + bsk) in the previous section.

Finally, the cross product is only defined for space vectors, not for plane vectors.

46.7. The triple product and determinants.
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46.8. Definition. The triple product of three given vectors @, l;, and € is defined to be
a (b x &).

In terms of the components of @, 5, and ¢ one has

ay bacsz — bzca
a(bxé)= a2 |-|bzct —bics
as bica — bacy

= a1bacz — a1bzca + azbsc1 — agbics + azbice — agbac.
This quantity is called a determinant, and is written as follows

a1 b1 ca
(68) a2 ba ca| = aibacs —a1bsce + asbzcy — asbics + azbica — azbacy
az bz c3

There’s a useful shortcut for computing such a deter-
minant: after writing the determinant, append a fourth and
a fifth column which are just copies of the first two columns
of the determinant. The determinant then is the sum of six | N .
products, one for each dotted line in the drawing. Each term ,“?:/ b’ % \2733\ \b‘3\
h.as a sign: if tl.le fac_to.rs are read from top-left to b.ottom— YAy A \ \\\ \\\
right, the term is positive, if they are read from top-right to - - - + +
bottom left the term is negative. This shortcut is also very
useful for computing the crossproduct. To compute the cross product of two given vectors @ and
b you arrange their components in the following determinant

a; b oy’

N , 2
~ .

az b2 2| ag b2

7

+

7 a; b
(69) axb= 5 az  ba| = (a2bz — azb2)i + (azbr — a1b3)g + (a1ba — a2b1)k.
k a3 b3

This is not a normal determinant since some of its entries are vectors, but if you ignore that odd
circumstance and simply compute the determinant according to the definition (68), you get (69).

An important property of the triple product is that it is much more symmetric in the factors
a, b, @ than the notation a-(b x &) suggests.

46.9. Theorem. For any triple of vectors a, B, ¢ one has
G (bx & =b-(éx a) = &(axb),
and
a-(bx é)=-b-(@x é =—¢é&(bx a).
In other words, if you exchange two factors in the product 5,-(5 X @) it changes its sign. If you
“rotate the factors,” i.e. if you replace a by b, b by é and @ by a, the product doesn’t change at

all.

46.10. Geometric description of the cross product.

46.11. Theorem.

Q1
X
o4
|_
o
o

QL
X
S0

PROOF. We use the triple product:
d(@xb)=b(@axa)=0

since @x @ = 0 for any vector @. It follows that @x bis perpendicular
to a.

{ S

QL

Similarly, b-(@ x b) = @ (b x b) = 0 shows that @-b is perpen-
dicular to b. g
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46.12. Theorem.
llé@ x bl = ||all [|b]| sin6

PROOF. Bruce® just slipped us a piece of paper with the following formula on it:

(70) @ x b|* + (a-b)* = [|@]*[|b]I*.

o by
After setting @ = (%;) and b = (bz) and diligently computing both sides we find that this
3 b3
formula actually holds for any pair of vectors a, b! The (long) computation which implies this
identity will be presented in class (maybe).

If we assume that Lagrange’s identity holds then we get
= 72 ~ 121712 ~ 72 ~ 112712 Z112(1E12 a2 122 w2
ll@ x bl|* = |a@l[*||bl|" — (@-b)~ = [|@||I[|bl|* — [|@l|"|b]|" cos™ 0 = ||@[|”||b]|” sin”

since 1 — cos? 0 = sin? 0. The theorem is proved. O

These two theorems almost allow you to construct the cross product of two vectors geomet-
rically. If @ and b are two vectors, then their cross product satisfies the following description:

(1) If @ and b are parallel, then the angle 6 between them vanishes, and so their cross
product is the zero vector. Assume from here on that @ and b are not parallel.

(2) a@x b is perpendicular to both @ and b. In other words, since @ and b are not parallel,
they determine a plane, and their cross product is a vector perpendicular to this plane.

(3) the length of the cross product @ x b is ||@|| - ||b|| sin 6.

There are only two vectors that satisfy conditions 2 and 3: to
determine which one of these is the cross product you must apply
the Right Hand Rule (screwdriver rule, corkscrew rule, etc.) for

QL
X
S

Sl

a, l;, axb: if you turn a screw whose axis is perpendicular to @ and

~ b in the direction from @ to 5, the screw moves in the direction of
(/ a @xb.

J\/ Alternatively, without seriously injuring yourself, you should be

J able to make a fist with your right hand, and then stick out your

AN thumb, index and middle fingers so that your thumb is @, your index

finger is b and your middle finger is @ X b. Only people with the most flexible joints can do this

with their left hand.

47. A few applications of the cross product

47.1. Area of a parallelogram. Let ABCD be a parallelogram.
Its area is given by “height times base,” a formula which should be familiar
from high school geometry.

If the angle bctw& the sides AB and AD is 6, then the height of
the parallelogram is ||AD||sin 6, so that the area of ABCD is

(71) area of ABCD = ||AB| - | AD| sin6 = ||AB x AD||.

The area of the triangle ABD is of course half as much,
— —
area of triangle ABD = % [|AB x AD||.
These formulae are valid even when the points A, B,C, and D are

points in space. Of course they must lie in one plane for otherwise ABC D
couldn’t be a parallelogram.

Np’s actually called Lagrange’s identity. Yes, the same Lagrange who found the formula for the
remainder term.
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47.2. Example. Let the points A(1,0,2), B(2,0,0), C(3,1,—1) and D(2,1,1) be given.
Show that ABCD is a parallelogram, and compute its area.

Solution: ABCD will be a parallelogram if and only if AC = AB + AD. In terms of the
position vectors Ei,E, & and d of A, B,C, D this boils down to

é—da=(b—a)+(d—a), ie a+é=>b+d.

For our points we get

1 3 4 2 2 4
a+é=(0|l+(1|]=(1), w+d=(0]+[1]=|(1
2 —1 1 0 1
So ABCD is indeed a parallelogram. Its area is the length of
2—-1 2-2 1 1 -2
—_— —
AB x AD = 0 X[(1-0)=[0|x|-1]=]|-1
0—2 1-0 -2 -1 -1
So the area of ABCD is \/(—=2)2 + (=1)2 + (=1)2 = /6.
fi=axb
~ 47.3. Finding the normal to a plane. If you know two vectors @
b a and b which are parallel to a given plane P but not parallel to each other,
then you can find a normal vector for the plane P by computing

A=dxb.
We have just seen that the vector 72 must be perpendicular to both @ and l;, and hence'? it is
perpendicular to the plane P.

This trick is especially useful when you have three points A, B and C, and you want to find
the defining equation for the plane P through these points. We will assume that the three points
do not all lie on one line, for otherwise there are many planes through A, B and C.

To find the defining equation we need one point on the plane (we have three of them), and a
normal vector to the plane. A normal vector can be obtained by computing the cross product of

. o= A R — —
two vectors parallel to the plane. Since AB and AC are both parallel to P, the vector 1 = ABX AC
is such a normal vector.

Thus the defining equation for the plane through three given points A, B and C' is

fi(@# — @) =0, with #=ABxX AC = (b— @) x (Z— a).

47.4. Example. Find the defining equation of the plane P through the points A(2, —1,0),
B(2,1,—1) and C(—1,1,1). Find the intersections of P with the three coordinate axes, and find
the distance from the origin to P.

Solution: We have

0 -3
—
AB= 1| 2 and AC=|[ 2
-1 1
so that
0 -3 4
—_—
mn=ABxAC=1|2 | x| 2 |=1]3
—1 1 6
is a normal to the plane. The defining equation for P is therefore
4 xr] — 2
O=mn(@—a)= (3] -|z2+1
6 x3 —0
ie.

4x1 + 3x2 + 623 — 5 =0.
The plane intersects the x; axis when zo = x3 = 0 and hence 41 — 5 = 0, i.e. in the point

(%, 0,0). The intersections with the other two axes are (0, %, 0) and (0,0, %)

10This statement needs a proof which we will skip. Instead have a look at the picture
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The distance from any point with position vector & to P is given by

Tir (& — @)

dist = +
ll73]]

1 0
so the distance from the origin (whose position vector is & = 0 = <8>) to P is

G-7i 244 (=1)- :
distance origin to fP::I:a—_:n == +(-1):3+40:6 = L(»’: 1.024---).
lI7]l V42 132 62 /61

47.5. Volume of a parallelepiped.

base

A parallelepiped is a three dimensional body whose sides are parallelograms. For instance, a cube
is an example of a parallelepiped; a rectangular block (whose faces are rectangles, meeting at right
angles) is also a parallelepiped. Any parallelepiped has 8 vertices (corner points), 12 edges and 6
faces.

Let gggg be a parallelepiped. If we call one of the faces, say ABCD, the base of the
parallelepiped, then the other face EF'GH is parallel to the base. The height of the parallelepiped
is the distance from any point in EFGH to the base, e.g. to compute the height of g?gz one
could compute the distance from the point E (or F, or G, or H) to the plane through ABCD.

ABCD
EFGH

BCD

A
Volume = Area of base X height.
EFGH

Since the base is a parallelogram we know its area is given by

The volume of the parallelepiped is given by the formula

Area of base ABC'D = ||A—B> X A—D>||

We also know that 7 = AB x AD is a vector perpendicular to the plane through ABCD, i.e. per-
pendicular to the base of the parallelepiped. If we let the angle between the edge AE and the
normal 73 be 1, then the height of the parallelepiped is given by

—
height = ||AE)|| cos 1.
—_— — —
Therefore the triple product of AB, AD, AE is

ABCD
Volume ¢ = height x Area of base

EFGH " o
— [AE| cos¢ || AB x 4D,

i.e.

Volume ABOD = A—E‘>(A—B> X A—>)
EFGH
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48. Notation

In the next chapter we will be using vectors, so let’s take a minute to summarize the concepts

and notation we have been using.

Given a point in the plane, or in space you can form its position vector. So associated to a

point we have three different objects: the point, its position vector and its coordinates.

the notation we use for these:

OBJECT

here is

NOTATION

Upper case letters, A, B, etc.

Coordinates of a point. ..

Lowercase letters with an arrow on top.
—

The position vector OA of the point A

should be a@, so that letters match across

changes from upper to lower case.

The coordinates of the point A are the same
as the components of its position vector a:
we use lower case letters with a subscript to
indicate which coordinate we have in mind:
(a1,a2).

49. PROBLEMS

Computing and drawing vectors.

361. Simplify the following

“()-0)

b=12 (1/3) 411)
e=aen(h) o (L)
1 0 0
d=t|0o|+2[-1]-10
0 2 1

362. If a, I;, ¢ are as in the previous prob-
lem, then which of the following expressions
mean anything? Compute those expressions
that are well defined.

(iY@+b (i) b+ (ifi) 7@
N T . — X
(iv) b (v) b/e (vi) llall + lIb]|
(vii) |18l (viii) &/ ||&|
363. Let u, U, w be three given vectors, and

suppose

G=d+®, b=2d-w &=i+d+w.

oL

(a) Simplify p = a + 3b — & and q =
¢—2(u+ a).

(b) Find numbers 7, s, ¢ such that 7@+ sb +
té = .

(¢) Find numbers k, I, m such that ka+ b+
mé = v.

364. Prove the Algebraic Properties (50), (51),
(52), and (53) in section 42.5.

365. (a) Does there exist a number x such that

1 T 2
= ?
() +()=C)
(b) Make a drawing of all points P whose
position vectors are given by

P=(o)+ ()

(¢) Do there exist a numbers z and y such

() 1) =0

366. Given points A(2 1) and B(—1,4) com-
pute the vector AB. Is AB a position vec-
tor?

367. Given: points A(2,1), B(3,2), C(4,4)
and D(5,2). Is ABCD a parallelogram?
368. Given: points A(0,2,1),

C(4,1,4) and D.
(a) If ABCD is a parallelogram, then what

are the coordinates of the point D7

(b) If ABDC is a parallelogram, then what
are the coordinates of the point D7

B(07 37 2)7



369. You are given three points in the plane:
A has coordinates (2,3), B has coordinates
(—1,2) and C has coordinates (4, —1).

(a) Compute the vectors A—B>7 B—>A7 A—d, CTA,
— —

BC and CB.

(b) Find the points P, @, R and S whose po-

—_— = — —
sition vectors are AB, BA, AC, and BC,
respectively. Make a precise drawing in fig-
ure 21.

370. Have a look at figure 22

(a) Draw the vectors 2¥ + %ﬁ), —%'B + W,
37 1=
and 50 — ;W

(b) Find real numbers s,t such that sv +
tw = a.

(¢) Find real numbers p, ¢ such that pv +

quw = b.
(d) Find real numbers k,l, m,n such that
U = ka + lb, and W = ma + nw.

Figure 21. Your drawing for problem 369

Parametric Equations for a Line

371. In the figure above draw the points whose

position vectors are given by & = d+t(b—a)

—

fort =0,1, %, %, —1,2. (as always, @ = OA,
etc.)

372. In the figure above also draw the points

whose position vector are given by &

B—i—s(ﬁ—l;) fors:O,l,%,%,—l,Z

373. (a) Find a parametric equation for the
line ¢ through the points A(3,0,1) and
B(2,1,2).

(b) Where does ¢ intersect the coordi-
nate planes?

374. Consider a triangle ABC and let a, 5,6
be the position vectors of A, B, and C'.



104

(a) Compute the position vector of the
midpoint P of the line segment BC. Also
compute the position vectors of the mid-
points Q of AC and R of AB. (Make a
drawing.)

(b) Let M be the point on the line seg-
ment AP which is twice as far from A as it
is from P. Find the position vector of M.

(c) Show that M also lies on the line
segments BQ and CR.

375. Let ABCD be a tetrahedron, and let

a,b, ¢, d be the position vectors of the points Orthogonal decomposition of one
A,B,C,D. vector with respect to another

2 ~ 1
376. Given the vectors @ = (1) and b= (1)
(i) Find position vectors of the midpoint P 3 0

7 =1 ol gL .
of AB, the midpoint @ of C'D and the mid- find a//, @+, b", b for which
point M of PQ. =a’/ +a*, with a////lg)’,aL 1b,

QL

and
(i) Find position vectors of the midpoint R -
of BC, the midpoint S of AD and the mid- b=>b
point N of RS.

7 8", with b/ Ja, bt L G

Figure 22. Drawing for problem 370
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377. Bruce left his backpack on a hill, which in 383. (i) Find the defining equation and a nor-
some coordinate system happens to be the mal vector 73 for the line £ which is the graph
line with equation 12x1 + 5x2 = 130. ofy=1+ %x

The force exerted by gravity on the (if) What is the distance from the origin to

2 ?
backpack is fga = ( ,219 ). Decompose £
this force into a part perpendicular to the (iif) Answer the same two questions for the
hill, and a part parallel to the hill. line m which is the graph of y = 2 — 3x.

(iv) What is the angle between £ and m?

384. Let ¢ and m be the lines with
parametrizations

o () e () (3)

Where do they intersect, and find the angle
between ¢ and m.

l 385. Let ¢ and m be the lines with
parametrizations
2 1 0 —2

378. An eraser is lying on the plane P with
equation z1 + 3x2 + x3 = 6. Gravity pulls
the eraser down, and exerts a force given by

L:2=10]+t|2], m: &= 1 |+s| 0
1 0 —1 3

Do ¢ and m intersect? Find the angle be-

. 0 tween ¢ and m.
f grav = 0 : . .
—mg 386. Let ¢ and m be the lines with
parametrizations
(a) Find a normal 7 for the plane P. . 2 1 R 0 —2
l: 2= |al|+t|2], m: &= 1 |+s| O
(b) Decompose the force f into a part 1 0 -1 3
perpendicular to the plane P and a part per- Here « is some unknown number.

pendicular to 7i. L .
If it is known that the lines £ and m

intersect, what can you say about «a?

The Dot Product The Cross Product

- 387. Compute the following cross products
379. (i) Simplify |G — b]|2. P wine P

3 3
(i) Simplify ||2a@ — b||%. i [1]x |2
2 1
(iii) If @ has length 3, b has length 7 and
@b = —2, then compute ||&@+ B||, ||G@— b]| (2 12
S (i) [ =71 | x [ —-71
and [|2a@ — b]|. 1 1
33 33
380. Simplify (@ + b)-(G@ — b). 1 1
(i) (0 x |1
381. Find the lengths of the sides, and the an- 0 0
gles in the triangle ABC whose vertices are V2 0
A(2,1), B(3,2), and C(1,4). (v) | 1 | x |2
0 0

382. Given: A(1,1), B(3,2) and a point C
which lies on the line with parametric equa-
tion é= (§) +¢ (). If AABC is a right

(v) i (i +3)
(
triangle, then where is C? (There are three (
(

vi) (V2i+ ) x V25
vii) (20 + k) x (j — k)

viii) (cos 0 + sin k) X (sin 0% — cos Ok)

possible answers, depending on whether you
assume A, B or C is the right angle.)
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388. (i) Simplify (G + b) x (@ + b).

(ii) Simplify (@ — b) x (@ — b).
(ifi) Simplify (@ + b) x (@ — b).

—

389. True or False: If@x b = &x b and

b+ 0 then @ = &?

390. Given A(2,0,0), B(0,0,2) and C(2,2,2).

Let P be the plane through A, B and C.
(i) Find a normal vector for P.
(if) Find a defining equation for P.

(iif) What is the distance from D(0, 2,0) to
P? What is the distance from the origin
0(0,0,0) to P?

(iv) Do D and O lie on the same side of
P?

(v) Find the area of the triangle ABC.

(vi) Where does the plane P intersect the
three coordinate axes?

391. (i) Does D(2,1,3) lie on the plane P

through the points A(—1,0,0), B(0,2,1)
and C(0,3,0)?

(if) The point E(1,1, «) lies on P. What is
a?

392. Given points A(1,—1,1), B(2,0,1) and

C(1,2,0).

(i) Where is the point D which makes
ABCD into a parallelogram?

(if) What is the area of the parallelogram
ABCD?

(iii) Find a defining equation for the plane
P containing the parallelogram ABCD.

(iv) Where does P intersect the coordinate
axes?

393. Given points A(1,0,0), B(0,2,0) and

D(—1,0,1) and E(0,0,2).

() If P = g?gID{ is a parallelepiped, then
where are the points C, F, G and H?

(if) Find the area of the base ABCD of
B.
iii) Find the height of .

(i
(iv) Find the volume of .

C

394. Let 2BCD 16 the cube with A at the

EFGH
origin, B(1,0,0), D(0,1,0) and E(0,0,1).
(i) Find the coordinates of all the points A,
B,C,D,E,F,G, H.
(if) Find the position vectors of the mid-
points of the line segments AG, BH, CE
and DF. Make a drawing of the cube with
these line segments.

(iif) Find the defining equation for the plane
BDE. Do the same for the plane CFH.
Show that these planes are parallel.

(iv) Find the parametric equation for the
line through AG.

(v) Where do the planes BDE and CFH
intersect the line AG?

(vi) Find the angle between the planes BDE
and BGH.

(vii) Find the angle between the planes
BDE and BCH. Draw these planes.
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Vector Functions and Parametrized Curves

50. Parametric Curves

50.1. Definition. A vector function f of one wvariable is a function of one real variable,
whose values f(t) are vectors. In other words for any value of ¢ (from a domain of allowed
values, usually an interval) the vector function f" produces a vector f(t) Write f" in components:

2 f1(®)
Ft) = ( .
®) fa(t)
The components of a vector function f of t are themselves functions of ¢. They are ordinary
first-semester-calculus-style functions. An example of a vector function is

r IR t— 2t2 . B 1— 2(1)2 (-1
o= (1 + cos? m) » o= (1 + (cos 7r)2) a ( 2 )
(just to mention one.)

50.2. Definition. A parametric curve is a vector function & = @(t) of one real variable t.
The variable t is called the parameter. Synonyms: “Parametrized curve,” or “parametriza-

> or “vector function (of one variable).”

tion,’

Logically speaking a parametrized curve is the same thing as a vector function. The name
“parametrized curve” is used to remind you of a very natural and common interpretation of the
concept “parametric curve.” In this interpretation a vector function, or parametric curve &(t)
describes the motion of a point in the plane or space. Here ¢ stands for time, and &(¢) is the

position vector at time t of the moving point.

t=0.0

A picture of a vector function.

Instead of writing a parametrized curve as a vector function, one sometimes specifies the two
(or three) components of the curve. Thus one will say that a parametric curve is given by

z1 =x1(t), w2 =x2(t), (and z3 = z3(t) if we have a space curve).
51. Examples of parametrized curves

51.1. An example of Rectilinear Motion. Here’s a parametric curve:

(72) B(t) = (21: ;t) .

The components of this vector function are

(73) z1(t) =1+t x2(t) = 2+ 3t.

Both components are linear functions of time (i.e. the parameter t), so every time ¢ increases by
an amount At (every time At seconds go by) the first component increases by At, and the z2

component increases by 3At. So the point at #(¢f) moves horizontally to the left with speed 1,
and it moves vertically upwards with speed 3.



108

Which curve is traced out by this vector function? In this example
we can find out by eliminating the parameter, i.e. solve one of the two
equations (73) for ¢, and substitute the value of ¢ you find in the other
equation. Here you can solve 1 = 1 4 ¢ for ¢, with result t = z; — 1.
From there you find that

x2:2+3t:2+3(m1—1):3x1—1.

So for any t the vector &(t) is the position vector of a point on the
line 22 = 3z1 — 1 (or, if you prefer the old fashioned z,y coordinates,
y=3z—1).

Conclusion: This particular parametric curve traces out a straight
line with equation zo = 3z — 1, going from left to right.

51.2. Rectilinear Motion in general. This example generalizes
the previous example. The parametric equation for a straight line from
the previous chapter

&(t) = @+ tv,

is a parametric curve. We had ¥ = b—adin 843. At time t = 0 the object is at the point with
position vector @, and every second (unit of time) the object translates by ¥. The vector @ is the
velocity vector of this motion.

In the first example we had @ = (%), and ¥ = (:1,))

51.3. Going back and forth on a straight line. Consider
Z(t) = d+ sin(¢t)v.

At each moment in time the object whose motion is described by this parametric curve finds itself
on the straight line ¢ with parametric equation & = @ + s(b — @), where b= a + o.

However, instead of moving along the line from one end to the other, the point at &(t) keeps
moving back and forth along ¢ between @ + ¥ and @ — v.

51.4. Motion along a graph. Let y = f(z) be some function of one variable (defined for
z in some interval) and consider the parametric curve given by

B(t) = (fft)) —ti+ f(D)].

At any moment in time the point at &(t) has z1 coordinate equal to ¢, and z2 = f(t) = f(z1),
since 1 = t. So this parametric curve describes motion on the graph of y = f(z) in which the
horizontal coordinate increases at a constant rate.

#(6)
51.5. The standard parametrization of a circle. Consider
the parametric curve \0

- cos 6
2(0) = . .
©) (sm 6)
The two components of this parametrization are

z1(0) =cos, w2(0) = sinb,

and they satisfy
21(0)% + 22(0)% = cos? 0 +sin? 0 =1,
so that ®&(0) always points at a point on the unit circle.
As 0 increases from —oo to 400 the point will rotate through the circle, going around infinitely

often. Note that the point runs through the circle in the counterclockwise direction, which is
the mathematician’s favorite way of running around in circles.
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51.6. The Cycloid. The Free Ferris Wheel Foundation is an organization whose goal is to
empower fairground ferris wheels to roam freely and thus realize their potential. With blatant
disregard for the public, members of the F2WF will clandestinely unhinge ferris wheels, thereby
setting them free to roll throughout the fairground and surroundings.

Suppose we were to step into the bottom of a ferris wheel at the moment of its liberation:
what would happen? Where would the wheel carry us? Let our position be the point X, and let
its position vector at time ¢t be &(t). The parametric curve #(¢) which describes our motion is
called the cycloid.

In this example we are given a description of a motion, but no formula for the parametrization
Z(t). We will have to derive this formula ourselves. The key to finding &(t) is the fact that the
arc AX on the wheel is exactly as long as the line segment OA on the ground (i.e. the z; axis).
The length of the arc AX is exactly the angle 6 (“arc = radius times angle in radians”), so the
21 coordinate of A and hence the center C of the circle is 6. To find X consider the right triangle
BCX. Its hypothenuse is the radius of the circle, i.e. CX has length 1. The angle at C' is 0, and
therefore you get

BX =sin6, BC = cos#,
and
r1 =0OA— BX =60 —sinf, o = AC — BC =1 —cosf.

So the parametric curve defined in the beginning of this example is

N (0 —sin0d
2(0) = (1 — cos 0) '

Here the angle 0 is the parameter, and we can let it run from 6 = —co to = oo.
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2

iheight = al

51.7. A three dimensional example: the Helix. Consider the vector function
cos 0
Z(0) = | sinf
ab

where a > 0 is some constant.

If you ignore the x3 component of this vector function you get the parametrization of the
circle from example 51.5. So as the parameter 6 runs from —oo to +oo, the 1, x2 part of &(0) runs
around on the unit circle infinitely often. While this happens the vertical component, i.e. z3(0)
increases steadily from —oo to co at a rate of a units per second.

52. The derivative of a vector function

If &(t) is a vector function, then we define its derivative to be
da Z(t+ h) — &(t
() = 0Ty HEW 22O
dt  h—0 h
This definition looks very much like the first-semester-calculus-definition of the derivative of a

function, but for it to make sense in the context of vector functions we have to explain what the
limit of a vector function is.

By definition, for a vector function f(t) = (28) one has

oz o (1@ L (lime—a f1(2)
tlgg f(t) B tlgg <f2(t) T \lim¢—a f2 (t)
In other words, to compute the limit of a vector function you just compute the limits of its
components (that will be our definition.)
Let’s look at the definition of the velocity vector again. Since
Zt+h)—@@t) 1 [(ei(t+h)\  [(z1(t)
h h \\z2(t +h) z2(t)
{El(t + h) - {El(t)

{Ez(t + h})L — {Ez(t)
h
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we have
h—0 h
lim xl(t + h) — :Cl(t)
— h—0 hh +
L 2@t R) —22()
h—0 h

So: To compute the derivative of a vector function you must differentiate its components.

52.1. Example. Compute the derivative of

- cost ~ t —sint
() = (sint) and of - g(t) = (1 — Cost) ’

d (cost —sint
.y _ ¢ _
(1) = dt (sint) ( cost )
d (t—sint 1—cost
. _ @ _
y(t)_dt (1—COSt) ( sint )

53. Higher derivatives and product rules

Solution:

If you differentiate a vector function &(t) you get another vector function, namely &' (t), and
you can try to differentiate that vector function again. If you succeed, the result is called the
second derivative of &(t). All this is very similar to how the second (and higher) derivative of
ordinary functions were defined in 1st semester calculus. One even uses the same notation:'!

_Mw_ﬁﬁ(Wﬂ'

wn = w0

dt A2
53.1. Example. Compute the second derivative of

- cost _ t —sint
(t) = (sint) and of - g(t) = (1 — Cost) ’

Solution: In example 52.1 we already found the first derivatives, so you can use those. You find
d (—sint —cost
=11 _ = _
() = dt ( cost ) (—sint)
5 (t) = d (1 —cost _ ( sint .
dt sint —cost

Note that our standard parametrization &(t) of the circle satisfies

)
@' (t) = —a(t).

After defining the derivative in first semester calculus one quickly introduces the various rules
(sum, product, quotient, chain rules) which make it possible to compute derivatives without ever
actually having to use the limit-of-difference-quotient-definition. For vector functions there are
similar rules which also turn out to be useful.

The Sum Rule holds. Tt says that if @(t) and g(t) are differentiable!? vector functions, then
so is Z(t) = &(t) £ y(t), and one has

da(t) £ g(t)  da(t)
dt dt dt

The Product Rule also holds, but it is more complicated, because there are several different forms
of multiplication when you have vector functions. The following three versions all hold:

1INot every function has a derivative, so it may happen that you can find @’ (t) but not & (t)
127 vector function is differentiable if its derivative actually exists, i.e. if all its components are
differentiable.
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If Z(t) and g(t) are differentiable vector functions and f(t) is an ordinary differentiable
function, then

dfZ() _ £0) da(t)  df(®) &(0)
dt dt dt
AEO-GO) _ 5 WO L dEO
dt dt dt
dw(t)d>t< y(t) _ &(t) x d?(ﬁt) n dfh(ft) 0

I hope these formulae look plausible because they look like the old fashioned product rule, but
even if they do, you still have to prove them before you can accept their validity. I will prove one
of these in lecture. You will do some more as an exercise.

As an example of how these properties get used, consider this theorem:

53.2. Theorem. Let f(t) be a vector function of constant length (i.e. | F(t)|| is constant.)
Then F (t) L F(¢).

PROOF. If ||F| is constant, then so is f(t)-F(t) = ||F(t)||?>. the derivative of a constant
function is zero, so
d gy - 4of 7 20 dF ()
0= — t = — ) - t =2f(t) .
SUFOIR) = < IFOI-1F0I) = 250 L
So we see that ff"l = 0 which means that fl 1 f O

54. Interpretation of & (t) as the velocity vector

&t + h) — &(t)

&(t+ h)

81
=
~
&

Figure 23. The vector velocity of a motion in the plane.

Let &(t) be some vector function and interpret it as describing the motion of some point in
the plane (or space). At time ¢ the point has position vector &(t); a little later, more precisely, h
seconds later the point has position vector &(t + h). Its displacement is the difference vector

E(t + h) — &(t).

Its average velocity vector between times ¢t and ¢ + h is

displacement vector  @(t + h) — &(t)

time lapse h

If the average velocity between times ¢ and ¢ + h converges to one definite vector as h — 0, then
this limit is a reasonable candidate for the velocity vector at time t of the parametric curve &(¢).

Being a vector, the velocity vector has both magnitude and direction. The length of the
velocity vector is called the speed of the parametric curve. We use the following notation: we
always write

for the velocity vector, and
o(t) = [IB)]| = (|2 (1)

for its length, i.e. the speed.
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The speed v is always a nonnegative number; the velocity is always a vector.

54.1. Velocity of linear motion. If &(t) = @ + {9, as in examples 51.1 and 51.2, then

o (a1 +tur
() = (az + tvz)

# (1) = (Z;) =3

So when you represent a line by a parametric equation &(t) = @+ t¥, the vector ¥ is the velocity
vector. The length of ¥ is the speed of the motion.

so that

In example 51.1 we had ¥ = (é), so the speed with which the point at Z(t) = (11;%’;) traces

out the line is v = ||3|| = V12 + 32 = /10.

Z(t)
54.2. Motion on a circle. Consider the parametrization .
w
o R
(1) = Rc?s wt) B(t) \
Rsinwt
The point X at &(¢) is on the circle centered at the origin with radius
R. The segment from the origin to X makes an angle wt with the

r-axis; this angle clearly increases at a constant rate of w radians
per second. The velocity vector of this motion is

B(t) = & (1) = (—szinwt) —WR (sinwt) _

wR cos wt cos wt

This vector is not constant. however, if you calculate the speed of the point X, you find

oo o] (52)| o

cos wt

So while the direction of the velocity vector ¥(t) is changing all the time, its magnitude is constant.
In this parametrization the point X moves along the circle with constant speed v = wR.

54.3. Velocity of the cycloid. Think of the dot X on the wheel in the cycloid example
51.6. We know its position vector and velocity at time ¢

S [ t—sint o (1 —cost
w(t)_(l—cost)’ a:(t)—( sint )

The speed with which X traces out the cycloid is
v= 2@
= \/(1 —cost)? + (sint)?
= /1 —2cost—+ cos2t +sin2t
= /2(1 — cost).

You can use the double angle formula cos2cc = 1 — 2sin? o with a = % to simplify this to

v = \/4sin2%:2

The speed of the point X on the cycloid is therefore always between 0 and 2. At times ¢t = 0 and
other multiples of 27 we have &' (t) = 0. At these times the point X has come to a stop. At times
t = m + 2km one has v = 2 and &' (t) = ((2))7 i.e. the point X is moving horizontally to the right
with speed 2.

.t
sin —|.
2
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55. Acceleration and Force

Just as the derivative @' (t) of a parametric curve can be interpreted as the velocity vector
9(t), the derivative of the velocity vector measures the rate of change with time of the velocity
and is called the acceleration of the motion. The usual notation is

. . do(t dzz

at) =) = dfﬁ ) _ w® - 3 (t).
Sir IsAAc NEWTON’s law relating force and acceleration via the formula “F = ma” has a vector
version. If an object’s motion is given by a parametrized curve &(t) then this motion is the result
of a force F being exerted on the object. The force Fis given by

- d?z
F=ma=m——
dt?

where m is the mass of the object.

Somehow it is always assumed that the mass m is a positive number.

55.1. How does an object move if no forces act on it? If F(t) =0 at all times, then,
assuming m # 0 it follows from F' = md that @(t) = 0. Since @(t) = @' () you conclude that the
velocity vector ¥(t) must be constant, i.e. that there is some fixed vector @ such that

&' (t) = ¥(t) = B for all .

This implies that

Z(t) = ®&(0) + to.
So if no force acts on an object, then it will move with constant velocity vector along a straight
line (said Newton — Archimedes long before him thought that the object would slow down and
come to a complete stop unless there were a force to keep it going.)

55.2. Compute the forces acting on a point on a circle. Consider an object moving
with constant angular velocity w on a circle of radius R, i.e. consider &(t) as in example 54.2,

- R cos wt cos wt
t) = = .
Z(t) (Rsinwt) R (sinwt)
Then its velocity and acceleration vectors are
~ —sinwt
9(t) = wR ( cos wt )
and
—sinwt

_ 2R (Cf)S wt)
sin wt

Since both (COSQ) and (75“19) are unit vectors, we see that the

a(t) = ¥(t) = R (— cos wt)

sin 0 cos 0
I velocity vector changes its direction but not its size: at all times
9 you have v = ||¥|| = wR. The acceleration also keeps changing its
v \ direction, but its magnitude is always
. v\ 2 02
a=lldl =w?R=(5) k="
R R

The force which must be acting on the object to make it go through

F =ma=-mw?R (C?S Wt) .
sin wt

this motion is

To conclude this example note that you can write this force as
F = —mw?&(t)

which tells you which way the force is directed: towards the center of the circle.
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55.3. How does it feel, to be on the Ferris wheel? In other words, which force acts
on us if we get carried away by a “liberated ferris wheel,” as in example 51.67

Well, you get pushed around by a force ﬁ‘, which according to
Newton is given by F' = mda, where m is your mass and @ is your
acceleration, which we now compute:

at) = a'(t)

_ d /1 —cost
At sint

_ (sint

" \cost/ "’
This is a unit vector: the force that’s pushing you around is con-
stantly changing its direction but its strength stays the same. If you

remember that ¢ is the angle ZAC X you see that the force Fis always
—
pointed at the center of the wheel: its direction is given by the vector XC.

56. Tangents and the unit tangent vector

Here we address the problem of finding the tangent line at a point on a parametric curve.

Let &(t) be a parametric curve, and let’s try to find the tangent line at a particular point Xo,
with position vector &(tp) on this curve. We follow the same strategy as in 1st semester calculus:
pick a point X} on the curve near X, draw the line through Xy and X} and let X; — Xp.

The line through two points on a curve is often called a secant to the curve. So we are going
to construct a tangent to the curve as a limit of secants.

The point X has position vector &(to), the point X}, is at &(to + h). Consider the line ¢,
parametrized by
Z(to + h) — &(to)

h b

in which s is the parameter we use to parametrize the line.

(74) Y(s;h) = &(to) + s

Xn
Xo

The line ¢;, contains both Xo (set s = 0) and X}, (set s = h), so it is the line through Xg
and X}, i.e. a secant to the curve.

Now we let h — 0, which gives
Z(to + h) — &(to)
h

In other words, the tangent line to the curve &(t) at the point with position vector &(tp) has
parametric equation

G(s) X Jim g(ssh) = F(to) + s lim, = &(to) + s& (o),

(s) = Z(to) + s2'(to),
and the vector &' (tp) = ¥(to) is parallel to the tangent line £. Because of this one calls the vector
&' (to) a tangent vector to the curve. Any multiple A& (to) with A # 0 is still parallel to the
tangent line £ and is therefore also called a tangent vector.
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A tangent vector of length 1 is called a unit tangent vector. If &' (to) # 0 then there are
exactly two unit tangent vectors. They are

Pty) = + o)

el

~

_ .50

I3l v(t)

56.1. Example. Find Tangent line, and unit tangent vector at #(1), where &(t) is the

parametric curve given by
— _ t —/ _ 1
Z(t) = (tz) , so that &' (t) = <2t) .

Circle with radius 1

15

o/

//

05 1 1

parabola with tangent line parabola with unit tangent vectors

Solution: TFor t =1 we have & (1) = (%), so the tangent line has parametric equation

i) = a0+ = (1) +5(3) = ()

In components one could write this as y1(s) =1+ s, y2(s) =1+ 2s. After eliminating s you find
that on the tangent line one has

y2=14+2s=14+2(y1 —1) =2y1 — 1.

The vector & (1) = () is a tangent vector to the parabola at @(1). To get a unit tangent vector
we normalize this vector to have length one, i.e. we divide i by its length. Thus

. 1 1 l\/s)
T1l) = —(—— =3
@ VI1Z 22 (2) (%\/5
is a unit tangent vector. There is another unit tangent vector, namely

o= (3

5

56.2. Tangent line and unit tangent vector to Circle. In example 51.5 and 52.1 we
had parametrized the circle and found the velocity vector of this parametrization,

0=(20). #0= ()

If we pick a particular value of 6 then the tangent line to the circle at &(fp) has parametric
equation

F(s) = B(0o) + s (00) = (cos 0 + ssin 9)

sinf — scos @
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This equation completely describes the tangent line, but you can try to write it in a more familiar
form as a graph

Y2 = my1 +n.
To do this you have to eliminate the parameter s from the parametric equations

y1 = cosf + ssinb, y2 = sinf — scos6.

When sin 6 # 0 you can solve y; = cos € + ssin 6 for s, with result
Y1 —cos 0
T sing
So on the tangent line you have
y2 =sinf — scos @ = sinf — coseiy1 — cos?
sin 6

which after a little algebra (add fractions and use sin? 6 + cos? @ = 1) turns out to be the same as

y2 = —cotf y; + —.
sin 6

1

O~

The tangent line therefore hits the vertical axis when y; = 0, at height n = 1/sin#6, and it has
slope m = — cot 6.

For this example you could have found the tangent line without using any calculus by studying
the drawing above carefully.

Finally, let’s find a unit tangent vector. A unit tangent is a multiple of &' (6) whose length is

one. But the vector & (0) = 25:‘60) already has length one, so the two possible unit vectors are
o) =&0) = ("% ana — T = ( M ).
cos 0 —cos

57. Sketching a parametric curve

For a given parametric curve, like

. 1—1¢2
(75) #0 = (3, ')
you might want to know what the curve looks like. The most straightforward way of getting a
picture is to compute z1(t) and z2(t) for as many values of ¢ as you feel like, and then plotting
the computed points. This computation is the kind of repetitive task that computers are very
good at, and there are many software packages and graphing calculators that will attempt to do
the computation and drawing for you.

If the vector function has a constant whose value is not (completely) known, e.g. if we wanted
to graph the parametric curve

Lo (1=t .
(76) Z(t) = (3at B t3) (a is a constant)
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then plugging parameter values and plotting the points becomes harder, since the unknown con-
stant a shows up in the computed points.

On a graphing calculator you would have to choose different values of a and see what kind
of pictures you get (you would expect different pictures for different values of a).

In this section we will use the information stored in the derivative & (¢) to create a rough
sketch of the graph by hand.

Let’s do the specific curve (75) first. The derivative (or velocity vector) is

s0=(,75) {10 2 e

We see that 2/ (t) changes its sign at t = 0, while 24 (t) = 2(1 —t)(1 +t) changes its sign twice, at
t = — and then at t = +1. You can summarize this in a drawing:

sign of z/ (¢)

sign of x(t)

For instance, when ¢ </—1 you have 2 () > 0 and z/(t) < 0, so that F' K (9)

the vector @' (t) = (222) = (f) points in the direction “South- ? 1 n s

East.” You see that there are three special ¢ values at which &'(t) 1

is either purely horizontal or vertical. Let’s compute &(t) at those ;

values A
t=—1 #(—1) = (%) & (-1) = () 2 1
- #0) = (}) #0) = () |/
=1 2(1) = (9) #(1) = (32) *T__> (3)

This leads you to the following sketch: -2

If you use a plotting program like GNUPLOT you get this picture
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58. Length of a curve

If you have a parametric curve &(t), a < t < b, then there is a formula for the length of the
curve it traces out. We’ll go through a brief derivation of this formula before stating it.

To compute the length of the curve {&(t) : a <
t < b} we divide it into lots of short pieces. If the
pieces are short enough they will be almost straight
line segments, and we know how do compute the length
of a line segment. After computing the lengths of all
the short line segments, you add them to get an ap-
proximation to the length of the curve. As you divide
the curve into finer & finer pieces this approximation
should get better & better. You can smell an integral
in this description of what’s coming. Here are some
more details:

Divide the parameter interval into N pieces,
a=ty)<t1 <tag < - <tny_1 <ty =5b.

Then we approximate the curve by the polygon with vertices at &(to) = @(a), &(t1), ..., €(tN)-
The distance between to consecutive points at &(t;—1) and Z(¢;) on this polygon is
(1@ (t:) — &(ti—1)|l-
Since we are going to take t;_1 — t; “very small,” we can use the derivative to approximate the
distance by
T(t;) — B(ti—1) = M(tl — tifl) ~ il(ti)(ti — tifl),

ti —ti—1

so that
@(t;) — &(ti—1)|| = [|& (t)]| (t: — ti-1)-

Now add all these distances and you get

N b

Length polygon ~ S | (t:)]] (t: — ti—1) ~ /t 12 (0)|] at.
—=a

i=1
This is our formula for the length of a curve.
Just in case you think this was a proof, it isn’t! First, we have used the symbol ~ which

stands for “approximately equal,” and we said “very small” in quotation marks, so there are
several places where the preceding discussion is vague. But most of all, we can’t prove that this
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integral is the length of the curve, since we don’t have a definition of “the length of a curve.” This
is an opportunity, since it leaves us free to adopt the formula we found as our formal definition of
the length of a curve. Here goes:

58.1. Definition. If {&(t) : a <t < b} is a parametric curve, then its length is given by

b
Length = / 12 (t)|] dt
a

provided the derivative & (t) exists, and provided ||& (t)|| is a Riemann-integrable function. In
this course we will not worry too much about the two caveats about differentiability and integra-
bility at the end of the definition.

58.2. Length of a line segment. How long is the line segment AB connecting two points
A(a1,a2) and B(b1,b2)?

Solution: Parametrize the segment by
Ft)=a+tb—a), (0<t<1).
Then
& ()] = 15— all.,
and thus

1 1
Lcngth(AB):/ 1 @) dt:/ 16—l dt = |B— a].
0 0

In other words, the length of the line segment AB is the distance between the two points A and
B. Tt looks like we already knew this, but no, we didn’t: what this example shows is that the
length of the line segment AB as defined in definition 58.1 is the distance between the points A
and B. So definition 58.1 gives the right answer in this example. If we had found anything else
in this example we would have had to change the definition.

58.3. Perimeter of a circle of radius R. What is the length of the circle of radius R
centered at the origin? This is another example where we know the answer in advance. The
following computation should give us 2w R or else there’s something wrong with definition 58.1.

We parametrize the circle as follows:
&(t) = Rcos0i+ Rsin0j, (0 <0< 2m).
Then

&'(0) = —Rsinfi+ Rcos6j, and ||& (0)| = v/ R2sin?60 + R2cos? 6 = R.
The length of this circle is therefore

27

Length of circle = Rd6 = 27R.
0

Fortunately we don’t have to fix the definition!

And now the bad news: The integral in the definition of the length looks innocent enough
and hasn’t caused us any problems in the two examples we have done so far. It is however a
reliable source of very difficult integrals. To see why, you must write the integral in terms of the
components z1(t), x2(t) of &(t). Since

& (t) = (28) and thus [|& (t)]| = /2 (£)2 + 24(t)2

the length of the curve parametrized by {&(t) : a <t < b} is

b
Length = / /@ (8)2 + @ (t)2 de.
a

For most choices of z1(t), z2(t) the sum of squares under the square root cannot be simplified,
and, at best, leads to a difficult integral, but more often to an impossible integral.

But, chin up, sometimes, as if by a miracle, the two squares add up to an expression whose
square root can be simplified, and the integral is actually not too bad. Here is an example:
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58.4. Length of the Cycloid. After getting in at the bottom of a liberated ferris wheel we
are propelled through the air along the cycloid whose parametrization is given in example 51.6,

Sy [0 —sinf
(6) = (1 — cos 0) '
Solution: Compute &' (#) and you find

. 1 —cos@
m’(e):( sin 0 )

12 (0) = /(1 — cos0)2 + (sin0)2 = /2~ Zcos .

This doesn’t look promising (this is the function we must integrate!), but just as in example 54.3

How long is one arc of the Cycloid?

so that

we can put the double angle formula cos § = 1 — 2sin? % to our advantage:

[%
|&"(0)]| = /2 — 2cos 0 = 4/ 4sin? 5= 2

We are concerned with only one arc of the Cycloid, so we have 0 < 6 < 2w, which implies

0< % < 7, which in turn tells us that sin 2 > 0 for all 6 we are considering. Therefore the length

2
of one arc of the Cycloid is

.0
sin —|.
2

27
Length:/ & (0)] do
0

27
- / 5
0
27 0
= 2/ sin — df
o 2

|: €i|2‘rr
= |—4cos —
2 0

=38.

0
sinf‘ do
2

To visualize this answer: the height of the cycloid is 2 (twice the radius of the circle), so the length
of one arc of the Cycloid is four times its height (Look at the drawing on page 122.)

59. The arclength function

If you have a parametric curve &(t) and you pick a particular
point on this curve, say, the point corresponding to parameter value
to, then one defines the arclength function (starting at to) to be X (to) %

t
(77) s@=1nwmmT

Thus s(t) is the length of the curve segment {&(7) : to < 7 < t}. (7 is a dummy variable.)

If you interpret the parametric curve &(t) as a description of the motion of some object, then
the length s(t) of the curve {&(7) : to < 7 < t} is the distance traveled by the object since time
to.

If you differentiate the distance traveled with respect to time you should get the speed, and
indeed, by the FUNDAMENTAL THEOREM OF CALCULUS one has

/_dtﬂl T
CEF YNGR LICT

which we had called the speed v(t) in § 54.
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60. Graphs in Cartesian and in Polar Coordinates

Cartesian graphs. Most of first-semester-calculus deals with a particular kind of curve,
namely, the graph of a function, “y = f(x)”. You can regard such a curve as a special kind of

parametric curve, where the parametrization is

%0~ (si)

and we switch notation from “(z,y)” to “(z1,x2).”

For this special case the velocity vector is always given by
1
=
' (t) = s
0= (ptv)

o(t) = [|& @) = \/1+ f(1)?,
and the length of the segment between ¢t = a and t = b is

b
Length :/ \/1+ f/(t)2 dt.
a

Polar graphs. Instead of choosing Cartesian coordinates (z1,x2) P
one can consider so-called Polar Coordinates in the plane. We have seen r
these before in the section on complex numbers: to specify the location
of a point in the plane you can give its z1, 2 coordinates, but you could
also give the absolute value and argument of the complex number z; + iza (see §24.) Or, to say
it without mentioning complex numbers, you can say where a point P in the plane is by saying
(1) how far it is from the origin, and (2) how large the angle between the line segment OP and a
fixed half line (usually the positive z-axis) is.

the speed is

The Cartesian coordinates of a point with polar coordinates (r, ) are
(78) x1 =rcosb, o = rsinb,

or, in our older notation,
r =rcosb, y =rsinf.

These are the same formulas as in §24, where we had “ r = |z] and 6 = argz.”

Often a curve is given as a graph in polar coordinates, T2
i.e. for each angle 0 there is one point (X) on the curve,
and its distance r to the origin is some function f(6) of the X

angle. In other words, the curve consists of all points whose
polar coordinates satisfy the equation r = f(f). You can
parametrize such a curve by

. rcos 6 6) cos 0
(79) #(0) = (7’ sin 6) - (];((0)) sin 6) ' 6
or, . B \
Z(0) = f(0) cos i+ f(0)sinbj.
You can apply the formulas for velocity, speed and arclength to this parametrization, but instead

of doing the straightforward calculation, let’s introduce some more notation. For any angle 6 we
define the vector

u(h) = (Z;ﬁz) = cos 01 + sin 63.

The derivative of 4 is

) _ (—sin6 w7 2
a'(0) = ( cos ) = —sinfi + cos 03.

The vectors 4(6) and @' (0) are perpendicular unit vectors.

Then we have

&(0) = f(0)u(9),



so by the product rule one has
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@'(0) = f'(0)4(0) + f(O)@' (6).

ﬁ/(e)
1@\ | v »
\\\ ﬁ(G) €T
@ 0) 7\

Since 4(0) and @' (0) are perpendicular unit vectors this implies

v(0) =12 (0)] =

f(0)% + £(6)>.

The length of the piece of the curve between polar angles o and [ is therefore

(80) Length — /ﬂ J110)2 + 1(0)2 do.

You can also read off that the angle 1) between the radius OX and the tangent to the curve

satisfies

tan) =

f(9)
f10)

61. PROBLEMS

Sketching Parametrized Curves.
Sketch the curves which are traced out by
the following parametrizations. Describe
the motion (is the curve you draw traced out
once or several times? In which direction?)

In all cases the parameter is allowed to
take all values from —oo to oco.

If a curve happens to be the graph of
some function zo2 = f(z1) (or y = f(z) if
you prefer), then find the function f(---).

Is there a geometric interpretation of
the parameter as an angle, or a distance,
etc?

395. a(t) = (; :i)

396. @(1) = (
397. @(1) = (
398. @(t) = (e:)
399. (1) = (

(

400. @(t) =

401. &(t) = (Sm t)
sint
402. - (COS 2t)
sin 25t
403. - (cos 25t)
404. _ 1+ cost
1+ sint
405. _ (2 cos t)
sint
oo, 310~ (1)

Find parametric equations for the curve
traced out by the X in each of the following
descriptions.

407. A circle of radius 1 rolls over the x; axis,
and X is a point on a spoke of the circle at a
distance a > 0 from the center of the circle
(the case a =1 gives the cycloid.)

408. A circle of radius r > 0 rolls on the out-
side of the unit circle. X is a point on the

rolling circle (These curves are called epicy-
cloids.)
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409. A circle of radius 0 < r < 1 rolls on the on the tangent to the unit circle through B
inside of the unit circle. X is a point on the for which the distance BX equals the length
rolling circle. of the circle arc AB.

410. Let O be the origin, A the point (1,0), 411. X is the point where the tangent line at
and B the point on the unit circle for which Z(0) to the helix of example 51.7 intersects
the angle ZAOB = 0. Then X is the point the x1x2 plane.

Product rules.

412. If a moving object has position vector &(t) at time ¢, and if it’s speed is constant, then show
that the acceleration vector is always perpendicular to the velocity vector. [Hint: differentiate
v? = B-¥ with respect to time and use some of the product rules from §53.]

413. If a charged particle moves in a magnetic field E, then the laws of electromagnetism say that
the magnetic field exerts a force on the particle and that this force is given by the following
miraculous formula:

F= qU X B.
where q is the charge of the particle, and @ is its velocity.
Not only does the particle know calculus (since Newton found F= ma), it also knows vector
geometry!

Show that even though the magnetic field is pushing the particle around, and even though
its velocity vector may be changing with time, its speed v = ||9¥|| remains constant.

414. NEWTON’s law of gravitation states that the Earth pulls any object of mass m towards its center
with a force inversely proportional to the squared distance of the object to the Earth’s center.
(i) Show that if the Earth’s center is the origin, and # is the position vector of the object of mass
m, then the gravitational force is given by

—

- 7
F= _CW (C' is a positive constant.)
7

[No calculus required. You are supposed to check that this vector satisfies the description in the
beginning of the problem, i.e. that it has the right length and direction.]
(if) If the object is moving, then its angular momentum is defined in physics books by the
formula L = m# X ¥. Show that, if the Earth’s gravitational field is the only force acting on
the object, then its angular momentum remains constant. [Hint: you should differentiate L with
respect to time, and use a product rule.]

Curve sketching, using the tangent vector.

415. Consider a triangle ABC and let @, b and Compute &(0), (1), &' (0), and &'(1).
¢ be the position vectors of A, B and C'.

(i) Show that the parametric curve given by
&(t) = (1 — t)%@ + 2¢(1 — t)b + 2,

goes through the points A and C, and that

at these points it is tangent to the sides of ) .
the triangle. Make a drawing. (ii) At The characters in most fonts (like the

which point on this curve is the tangent par- fonts used .for these notes) are made up of
allel to the side AC of the triangle? lots of Bezier curves.

416. Let a, 5, é, d be four given vectors. Con-
sider the parametric curve (known as a
Bezier curve)

B(t) = (1—t)°@+3t(1—1)2b+3t> (1—t)é+t>d
where 0 <t < 1.
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417. Sketch the following curves by finding all
points at which the tangent is either hori-
zontal or vertical (in these problems, a is a
positive constant.)

a0 = () aan=(3r)
(iff) B(t) = (Sciff;t) (iv) &(t) =

1—t2
3at — t3

2
(vii) &(t) = (t/ 1+t )) (viii) @(t) =

Lengths of curves.

418. Find the length of each of the following curve segments. An “[” indicates a difficult but
possible integral which you should do; “[[” indicates that the resulting integral cannot reasonably
be done with the methods explained in this course — you may leave an integral in your answer
after simplifying it as much as you can. All other problems lead to integrals that shouldn’t be too
hard.

(i) The eycloid &(0) = ( p(y_om?) ), with 0 < 0 < 2r.

cost

(i) [ff] The ellipse @(t) = (Asint) with 0 <t < 27.
(iif) [[] The parabola @(t) = (;2) with 0 <t < 1.

) , ot
(iv) [[[] The Sine graph &(t) = (sin t) with 0 < ¢ < .

cost + tsint

(v) The evolute of the circle & = (sint eost

) (with 0 < t < L).

x —x
(vi) The Catenary, i.e. the graph of y = cosha = % for —a <z <a.
(vii) The Cardioid, which in polar coordinates is given by r = 1 4 cos 6, (|0 < 7), so &(0) =

(14 cos ) cosb
(14 cosf)sinb )"

cos 6
(viii) The Heliz from example 51.7, £(#) = [ sinf |, 0 < 0 < 2m.
ab

419. Below are a number of parametrized curves. For each of these curves find all points with
horizontal or vertical tangents; also find all points for which the tangent is parallel to the diagonal.
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Finally, find the length of the piece of these curves corresponding to the indicated parameter
interval (I tried hard to find examples where the integral can be done).

/3 _ 9,5/3
i aw ("m0 0<i<i

CEURIE <<
(i) 80 = (, ' 3) 0<t<ys
(iv) &(t) = ( 8sint ) ] < g

Tt —sintcost

o

<t

IN

R t
@ a0 = (1) i
(The last problem is harder, but it can be done. In all the other ones the quantity under the
square root that appears when you set up the integral for the length of the curve is a perfect
square.)

kO

420. Consider the polar graph r = e*Y  with —oo < 6 < oo, where k is a positive constant. This

curve is called the logarithmic spiral.
(i) Find a parametrization for the polar graph of r = ek?.
(if) Compute the arclength function s(6) starting at g = 0.

(iif) Show that the angle between the radius and the tangent is the same at all points on the
logarithmic spiral.

(iv) Which points on this curve have horizontal tangents?
421. The Archimedean spiral is the polar graph of » = 6, where 6 > 0.
(i) Which points on the part of the spiral with 0 < § < 7 have a horizontal tangent? Which have

a vertical tangent?

(if) Find all points on the whole spiral (allowing all > 0) which have a horizontal tangent.

(iii) Show that the part of the spiral with 0 < 6 < 7 is exactly as long as the piece of the parabola
Yy = %m2 between = 0 and = = 7. (It is not impossible to compute the lengths of both curves,
but you don’t have to to answer this problem!)



(71)

(72)

(73)
(77)
(78)
(79)
(80)
(81)
(83)
(84)
(90)
(91)
(92)
(93)

(94)

Answers and Hints

n+11 n+1
/x"lnxd:c:x ne_ 7 +C.
n+1 (n+1)2
ellfl'
/e‘” sinbrdz = m(asinbx—bcosbw)—i—C.

ax

/e‘” cosbrdx = %(acesbw—i— bsinbz) 4+ C.

a2

14 _ 13.11.9:7:5:3-1
Jo sin'* zde = $P5 GRS
1

n — 1 n— n—1 n—2 B A el _ 7 . 3
J cos™ zdx = < sinz cos x4 I [ cos xdx; fo cost wde = {5 + 557

Hint: first integrate ™.
zlnhx —z+C
z(lnz)? —2zlnz + 2z + C

Substitute v = Inz.

fOTr/4tan5 xdr = i(l)4 - 5(1)? +f07r/4 tan xdz = —i +1n 3/2

T+ =

14 2542

i

ﬁz:} =z+ ;”2111. You can simplify this further: ﬁz:} =z+ ;”Z—ill =z+ acLH
224+ 6x+8=(x+3)2%2 1= (x+4)(z+2)so m = %—l— ;1/42 and [

iln(z+2) - tln(z+4)+C

(95) [ % = arctan(z + 3) + C.

(96)
(97)

%fﬁ:%arctan(x—}—@-{—o

We add
A B C A(x+1)(x — 1)+ Bz(x — 1) + Czx(z + 1)
T z+1 z-1 z(x+1)(z —1)

(A+B+C)z2?2+(C—B)z— A
z(x+1)(z —1)

The numerators must be equal, i.e.

224+3=(A+B+0C)z?4+(C-B)z— A

dx
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224+62+8

for all x, so equating coefficients gives a system of three linear equations in three unknowns A, B,

C:

so A=—-3and B=C =2, i.e.

A+B+C=1
C—-B=0
—A=3

x2 43 3 2 2

z(x+1)(z —1) _;+x+1+x—1
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and hence

2
3
/(de = —3In|z|+2In|z + 1| + 2In |z — 1| 4 constant.

z(x+1)(z —1)

(98) To solve
22 +3 A B C

z(x+1)(z —1) m+m+1 z—1

)

multiply by z:
243 B c
_ @43 _,, Bz Ce
(z+1)(xz—1) z+1 x-—1
and plug in x = 0 to get A = —3; then multiply by = + 1:

2 A 1 1

" +3 = (@ + )+B+M

z(x—1) x z—1
and plug in x = —1 to get B = 2; finally multiply by « — 1:
2+3  Al—-1)  B(x-—1

P43 A@-1)  Be-1
z(x+1) x z+1

and plug in x = 1 to get C' = 2.

(99) Apply the method of equating coefficients to the form
2 +3 A B C

2

z2(z—1) =z = x—1

In this problem, the Heaviside trick can still be used to find C' and B; we get B = —3 and C = 4.

Then

A 3+ 4 Az(z—1)+43(x — 1) + 422

r 22 x—1 z2(z — 1)
so A = —3. Hence

2+3 3
/de = —3In|z|+ — + 4In|z — 1| + constant.
x

x2(z — 1)
(117) [ wsinzdr =sina —acosa

(118) [ #? coszdr = (a? +2)sina + 2acosa

(119) [} zde_ _ [\/;ﬂ - 1]2 = /15— /8

\/1‘271
1/3 zde _ 1/3_ 1 1
(120) fif} e = [-vI _;,;2]1/4 =115 18

(121) same as previous problem after substituting = 1/t

(153) Use Taylor’s formula : Q(z) =43+ 19(x —7) + %(x - 7)2.

A different, correct, but more laborious (clumsy) solution is to say that Q(z) = Ax? + Bx + C,,

compute Q' (z) = 2Ax + B and Q”(z) = 2A. Then
Q(7) =49A + 7B + C = 43, Q'(7) = 14A + B =19,

Q" (7) =2A=11.

This implies A =11/2, B=19 - 14A =19 — 77 = —58, and C =43 — 7B — 49A = 179%.

(168) Toce! =1+t + 2t2 + -4 Ltn 4 ...
(169) Tooe® = 1+ at + St 4o 4 S04 4 ...

. 3 5 = 1 k32k+1
(170) Toosin(3t) =3t — 543 + 3145 4. 4 %t%ﬂ NE

(171) Twosinht =t + %t3+~--+mt2k+l+-n
(172) Toocosht:1+%t2+v-v+@t%+n-

(178) Toogigz = 1 — 2+ 222 — - 4 (=1)"2™4" 4 -

. . . 3. 1
(174) Toogzlyr = & + 33t + 3262+ S8+ + 30 4

factorials)

(note the cancellation of
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_ynt1
(175) Tooln(l+t) =t — 12+ L3 4. 4 B gm0
- - — 1421 1,43 (=pnt!
(176) Too In(2+2t) = Too In[2- (1 +¢)] = In2+In(1+t) = In2+t—5t2+ 57+ -+t 4+
_1\yn+1
(177) Toolnv/IHt=TodIn(1+8) =Lt - 224 L34 ... GO T ym
2 3 _1\yn+1lon

(178) Tooln(l+2t) =2t — 242 4 243 ... 4 CTT 20n
(179) Toolny/ (1) =Too [3In(1+ 1) — $In(1 = )] =t + 53 + 26° + - 4 g e?FF 4.
(180) Tmﬁ =Tw [% %] =1+t24+t* 4 +t?* 4. .. (you could also substitute x = —t>

in the geometric series 1/(1 +z) = 1 — 2z + 22 + -+ -, later in this chapter we will use “little-oh”

to justify this point of view.)

-t 1+t
times the previous function so you would think its Taylor series is just ¢ times the taylor series of
the previous function. Again, “little-oh” justifies this.)

(181) Tmﬁ =Too [1/2 - ﬁ] =t4t3+1° 4 - + 2T ... (note that this function is ¢

(182) The pattern for the nt? derivative repeats every time you increase n by 4. So we indicate
the the general terms for n = 4m,4m + 1,4m + 2 and 4m + 3:
t4m t4m+1 t4m+2 t4m+3

@m) ama )l @mt2)! @mt3

: _ 1o 13, 14
Too (sint + cost) —1+t—§t _it +Zt +of

(183) Use a double angle formula

24m+ 1 24m+3

Am+1 _

t4m+3
(4m + 1) (4m + 3)! *

23
Too (2sintcost) = sin2t = 2¢ — §t3 +- 4

(184) Tztant =t + %t3. There is no simple general formula for the n*? term in the Taylor series
for tan x.

u%)ﬂmp+ﬂ_§ﬂ:1+p_§#
(186) Too[(1+t)5%] =1+ 5t + 10t2 + 10t3 + 5t* + ¢°
(187) Too YTFT =1+ 11_/!31”r (1/3)(21!/3—1)t2 I (1/3)(1/3*1)(1/272)“‘(1/3*”+1)tn F

(188) Because of the addition formula

sin(a + ) = sina cos 8 + sin B cos «
you should get the same answer for f and g, since they are the same function!

The solution is

Too sin(x + a) = sina + cos(a)z — Sl;axz — C(;S'ax3 +oe-
L.y Sine g, COSG _ gnt1_ _SNA  4nip _COSC  4ny3
(4n)! (4n +1)! (4n + 2)! (4n + 3)!

(191)
f(@) = fD(x) = cosx, f'(x) = fO)(z) = —sinw, " (z) = —cosz, @) (z) = sinw,
S0
1O =P =1 fO=rP0)=0  f0)=-1
and hence the fourth degree Taylor polynomial is
T4{Cosm}:§1%f(k)]i7(!)):ﬂ“ =1- Z—T—l—j—?.

The error is

fO©° _ (=sing)a®
st 5l

for some unknown £ between 0 and z. As |siné| < 1 we have

2 4 5 1
Cosm—(l—x——l-x )‘:|R4($)\§M<—

Ry{cosz} =

ol T
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for |z| < 1.
1
-2 =x-1
o) = 34 (= )t (L)oot (1= pher)a” 4

(208) The PFD of g is g(z) =

S0 gn =1 —1/2"*! and g™ (0) is n! times that.

(209) You could repeat the computations from problem 208, and this would get you the right
answer with the same amount of work. In this case you could instead note that h(z) = zg(x) so
that

h(z) = %x—l—(1—2%);,;24_(1_2%):03_,_,,,_,_(1_ 2n1+1)9€"+1+~~-
Therefore hy, =1 —1/2".
The PFD of k(z) is

_ 2—x cancel! 1
M=oy 1o

the Taylor series of k is just the Geometric series.

)

a? a™
(211) Tooe“t:1+at+§t2+~~-+—'t”+--~ .
! n!
(212) el'tt =c. et 50 Tooe! Tt = e+ et + %t2+.,.+%tn+..,
(213) Substitute u = —#2 in the Taylor series for e*.
1 (=1)™

1
Tooe t =124 —t — 6 4 ... ¢

t2n .
STRET a0t

(214) PFD! The PFD of % is % =—-1+ % Remembering the Geometric Series you get

1+t
fxTiz=1+2ﬁ+%2+%3+~~+%"+~~

(215) Substitute u = —2¢ in the Geometric Series 1/(1 — u). You get

1
Too1+2t:1—2t+22t2—23t3+~~-+-~-+(—1)"2”t”+-~~
(216)
0 w) o= dat b et ()
x x
1
=1—§1‘+§I2+ +( 1)n717 nfl_’_
(217)
t
e
Tml_t=1+m+{1+1+%ﬁ2+0+1+§r+%ﬁ3+~~+u+1+%+~~+%ﬁ"+~-

(218) 1/y1—t=(1-t)""250
1
N

(be careful with minus signs when you compute the derivatives of (1 —t)~1/2))

(NI

135
222

B34
1-2 1-2-3 *

Too

You can make this look nicer if you multiply top and bottom in the n*® term with 27:

1 1 1.3 1-3-5 1-3---(2n—1)
T, =14 b — 2 P T g
IV e A L S L S L R +
(219)
1 1 1-3 1-3-5 1-3--(2n—1)
Too———e =1+ =t + ——t1 ¢ O T g
“Vi-e 2 2.4 2.-4-6 2.4---2n
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(220)

T - t+u3+ygﬁ+136ﬂ +L3m@n—nﬁwl+
arcsint = -+ —— — 4
> 23 245 2-4-67 2-4---2n  2n+1

(221) Tyle=tcost]=1—t+ %t?’ - %t‘l.

1
(222) Tyle tsin2t] =t —t2 + gts + o(t?) (the t* terms cancel).

1

(223) PFD of 1/(2 —t — 1?) = @Tl(l*t) = % + % Use the geometric series.

(224) V1+2t+¢2 = (1 +)?2 = (1+)?/3. This is very similar to problem 218. The answer
follows from Newton’s binomial formula.

(227) 1/2

(228) Does not exist (or “+00”)

(229) 1/2

(230) —1

(231) 0

(232) Does not exist (or “—oc0”) because e > 2.

(233) 0.

(234) 0.

(235) 0 (write the limit as limy,— oo % = limyp— 0o #‘1), + limy 00 (7%1), = limn— oo %H +
limy— oo m)

(237) Use the explicit formula (13) from Example 16.13. The answer is the Golden Ratio ¢.

(239) The k' derivative of g(z) = sin(2z) is g(¥) (z) = £2*soc(2z). Here soc(d) is either sin§ or
cos 6, depending on k. Therefore k' remainder term is bounded by

g+ @) 2+ g1
(k+1)!

2 k+1
||t = [soc(2z)| < 22|

| R [sin 2z]| < T+l ~ (k+1)

|2 F+1
(1)1
limg_, oo Ri[g(x)] = 0, so the Taylor series of g converges for every z.

(243) Read the example in §18.4.
(244) 1<z <1.
(245) -1<z<1.
(246) -1 <z <1.
(247) —% <z < % Write f(z) as f(z) = % %7(171) and use the Geometric Series.
(262) (a) arg(l 4+ itan @) = 6 + 2kw, with k any integer.
(b) zw =1 — tan O tan ¢ + i(tan 6 + tan ¢)

Since limg_, o = 0 we can use the Sandwich Theorem and conclude that

(c) arg(zw) = argz + argw = 6 + ¢ (+ a multiple of 27.)
tan 6 + tan ¢

————— on the other hand.
1 —tanftan ¢

(d) tan(arg zw) = tan(6 + ¢) on one hand, and tan(arg zw) =

The conclusion is that
tan 6 + tan ¢

tan(f + ¢) = T tanftand
(263) cos460 = real part of (cos @ + isin0)%. Expand, using Pascal’s triangle to get
cos 46 = cos* 6 — 6 cos? fsin? O + sin* 6.
sin46 = 4 cos® 0sin @ — 4 cos 0 sin> 6.
cos 50 = cos® 6 — 10 cos3 §sin? 6 + 5 cos @ sin* 0

sin 60 = 6 cos® O'sin @ — 20 cos® O sin> O + 6 cos O sin® 6.
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(266) To prove or disprove the statements set z = a+bi, w = ¢+ di and substitute in the equation.
Then compare left and right hand sides.

(a) Re(z) + Re(w) = Re(z + w) TRUE, because:
Re(z + w) = Re(a + bi + ¢+ di) = Re[(a +¢) + (b+ d)i] = a+ c and
Re(z) + Re(w) = Re(a + bi) + Re(c+ di) = a+ c.

The other proofs go along the same lines.
(b) z+w = z+ w TRUE. Proof: if 2 = a+ bi and w = ¢+ di with a,b,c,d real numbers, then
Re(z) =a, Re(w) =c = Re(z) + Re(w) =a+c
z+w=a+c+ (b+d)i = Re(z+w)=a+c.
So you see that PRe(z) + Re(w) and Re(z + w) are equal.

(c) Tm(z) + IJm(w) = Im(z + w) TRUE. Proof: if z = a+ bi and w = ¢+ di with a,b,c,d real
numbers, then

Jm(z) =b, Tm(w)=d = Tm(z) + Im(w) =b+d
z+w=a+c+ (b+d)i = Tm(z+w)=>0+d.

So you see that Jm(z) + Jm(w) and Jm(z + w) are equal.
(d) zw = (z)(w) TRUE
(e) Re(z)Re(w) = Re(zw) FALSE. Counterexzample: Let z = i and w = i. Then Re(z)Re(w) =
0-0 =0, but Re(2w) = NRe(i - ) = Re(—1) = —1.
() 7w = (2)/(w) TRUE
(g) MRe(iz) = Im(z) FALSE (almost true though, only off by a minus sign)

(h) MRe(iz) = iMRe(z) FALSE. The left hand side is a real number, the right hand side is an
imaginary number: they can never be equal (except when z = 0.)

(i) MRe(iz) = Im(z) same as (g), sorry.
(j) Me(iz) = :Im(z) FALSE
(k) Im(iz) = Re(z) TRUE
(1) Me(z) = MRe(z) TRUE
(267) The number is either %\/g—l— %z 5 or —%\/g — %Z\/g
(268) 'tis $v3+i.
(270) e(In2)A+i) — n2+iln2 — cn2(co51n2 4 isinln2) so the real part is 2cosln?2 and the
imaginary part is 2sinIn 2.
(271) e® can be negative, or any other complex number except zero.

If z = x + iy then e = e®(cosy + isiny), so the absolute value and argument of e* are |z| = e*
and arge® = y. Therefore the argument can be anything, and the absolute value can be any
positive real number, but not 0.

1 . 1 cost —isint  cost —isint

= cost —isint = e ¢,

1
(272) — = — = — —— = —
et cost + isint cost+isint cost — ¢sint cos? t +sin?t

(275) AeiPt 4 Be~ Pt = A(cos Bt +isin Bt) + B(cos Bt —isin Bt) = (A+ B) cos Bt +i(A — B) sin t.
So Ae?Pt 4 Be="Pt = 2cos Bt + 3sin Bt holds if A+ B = 2,i(A — B) = 3. Solving these two
equations for A and B we get A =1 — %i, B=1+ %z

(281) (a) 22+ 62 +10 = (2 +3)2 + 1 = 0 has solutions z = —3 £ i.

(b) 254+ 8 =0 <= 23 = —8. Since —8 = 8™ t2F™ we find that z = g1/3¢F it gkmi (k any
integer). Setting k = 0,1, 2 gives you all solutions, namely
k=0 : z=2e3'=1+4V/3
k=1 : z=2e3"127/3 - 9
k=2 : z=2e5"T1"/5 =1 /3
i3

(c) 2% —125=0: 20 =5, 21 = -3 + 2iV/3, 2 = -5 —

Njot



133

(d)222+42+4=0: 2= —1+1.

(e) 24+ 222 —3=0: 22 =1 or 22 = -3, so the four solutions are +1, +i/3.
() 328 =234+2: 23 =1orz2%= —% The six solutions are therefore
- % + %\/il (from 23 =1)

—?/E,f/g(% + %\/g), (from 2% = —%)

(g) 2> — 32 = 0: The five solutions are

2, 2cos %W + 2¢sin %m 2 cos %7‘(‘ + 2isin %W.

8

5

Note that 2 cos gﬂ+2isin 87 =2cos 7 —2isin & T = 2cos %ﬂ—_

5 5 5
2i sin %w. (Make a drawing of these numbers to see why).

7, and likewise, 2 cos %ﬂ+2i sin

(h) 25 — 16z = 0: Clearly z = 0 is a solution. Factor out z to find the equation z* — 16 = 0 whose
solutions are £2, £2i. So the five solutions are 0, 2, and +2i

(282) f'(z) = ﬁ In this computation you use the quotient rule, which is valid for complex

valued functions.
/ _ 1 i
9@ =3+ 5=

W (z) = 2ize’®” . Here we are allowed to use the Chain Rule because h(z) is of the form hy(ha(z)),
where hi(y) = €% is a complex valued function of a real variable, and ha(z) = 22 is a real valued
function of a real variable (a “221 function”).

(283) (a) Use the hint:

2ix —2iz\ 4
/(COSQ:C)4 d:c:/‘(%) dx

_ 1_16 (62i1+e*2i”)4 da

The fourth line of Pascal’s triangle says (a+ b)* = a* + 4a3b + 6a2b + 4ab> + b*. Apply this with
a=e?? b=e"2% and you get

1 ) ) ) )
/(Cos 2x)4 dr = T /{esm +4e¥® 4 6+ 4e” VT 4 67821} dx

i'ef&lz} 4 C.

1 1 8ix 4 dix 4 —41
_ - = 6 = iz
ettt ope o

16 ' 8i
We could leave this as the answer since we’re done with the integral. However, we are asked to
simplify our answer, and since we know ahead of time that the answer is a real function we should
rewrite this as a real function. There are several ways of doing this, one of which is to carefully
match complex exponential terms with their complex conjugates (e.g. e3*® with e~8%2.) This gives
us

1 eSix _ e*Six e4iac _ 6741'90

/(COS 2:0)4 dr = + ; + 6:0} +C.

T 16 8i

i0_

0
57 " to remove the complex exponentials. We end up

Finally, we use the formula sinf = £
with the answer

1
/(COS2£B)4 dr = E{isin8x+2sin4m+6x} +C = ésinSm—l— %sin4m+ %m—i—C.
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(b) Use sin@ = (e — e~ /(2i):

iax __ ,—iax
/67296(511’1[1(2)2 dx = /67236(%)2 dx
7
— (21)2 /6721‘(621'0,1 _2+ef2ia:v) dx
7
_% /(e(f2+2ia)ac ) _,’_6(72721'(1)90) dx

e(—2+2ia)z e(—2—2ia)z

—_1 -2 C.
) il e ¥t et
—— N ——

A B

We are done with integrating. The answer must be a real function (being the integral of a real
function), so we have to be able to write our answer in a real form. To get this real form we must
expand the complex exponentials above, and do the division by —2 4 2ia and —2 — 2ia. This is
still a fair amount of work, but we can cut the amount of work in half by noting that the terms
A and B are complex conjugates of each other, i.e. they are the same, except for the sign in front
of 7: you get B from A by changing all i’s to —¢’s. So once we have simplified A we immediately
know B.

We compute A as follows
A= —2—2ia (672z+2iaz)
(=2 — 2ia)(—2 + 2ia)
(=2 —2ia)e**(cos 2ax + isin 2ax)
- (2 + (202
—2z —2z

e
= ——(—2cos2ax + 2asin2ax) + 1 —2a cos 2ax — 2sin2ax).
4+ 4a? ( ) 4 + 4a? ( )
Hence
67290 67290
B = 4_’_W(—2 cos 2ax + 2a sin 2ax) — im(—&z cos 2ax — 2sin 2azx).
and
26721 6721
A+ B=———(—2cos2ax + 2asin2axr) = —— (— cos 2ax + a sin 2ax).
4 + 4a? ( ) 1+ a2 ( )

Substitute this in (1) and you get the real form of the integral
/67296 (sincwv)2 dr = —i

(284) (a) This one can be done with the double angle formula, but if you had forgotten that,
complex exponentials work just as well:

T —1ix
/v:oszzndm:/‘(%)2 dx
%/{621'90_’_2_’_6721'30} dx
:% %621':0_’_2:6_’_%21_672711}_’_0

2ix —2ix
B
= Z{T‘FZ’E}-FC
= %{sin2x+2m}+c

6721

14 a2

(— cos 2az + asin2ax) + g + C.

1. T
= = 2 —+C.
7 sin :c+2+

(¢), (d) using complex exponentials works, but for these integrals substituting v = sinz works

better, if you use cos? z = 1 — sin? z.

(e) Use (a —b)(a + b) = a® — b to compute
5 5 (eix + efiac)2 (eiac _ efiac)2 1

cos? rsin? x = > (2i)2 — T(e%m _,’_6721'&0)2 — +16(64m 4+ 24 6741'30)
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First variation: The integral is

2 2 _ 1 (1 iz 1 —diz 1 _1
/cos zsin®z dr = —5(5;¢7"" + 22+ —e )+ C = —g5sinde — gz + C.

Second variation: Get rid of the complex exponentials before integrating:
7L16(e4m +24 e 47 = +16(2 cosdx + 2) = —%(COS‘L’E + 1),

If you integrate this you get the same answer as above.

() and (1):  Substituting complex exponentials will get you the answer, but for these two
integrals you’re much better off substituting v = cos # (and keep in mind that sin? z = 1 —cos? x.)

(k) See (e) above.

Aet +1
Aet — 1

(294) y=Ce /3 C = 5el/3

(203) y(t) =2

(295) y=Ce—o—2° (O =2
(296) Implicit form of the solution tany = —% +C,s0 C =tanm/3 =+/3.
Solution y(z) = arctan(v/3 — 22/3)

(297) Implicit form of the solution: y + %yz + x4+ %xz =A+ %Az. If you solve for y you get

y=—-1+vVA2+24+1—22 -2z

Whether you need the “+” or “—” depends on A.
1 -1 _
(298) Integration gives 5 In z+ 1 ’ =z + C. Solve for y to get Z—ﬁ = £e27+2C = (£2C) 22,
-1 1+ Be?®
Let B = +¢2¢ be the new constant and you get A Be?* whence y = +7e.
y+1 1 — Be2®

The initial value y(0) = A tells you that B = and therefore the solution with initial value
) A+ 1+ (A—1)e?®
0 = A - A& _ -
vO) =Alsy = T A e

(299) y(z) = tan(arctan(A) — z).

A—1
A+1°

(300) Yy = reSinT + Aesinz
(801) Implicit form of the solution %yg + %x‘l =0;C= %A?’. Solution is y = $/ A3 — %:c4.
(305) General solution: y(t) = Ae3t cost+ Be3! sint. Solution with given initial values has A = 7,
B = —10.
306 = Aet + Be7t 4+ Ccost + Dsint
(306) y
(307) The characteristic roots are r = :I:%\/i + %\/5, so the general solution is
1 1 1 1
y= Ae2V? cos %\/it + Be2 Y sin %\/it + Ce™ 2V cos %\/it + De 2V?'sin %\/it
4 2

(308) The characteristic equation is r* — 72 = 0 whose roots are r = +1 and r = 0 (double).
Hence the general solution is y = A 4+ Bt 4+ Ce! + De™t.

(309) The characteristic equation is r* 472 = 0 whose roots are r = 4 and r = 0 (double). Hence
the general solution is y = A+ Bt + C cost + Dsint.

(310) The characteristic equation is 72 + 1 = 0, so we must solve

P=—l=¢

(m+2km)i
The characteristic roots are

r = e(F+3km)i
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where k is an integer. The roots for k = 0, 1, 2 are different, and all other choices of k lead to one
of these roots. They are

; 1 i
k:(]: = Trl/3: z ) si E:— —_ 3
r=e v:os3—i—zsm3 2—}-2\[
k=1: r=e™ =cosm+isinm = —1
5 51 1 %
k=2: — 57i/3 = o5 2T sm_l s
r = Cos 3 + isin 3 2 2\f

N[

The real form of the general solution of the differential equation is therefore

y=Ae ! + Be%t cos égt + Ce2 sin \égt
(311) y = Aet + Be™ 3 cosit—l—Ce 2 smi
(312) y(t) = c1eV3t 4 coe=V3t 4 Acost + Bsint.
(313) Characteristic polynomial: r# + 4r2 + 3 = (r2 + 3) (r? + 1).
Characteristic roots: —iv/3, —i, 1, iv/3.
General solution: y(t) = A1 cos V3t + By sin V3t + As cost + Bo sint.
(314) Characteristic polynomial: v + 2r2 +2 = (r? 4 1)2 + 1.
Characteristic roots: r%j =—1+1, r§’4 =—-1—1.

Since —14i = /2e™/4+2k7 (k an integer) the square roots of —1+1 are +21/4m1/8 = 91/4 cog 3+

i21/4 sin 5+ The angle 7/8 is not one of the familiar angles so we don’t simplify cos 7/8, sin /8.

Similarly, —1—i = /2~ ™#/4+2kTi g5 the square roots of —1 —i are £21/4e=71/8 = 491/4 (Cos % -
isin g)
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If you abbreviate a = 21/4 cos % and b = 21/4sin %, then the four characteristic roots which we

have found are

1 :21/4cosg+i21/4sing =a+bi
ro :21/4cosz —i21/4sin£ =a—b
8 8
r3 :—21/4cosg +i21/4sing = —a+b
7’4:—21/4005I —7221/45inE = —a—bi
8 8

The general solution is

y(t) = Are® cosbt + Bre®t sinbt + Ase™ cos bt + Boe™ % sin bt

(317) Characteristic equation is r3—125 = 0, i.e. 73 = 125 = 125e257_ The roots are r = 5e2kmi/3,
i.e.
5 5(—3+4iv3)=-2+3iV3, and 5(-% — £VB) = -5 - 3iV3.
The general solution is

5 _5 5 _5 . 5
f(z) = c1e’® + cae 2xcos§\/§x+03e 2xsm§ 3z.

(318) Try u(z) = €"® to get the characteristic equation > = 32 which has solutions

2. A 6., _ 8 .
r=2,2e5"" 2e5™" 2e57" 2e57",

i.e.
rog =2
—9 2 cs 2
ry = cosg7r+2251ng7r
— 4 s 4
r2—2cosg7r+2zsm37r
— 6 - 6
r3—2cosg7r+2zsm37r

rqy = 2cos %W + 27 sin %7‘(.

Remember that the roots come in complex conjugate pairs. By making a drawing of the roots
you see that r1 and r4 are complex conjugates of each other, and also that r2 and r3 are complex
conjugates of each other. So the roots are

4

27, and  2cos %7‘(’ + 2isin 57

2, 2cos 27 + 2isin 2
9 2
The general solution of the differential equation is

u(z) = c162® 4 c2e%® cos bz + c3e®® sin bz + c3eP® cos gz + c3eP? sin gz
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Here we have abbreviated

a:2cos%7r,b=2sin%7r,p:2cos%7r,q=2sin%7r.

(320) Characteristic polynomial is 3 — 572 4+ 6r — 2 = (r — 1)(r2 — 4r 4 2), so the characteristic
roots are 71 = 1,723 =2+ V/2. General solution:

y(t) = cre® + eVt 4 32TV,

(322) Characteristic polynomial is 3 — 572 + 4 = (r — 1)(r2 — 4r — 4). Characteristic roots are
ri=1,123 =2+ 2v/2. General solution

(242V2)x (2—2v2)z

z(x) = c1e” 4 coe + c3e

(323) General: y(t) = Acos3t + Bsin3t . With initial conditions: y(t) = sin 3t
(324) General: y(t
(325) General: y
(326) General: y
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3672t — Qe3¢
(327) General: y(t) = Ae™2* + Be~3t. With initial conditions: y(t) = e~2¢ — e3¢
(328) General: y(t) = Ae! + BeSt. With initial conditions: y(t) = 2e! — L5t
Aet + Be®t. With initial conditions: y(t) = (et — e?)/4
(330) General: y(t) = Ae~? + Be~5t. With initial conditions: y(t) = %e*t Leo—5t
1

(331) General: y(t) =

b
o
L
+
oy
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ot
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(t)
()
(t)
(t)
(t)
()
(329) General: y(t) =
()
(t)
(®)
(t)
(t)
()

1
(332) General: y(t) = e (Acost + Bsint). With initial conditions: y(t) = e?!(cost — 2sint)
(333) General: y(t) = e (Acost + Bsint). With initial conditions: y(t) = e?!sint
(334) General: y(t) = e 2*(Acost + Bsint). With initial conditions: y(t) = e~2!(cost + 2sint)
(335) General: y(t) = e 2! (Acost + Bsint). With initial conditions: y(t) = e~ ?*sint

(336) General: y(t) = Ae? + Be3t. With initial conditions: y(t) = 32t — 23t

(337) Characteristic polynomial: 73 + r2 — 7 + 15 = (r + 3)(r? — 2r + 5). Characteristic roots:
r1 = —3, r2,3 = 1 & 2i. General solution (real form) is

() = cre™3 + Aet cos 2t + Bel sin 2t.
The initial conditions require
f0O)=c1+A=0, f(0)=-3c1+A+2B=1, f’(0)=9c; —34+4B=0.
Solve these equations to get ¢; = —1/10, A =1/10, B = 3/10, and thus

t) = —Le 3+ Letcos2t + S el sin2t.
10 10 10

(339) y=—2+ Ae! + Be™?

(340) y = Ae! + Be™ ! +tet

(341) y:Acost—i—Bsint-l—%tsint

(342) y:Acos3t+Bsin3t+%cost
(343) y:Acost—i—Bsint-l—%tsint

(344) y:Acost—i—Bsint—écos&t

(346) (i) Homogeneous equation: try z(t) = e"t, get characteristic equation 72 + 4r + 5 = 0,
with roots r12 = —2 £ i. The general solution of the homogenous equation is therefore zj(t) =

cre 2t cost + coe 2t sint.

To find a particular solution try zp(t) = Ae®t. You get (i2 + 4i + 5)Ae? = e, ie. (4 +4i)A =1,

1 _ 11 _11-i _ 1 _ i i i i
so A= yewvil e = =35 % So the general solution to the inhomogeneous problem is

z(t) =

'S

2 2

Loy —2t —2t _:
e’ 4+ cre cost + cae sint.
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(348) Let X(t) be the rabbit population size at time ¢. The rate at which this population grows
is dX/dt rabbits per year.

5

100

%X from death at 2% per year

—1000 car accidents
4700 immigration from Sun Prairie

X from growth at 5% per year

Together we get
ﬁ = iX — 300.
dt 100
This equation is both separable and first order linear, so you can choose from two methods to find
the general solution, which is
X (t) = 10,000 + Ce®03t,

If X(1991) = 12000 then
10,000 + Ce0-03x1991 — 12 000 = C = 2,000e~-93%1991 (don’t simplify yet!)
Hence

X (1994) = 10, 00042, 000¢ ~0-03%1991£0.03x1994 _ 10 0042, 000e0-03% (1994-1991) _ 10 000+2, 000e° % ~ 12, 188. ...

(349) (a) Separate variables or find an integrating factor (% — kT = —kA). Both methods
work here. You get T'(t) = A + Ce*t, where C' is an arbitrary constant. Since k < 0 one has
lim;— oo €5t = 0, and hence lim¢— oo T(t) = limg—oo A + CeFt = A+ C -0 = A.

(b) Given T'(0) = 180, A =75, and T'(5) = 150. This gives the following equations:
75 5 7
A+C =180, A+Ce’* =105 = C =105, 5k=Iln-—— =ln_ =—1In—.
105 7 5
When is T' = 907 Solve T'(t) = 90 for ¢ using the values for A, C, k found above (k is a bit ugly so
we substitute it at the end of the problem):

kt kt ke _ 151
T(t)=A+ Ce™ =75+4+105e™ =90 = e = 105 = 7
Hence
i In1/7 :_ln_7 _ In7 .
k k In7/5
The limit as ¢ — oo of the temperature is A = 75 degrees.

(350) (a) Let y(t) be the amount of “retaw” (in gallons) in the tank at time ¢. Then
dy 5
— = —y—-_ 3 .
dt 100 N——
" removal
growth

(b) y(t) = 60 4 Cet/20 = 60 + (yo — 60)et/20.
(¢) If yo = 100 then y(t) = 60 + 40e'/2° so that lim; oo y(t) = +00.
(d) yo = 60.

(351) Finding the equation is the hard part. Let A(t) be the volume of acid in the vat at time ¢.
Then A(0) = 25% of 1000 = 250gallons.

A’ (t) = the volume of acid that gets pumped in minus the volume that gets extracted per minute.
Per minute 40% of 20 gallons, i.e. 8 gallons of acid get added. The vat is well mixed, and A(t) out

of the 1000gallons are acid, so if 20 gallons get extracted, then % % 20 of those are acid. Hence
dA
—:8—i ><20:8—£.
dt 1000 50

The solution is A(t) = 400 + Ce~t/50 = 400 + (A(0) — 400)e /50 = 400 — 150e /30,
The concentration at time ¢ is

A(t) 400 — 150e~1/%0
total volume 1000

concentration = = 0.4 —0.150 /%0,
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If you wait for very long the concentration becomes

At
concentration = lim L =0.4.
t—oo 1000

(352) P is the volume of polluted water in the lake at time ¢. At any time the fraction of the lake
water which is polluted is P/V/, so if 24 cubic feet are drained then % X 24 of those are polluted.
Here V = 10°; for simplicity we’ll just write V until the end of the problem. We get

dP . . P
— ="in minus out” =3 — — x 24
dt
24
whose solution is P(t) = %V + Ke~ V' Here K is an arbitrary constant (which we can’t call C

because in this problem C' is the concentration).

The concentration at time t is

P(t) 1 K _24, 1 1, 24y
C(t) = —~& = = — vi=_2- Co— = v,
(t) v 8+ o 8+( ) 8)6
No matter what Cp is you always have
lim C(t) =0

t—oo

. _ 24
because lim; o0 €™ V t=0.

If Co = % then the concentration of polluted water remains constant: C(t) = %.

(365) (a) Since (;) + (i) = (; i i) the number z would have to satisfy both 1 + 2 = 2 and

2+ x = 1. That’s impossible, so there is no such x.

(b) No drawing, but p = (;) + (z) = (;) +x (1) is the parametric representation of a straight

line through the points (1,2) (when x = 0) and (2,3) (when z = 1).

. AN _ _ _ _
(¢) = and y must satisfy (2x+y)—(1),Solvex+y—2,2x+y—1toget:c— 1, y=3.

(366) Every vector is a position vector. To see of which point it is the position vector translate it
so its initial point is the origin.

— -3 —
Here AB = ( 3 ), so AB is the position vector of the point (—3, 3).

(367) One always labels the vertices of a parallelogram counterclockwise (see §45.4).

— — —_— — 1 — 2 — 3
ABCD is a parallelogram if AB+ AD = AC. AB = (1), AC = (3), AD = (1) So

— — —
AB+ AD # AC, and ABCD is not a parallelogram.

(368) (a) As in the previous problem, we want AB+AD = AC. If D is the point (di,da2, d3) then
0 — d1 — 4 —_—  — —
1|,AD=|d2—2]|,AC = | -1, sothat AB+ AD = AC will hold if d; =4, d> =0
1 ds —1 3

and d3 = 3.

AB =

(b) Now we want A—B>+A—C>':E,sod1:47 do =2, ds = 5.

3 -1 3—1
(373) )@= (0| +t| 1] ={ ¢
1 1 1+t
(b) Intersection with zy plane when z = 0, i.e. when ¢t = —1, at (4, —1,0). Intersection with zz

plane when y = 0, when ¢ = 0, at (3,0,1) (i.e. at A). Intersection with yz plane when z = 0,
when t = 3, at (0,3,4).
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(374) (a) p=(b+2)/2, G=(@a+d)/2, #=(@a+b)/2.

b

—
=
1

+ %(i)’ — @) (See Figure 18, with AX twice as long as XB). Simplify to get m =

é.

QL

—a
+ib+

=
=

(c) Hint : find the point N on the line segment BQ which is twice as far from B as it is from Q.
If you compute this carefully you will find that M = N.

(376) To decompose b set b= EJ_ + 8//, with 6// = ta for some number ¢. Take the dot product
with @ on both sides and you get @b = t||@||2, whence 3 = 14t and t = %. Therefore

—

3 . - - 3
b//zﬂth bJ_Zb—f

14

a.
To find E// and b— L you now substitute the given values for @ and b.

b.

njw

The same procedure leads to @, and d;: dy = %g, a, =ad-—

(877) This problem is of the same type as the previous one, namely we have to decompose one
vector as the sum of a vector perpendicular and a vector parallel to the hill’s surface. The only
difference is that we are not given the normal to the hill so we have to find it ourselves. The

equation of the hill is 1221 + 5z = 130 so the vector 1 = (152) is a normal.

The problem now asks us to write fgrav = fJ_ + f//, where f"J_ = tni is perpendicular to the
surface of the hill, and f// id parallel to the surface.

Take the dot product with 7, and you find ¢||%||? = ﬁ-fgrav == 169t = —bmg = t =
5

— 169 MY- Therefore

2 _ 5 12 — 60 1mg = = oz —G—%mg)
fJ__ mg(5)_(_%?5zmg)’ f//_fgrav fL_(%mg ’

(379) () la—BI = @|> —2-5+ I (i) 12— B = 41| — -5+ |5 (i) 16+ Bl = V37,
[|@— b|| =62 and [|2a@ — b|| = v/130.
— — 1 — — -2 — — —1
(381) Compute AB = —BA = (1), BC = —CB = (2 ), AC = —CA = (3 ) Hence
— — —
IAB = V2, |BCI| = V8 = 2V3, |AC| = V0.

AB-AC = _ _ABAC  _ 2 _ 1
And also AB-AC =2 = cos LA = AB| 1G] — VB~ V5
A similar calculation gives cos ZB = 0 so we have a right triangle; and cos ZC = \35

(882) 4B =(3), AC=(47}), BC = (i72).

If the right angle is at A then AB-AC = 0, so that we must solve 2(t — 1) 4+ (2 —t) = 0. Solution:
t =0, and C = (0, 3).

If the right angle is at B then AB-BC = 0, so that we must solve 2(t — 3) 4+ (1 — ¢t) = 0. Solution:
t =25, and C = (5, —2).

If the right angle is at C' then AC-BC = 0, so that we must solve (t—1)(t—3)+ (2—1t)(1—t) = 0.
Note that this case is different in that we get a quadratic equation, and in that there are two
solutions, t =1, t = %

This is a complete solution of the problem, but it turns out that there is a nice picture of the
solution, and that the four different points C we find are connected with the circle whose diameter
is the line segment AB:
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C (t=0)

A(1,1)

C (t=5)

(383.i) ¢ has defining equation —%x + 3y = 1 which is of the form 7i-& =constant if you choose
i=(~1/?),

(383.ii) The distance to the point D with position vector d from the line £ is ™ \(\L:YTI @) where @ is the

position vector of any point on the line. In our case d =0 and the point A(0,1), @ = O = ( )

- Yy

[y

Al - V22 + 12

a

is on the line. So the distance to the origin from the line is

(383.iii) 3z + y = 2, normal vector is M = (§).

(383.iv) Angle between ¢ and m is the angle 6 between their normals, whose cosine is cosf =
i —1/2  _ 1. /5

=3 — /s/avio ~Vm =T

(388.i) 0 (the cross product of any vector with itself is the zero vector).

(388.iii) (G+b)x (G—b)=dxd+bxda—axb—bxb=—-2daxb.

(389) Not true. For instance, the vector é could be é = @+ b, and @ x b would be the same as
éxb.

— —4
(390.i) A possible normal vector is 7 = AB X AC = (:14). Any (non zero) multiple of this

—1
vector is also a valid normal. The nicest would be iﬁ, = ( 11).
(390.ii) 7m-(Z—a) =0, or n-& = 71-a. Using 7 and @ from the first part we get —4xz| +4zg —4x3 =
—8. Here you could replace @ by either b or é. (Make sure you understand why; if you don’t think
about it, then ask someone).
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(390.iii) Distance from D to P is Ald_d) _ 4//3 = %\/3 There are many valid choices of

I71]

normal 73 in part (i) of this problem, but they all give the same answer here.

Distance from O to P is ﬁ-l(l(:{lld) = %\/g

(390.iv) Since (0 — @) and 'Fi(& — @) have the same sign the point D and the origin lie on the
same side of the plane P.

(390.v) The area of the triangle is %HA—B> X EH =21/3.

(390.vi) Intersection with x axis is A, the intersection with y-axis occurs at (0, —2,0) and the
intersection with the z-axis is B.

o Qs e S -3 ) )

(391.i) Since i = ABXAC = ( i ) the plane through A, B, C has defining equation —3z+y+2z =

3. The coordinates (2,1, 3) of D do not satisfy this equation, so D is not on the plane ABC.

(391.ii) If E is on the plane through A, B, C then the coordinates of E satisfy the defining equation
of this plane, so that —3-1+4+1-1+1-«a = 3. This implies a = 5.

(392.i) If ABCD is a parallelogram then the vertices of the parallelogram are labeled A, B, C, D
as you go around the parallelogram in a counterclockwise fashion. See the figure in §43.2. Then
— —_— —

AB 4+ AD = AC. Starting from this equation there are now two ways to solve this problem.

N dy—1 N 1
(first solution) If D is the point (di,d2,ds) then AD = <d2+1), while AB = (é) and
dsz—1

— 0 — —_— —_— . dy 0

AC = ( 31>. Hence AB + AD = AC implies | d2+2 | = ( 31>, and thus d; = 0, d2 = 1 and
- dz—1 -

ds = 0.

(second solution) Let a, B, E,& be the position vectors of A, B,C,D. Then AB =b— a, ete.

—
-

— — — - -
and AB + AD = AC is equivalent to b—a@ +d — a@ = é — a. Since we know a, b, @ we can solve
for&andwogot d=¢—-b+a= (31)— ((2))—1—(%) = (?)

1 1 0 0

(392.ii) The area of the parallelogram ABCD is ||E X EH = H ( 21>H =+/11.

-1
(392.iii) In the previous part we computed AB x AD = ( 1 ), so this is a normal to the plane
containing A, B, D. The defining equation for that plane is —z + y + 32 = 1. Since ABCD is a
parallelogram any plane containing ABD automatically contains C.
(392.iV) (_17 07 0)7 (07 17 0)7 (07 07 %)
(393.i) Here is the picture of the parallelepiped (which you can also find on page 103):

G

base
A

. . a0 -1\ TR -2 . EFGH .
Knowing the points A, B, D we get AB = ( (2) ), AD = ( (1) ) Also, since ,p~p is a paral-

lelepiped, we know that all its faces are parallelogram, and thus EF = A_B)7 etc. Hence: we find

these coordinates for the points A, B, ...

A(1,0,0), (given); B(0,2,0), (given); C(—2,2,1), since AC = AB + AD = (,%3>; D(~1,0,1),

(given); E(0,0,2), (given)

. —_— - —1
F(—1,2,2), since we know F and EF = AB = ( (2) )
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— —_— —_— —2
G(—3,2,3), since we know F and FG = EH = AD = ( 0

— —_— -2
H(-2,0,3), since we know F and EH = AD = ( ? )

(393.ii) The area of ABCD is ”,A—B) X A_D)|| =21
(393.iii) The volume of P is the product of its height and the area of its base, which we compute

in the previous and next problems. So height= % = \/% = %\/21.

(393.iv) The volume of the parallelepiped is A_E)(A_B) X H)) = 6.

Sketching Parametrized Curves

(395) The straight line y = x + 1, traversed
from the top right to the bottom left as ¢
increases from —oo to 4o0.

(396) The diagonal y = x traversed from left
to right, from upwards.

(397) The diagonal y = x again, but since
z = e! can only be positive we only get the
part in the first quadrant. At t = —oco we
start at the origin, as ¢ — +oo both z and
y go to +oo.

(398) Thegraphofy =1Inz, orz = ¢¥ (same
thing), traversed in the upwards direction.

(399) The part of the graph of y = 1/x
which is in the first quadrant, traversed from
left to right.

(400) The standard parabola y = 2, from
left to right.

(401) The graph & = siny. This is the usual
Sine graph, but on its side.

T =siny

-7

(402) We remember that cos2a = 1 —
2sin? a, so that @(t) traces out a part of the
parabola y = 1 —x2. Looking at x(t) = sint
we see &(t) goes back and forth on the part

of the parabola y = 1 — 222 between & = —1
and x = +1.

(403) The unit circle, traversed clockwise,
25 times every 27 time units. Note that the
angle 6 = 25t is measured from the y-axis
instead of from the z-axis.

>
8

(404) Circle with radius 1 and center (1,1)
(it touches the z and y axes). Traversed in-
finitely often in counterclockwise fashion.

b e e e e

(1.1)

(405) Without the 2 this would be the stan-
dard unit circle (dashed curve below). Mul-
tiplying the x component by 2 stretches this



circle to an ellipse. So &(t) traces out an
ellipse, infinitely often, counterclockwise.

(406) For each y = t3 there is exactly one
t, namely, ¢ = y/3. So the curve is a
graph (with z as a function of y instead of
the other way around). It is the graph of

@ =y2/3 = 342,

The curve is called Neil’s parabola.

(407) If 0 is the angle through which
the wheel has turned, then &(0) =

0 — asinf
1—acosf)’

(410) Here’s the picture:

The curve

The arc AB has length 0, and we are told
the line segment BX has the same length.
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From this you get

#(0) = (0050+ Gsine)

sin@ — O cos 6

This curve is called the evolute of the cir-
cle.

(415.i) ®(0) = @, &(1) = é so the curve goes
from A to C as t increases from ¢t = 0 to
t =1. & (0) = 2(b — @) so the tangent at
t = 0 is parallel to the edge AB, and point-
ing from A to B. & (1) = 2(& — b) so the
tangent at t = 1 is parallel to the edge BC,
and pointing from B to C. For an animation
of the curve in this problem visit Wikipedia
at

http://en.wikipedia.org/wiki/File:Bezier_2_big.gif

(415.ii) At ¢ = 1/2. If you didn’t get this,
you can still get partial credit by checking
that this answer is correct.

(417.i) Horizontal tangents: ¢t = 1/4; Ver-
tical tangents: ¢t = 0; Directions: South-
East —oo < ¢t < 1/4, NorthEast 1/4 < t <
0, NorthWest 0 < t < oo.

(417.ii) This vector function is 27 periodic,
so we only look at what happens for 0 <t <
27 (or you could take —w < ¢ <, or any
other interval of length 27).

Horizontal tangents: ¢ = %, %TW’ 5%, %r;
Vertical tangents: t = %, 37";

Directions: NE O <t < 7, SE 7 <t < F,
SW 7 <t < 3T NW ¥ <t < °F,
SW 2F <t < 3% SE 3T <t < IF NE
%r <t <27

The curve traced out is a figure eight on its
side, i.e. the symbol for infinity “co”.

(417.iii) Very similar to the previous prob-
lem. In fact both this vector function and
the one from the previous problem trace out
exactly the same curve. They just assign dif-
ferent values of the parameter ¢ to points on
the curve.

(417.iv) Horizontal points: t = =£v/a;
Vertical points: t = 0; Directions: SE
—00 < t < —y/a, NE —/a < t < 0, NW
0<t<+a, SW ya<t< oco.

The curve looks like a “fish” (with some
imagination.)
(417.v) No horizontal points; Vertical

point: t = 0. Directions: NE —oco < ¢t < 0,
NW 0 <t < oo.

(417.vi) This one has lots of horizon-
tal and vertical tangents. If you re-
place the numbers 2 and 3 by other


http://en.wikipedia.org/wiki/File:Bezier_2_big.gif
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integers you get curves called “Lis-
sajous figures’. Get a graphing calcu-
lator /program and draw some. Or go to
http://en.wikipedia.org/wiki/Lissajous_curve

(417.vii) Horizontal point: ¢ = 0;  Verti-

cal points: t = =+1; . Directions: SW
-0 <t < -1, SE -1 < ¢t < 0, NE
0<t<1,NW1l<t<oo.

It sort of looks like this

(But this is really the graph of &(t) =
(t/(1+t4)).)
.2

(417.ix) This vector function traces out the
right half of the parabola y = 2(x — 1)? (i.e.
the part with > 1), going from right to left
for —oo < t < 0, and then back up again,
from left to right for 0 < t < co.


http://en.wikipedia.org/wiki/Lissajous_curve
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GNU Free Documentation License

Version 1.3, 3 November 2008

Copyright @ 2000, 2001, 2002, 2007, 2008 Free Software Foundation, Inc.

(http://fsf.org/)

Everyone is permitted to copy and distribute verbatim copies of this license document, but changing it is not allowed.

Preamble

The purpose of this License is to make a manual, text-
book, or other functional and useful document “free”
in the sense of freedom: to assure everyone the effec-
tive freedom to copy and redistribute it, with or with-
out modifying it, either commercially or noncommer-
cially. Secondarily, this License preserves for the au-
thor and publisher a way to get credit for their work,
while not being considered responsible for modifica-
tions made by others.

This License is a kind of “copyleft”, which means that
derivative works of the document must themselves be
free in the same sense. It complements the GNU Gen-
eral Public License, which is a copyleft license designed
for free software.

We have designed this License in order to use it for
manuals for free software, because free software needs
free documentation: a free program should come with
manuals providing the same freedoms that the soft-
ware does. But this License is not limited to software
manuals; it can be used for any textual work, regard-
less of subject matter or whether it is published as a
printed book. We recommend this License principally
for works whose purpose is instruction or reference.

1. APPLICABILITY AND DEFINITIONS

This License applies to any manual or other work, in
any medium, that contains a notice placed by the copy-
right holder saying it can be distributed under the
terms of this License. Such a notice grants a world-
wide, royalty-free license, unlimited in duration, to use
that work under the conditions stated herein. The
“Document”, below, refers to any such manual or
work. Any member of the public is a licensee, and
is addressed as “you”. You accept the license if you
copy, modify or distribute the work in a way requiring
permission under copyright law.

A “Modified Version” of the Document means any
work containing the Document or a portion of it, either
copied verbatim, or with modifications and/or trans-
lated into another language.

A “Secondary Section” is a named appendix or a
front-matter section of the Document that deals ex-
clusively with the relationship of the publishers or au-
thors of the Document to the Document’s overall sub-
ject (or to related matters) and contains nothing that
could fall directly within that overall subject. (Thus,
if the Document is in part a textbook of mathematics,
a Secondary Section may not explain any mathemat-
ics.) The relationship could be a matter of historical
connection with the subject or with related matters, or
of legal, commercial, philosophical, ethical or political
position regarding them.

The “Invariant Sections” are certain Secondary Sec-
tions whose titles are designated, as being those of In-
variant Sections, in the notice that says that the Doc-
ument is released under this License. If a section does
not fit the above definition of Secondary then it is not
allowed to be designated as Invariant. The Document
may contain zero Invariant Sections. If the Document
does not identify any Invariant Sections then there are
none.

The “Cover Texts” are certain short passages of text
that are listed, as Front-Cover Texts or Back-Cover
Texts, in the notice that says that the Document is
released under this License. A Front-Cover Text may

be at most 5 words, and a Back-Cover Text may be at
most 25 words.

A “Transparent” copy of the Document means a
machine-readable copy, represented in a format whose
specification is available to the general public, that
is suitable for revising the document straightforwardly
with generic text editors or (for images composed of
pixels) generic paint programs or (for drawings) some
widely available drawing editor, and that is suitable
for input to text formatters or for automatic transla-
tion to a variety of formats suitable for input to text
formatters. A copy made in an otherwise Transpar-
ent file format whose markup, or absence of markup,
has been arranged to thwart or discourage subsequent
modification by readers is not Transparent. An image
format is not Transparent if used for any substantial
amount of text. A copy that is not “Transparent” is
called “Opaque”.

Examples of suitable formats for Transparent copies
include plain ASCII without markup, Texinfo input
format, LaTeX input format, SGML or XML using a
publicly available DTD, and standard-conforming sim-
ple HTML, PostScript or PDF designed for human
modification. Examples of transparent image formats
include PNG, XCF and JPG. Opaque formats include
proprietary formats that can be read and edited only
by proprietary word processors, SGML or XML for
which the DTD and/or processing tools are not gen-
erally available, and the machine-generated HTML,
PostScript or PDF produced by some word processors
for output purposes only.

The “Title Page” means, for a printed book, the title
page itself, plus such following pages as are needed to
hold, legibly, the material this License requires to ap-
pear in the title page. For works in formats which do
not have any title page as such, “Title Page” means
the text near the most prominent appearance of the
work’s title, preceding the beginning of the body of
the text.

The “publisher” means any person or entity that dis-
tributes copies of the Document to the public.

A section “Entitled XYZ” means a named subunit
of the Document whose title either is precisely XYZ
or contains XYZ in parentheses following text that
translates XYZ in another language. (Here XYZ
stands for a specific section name mentioned be-
low, such as “Acknowledgements”, “Dedications”,
“Endorsements”, or “History”.) To “Preserve the
Title” of such a section when you modify the Docu-
ment means that it remains a section “Entitled XYZ”
according to this definition.

The Document may include Warranty Disclaimers next
to the notice which states that this License applies to
the Document. These Warranty Disclaimers are con-
sidered to be included by reference in this License, but
only as regards disclaiming warranties: any other im-
plication that these Warranty Disclaimers may have is
void and has no effect on the meaning of this License.

2. VERBATIM COPYING

You may copy and distribute the Document in any
medium, either commercially or noncommercially, pro-
vided that this License, the copyright notices, and the
license notice saying this License applies to the Docu-
ment are reproduced in all copies, and that you add no
other conditions whatsoever to those of this License.
You may not use technical measures to obstruct or con-
trol the reading or further copying of the copies you
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make or distribute. However, you may accept compen-
sation in exchange for copies. If you distribute a large
enough number of copies you must also follow the con-
ditions in section 3.

You may also lend copies, under the same conditions
stated above, and you may publicly display copies.

3. COPYING IN QUANTITY

If you publish printed copies (or copies in media that
commonly have printed covers) of the Document, num-
bering more than 100, and the Document’s license no-
tice requires Cover Texts, you must enclose the copies
in covers that carry, clearly and legibly, all these Cover
Texts: Front-Cover Texts on the front cover, and Back-
Cover Texts on the back cover. Both covers must also
clearly and legibly identify you as the publisher of
these copies. The front cover must present the full
title with all words of the title equally prominent and
visible. You may add other material on the covers in
addition. Copying with changes limited to the covers,
as long as they preserve the title of the Document and
satisfy these conditions, can be treated as verbatim
copying in other respects.

If the required texts for either cover are too volumi-
nous to fit legibly, you should put the first ones listed
(as many as fit reasonably) on the actual cover, and
continue the rest onto adjacent pages.

If you publish or distribute Opaque copies of the Doc-
ument numbering more than 100, you must either in-
clude a machine-readable Transparent copy along with
each Opaque copy, or state in or with each Opaque
copy a computer-network location from which the gen-
eral network-using public has access to download using
public-standard network protocols a complete Trans-
parent copy of the Document, free of added material.
If you use the latter option, you must take reason-
ably prudent steps, when you begin distribution of
Opaque copies in quantity, to ensure that this Trans-
parent copy will remain thus accessible at the stated
location until at least one year after the last time you
distribute an Opaque copy (directly or through your
agents or retailers) of that edition to the public.

It is requested, but not required, that you contact the
authors of the Document well before redistributing any
large number of copies, to give them a chance to pro-
vide you with an updated version of the Document.

4. MODIFICATIONS

You may copy and distribute a Modified Version of
the Document under the conditions of sections 2 and 3
above, provided that you release the Modified Version
under precisely this License, with the Modified Ver-
sion filling the role of the Document, thus licensing
distribution and modification of the Modified Version
to whoever possesses a copy of it. In addition, you
must do these things in the Modified Version:

A. Use in the Title Page (and on the cov-
ers, if any) a title distinct from that of
the Document, and from those of previ-
ous versions (which should, if there were
any, be listed in the History section of the
Document). You may use the same title
as a previous version if the original pub-
lisher of that version gives permission.

B. List on the Title Page, as authors, one
or more persons or entities responsible
for authorship of the modifications in the
Modified Version, together with at least
five of the principal authors of the Doc-
ument (all of its principal authors, if it
has fewer than five), unless they release
you from this requirement.

C. State on the Title page the name of the
publisher of the Modified Version, as the
publisher.

D. Preserve all the copyright notices of the
Document.

Add an appropriate copyright notice for
your modifications adjacent to the other
copyright notices.

F. Include, immediately after the copyright
notices, a license notice giving the pub-
lic permission to use the Modified Ver-
sion under the terms of this License, in
the form shown in the Addendum below.

G. Preserve in that license notice the full
lists of Invariant Sections and required
Cover Texts given in the Document’s li-
cense notice.

H. Include an unaltered copy of this License.

I. Preserve the section Entitled “History”,
Preserve its Title, and add to it an item
stating at least the title, year, new au-
thors, and publisher of the Modified Ver-
sion as given on the Title Page. If there is
no section Entitled “History” in the Doc-
ument, create one stating the title, year,
authors, and publisher of the Document
as given on its Title Page, then add an
item describing the Modified Version as
stated in the previous sentence.

J. Preserve the network location, if any,
given in the Document for public access
to a Transparent copy of the Document,
and likewise the network locations given
in the Document for previous versions it
was based on. These may be placed in
the “History” section. You may omit a
network location for a work that was pub-
lished at least four years before the Docu-
ment itself, or if the original publisher of
the version it refers to gives permission.

K. For any section Entitled “Acknowledge-
ments” or “Dedications”, Preserve the
Title of the section, and preserve in
the section all the substance and tone
of each of the contributor acknowledge-
ments and/or dedications given therein.

L. Preserve all the Invariant Sections of the
Document, unaltered in their text and
in their titles. Section numbers or the
equivalent are not considered part of the
section titles.

M. Delete any section Entitled “Endorse-
ments”. Such a section may not be in-
cluded in the Modified Version.

N. Do not retitle any existing section to be
Entitled “Endorsements” or to conflict in
title with any Invariant Section.

O. Preserve any Warranty Disclaimers.

If the Modified Version includes new front-matter sec-
tions or appendices that qualify as Secondary Sections
and contain no material copied from the Document,
you may at your option designate some or all of these
sections as invariant. To do this, add their titles to
the list of Invariant Sections in the Modified Version’s
license notice. These titles must be distinct from any
other section titles.

You may add a section Entitled “Endorsements”, pro-
vided it contains nothing but endorsements of your
Modified Version by various parties—for example,
statements of peer review or that the text has been
approved by an organization as the authoritative def-
inition of a standard.

You may add a passage of up to five words as a Front-
Cover Text, and a passage of up to 25 words as a
Back-Cover Text, to the end of the list of Cover Texts
in the Modified Version. Only one passage of Front-
Cover Text and one of Back-Cover Text may be added
by (or through arrangements made by) any one entity.
If the Document already includes a cover text for the
same cover, previously added by you or by arrange-
ment made by the same entity you are acting on be-
half of, you may not add another; but you may replace
the old one, on explicit permission from the previous
publisher that added the old one.

The author(s) and publisher(s) of the Document do
not by this License give permission to use their names
for publicity for or to assert or imply endorsement of
any Modified Version.

5. COMBINING DOCUMENTS

You may combine the Document with other documents
released under this License, under the terms defined
in section 4 above for modified versions, provided that
you include in the combination all of the Invariant Sec-
tions of all of the original documents, unmodified, and
list them all as Invariant Sections of your combined
work in its license notice, and that you preserve all
their Warranty Disclaimers.

The combined work need only contain one copy of this
License, and multiple identical Invariant Sections may
be replaced with a single copy. If there are multiple
Invariant Sections with the same name but different
contents, make the title of each such section unique by
adding at the end of it, in parentheses, the name of the
original author or publisher of that section if known,
or else a unique number. Make the same adjustment
to the section titles in the list of Invariant Sections in
the license notice of the combined work.

In the combination, you must combine any sections
Entitled “History” in the various original documents,



forming one section Entitled “History”; likewise com-
bine any sections Entitled “Acknowledgements”, and
any sections Entitled “Dedications”. You must delete
all sections Entitled “Endorsements”.

6. COLLECTIONS OF DOCUMENTS

You may make a collection consisting of the Document
and other documents released under this License, and
replace the individual copies of this License in the var-
ious documents with a single copy that is included in
the collection, provided that you follow the rules of
this License for verbatim copying of each of the docu-
ments in all other respects.

You may extract a single document from such a collec-
tion, and distribute it individually under this License,
provided you insert a copy of this License into the ex-
tracted document, and follow this License in all other
respects regarding verbatim copying of that document.

7. AGGREGATION WITH INDEPENDENT WORKS

A compilation of the Document or its derivatives with
other separate and independent documents or works,
in or on a volume of a storage or distribution medium,
is called an “aggregate” if the copyright resulting from
the compilation is not used to limit the legal rights
of the compilation’s users beyond what the individ-
ual works permit. When the Document is included in
an aggregate, this License does not apply to the other
works in the aggregate which are not themselves de-
rivative works of the Document.

If the Cover Text requirement of section 3 is applica-
ble to these copies of the Document, then if the Doc-
ument is less than one half of the entire aggregate,
the Document’s Cover Texts may be placed on cov-
ers that bracket the Document within the aggregate,
or the electronic equivalent of covers if the Document
is in electronic form. Otherwise they must appear on
printed covers that bracket the whole aggregate.

8. TRANSLATION

Translation is considered a kind of modification, so you
may distribute translations of the Document under the
terms of section 4. Replacing Invariant Sections with
translations requires special permission from their
copyright holders, but you may include translations
of some or all Invariant Sections in addition to the
original versions of these Invariant Sections. You may
include a translation of this License, and all the li-
cense notices in the Document, and any Warranty Dis-
claimers, provided that you also include the original
English version of this License and the original ver-
sions of those notices and disclaimers. In case of a
disagreement between the translation and the original
version of this License or a notice or disclaimer, the
original version will prevail.

If a section in the Document is Entitled “Acknowledge-
ments”, “Dedications”, or “History”, the requirement
(section 4) to Preserve its Title (section 1) will typi-
cally require changing the actual title.

9. TERMINATION

You may not copy, modify, sublicense, or distribute
the Document except as expressly provided under this
License. Any attempt otherwise to copy, modify, sub-
license, or distribute it is void, and will automatically
terminate your rights under this License.

However, if you cease all violation of this License, then
your license from a particular copyright holder is rein-
stated (a) provisionally, unless and until the copyright
holder explicitly and finally terminates your license,
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and (b) permanently, if the copyright holder fails to
notify you of the violation by some reasonable means
prior to 60 days after the cessation.

Moreover, your license from a particular copyright
holder is reinstated permanently if the copyright
holder notifies you of the violation by some reasonable
means, this is the first time you have received notice
of violation of this License (for any work) from that
copyright holder, and you cure the violation prior to
30 days after your receipt of the notice.

Termination of your rights under this section does not
terminate the licenses of parties who have received
copies or rights from you under this License. If your
rights have been terminated and not permanently re-
instated, receipt of a copy of some or all of the same
material does not give you any rights to use it.

10. FUTURE REVISIONS OF THIS LICENSE

The Free Software Foundation may publish new, re-
vised versions of the GNU Free Documentation License
from time to time. Such new versions will be sim-
ilar in spirit to the present version, but may differ
in detail to address new problems or concerns. See
http://www.gnu.org/copyleft/.

Each version of the License is given a distinguishing
version number. If the Document specifies that a par-
ticular numbered version of this License “or any later
version” applies to it, you have the option of follow-
ing the terms and conditions either of that specified
version or of any later version that has been published
(not as a draft) by the Free Software Foundation. If
the Document does not specify a version number of
this License, you may choose any version ever pub-
lished (not as a draft) by the Free Software Founda-
tion. If the Document specifies that a proxy can de-
cide which future versions of this License can be used,
that proxy’s public statement of acceptance of a ver-
sion permanently authorizes you to choose that version
for the Document.

11. RELICENSING

“Massive Multiauthor Collaboration Site” (or “MMC
Site”) means any World Wide Web server that pub-
lishes copyrightable works and also provides promi-
nent facilities for anybody to edit those works. A pub-
lic wiki that anybody can edit is an example of such
a server. A “Massive Multiauthor Collaboration” (or
“MMC?”) contained in the site means any set of copy-
rightable works thus published on the MMC site.

“CC-BY-SA” means the Creative Commons
Attribution-Share Alike 3.0 license published by Cre-
ative Commons Corporation, a not-for-profit corpora-
tion with a principal place of business in San Fran-
cisco, California, as well as future copyleft versions of
that license published by that same organization.

“Incorporate” means to publish or republish a Docu-
ment, in whole or in part, as part of another Docu-
ment.

An MMC is “eligible for relicensing” if it is licensed un-
der this License, and if all works that were first pub-
lished under this License somewhere other than this
MMC, and subsequently incorporated in whole or in
part into the MMC, (1) had no cover texts or invari-
ant sections, and (2) were thus incorporated prior to
November 1, 2008.

The operator of an MMC Site may republish an MMC
contained in the site under CC-BY-SA on the same site
at any time before August 1, 2009, provided the MMC
is eligible for relicensing.
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