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Chapter 1: Methods of Integration

1. The indefinite integral

We recall some facts about integration from first semester calculus.

1.1. Definition. A function y = F (x) is called an antiderivative of another

function y = f(x) if F ′(x) = f(x) for all x.

1.2. Example. F1(x) = x2 is an antiderivative of f(x) = 2x.

F2(x) = x2 + 2004 is also an antiderivative of f(x) = 2x.

G(t) = 1
2 sin(2t+ 1) is an antiderivative of g(t) = cos(2t+ 1).

The Fundamental Theorem of Calculus states that if a function y = f(x) is
continuous on an interval a ≤ x ≤ b, then there always exists an antiderivative
F (x) of f , and one has

(1)

∫ b

a

f(x) dx = F (b)− F (a).

The best way of computing an integral is often to find an antiderivative F of the
given function f , and then to use the Fundamental Theorem (1). How you go about

finding an antiderivative F for some given function f is the subject of this chapter.

The following notation is commonly used for antiderivates:

(2) F (x) =

∫

f(x)dx.

The integral which appears here does not have the integration bounds a and b. It
is called an indefinite integral, as opposed to the integral in (1) which is called a
definite integral. It’s important to distinguish between the two kinds of integrals.
Here is a list of differences:

Indefinite integral Definite integral

∫
f(x)dx is a function of x.

∫ b

a
f(x)dx is a number.

By definition
∫
f(x)dx is any func-

tion of x whose derivative is f(x).

∫ b

a
f(x)dx was defined in terms of

Riemann sums and can be inter-
preted as “area under the graph of
y = f(x)”, at least when f(x) > 0.

x is not a dummy variable, for exam-
ple,

∫
2xdx = x2 + C and

∫
2tdt =

t2+C are functions of diffferent vari-
ables, so they are not equal.

x is a dummy variable, for example,
∫ 1

0
2xdx = 1, and

∫ 1

0
2tdt = 1, so

∫ 1

0 2xdx =
∫ 1

0 2tdt.
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2. You can always check the answer

Suppose you want to find an antiderivative of a given function f(x) and after
a long and messy computation which you don’t really trust you get an “answer”,
F (x). You can then throw away the dubious computation and differentiate the
F (x) you had found. If F ′(x) turns out to be equal to f(x), then your F (x) is
indeed an antiderivative and your computation isn’t important anymore.

2.1. Example. Suppose we want to find
∫
lnxdx. My cousin Bruce says it

might be F (x) = x lnx− x. Let’s see if he’s right:

d

dx
(x ln x− x) = x · 1

x
+ 1 · lnx− 1 = lnx.

Who knows how Bruce thought of this1, but he’s right! We now know that
∫
lnxdx = x lnx− x+ C.

3. About “+C”

Let f(x) be a function defined on some interval a ≤ x ≤ b. If F (x) is an

antiderivative of f(x) on this interval, then for any constant C the function F̃ (x) =
F (x) + C will also be an antiderivative of f(x). So one given function f(x) has
many different antiderivatives, obtained by adding different constants to one given
antiderivative.

3.1. Theorem. If F1(x) and F2(x) are antiderivatives of the same function

f(x) on some interval a ≤ x ≤ b, then there is a constant C such that F1(x) =
F2(x) + C.

Proof. Consider the difference G(x) = F1(x)−F2(x). Then G′(x) = F ′

1(x)−
F ′

2(x) = f(x)−f(x) = 0, so that G(x) must be constant. Hence F1(x)−F2(x) = C
for some constant. �

It follows that there is some ambiguity in the notation
∫
f(x) dx. Two functions

F1(x) and F2(x) can both equal
∫
f(x) dx without equaling each other. When

this happens, they (F1 and F2) differ by a constant. This can sometimes lead to
confusing situations, e.g. you can check that

∫

2 sinx cosxdx = sin2 x

∫

2 sinx cosxdx = − cos2 x

are both correct. (Just differentiate the two functions sin2 x and − cos2 x!) These
two answers look different until you realize that because of the trig identity sin2 x+
cos2 x = 1 they really only differ by a constant: sin2 x = − cos2 x+ 1.

To avoid this kind of confusion we will from now
on never forget to include the “arbitrary constant
+C” in our answer when we compute an antideriv-
ative.

1He integrated by parts.
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4. Standard Integrals

Here is a list of the standard derivatives and hence the standard integrals
everyone should know.

∫

f(x) dx = F (x) + C

∫

xn dx =
xn+1

n+ 1
+ C for all n 6= −1

∫
1

x
dx = ln |x|+ C

∫

sinxdx = − cosx+ C

∫

cosxdx = sinx+ C

∫

tanxdx = − ln cosx+ C

∫
1

1 + x2
dx = arctanx+ C

∫
1√

1− x2
dx = arcsinx+ C (=

π

2
− arccosx+ C)

∫
dx

cosx
=

1

2
ln

1 + sinx

1− sinx
+ C for − π

2
< x <

π

2
.

All of these integrals are familiar from first semester calculus (like Math 221), except
for the last one. You can check the last one by differentiation (using ln a

b
= ln a−ln b

simplifies things a bit).

5. Method of substitution

The chain rule says that

dF (G(x))

dx
= F ′(G(x)) ·G′(x),

so that ∫

F ′(G(x)) ·G′(x) dx = F (G(x)) + C.

5.1. Example. Consider the function f(x) = 2x sin(x2 + 3). It does not
appear in the list of standard integrals we know by heart. But we do notice2 that
2x = d

dx (x
2 + 3). So let’s call G(x) = x2 + 3, and F (u) = − cosu, then

F (G(x)) = − cos(x2 + 3)

and
dF (G(x))

dx
= sin(x2 + 3)

︸ ︷︷ ︸

F ′(G(x))

· 2x
︸︷︷︸

G′(x)

= f(x),

2 You will start noticing things like this after doing several examples.
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so that
∫

2x sin(x2 + 3) dx = − cos(x2 + 3) + C.

The most transparent way of computing an integral by substitution is by in-
troducing new variables. Thus to do the integral

∫

f(G(x))G′(x) dx

where f(u) = F ′(u), we introduce the substitution u = G(x), and agree to write
du = dG(x) = G′(x) dx. Then we get

∫

f(G(x))G′(x) dx =

∫

f(u) du = F (u) + C.

At the end of the integration we must remember that u really stands for G(x), so
that

∫

f(G(x))G′(x) dx = F (u) + C = F (G(x)) + C.

For definite integrals this implies

∫ b

a

f(G(x))G′(x) dx = F (G(b))− F (G(a)).

which you can also write as

(3)

∫ b

a

f(G(x))G′(x) dx =

∫ G(b)

G(a)

f(u) du.

5.2. Example. [Substitution in a definite integral. ] As an example we com-
pute

∫ 1

0

x

1 + x2
dx,

using the substitution u = G(x) = 1 + x2. Since du = 2xdx, the associated
indefinite integral is

∫
1

1 + x2
︸ ︷︷ ︸

1
u

xdx
︸︷︷︸

1
2du

= 1
2

∫
1

u
du.

To find the definite integral you must compute the new integration bounds G(0) and
G(1) (see equation (3).) If x runs between x = 0 and x = 1, then u = G(x) = 1+x2

runs between u = 1 + 02 = 1 and u = 1 + 12 = 2, so the definite integral we must
compute is

∫ 1

0

x

1 + x2
dx = 1

2

∫ 2

1

1

u
du,

which is in our list of memorable integrals. So we find
∫ 1

0

x

1 + x2
dx = 1

2

∫ 2

1

1

u
du = 1

2

[
lnu

]2

1
= 1

2 ln 2.
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6. The double angle trick

If an integral contains sin2 x or cos2 x, then you can remove the squares by
using the double angle formulas from trigonometry.

Recall that

cos2 α− sin2 α = cos 2α and cos2 α+ sin2 α = 1,

Adding these two equations gives

cos2 α =
1

2
(cos 2α+ 1)

while substracting them gives

sin2 α =
1

2
(1− cos 2α) .

6.1. Example. The following integral shows up in many contexts, so it is
worth knowing:

∫

cos2 xdx =
1

2

∫

(1 + cos 2x)dx

=
1

2

{

x+
1

2
sin 2x

}

+ C

=
x

2
+

1

4
sin 2x+ C.

Since sin 2x = 2 sinx cosx this result can also be written as
∫

cos2 xdx =
x

2
+

1

2
sinx cosx+ C.

If you don’t want to memorize the double angle formulas, then you can use
“Complex Exponentials” to do these and many similar integrals. However, you will
have to wait until we are in §28 where this is explained.

7. Integration by Parts

The product rule states

d

dx
(F (x)G(x)) =

dF (x)

dx
G(x) + F (x)

dG(x)

dx

and therefore, after rearranging terms,

F (x)
dG(x)

dx
=

d

dx
(F (x)G(x)) − dF (x)

dx
G(x).

This implies the formula for integration by parts
∫

F (x)
dG(x)

dx
dx = F (x)G(x) −

∫
dF (x)

dx
G(x) dx.
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7.1. Example – Integrating by parts once.

∫

x
︸︷︷︸

F (x)

ex
︸︷︷︸

G′(x)

dx = x
︸︷︷︸

F (x)

ex
︸︷︷︸

G(x)

−
∫

ex
︸︷︷︸

G(x)

1
︸︷︷︸

F ′(x)

dx = xex − ex + C.

Observe that in this example ex was easy to integrate, while the factor x becomes
an easier function when you differentiate it. This is the usual state of affairs when
integration by parts works: differentiating one of the factors (F (x)) should simplify
the integral, while integrating the other (G′(x)) should not complicate things (too
much).

Another example: sinx = d
dx(− cosx) so

∫

x sinxdx = x(− cosx)−
∫

(− cosx) · 1 dx == −x cosx+ sinx+ C.

7.2. Example – Repeated Integration by Parts. Sometimes one integra-
tion by parts is not enough: since e2x = d

dx (
1
2e

2x) one has

∫

x2
︸︷︷︸

F (x)

e2x
︸︷︷︸

G′(x)

dx = x2 e
2x

2
−
∫

e2x

2
2xdx

= x2 e
2x

2
−
{
e2x

4
2x−

∫
e2x

4
2 dx

}

= x2 e
2x

2
−
{
e2x

4
2x− e2x

8
2 + C

}

=
1

2
x2e2x − 1

2
xe2x +

1

4
e2x − C

(Be careful with all the minus signs that appear when you integrate by parts.)

The same procedure will work whenever you have to integrate
∫

P (x)eax dx

where P (x) is a polynomial, and a is a constant. Each time you integrate by parts,
you get this

∫

P (x)eax dx = P (x)
eax

a
−
∫

eax

a
P ′(x) dx

=
1

a
P (x)eax − 1

a

∫

P ′(x)eax dx.

You have replaced the integral
∫
P (x)eax dx with the integral

∫
P ′(x)eax dx. This

is the same kind of integral, but it is a little easier since the degree of the derivative
P ′(x) is less than the degree of P (x).

7.3. Example – My cousin Bruce’s computation. Sometimes the factor
G′(x) is “invisible”. Here is how you can get the antiderivative of lnx by integrating
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by parts:
∫

lnxdx =

∫

lnx
︸︷︷︸

F (x)

· 1
︸︷︷︸

G′(x)

dx

= lnx · x−
∫

1

x
· xdx

= x lnx−
∫

1 dx

= x lnx− x+ C.

You can do
∫
P (x) ln xdx in the same way if P (x) is a polynomial.

8. Reduction Formulas

Consider the integral

In =

∫

xneax dx.

Integration by parts gives you

In = xn 1

a
eax −

∫

nxn−1 1

a
eax dx

=
1

a
xneax − n

a

∫

xn−1eax dx.

We haven’t computed the integral, and in fact the integral that we still have to
do is of the same kind as the one we started with (integral of xn−1eax instead of
xneax). What we have derived is the following reduction formula

In =
1

a
xneax − n

a
In−1 (R)

which holds for all n.

For n = 0 the reduction formula says

I0 =
1

a
eax, i.e.

∫

eax dx =
1

a
eax + C.

When n 6= 0 the reduction formula tells us that we have to compute In−1 if we
want to find In. The point of a reduction formula is that the same formula also
applies to In−1, and In−2, etc., so that after repeated application of the formula we
end up with I0, i.e., an integral we know.

8.1. Example. To compute
∫
x3eax dx we use the reduction formula three

times:

I3 =
1

a
x3eax − 3

a
I2

=
1

a
x3eax − 3

a

{
1

a
x2eax − 2

a
I1

}

=
1

a
x3eax − 3

a

{
1

a
x2eax − 2

a

(
1

a
xeax − 1

a
I0

)}



12

Insert the known integral I0 = 1
a
eax +C and simplify the other terms and you get

∫

x3eax dx =
1

a
x3eax − 3

a2
x2eax +

6

a3
xeax − 6

a4
eax + C.

8.2. Reduction formula requiring two partial integrations. Consider

Sn =

∫

xn sinxdx.

Then for n ≥ 2 one has

Sn = −xn cosx+ n

∫

xn−1 cosxdx

= −xn cosx+ nxn−1 sinx− n(n− 1)

∫

xn−2 sinxdx.

Thus we find the reduction formula

Sn = −xn cosx+ nxn−1 sinx− n(n− 1)Sn−2.

Each time you use this reduction, the exponent n drops by 2, so in the end you get
either S1 or S0, depending on whether you started with an odd or even n.

8.3. A reduction formula where you have to solve for In. We try to
compute

In =

∫

(sinx)n dx

by a reduction formula. Integrating by parts twice we get

In =

∫

(sinx)n−1 sinxdx

= −(sinx)n−1 cosx−
∫

(− cosx)(n − 1)(sinx)n−2 cosxdx

= −(sinx)n−1 cosx+ (n− 1)

∫

(sinx)n−2 cos2 xdx.

We now use cos2 x = 1− sin2 x, which gives

In = −(sinx)n−1 cosx+ (n− 1)

∫
{
sinn−2 x− sinn x

}
dx

= −(sinx)n−1 cosx+ (n− 1)In−2 − (n− 1)In.

You can think of this as an equation for In, which, when you solve it tells you

nIn = −(sinx)n−1 cosx+ (n− 1)In−2

and thus implies

In = − 1

n
sinn−1 x cos x+

n− 1

n
In−2. (S)

Since we know the integrals

I0 =

∫

(sinx)0dx =

∫

dx = x+ C and I1 =

∫

sinxdx = − cosx+ C

the reduction formula (S) allows us to calculate In for any n ≥ 0.
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8.4. A reduction formula which will be handy later. In the next section
you will see how the integral of any “rational function” can be transformed into
integrals of easier functions, the hardest of which turns out to be

In =

∫
dx

(1 + x2)n
.

When n = 1 this is a standard integral, namely

I1 =

∫
dx

1 + x2
= arctanx+ C.

When n > 1 integration by parts gives you a reduction formula. Here’s the com-
putation:

In =

∫

(1 + x2)−n dx

=
x

(1 + x2)n
−
∫

x (−n)
(
1 + x2

)
−n−1

2xdx

=
x

(1 + x2)n
+ 2n

∫
x2

(1 + x2)n+1
dx

Apply

x2

(1 + x2)n+1
=

(1 + x2)− 1

(1 + x2)n+1
=

1

(1 + x2)n
− 1

(1 + x2)n+1

to get

∫
x2

(1 + x2)n+1
dx =

∫ {
1

(1 + x2)n
− 1

(1 + x2)n+1

}

dx = In − In+1.

Our integration by parts therefore told us that

In =
x

(1 + x2)n
+ 2n

(
In − In+1

)
,

which you can solve for In+1. You find the reduction formula

In+1 =
1

2n

x

(1 + x2)n
+

2n− 1

2n
In.

As an example of how you can use it, we start with I1 = arctanx + C, and
conclude that

∫
dx

(1 + x2)2
= I2 = I1+1

=
1

2 · 1
x

(1 + x2)1
+

2 · 1− 1

2 · 1 I1

= 1
2

x

1 + x2
+ 1

2 arctanx+ C.
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Apply the reduction formula again, now with n = 2, and you get
∫

dx

(1 + x2)3
= I3 = I2+1

=
1

2 · 2
x

(1 + x2)2
+

2 · 2− 1

2 · 2 I2

= 1
4

x

(1 + x2)2
+ 3

4

{

1
2

x

1 + x2
+ 1

2 arctanx

}

= 1
4

x

(1 + x2)2
+ 3

8

x

1 + x2
+ 3

8 arctanx+ C.

9. Partial Fraction Expansion

A rational function is one which is a ratio of polynomials,

f(x) =
P (x)

Q(x)
=

pnx
n + pn−1x

n−1 + · · ·+ p1x+ p0
qdxd + qd−1xd−1 + · · ·+ q1x+ q0

.

Such rational functions can always be integrated, and the trick which allows you to
do this is called a partial fraction expansion. The whole procedure consists of
several steps which are explained in this section. The procedure itself has nothing
to do with integration: it’s just a way of rewriting rational functions. It is in fact
useful in other situations, such as finding Taylor series (see Part 178 of these notes)
and computing “inverse Laplace transforms” (see Math 319.)

9.1. Reduce to a proper rational function. A proper rational function
is a rational function P (x)/Q(x) where the degree of P (x) is strictly less than the
degree of Q(x). the method of partial fractions only applies to proper rational
functions. Fortunately there’s an additional trick for dealing with rational functions
that are not proper.

If P/Q isn’t proper, i.e. if degree(P ) ≥ degree(Q), then you divide P by Q,
with result

P (x)

Q(x)
= S(x) +

R(x)

Q(x)

where S(x) is the quotient, and R(x) is the remainder after division. In practice
you would do a long division to find S(x) and R(x).

9.2. Example. Consider the rational function

f(x) =
x3 − 2x+ 2

x2 − 1
.

Here the numerator has degree 3 which is more than the degree of the denominator
(which is 2). To apply the method of partial fractions we must first do a division
with remainder. One has

x +1 = S(x)
x2 − 1 x3 −2x +2

x3 −x
−x +2 = R(x)

so that

f(x) =
x3 − 2x+ 2

x2 − 1
= x+

−x+ 2

x2 − 1
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When we integrate we get
∫

x3 − 2x+ 2

x2 − 1
dx =

∫ {

x+
−x+ 2

x2 − 1

}

dx

=
x2

2
+

∫ −x+ 2

x2 − 1
dx.

The rational function which still have to integrate, namely −x+2
x2

−1 , is proper, i.e. its
numerator has lower degree than its denominator.

9.3. Partial Fraction Expansion: The Easy Case. To compute the par-
tial fraction expansion of a proper rational function P (x)/Q(x) you must factor the
denominator Q(x). Factoring the denominator is a problem as difficult as finding
all of its roots; in Math 222 we shall only do problems where the denominator is
already factored into linear and quadratic factors, or where this factorization is easy
to find.

In the easiest partial fractions problems, all the roots of Q(x) are real numbers
and distinct, so the denominator is factored into distinct linear factors, say

P (x)

Q(x)
=

P (x)

(x − a1)(x− a2) · · · (x− an)
.

To integrate this function we find constants A1, A2, . . . , An so that

P (x)

Q(x)
=

A1

x− a1
+

A2

x− a2
+ · · ·+ An

x− an
. (#)

Then the integral is
∫

P (x)

Q(x)
dx = A1 ln |x− a1|+A2 ln |x− a2|+ · · ·+An ln |x− an|+ C.

One way to find the coefficients Ai in (#) is called the method of equating
coefficients. In this method we multiply both sides of (#) with Q(x) = (x −
a1) · · · (x − an). The result is a polynomial of degree n on both sides. Equating
the coefficients of these polynomial gives a system of n linear equations for A1, . . . ,
An. You get the Ai by solving that system of equations.

Another much faster way to find the coefficients Ai is the Heaviside trick3.
Multiply equation (#) by x − ai and then plug in4 x = ai. On the right you are
left with Ai so

Ai =
P (x)(x − ai)

Q(x)

∣
∣
∣
∣
x=ai

=
P (ai)

(ai − a1) · · · (ai − ai−1)(ai − ai+1) · · · (ai − an)
.

3 Named after Oliver Heaviside, a physicist and electrical engineer in the late 19th and
early 20ieth century.

4 More properly, you should take the limit x → ai. The problem here is that equation (#)
has x − ai in the denominator, so that it does not hold for x = ai. Therefore you cannot set x

equal to ai in any equation derived from (#), but you can take the limit x → ai, which in practice
is just as good.
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9.4. Previous Example continued. To integrate
−x+ 2

x2 − 1
we factor the de-

nominator,

x2 − 1 = (x− 1)(x+ 1).

The partial fraction expansion of
−x+ 2

x2 − 1
then is

−x+ 2

x2 − 1
=

−x+ 2

(x− 1)(x+ 1)
=

A

x− 1
+

B

x+ 1
. (†)

Multiply with (x− 1)(x+ 1) to get

−x+ 2 = A(x+ 1) +B(x − 1) = (A+B)x + (A−B).

The functions of x on the left and right are equal only if the coefficient of x and
the constant term are equal. In other words we must have

A+B = −1 and A−B = 2.

These are two linear equations for two unknowns A and B, which we now proceed to
solve. Adding both equations gives 2A = 1, so that A = 1

2 ; from the first equation

one then finds B = −1−A = − 3
2 . So

−x+ 2

x2 − 1
=

1/2

x− 1
− 3/2

x+ 1
.

Instead, we could also use the Heaviside trick: multiply (†) with x− 1 to get

−x+ 2

x+ 1
= A+B

x− 1

x+ 1

Take the limit x → 1 and you find

−1 + 2

1 + 1
= A, i.e. A =

1

2
.

Similarly, after multiplying (†) with x+ 1 one gets

−x+ 2

x− 1
= A

x+ 1

x− 1
+B,

and letting x → −1 you find

B =
−(−1) + 2

(−1)− 1
= −3

2
,

as before.

Either way, the integral is now easily found, namely,
∫

x3 − 2x+ 1

x2 − 1
dx =

x2

2
+ x+

∫ −x+ 2

x2 − 1
dx

=
x2

2
+ x+

∫ {
1/2

x− 1
− 3/2

x+ 1

}

dx

=
x2

2
+ x+

1

2
ln |x− 1| − 3

2
ln |x+ 1|+ C.
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9.5. Partial Fraction Expansion: The General Case. Buckle up.

When the denominator Q(x) contains repeated factors or quadratic factors (or
both) the partial fraction decomposition is more complicated. In the most general
case the denominator Q(x) can be factored in the form

(4) Q(x) = (x− a1)
k1 · · · (x− an)

kn(x2 + b1x+ c1)
ℓ1 · · · (x2 + bmx+ cm)ℓm

Here we assume that the factors x − a1, . . . , x − an are all different, and we also
assume that the factors x2 + b1x+ c1, . . . , x

2 + bmx+ cm are all different.

It is a theorem from advanced algebra that you can always write the rational
function P (x)/Q(x) as a sum of terms like this

(5)
P (x)

Q(x)
= · · ·+ A

(x− ai)k
+ · · ·+ Bx+ C

(x2 + bjx+ cj)ℓ
+ · · ·

How did this sum come about?

For each linear factor (x − a)k in the denominator (4) you get terms

A1

x− a
+

A2

(x− a)2
+ · · ·+ Ak

(x− a)k

in the decomposition. There are as many terms as the exponent of the linear factor
that generated them.

For each quadratic factor (x2 + bx+ c)ℓ you get terms

B1x+ C1

x2 + bx+ c
+

B2x+ C2

(x2 + bx+ c)2
+ · · ·+ Bmx+ Cm

(x2 + bx+ c)ℓ
.

Again, there are as many terms as the exponent ℓ with which the quadratic factor
appears in the denominator (4).

In general, you find the constants A..., B... and C... by the method of equating
coefficients.

9.6. Example. To do the integral
∫

x2 + 3

x2(x+ 1)(x2 + 1)2
dx

apply the method of equating coefficients to the form

x2 + 3

x2(x+ 1)(x2 + 1)2
=

A1

x
+

A2

x2
+

A3

x+ 1
+

B1x+ C1

x2 + 1
+

B2x+ C2

(x2 + 1)2
. (EX)

Solving this last problem will require solving a system of seven linear equations
in the seven unknowns A1, A2, A3, B1, C1, B2, C2. A computer program like Maple
can do this easily, but it is a lot of work to do it by hand. In general, the method
of equating coefficients requires solving n linear equations in n unknowns where n
is the degree of the denominator Q(x).

See Problem 104 for a worked example where the coefficients are found.

!!
Unfortunately, in the presence of quadratic factors or repeated lin-
ear factors the Heaviside trick does not give the whole answer; you
must use the method of equating coefficients.

!!
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Once you have found the partial fraction decomposition (EX) you still have
to integrate the terms which appeared. The first three terms are of the form
∫
A(x− a)−p dx and they are easy to integrate:

∫
Adx

x− a
= A ln |x− a|+ C

and ∫
Adx

(x− a)p
=

A

(1− p)(x − a)p−1
+ C

if p > 1. The next, fourth term in (EX) can be written as
∫

B1x+ C1

x2 + 1
dx = B1

∫
x

x2 + 1
dx+ C1

∫
dx

x2 + 1

=
B1

2
ln(x2 + 1) + C1 arctanx+ Cintegration const.

While these integrals are already not very simple, the integrals
∫

Bx + C

(x2 + bx+ c)p
dx with p > 1

which can appear are particularly unpleasant. If you really must compute one of
these, then complete the square in the denominator so that the integral takes the
form ∫

Ax +B

((x+ b)2 + a2)p
dx.

After the change of variables u = x+ b and factoring out constants you have to do
the integrals

∫
du

(u2 + a2)p
and

∫
u du

(u2 + a2)p
.

Use the reduction formula we found in example 8.4 to compute this integral.

An alternative approach is to use complex numbers (which are on the menu for
this semester.) If you allow complex numbers then the quadratic factors x2+ bx+ c
can be factored, and your partial fraction expansion only contains terms of the form
A/(x−a)p, although A and a can now be complex numbers. The integrals are then
easy, but the answer has complex numbers in it, and rewriting the answer in terms
of real numbers again can be quite involved.

10. PROBLEMS

DEFINITE VERSUS INDEFINITE INTEGRALS

1. Compute the following three integrals:

A =

∫

x−2 dx, B =

∫

t−2 dt, C =

∫

x−2 dt.

2. One of the following three integrals is not the same as the other two:

A =

∫ 4

1

x−2 dx, B =

∫ 4

1

t−2 dt, C =

∫ 4

1

x−2 dt.

Which one?

BASIC INTEGRALS
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The following integrals are straightforward provided you know the list of standard
antiderivatives. They can be done without using substitution or any other tricks, and you
learned them in first semester calculus.

3.

∫
{
6x5 − 2x−4 − 7x

+3/x− 5 + 4ex + 7x
}
dx

4.

∫

(x/a+ a/x+ xa + ax + ax) dx

5.

∫
{√

x− 3
√
x4 +

7
3
√
x2

− 6ex + 1
}
dx

6.

∫
{
2x +

(
1
2

)x}
dx

7.

∫ 0

−3

(5y4 − 6y2 + 14) dy

8.

∫ 3

1

(
1

t2
− 1

t4

)

dt

9.

∫ 2

1

t6 − t2

t4
dt

10.

∫ 2

1

x2 + 1√
x

dx

11.

∫ 2

0

(x3 − 1)2 dx

12.

∫ 2

1

(x+ 1/x)2 dx

13.

∫ 3

3

√

x5 + 2 dx

14.

∫ −1

1

(x− 1)(3x+ 2) dx

15.

∫ 4

1

(
√
t− 2/

√
t) dt

16.

∫ 8

1

(

3
√
r +

1
3
√
r

)

dr

17.

∫ 0

−1

(x+ 1)3 dx

18.

∫ e

1

x2 + x+ 1

x
dx

19.

∫ 9

4

(√
x+

1√
x

)2

dx

20.

∫ 1

0

(
4
√
x5 +

5
√
x4
)

dx

21.

∫ 8

1

x− 1
3
√
x2

dx

22.

∫ π/3

π/4

sin t dt

23.

∫ π/2

0

(cos θ + 2 sin θ) dθ

24.

∫ π/2

0

(cos θ + sin 2θ) dθ

25.

∫ π

2π/3

tan x

cos x
dx

26.

∫ π/2

π/3

cot x

sin x
dx

27.

∫ √
3

1

6

1 + x2
dx

28.

∫ 0.5

0

dx√
1− x2

29.

∫ 8

4

(1/x) dx

30.

∫ ln 6

ln 3

8ex dx

31.

∫ 9

8

2t dt

32.

∫ −e

−e2

3

x
dx

33.

∫ 3

−2

|x2 − 1| dx

34.

∫ 2

−1

|x− x2| dx

35.

∫ 2

−1

(x− 2|x|) dx

36.

∫ 2

0

(x2 − |x− 1|) dx

37.

∫ 2

0

f(x) dx where

f(x) =

{

x4 if 0 ≤ x < 1,

x5, if 1 ≤ x ≤ 2.

38.

∫ π

−π
f(x) dx where

f(x) =

{

x, if − π ≤ x ≤ 0,

sin x, if 0 < x ≤ π.
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39. Compute

I =

∫ 2

0

2x
(
1 + x2)3 dx

in two different ways:
(i) Expand (1 + x2)3, multiply with 2x,
and integrate each term.
(ii) Use the substitution u = 1 + x2.

40. Compute

In =

∫

2x
(
1 + x2)n dx.

41. If f ′(x) = x − 1/x2 and f(1) = 1/2
find f(x).

42. Consider
∫ 2

0
|x− 1| dx. Let f(x) = |x− 1| so that

f(x) =

{
x− 1 if x ≥ 1
1− x if x < 1

Define

F (x) =

{
x2

2
− x if x ≥ 1

x− x2

2
if x < 1

Then since F is an antiderivative of f we have by the Fundamental Theorem of Calculus:
∫ 2

0

|x− 1| dx =

∫ 2

0

f(x) dx = F (2)− F (0) = (
22

2
− 2)− (0− 02

2
) = 0

But this integral cannot be zero, f(x) is positive except at one point. How can this be?

BASIC SUBSTITUTIONS

Use a substitution to evaluate the following integrals.

43.

∫ 2

1

u du

1 + u2

44.

∫ 2

1

xdx

1 + x2

45.

∫ π/3

π/4

sin2 θ cos θ dθ

46.

∫ 3

2

1

r ln r
,dr

47.

∫
sin 2x

1 + cos2 x
dx

48.

∫
sin 2x

1 + sin x
dx

49.

∫ 1

0

z
√

1− z2 dz

50.

∫ 2

1

ln 2x

x
dx

51.

∫
ln(2x2)

x
dx

52.

∫ √
2

ξ=0

ξ(1 + 2ξ2)10 dξ

53.

∫ 3

2

sin ρ
(
cos 2ρ)4 dρ

54.

∫

αe−α
2

dα

55.

∫
e

1
t

t2
dt

REVIEW OF THE INVERSE TRIGONOMETRIC FUNCTIONS

56. Group problem. The inverse sine function is the inverse function to the (re-
stricted) sine function, i.e. when −π/2 ≤ θ ≤ π/2 we have

θ = arcsin(y) ⇐⇒ y = sin θ.
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The inverse sine function is sometimes called Arc Sine function and denoted θ =
arcsin(y). We avoid the notation sin−1(x) which is used by some as it is ambiguous
(it could stand for either arcsin x or for (sin x)−1 = 1/(sin x)).

(i) If y = sin θ, express sin θ, cos θ, and tan θ in terms of y when 0 ≤ θ < π/2.

(ii) If y = sin θ, express sin θ, cos θ, and tan θ in terms of y when π/2 < θ ≤ π.

(iii) If y = sin θ, express sin θ, cos θ, and tan θ in terms of y when −π/2 < θ < 0.

(iv) Evaluate

∫
dy

√
1− y2

using the substitution y = sin θ, but give the final answer in

terms of y.

57. Group problem. Express in simplest form:

(i) cos(arcsin−1(x)); (ii) tan

{

arcsin
ln 1

4

ln 16

}

; (iii) sin
(
2 arctan a

)

58. Group problem. Draw the graph of y = f(x) = arcsin
(
sin(x)

)
, for −2π ≤ x ≤ +2π.

Make sure you get the same answer as your graphing calculator.

59. Use the change of variables formula to evaluate

∫ √
3/2

1/2

dx√
1− x2

first using the substi-

tution x = sin u and then using the substitution x = cosu.

60. The inverse tangent function is the inverse function to the (restricted) tangent
function, i.e. for π/2 < θ < π/2 we have

θ = arctan(w) ⇐⇒ w = tan θ.

The inverse tangent function is sometimes called Arc Tangent function and denoted
θ = arctan(y). We avoid the notation tan−1(x) which is used by some as it is ambiguous
(it could stand for either arctan x or for (tanx)−1 = 1/(tan x)).

(i) If w = tan θ, express sin θ and cos θ in terms of w when

(a) 0 ≤ θ < π/2 (b) π/2 < θ ≤ π (c) − π/2 < θ < 0

(ii) Evaluate

∫
dw

1 + w2
using the substitution w = tan θ, but give the final answer in

terms of w.

61. Use the substitution x = tan(θ) to find the following integrals. Give the final answer
in terms of x.

(a)

∫
√

1 + x2 dx

(b)

∫
1

(1 + x2)2
dx

(c)

∫
dx√

1 + x2

Evaluate these integrals:

62.

∫
dx√
1− x2

63.

∫
dx√
4− x2

64.

∫
dx√

2x− x2

65.

∫
xdx√
1− 4x4

66.

∫ 1/2

−1/2

dx√
4− x2

67.

∫ 1

−1

dx√
4− x2

68.

∫ √
3/2

0

dx√
1− x2

69.

∫
dx

x2 + 1
,

70.

∫
dx

x2 + a2
,
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71.

∫
dx

7 + 3x2
, 72.

∫
dx

3x2 + 6x+ 6

73.

∫ √
3

1

dx

x2 + 1
,

74.

∫ a
√
3

a

dx

x2 + a2
.

INTEGRATION BY PARTS AND REDUCTION FORMULAE

75. Evaluate

∫

xn ln xdx where n 6= −1.

76. Evaluate

∫

eax sin bxdx where a2 + b2 6= 0. [Hint: Integrate by parts twice.]

77. Evaluate

∫

eax cos bxdx where a2 + b2 6= 0.

78. Prove the formula ∫

xnex dx = xnex − n

∫

xn−1ex dx

and use it to evaluate

∫

x2ex dx.

79. Prove the formula
∫

sinn x dx = − 1

n
cos x sinn−1 x+

n− 1

n

∫

sinn−2 x dx, n 6= 0

80. Evaluate

∫

sin2 x dx. Show that the answer is the same as the answer you get using

the half angle formula.

81. Evaluate

∫ π

0

sin14 xdx.

82. Prove the formula
∫

cosn x dx =
1

n
sin x cosn−1 x+

n− 1

n

∫

cosn−2 xdx, n 6= 0

and use it to evaluate

∫ π/4

0

cos4 x dx.

83. Prove the formula
∫

xm(ln x)n dx =
xm+1(ln x)n

m+ 1
− n

m+ 1

∫

xm(ln x)n−1 dx, m 6= −1,

and use it to evaluate the following integrals:

84.

∫

lnx dx

85.

∫

(lnx)2 dx

86.

∫

x3(lnx)2 dx

87. Evaluate

∫

x−1 ln x dx by another method. [Hint: the solution is short!]

88. For an integer n > 1 derive the formula
∫

tann x dx =
1

n− 1
tann−1 x−

∫

tann−2 xdx
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Using this, find

∫ π/4

0

tan5 x dx by doing just one explicit integration.

Use the reduction formula from example 8.4 to compute these integrals:

89.

∫
dx

(1 + x2)3

90.

∫
dx

(1 + x2)4

91.

∫
xdx

(1 + x2)4
[Hint:

∫
x/(1 + x2)ndx is easy.]

92.

∫
1 + x

(1 + x2)2
dx

93. Group problem. The reduction formula from example 8.4 is valid for all n 6= 0. In
particular, n does not have to be an integer, and it does not have to be positive.

Find a relation between

∫
√

1 + x2 dx and

∫
dx√
1 + x2

by setting n = − 1
2
.

94. Apply integration by parts to ∫
1

x
dx

Let u = 1
x
and dv = dx. This gives us, du = −1

x2
dx and v = x.

∫
1

x
dx = (

1

x
)(x)−

∫

x
−1

x2
dx

Simplifying ∫
1

x
dx = 1 +

∫
1

x
dx

and subtracting the integral from both sides gives us 0 = 1. How can this be?

INTEGRATION OF RATIONAL FUNCTIONS

Express each of the following rational functions as a polynomial plus a proper rational
function. (See §9.1 for definitions.)

95.
x3

x3 − 4
,

96.
x3 + 2x

x3 − 4
,

97.
x3 − x2 − x− 5

x3 − 4
.

98.
x3 − 1

x2 − 1
.

COMPLETING THE SQUARE

Write ax2+bx+c in the form a(x+p)2+q, i.e. find p and q in terms of a, b, and c (this
procedure, which you might remember from high school algebra, is called “completing the
square.”). Then evaluate the integrals

99.

∫
dx

x2 + 6x+ 8
,

100.

∫
dx

x2 + 6x+ 10
,

101.

∫
dx

5x2 + 20x+ 25
.

102. Use the method of equating coeffi-
cients to find numbers A, B, C such that

x2 + 3

x(x+ 1)(x− 1)
=
A

x
+

B

x+ 1
+

C

x− 1

and then evaluate the integral
∫

x2 + 3

x(x+ 1)(x− 1)
dx.
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103. Do the previous problem using the
Heaviside trick.

104. Find the integral

∫
x2 + 3

x2(x− 1)
dx.

Evaluate the following integrals:

105.

∫ −2

−5

x4 − 1

x2 + 1
dx

106.

∫
x3 dx

x4 + 1

107.

∫
x5 dx

x2 − 1

108.

∫
x5 dx

x4 − 1

109.

∫
x3

x2 − 1
dx

110.

∫
e3x dx

e4x − 1

111.

∫
ex dx√
1 + e2x

112.

∫
ex dx

e2x + 2ex + 2

113.

∫
dx

1 + ex

114.

∫
dx

x(x2 + 1)

115.

∫
dx

x(x2 + 1)2

116.

∫
dx

x2(x− 1)

117.

∫
1

(x− 1)(x− 2)(x− 3)
dx

118.

∫
x2 + 1

(x− 1)(x− 2)(x− 3)
dx

119.

∫
x3 + 1

(x− 1)(x− 2)(x− 3)
dx

120. Group problem.

(a) Compute

∫ 2

1

dx

x(x− h)
where h

is a positive number.

(b) What happens to your answer
to (a) when h→ 0+ ?

(c) Compute

∫ 2

1

dx

x2
.

MISCELLANEOUS AND MIXED INTEGRALS

121. Find the area of the region bounded by the curves

x = 1, x = 2, y =
2

x2 − 4x+ 5
, y =

x2 − 8x+ 7

x2 − 8x+ 16
.

122. Let P be the piece of the parabola y = x2 on which 0 ≤ x ≤ 1.

(i) Find the area between P, the x-axis and the line x = 1.

(ii) Find the length of P.

123. Let a be a positive constant and

F (x) =

∫ x

0

sin(aθ) cos(θ) dθ.

[Hint: use a trig identity for sinA cosB, or wait until we have covered complex exponentials
and then come back to do this problem.]

(i) Find F (x) if a 6= 1.

(ii) Find F (x) if a = 1. (Don’t divide by zero.)

Evaluate the following integrals:

124.

∫ a

0

x sin xdx

125.

∫ a

0

x2 cos xdx

126.

∫ 4

3

xdx√
x2 − 1

127.

∫ 1/3

1/4

x dx√
1− x2
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128.

∫ 4

3

dx

x
√
x2 − 1

129.

∫
xdx

x2 + 2x+ 17

130.

∫
x4

x2 − 36
dx

131.

∫
x4

36− x2
dx

132.

∫
(x2 + 1) dx

x4 − x2

133.

∫
(x2 + 3) dx

x4 − 2x2

134.

∫

ex(x+ cos(x)) dx

135.

∫

(ex + ln(x)) dx

136.

∫
3x2 + 2x− 2

x3 − 1
dx

137.

∫
x4

x4 − 16
dx

138.

∫
x

(x− 1)3
dx

139.

∫
4

(x− 1)3(x+ 1)
dx

140.

∫
1√

1− 2x− x2
dx

141.

∫ e

1

x ln x dx

142.

∫

2x ln(x+ 1) dx

143.

∫ e3

e2
x2 ln xdx

144.

∫ e

1

x(lnx)3 dx

145.

∫

arctan(
√
x) dx

146.

∫

x(cosx)2 dx

147.

∫ π

0

√

1 + cos(6w) dw

148.

∫
1

1 + sin(x)
dx

149. Find ∫
dx

x(x− 1)(x− 2)(x− 3)

and ∫
(x3 + 1) dx

x(x− 1)(x− 2)(x− 3)

150. Find ∫
dx

x3 + x2 + x+ 1

151. Group problem. You don’t always have to find the antiderivative to find a defi-
nite integral. This problem gives you two examples of how you can avoid finding the
antiderivative.

(i) To find

I =

∫ π/2

0

sin x dx

sin x+ cosx

you use the substitution u = π/2− x. The new integral you get must of course be equal
to the integral I you started with, so if you add the old and new integrals you get 2I . If
you actually do this you will see that the sum of the old and new integrals is very easy to
compute.

(ii) Use the same trick to find

∫ π/2

0

sin2 x dx

152. Group problem. Graph the equation x
2
3 + y

2
3 = a

2
3 . Compute the area bounded by

this curve.
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153. Group problem. The Bow-Tie Graph. Graph the equation y2 = x4−x6. Compute
the area bounded by this curve.

154. Group problem. The Fan-Tailed Fish. Graph the equation

y2 = x2

(
1− x

1 + x

)

.

Find the area enclosed by the loop. (Hint: Rationalize the denominator of the integrand.)

155. Find the area of the region bounded by the curves

x = 2, y = 0, y = x ln
x

2

156. Find the volume of the solid of revolution obtained by rotating around the x−axis the
region bounded by the lines x = 5, x = 10, y = 0, and the curve

y =
x√

x2 + 25
.

157.

How to find the integral of f(x) =
1

cosx
(i) Verify the answer given in the table in the lecture notes.

(ii) Note that
1

cosx
=

cosx

cos2 x
=

cosx

1− sin2 x
,

and apply the substitution s = sin x followed by a partial fraction decomposition to
compute

∫
dx

cos x
.

RATIONALIZING SUBSTITUTIONS

Recall that a rational function is the ratio of two polynomials.

158. Prove that the family of rational functions is closed under taking sums, products,
quotients (except do not divide by the zero polynomial), and compositions.

To integrate rational functions of x and
√
1 + x2 one may do a trigonometric substi-

tution, e.g., x = tan(θ) and 1 + tan2(θ) = sec2(θ). This turns the problem into a trig
integral. Or one could use 1+ sinh2(t) = cosh2(t) and convert the problem into a rational
function of et.

Another technique which works is to use the parameterization of the hyperbola by
rational functions:

x =
1

2
(t− 1

t
) y =

1

2
(t+

1

t
)

159. Show that y2 − x2 = 1 and hence y =
√
1 + x2.

Use this to rationalize the integrals, i.e, make them into an integral of a rational
function of t. You do not need to integrate the rational function.

160.

∫
√

1 + x2 dx

161.

∫
x4

√
1 + x2

dx

162.

∫
ds√

s2 + 2s+ 3

163. Show that t = x+ y = x+
√
1 + x2.
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Hence if ∫

g(x) dx =

∫

f(t) dt = F (t) + C

then ∫

g(x) dx = F (x+
√

1− x2) + C.

164. Note that x =
√
y2 − 1. Show that t is a function of y.

Express these integrals as integrals of rational functions of t.

165.

∫
dy

(y2 − 1)1/2

166.

∫
y4

(y2 − 1)1/2
dy

167.

∫
s4

(s2 − 36)3/2
ds

168.

∫
ds

(s2 + 2s)1/2

169. Note that 1 = (x
y
)2+( 1

y
)2. What substitution would rationalize integrands which have√

1− z2 in them? Show how to write t as a function of z.

Express these integrals as integrals of rational functions of t.

170.

∫
√

1− z2 dz

171.

∫
dz√
1− z2

172.

∫
z2√
1− z2

dz

173.

∫
s4

(36− s2)3/2
ds

174.

∫
ds

(s+ 5)
√
s2 + 5s

Integrating a rational function of sin and cos
∫
r(sin(θ), cos(θ)) dθ

Examples of such integrals are:
∫

(cos θ)2 − (cos θ)(sin θ) + 1

(cos θ)2 + (sin θ)3 + (cos θ) + 1
dθ

or
∫

(sin θ)3(cos θ) + (cos θ) + (sin θ) + 1

(cos θ)2(sin θ)3 − (cos θ)
dθ

The goal of the following problems is to show that such integrals can be rationalized,
not to integrat the rational function.

175. Substitute z = sin(θ) and express
∫
r(sin(θ), cos(θ)) dθ as a rational function of z and√

1− z2.

176. Express it as rational function of t.

177. Express t as a function of θ.

Is π
2
a rational number?
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178. Consider the integral: ∫
√

1− x2 dx

Substitute u = 1− x2 so

u = 1− x2

x =
√
1− u = (1− u)

1
2

dx = ( 1
2
)(1− u)−

1
2 (−1) du

Hence ∫
√

1− x2 dx =

∫ √
u (

1

2
)(1− u)−

1
2 (−1) du

Take the definite integral from x = −1 to x = 1 and note that u = 0 when x = −1
and u = 0 also when x = 1, so

∫ 1

−1

√

1− x2 dx =

∫ 0

0

√
u(

1

2
)(1− u)−

1
2 (−1) du = 0

The last being zero since
∫ 0

0
anything is always 0. But the integral on the left is equal to

half the area of the unit disk, hence π
2
. Therefor π

2
= 0 which is a rational number.

How can this be?
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Chapter 2: Taylor’s Formula

and Infinite Series

All continuous functions which vanish at x = a
are approximately equal at x = a,

but some are more approximately equal than others.

11. Taylor Polynomials

Suppose you need to do some computation with a complicated function y = f(x), and
suppose that the only values of x you care about are close to some constant x = a. Since
polynomials are simpler than most other functions, you could then look for a polynomial
y = P (x) which somehow “matches” your function y = f(x) for values of x close to a.
And you could then replace your function f with the polynomial P , hoping that the error
you make isn’t too big. Which polynomial you will choose depends on when you think
a polynomial “matches” a function. In this chapter we will say that a polynomial P of
degree n matches a function f at x = a if P has the same value and the same
derivatives of order 1, 2, . . . , n at x = a as the function f. The polynomial which
matches a given function at some point x = a is the Taylor polynomial of f . It is given
by the following formula.

11.1. Definition. The Taylor polynomial of a function y = f(x) of degree n at a
point a is the polynomial

(6) T anf(x) = f(a) + f ′(a)(x− a) +
f ′′(a)

2!
(x− a)2 + · · ·+ f (n)(a)

n!
(x− a)n.

(Recall that n! = 1 · 2 · 3 · · ·n, and by definition 0! = 1.

11.2. Theorem. The Taylor polynomial has the following property: it is the only
polynomial P (x) of degree n whose value and whose derivatives of orders 1, 2, . . . , and n
are the same as those of f , i.e. it’s the only polynomial of degree n for which

P (a) = f(a), P ′(a) = f ′(a), P ′′(a) = f ′′(a), . . . , P (n)(a) = f (n)(a)

holds.

Proof. We do the case a = 0, for simplicity. Let n be given, consider a polynomial
P (x) of degree n, say,

P (x) = a0 + a1x+ a2x
2 + a3x

3 + · · ·+ anx
n,
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and let’s see what its derivatives look like. They are:

P (x) = a0 + a1x + a2x
2 + a3x

3 + a4x
4 + · · ·

P ′(x) = a1 + 2a2x + 3a3x
2 + 4a4x

3 + · · ·
P (2)(x) = 1 · 2a2 + 2 · 3a3x + 3 · 4a4x2 + · · ·
P (3)(x) = 1 · 2 · 3a3 + 2 · 3 · 4a4x + · · ·
P (4)(x) = 1 · 2 · 3 · 4a4 + · · ·

When you set x = 0 all the terms which have a positive power of x vanish, and you are
left with the first entry on each line, i.e.

P (0) = a0, P ′(0) = a1, P (2)(0) = 2a2, P (3)(0) = 2 · 3a3, etc.

and in general

P (k)(0) = k!ak for 0 ≤ k ≤ n.

For k ≥ n + 1 the derivatives p(k)(x) all vanish of course, since P (x) is a polynomial of
degree n.

Therefore, if we want P to have the same values and derivatives at x = 0 of orders
1,,. . . , n as the function f , then we must have k!ak = P (k)(0) = f (k)(0) for all k ≤ n.
Thus

ak =
f (k)(0)

k!
for 0 ≤ k ≤ n.

�

12. Examples

Note that the zeroth order Taylor polynomial is just a constant,

T a0 f(x) = f(a),

while the first order Taylor polynomial is

T a1 f(x) = f(a) + f ′(a)(x− a).

This is exactly the linear approximation of f(x) for x close to a which was derived in 1st
semester calculus.

The Taylor polynomial generalizes this first order approximation by providing “higher
order approximations” to f .

y = f(x)

y = T0f(x)

y = f(x)

y = T1f(x)

y = f(x)

y = T2f(x)

Figure 1. The Taylor polynomials of degree 0, 1 and 2 of f(x) = ex at
a = 0. The zeroth order Taylor polynomial has the right value at x = 0 but
it doesn’t know whether or not the function f is increasing at x = 0. The
first order Taylor polynomial has the right slope at x = 0, but it doesn’t see
if the graph of f is curved up or down at x = 0. The second order Taylor
polynomial also has the right curvature at x = 0.
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Most of the time we will take a = 0 in which case we write Tnf(x) instead of T anf(x),
and we get a slightly simpler formula

(7) Tnf(x) = f(0) + f ′(0)x+
f ′′(0)

2!
x2 + · · ·+ f (n)(0)

n!
xn.

You will see below that for many functions f(x) the Taylor polynomials Tnf(x) give better
and better approximations as you add more terms (i.e. as you increase n). For this reason
the limit when n→ ∞ is often considered, which leads to the infinite sum

T∞f(x) = f(0) + f ′(0)x+
f ′′(0)

2!
x2 +

f ′′′(0)

3!
x3 + · · ·

At this point we will not try to make sense of the “sum of infinitely many numbers”.

12.1. Example: Compute the Taylor polynomials of degree 0, 1 and 2 of
f(x) = ex at a = 0, and plot them. One has

f(x) = ex =⇒ f ′(x) = ex =⇒ f ′′(x) = ex,

so that

f(0) = 1, f ′(0) = 1, f ′′(0) = 1.

Therefore the first three Taylor polynomials of ex at a = 0 are

y
=
1
+
x

y = ex

y = 1 + x+ 1
2
x2

y = 1 + x+ x2

y = 1 + x+ 3
2
x2

y = 1 + x− 1
2
x2

Figure 2. The top edge of the shaded region is the graph of y = ex. The
graphs are of the functions y = 1+x+Cx2 for various values of C. These
graphs all are tangent at x = 0, but one of the parabolas matches the graph
of y = ex better than any of the others.
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T0f(x) = 1

T1f(x) = 1 + x

T2f(x) = 1 + x+
1

2
x2.

The graphs are found in Figure 2. As you can see from the graphs, the Taylor polynomial
T0f(x) of degree 0 is close to ex for small x, by virtue of the continuity of ex

The Taylor polynomial of degree 0, i.e. T0f(x) = 1 captures the fact that ex by virtue
of its continuity does not change very much if x stays close to x = 0.

The Taylor polynomial of degree 1, i.e. T1f(x) = 1 + x corresponds to the tangent
line to the graph of f(x) = ex, and so it also captures the fact that the function f(x) is
increasing near x = 0.

Clearly T1f(x) is a better approximation to ex than T0f(x).

The graphs of both y = T0f(x) and y = T1f(x) are straight lines, while the graph
of y = ex is curved (in fact, convex). The second order Taylor polynomial captures this
convexity. In fact, the graph of y = T2f(x) is a parabola, and since it has the same first
and second derivative at x = 0, its curvature is the same as the curvature of the graph of
y = ex at x = 0.

So it seems that y = T2f(x) = 1 + x + x2/2 is an approximation to y = ex which
beats both T0f(x) and T1f(x).

12.2. Example: Find the Taylor polynomials of f(x) = sin x. When you start
computing the derivatives of sin x you find

f(x) = sin x, f ′(x) = cosx, f ′′(x) = − sin x, f (3)(x) = − cosx,

and thus

f (4)(x) = sin x.

So after four derivatives you’re back to where you started, and the sequence of derivatives
of sin x cycles through the pattern

sin x, cosx, − sin x, − cosx, sin x, cos x, − sin x, − cos x, sin x, . . .

on and on. At x = 0 you then get the following values for the derivatives f (j)(0),

j 1 2 3 4 5 6 7 8 · · ·
f (j)(0) 0 1 0 −1 0 1 0 −1 · · ·

This gives the following Taylor polynomials

T0f(x) = 0

T1f(x) = x

T2f(x) = x

T3f(x) = x− x3

3!

T4f(x) = x− x3

3!

T5f(x) = x− x3

3!
+
x5

5!

Note that since f (2)(0) = 0 the Taylor polynomials T1f(x) and T2f(x) are the same! The
second order Taylor polynomial in this example is really only a polynomial of degree 1. In
general the Taylor polynomial Tnf(x) of any function is a polynomial of degree at most
n, and this example shows that the degree can sometimes be strictly less.
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π 2π
−π−2π

y = sin x

T1f(x) T5f(x) T9f(x)

T3f(x) T7f(x) T11f(x)

Figure 3. Taylor polynomials of f(x) = sin x

12.3. Example – Compute the Taylor polynomials of degree two and three
of f(x) = 1 + x+ x2 + x3 at a = 3. Solution: Remember that our notation for the nth

degree Taylor polynomial of a function f at a is T anf(x), and that it is defined by (6).

We have

f ′(x) = 1 + 2x+ 3x2, f ′′(x) = 2 + 6x, f ′′′(x) = 6

Therefore f(3) = 40, f ′(3) = 34, f ′′(3) = 20, f ′′′(3) = 6, and thus

(8) T s2 f(x) = 40 + 34(x− 3) +
20

2!
(x− 3)2 = 40 + 34(x− 3) + 10(x− 3)2.

Why don’t we expand the answer? You could do this (i.e. replace (x− 3)2 by x2 − 6x+9
throughout and sort the powers of x), but as we will see in this chapter, the Taylor
polynomial T anf(x) is used as an approximation for f(x) when x is close to a. In this
example T 3

2 f(x) is to be used when x is close to 3. If x − 3 is a small number then the
successive powers x − 3, (x − 3)2, (x − 3)3, . . . decrease rapidly, and so the terms in (8)
are arranged in decreasing order.

We can also compute the third degree Taylor polynomial. It is

T 3
3 f(x) = 40 + 34(x− 3) +

20

2!
(x− 3)2 +

6

3!
(x− 3)3

= 40 + 34(x− 3) + 10(x− 3)2 + (x− 3)3.

If you expand this (this takes a little work) you find that

40 + 34(x− 3) + 10(x− 3)2 + (x− 3)3 = 1 + x+ x2 + x3.

So the third degree Taylor polynomial is the function f itself! Why is this so? Because
of Theorem 11.2! Both sides in the above equation are third degree polynomials, and
their derivatives of order 0, 1, 2 and 3 are the same at x = 3, so they must be the same
polynomial.
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13. Some special Taylor polynomials

Here is a list of functions whose Taylor polynomials are sufficiently regular that you
can write a formula for the nth term.

Tne
x = 1 + x+

x2

2!
+
x3

3!
+ · · ·+ xn

n!

T2n+1 {sin x} = x− x3

3!
+
x5

5!
− x7

7!
+ · · ·+ (−1)n

x2n+1

(2n+ 1)!

T2n {cos x} = 1− x2

2!
+
x4

4!
− x6

6!
+ · · ·+ (−1)n

x2n

(2n)!

Tn

{
1

1− x

}

= 1 + x+ x2 + x3 + x4 + · · ·+ xn (Geometric Series)

Tn {ln(1 + x)} = x− x2

2
+
x3

3
− x4

4
+ · · ·+ (−1)n+1 x

n

n

All of these Taylor polynomials can be computed directly from the definition, by repeatedly
differentiating f(x).

Another function whose Taylor polynomial you should know is f(x) = (1+x)a, where
a is a constant. You can compute Tnf(x) directly from the definition, and when you do
this you find

(9) Tn{(1 + x)a} = 1 + ax+
a(a− 1)

1 · 2 x2 +
a(a− 1)(a− 2)

1 · 2 · 3 x3

+ · · ·+ a(a− 1) · · · (a− n+ 1)

1 · 2 · · ·n xn.

This formula is called Newton’s binomial formula. The coefficient of xn is called a
binomial coefficient, and it is written

(10)

(

a

n

)

=
a(a− 1) · · · (a− n+ 1)

n!
.

When a is an integer
(
a
n

)
is also called “a choose n.”

Note that you already knew special cases of the binomial formula: when a is a positive
integer the binomial coefficients are just the numbers in Pascal’s triangle. When a = −1
the binomial formula is the Geometric series.

14. The Remainder Term

The Taylor polynomial Tnf(x) is almost never exactly equal to f(x), but often it is
a good approximation, especially if x is small. To see how good the approximation is we
define the “error term” or, “remainder term”.

14.1. Definition. If f is an n times differentiable function on some interval con-
taining a, then

Ranf(x) = f(x)− T anf(x)

is called the nth order remainder (or error) term in the Taylor polynomial of f . If a = 0,
as will be the case in most examples we do, then we write

Rnf(x) = f(x)− Tnf(x).
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14.2. Example. If f(x) = sin x then we have found that T3f(x) = x− 1
6
x3, so that

R3{sin x} = sin x− x+ 1
6
x3.

This is a completely correct formula for the remainder term, but it’s rather useless: there’s
nothing about this expression that suggests that x− 1

6
x3 is a much better approximation

to sin x than, say, x+ 1
6
x3.

The usual situation is that there is no simple formula for the remainder term.

14.3. An unusual example, in which there is a simple formula for Rnf(x).
Consider f(x) = 1− x+ 3x2 − 15 x3.

Then you find

T2f(x) = 1− x+ 3 x2, so that R2f(x) = f(x)− T2f(x) = −15x3.

The moral of this example is this: Given a polynomial f(x) you find its nth degree Taylor
polynomial by taking all terms of degree ≤ n in f(x); the remainder Rnf(x) then consists
of the remaining terms.

14.4. Another unusual, but important example where you can compute
Rnf(x). Consider the function

f(x) =
1

1− x
.

Then repeated differentiation gives

f ′(x) =
1

(1− x)2
, f (2)(x) =

1 · 2
(1− x)3

, f (3)(x) =
1 · 2 · 3
(1− x)4

, . . .

and thus

f (n)(x) =
1 · 2 · 3 · · ·n
(1− x)n+1

.

Consequently,

f (n)(0) = n! =⇒ 1

n!
f (n)(0) = 1,

and you see that the Taylor polynomials of this function are really simple, namely

Tnf(x) = 1 + x+ x2 + x3 + x4 + · · ·+ xn.

But this sum should be really familiar: it is just the Geometric Sum (each term is x
times the previous term). Its sum is given by5

Tnf(x) = 1 + x+ x2 + x3 + x4 + · · ·+ xn =
1− xn+1

1− x
,

which we can rewrite as

Tnf(x) =
1

1− x
− xn+1

1− x
= f(x)− xn+1

1− x
.

The remainder term therefore is

Rnf(x) = f(x)− Tnf(x) =
xn+1

1− x
.

5Multiply both sides with 1− x to verify this, in case you had forgotten the formula!
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15. Lagrange’s Formula for the Remainder Term

15.1. Theorem. Let f be an n+ 1 times differentiable function on some interval I
containing x = 0. Then for every x in the interval I there is a ξ between 0 and x such
that

Rnf(x) =
f (n+1)(ξ)

(n+ 1)!
xn+1.

(ξ between 0 and x means either 0 < ξ < x or x < ξ < 0, depending on the sign of x.)
This theorem (including the proof) is similar to the Mean Value Theorem. The proof is a
bit involved, and I’ve put it at the end of this chapter.

There are calculus textbooks which, after presenting this remainder formula, give
a whole bunch of problems which ask you to find ξ for given f and x. Such problems
completely miss the point of Lagrange’s formula. The point is that even though you
usually can’t compute the mystery point ξ precisely, Lagrange’s formula for the remainder
term allows you to estimate it. Here is the most common way to estimate the remainder:

15.2. Estimate of remainder term. If f is an n+1 times differentiable function
on an interval containing x = 0, and if you have a constant M such that

(†)
∣
∣
∣f

(n+1)(t)
∣
∣
∣ ≤M for all t between 0 and x,

then

|Rnf(x)| ≤ M |x|n+1

(n+ 1)!
.

Proof. We don’t know what ξ is in Lagrange’s formula, but it doesn’t matter, for
wherever it is, it must lie between 0 and x so that our assumption (†) implies |f (n+1)(ξ)| ≤
M . Put that in Lagrange’s formula and you get the stated inequality. �

15.3. How to compute e in a few decimal places. Consider f(x) = ex. We
computed the Taylor polynomials before. If you set x = 1, then you get e = f(1) =
Tnf(1) +Rnf(1), and thus, taking n = 8,

e = 1 +
1

1!
+

1

2!
+

1

3!
+

1

4!
+

1

5!
+

1

6!
+

1

7!
+

1

8!
+R8(1).

By Lagrange’s formula there is a ξ between 0 and 1 such that

R8(1) =
f (9)(ξ)

9!
19 =

eξ

9!
.

(remember: f(x) = ex, so all its derivatives are also ex.) We don’t really know where ξ is,
but since it lies between 0 and 1 we know that 1 < eξ < e. So the remainder term R8(1)
is positive and no more than e/9!. Estimating e < 3, we find

1

9!
< R8(1) <

3

9!
.

Thus we see that

1 +
1

1!
+

1

2!
+

1

3!
+ · · ·+ 1

7!
+

1

8!
+

1

9!
< e < 1 +

1

1!
+

1

2!
+

1

3!
+ · · ·+ 1

7!
+

1

8!
+

3

9!

or, in decimals,

2.718 281 . . . < e < 2.718 287 . . .
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15.4. Error in the approximation sin x ≈ x. In many calculations involving sin x
for small values of x one makes the simplifying approximation sin x ≈ x, justified by the
known limit

lim
x→0

sin x

x
= 1.

Question: How big is the error in this approximation?

To answer this question, we use Lagrange’s formula for the remainder term again.

Let f(x) = sin x. Then the first degree Taylor polynomial of f is

T1f(x) = x.

The approximation sin x ≈ x is therefore exactly what you get if you approximate f(x) =
sin x by its first degree Taylor polynomial. Lagrange tells us that

f(x) = T1f(x) +R1f(x), i.e. sin x = x+R1f(x),

where, since f ′′(x) = − sin x,

R1f(x) =
f ′′(ξ)

2!
x2 = − 1

2
sin ξ · x2

for some ξ between 0 and x.

As always with Lagrange’s remainder term, we don’t know where ξ is precisely, so we
have to estimate the remainder term. The easiest way to do this (but not the best: see
below) is to say that no matter what ξ is, sin ξ will always be between −1 and 1. Hence
the remainder term is bounded by

(¶) |R1f(x)| ≤ 1
2
x2,

and we find that

x− 1
2
x2 ≤ sin x ≤ x+ 1

2
x2.

Question: How small must we choose x to be sure that the approximation sin x ≈ x isn’t
off by more than 1% ?

If we want the error to be less than 1% of the estimate, then we should require 1
2
x2

to be less than 1% of |x|, i.e.
1
2
x2 < 0.01 · |x| ⇔ |x| < 0.02

So we have shown that, if you choose |x| < 0.02, then the error you make in approximating
sin x by just x is no more than 1%.

A final comment about this example: the estimate for the error we got here can be
improved quite a bit in two different ways:

(1) You could notice that one has | sin x| ≤ x for all x, so if ξ is between 0 and x, then
| sin ξ| ≤ |ξ| ≤ |x|, which gives you the estimate

|R1f(x)| ≤ 1
2
|x|3 instead of 1

2
x2 as in (¶).

(2) For this particular function the two Taylor polynomials T1f(x) and T2f(x) are
the same (because f ′′(0) = 0). So T2f(x) = x, and we can write

sin x = f(x) = x+R2f(x),

In other words, the error in the approximation sin x ≈ x is also given by the second order
remainder term, which according to Lagrange is given by

R2f(x) =
− cos ξ

3!
x3 | cos ξ|≤1

=⇒ |R2f(x)| ≤ 1
6
|x|3,

which is the best estimate for the error in sin x ≈ x we have so far.
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16. The limit as x→ 0, keeping n fixed

16.1. Little-oh. Lagrange’s formula for the remainder term lets us write a function
y = f(x), which is defined on some interval containing x = 0, in the following way

(11) f(x) = f(0) + f ′(0)x+
f (2)(0)

2!
x2 + · · ·+ f (n)(0)

n!
xn +

f (n+1)(ξ)

(n+ 1)!
xn+1

The last term contains the ξ from Lagrange’s theorem, which depends on x, and of which
you only know that it lies between 0 and x. For many purposes it is not necessary to
know the last term in this much detail – often it is enough to know that “in some sense”
the last term is the smallest term, in particular, as x → 0 it is much smaller than x, or
x2, or, . . . , or xn:

16.2. Theorem. If the n+ 1st derivative f (n+1)(x) is continuous at x = 0 then the

remainder term Rnf(x) = f (n+1)(ξ)xn+1/(n+ 1)! satisfies

lim
x→0

Rnf(x)

xk
= 0

for any k = 0, 1, 2, . . . , n.

Proof. Since ξ lies between 0 and x, one has limx→0 f
(n+1)(ξ) = f (n+1)(0), and

therefore

lim
x→0

Rnf(x)

xk
= lim
x→0

f (n+1)(ξ)
xn+1

xk
= lim
x→0

f (n+1)(ξ) · xn+1−k = f (n+1)(0) · 0 = 0.

�

So we can rephrase (11) by saying

f(x) = f(0) + f ′(0)x+
f (2)(0)

2!
x2 + · · ·+ f (n)(0)

n!
xn + remainder

where the remainder is much smaller than xn, xn−1, . . . , x2, x or 1. In order to express
the condition that some function is “much smaller than xn,” at least for very small x,
Landau introduced the following notation which many people find useful.

16.3. Definition. “o(xn)” is an abbreviation for any function h(x) which satisfies

lim
x→0

h(x)

xn
= 0.

So you can rewrite (11) as

f(x) = f(0) + f ′(0)x+
f (2)(0)

2!
x2 + · · ·+ f (n)(0)

n!
xn + o(xn).

The nice thing about Landau’s little-oh is that you can compute with it, as long as you
obey the following (at first sight rather strange) rules which will be proved in class

xn · o(xm) = o(xn+m)

o(xn) · o(xm) = o(xn+m)

xm = o(xn) if n < m

o(xn) + o(xm) = o(xn) if n < m

o(Cxn) = o(xn) for any constant C
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1

x
x2

x3

x4

x10
x20

Figure 4. How the powers stack up. All graphs of y = xn (n > 1)
are tangent to the x-axis at the origin. But the larger the exponent n the
“flatter” the graph of y = xn is.

16.4. Example: prove one of these little-oh rules. Let’s do the first one,
i.e. let’s show that xn · o(xm) is o(xn+m) as x→ 0.

Remember, if someone writes xn · o(xm), then the o(xm) is an abbreviation for some
function h(x) which satisfies limx→0 h(x)/x

m = 0. So the xn · o(xm) we are given here
really is an abbreviation for xnh(x). We then have

lim
x→0

xnh(x)

xn+m
= lim
x→0

h(x)

xm
= 0, since h(x) = o(xm).

16.5. Can you see that x3 = o(x2) by looking at the graphs of these func-
tions? A picture is of course never a proof, but have a look at figure 4 which shows you
the graphs of y = x, x2, x3, x4, x5 and x10. As you see, when x approaches 0, the graphs
of higher powers of x approach the x-axis (much?) faster than do the graphs of lower
powers.

You should also have a look at figure 5 which exhibits the graphs of y = x2, as well
as several linear functions y = Cx (with C = 1, 1

2
, 1

5
and 1

10
.) For each of these linear

functions one has x2 < Cx if x is small enough; how small is actually small enough depends
on C. The smaller the constant C, the closer you have to keep x to 0 to be sure that x2

is smaller than Cx. Nevertheless, no matter how small C is, the parabola will eventually
always reach the region below the line y = Cx.

16.6. Example: Little-oh arithmetic is a little funny. Both x2 and x3 are
functions which are o(x), i.e.

x2 = o(x) and x3 = o(x)

Nevertheless x2 6= x3. So in working with little-oh we are giving up on the principle that
says that two things which both equal a third object must themselves be equal; in other
words, a = b and b = c implies a = c, but not when you’re using little-ohs! You can also
put it like this: just because two quantities both are much smaller than x, they don’t have
to be equal. In particular,

you can never cancel little-ohs!!!
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y = x

y = x/2

y = x/5

y = x/10
y = x/20

y = x2

Figure 5. x2 is smaller than any multiple of x, if x is small enough.
Compare the quadratic function y = x2 with a linear function y = Cx.
Their graphs are a parabola and a straight line. Parts of the parabola may
lie above the line, but as x ց 0 the parabola will always duck underneath
the line.

In other words, the following is pretty wrong

o(x2)− o(x2) = 0.

Why? The two o(x2)’s both refer to functions h(x) which satisfy limx→0 h(x)/x
2 = 0, but

there are many such functions, and the two o(x2)’s could be abbreviations for different
functions h(x).

Contrast this with the following computation, which at first sight looks wrong even
though it is actually right:

o(x2)− o(x2) = o(x2).

In words: if you subtract two quantities both of which are negligible compared to x2 for
small x then the result will also be negligible compared to x2 for small x.

16.7. Computations with Taylor polynomials. The following theorem is very
useful because it lets you compute Taylor polynomials of a function without differentiating
it.

16.8. Theorem. If f(x) and g(x) are n+ 1 times differentiable functions then

(12) Tnf(x) = Tng(x) ⇐⇒ f(x) = g(x) + o(xn).

In other words, if two functions have the same nth degree Taylor polynomial, then their
difference is much smaller than xn, at least, if x is small.

In principle the definition of Tnf(x) lets you compute as many terms of the Taylor
polynomial as you want, but in many (most) examples the computations quickly get out
of hand. To see what can happen go though the following example:
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16.9. How NOT to compute the Taylor polynomial of degree 12 of f(x) =
1/(1 + x2). Diligently computing derivatives one by one you find

f(x) =
1

1 + x2
so f(0) = 1

f ′(x) =
−2x

(1 + x2)2
so f ′(0) = 0

f ′′(x) =
6x2 − 2

(1 + x2)3
so f ′′(0) = −2

f (3)(x) = 24
x− x3

(1 + x2)4
so f (3)(0) = 0

f (4)(x) = 24
1 − 10x2 + 5x4

(1 + x2)5
so f (4)(0) = 24 = 4!

f (5)(x) = 240
−3x + 10x3 − 3x5

(1 + x2)6
so f (4)(0) = 0

f (6)(x) = −720
−1 + 21x2 − 35x4 + 7x6

(1 + x2)7
so f (4)(0) = 720 = 6!

...

I’m getting tired of differentiating – can you find f (12)(x)? After a lot of work we give up
at the sixth derivative, and all we have found is

T6

{
1

1 + x2

}

= 1− x2 + x4 − x6.

By the way,

f (12)(x) = 479001600
1 − 78x2 + 715 x4 − 1716 x6 + 1287 x8 − 286 x10 + 13 x12

(1 + x2)13

and 479001600 = 12!.

16.10. The right approach to finding the Taylor polynomial of any degree
of f(x) = 1/(1 + x2). Start with the Geometric Series: if g(t) = 1/(1 − t) then

g(t) = 1 + t+ t2 + t3 + t4 + · · ·+ tn + o(tn).

Now substitute t = −x2 in this limit,

g(−x2) = 1− x2 + x4 − x6 + · · ·+ (−1)nx2n + o
((

−x2
)n
)

Since o
((
−x2

)n)
= o(x2n) and

g(−x2) =
1

1− (−x2)
=

1

1 + x2
,

we have found

1

1 + x2
= 1− x2 + x4 − x6 + · · ·+ (−1)nx2n + o(x2n)

By Theorem (16.8) this implies

T2n

{
1

1 + x2

}

= 1− x2 + x4 − x6 + · · ·+ (−1)nx2n.



42

16.11. Example of multiplication of Taylor series. Finding the Taylor series
of e2x/(1 + x) directly from the definition is another recipe for headaches. Instead, you
should exploit your knowledge of the Taylor series of both factors e2x and 1/(1 + x):

e2x = 1 + 2x+
22x2

2!
+

23x3

3!
+

24x4

4!
+ o(x4)

= 1 + 2x+ 2x2 +
4

3
x3 +

2

3
x4 + o(x4)

1

1 + x
= 1− x+ x2 − x3 + x4 + o(x4).

Then multiply these two

e2x · 1

1 + x
=

(

1 + 2x+ 2x2 +
4

3
x3 +

2

3
x4 + o(x4)

)

·
(
1− x+ x2 − x3 + x4 + o(x4)

)

= 1 − x + x2 − x3 + x4 + o(x4)
+ 2x − 2x2 + 2x3 − 2x4 + o(x4)

+ 2x2 − 2x3 + 2x4 + o(x4)
+ 4

3
x3 − 4

3
x4 + o(x4)

+ 2
3
x4 + o(x4)

= 1 + x+ x2 +
1

3
x3 +

1

3
x4 + o(x4) (x→ 0)

16.12. Taylor’s formula and Fibonacci numbers. The Fibonacci numbers are
defined as follows: the first two are f0 = 1 and f1 = 1, and the others are defined by the
equation

(Fib) fn = fn−1 + fn−2

So

f2 = f1 + f0 = 1 + 1 = 2,

f3 = f2 + f1 = 2 + 1 = 3,

f4 = f3 + f2 = 3 + 2 = 5,

etc.

The equation (Fib) lets you compute the whole sequence of numbers, one by one, when
you are given only the first few numbers of the sequence (f0 and f1 in this case). Such an
equation for the elements of a sequence is called a recursion relation.

Now consider the function

f(x) =
1

1− x− x2
.

Let

T∞f(x) = c0 + c1x+ c2x
2 + c3x

3 + · · ·

be its Taylor series.

Due to Lagrange’s remainder theorem you have, for any n,

1

1− x− x2
= c0 + c1x+ c2x

2 + c3x
3 + · · ·+ cnx

n + o(xn) (x→ 0).
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Multiply both sides with 1− x− x2 and you get

1 = (1− x− x2) · (c0 + c1x+ c2x
2 + · · ·+ cn + o(xn)) (x→ 0)

= c0 + c1x + c2x
2 + · · · + cnx

n + o(xn)
− c0x − c1x

2 − · · · − cn−1x
n + o(xn)

− c0x
2 − · · · − cn−2x

n − o(xn) (x→ 0)

= c0 + (c1 − c0)x+ (c2 − c1 − c0)x
2 + (c3 − c2 − c1)x

3 + · · ·
· · ·+ (cn − cn−1 − cn−2)x

n + o(xn) (x→ 0)

Compare the coefficients of powers xk on both sides for k = 0, 1, . . . , n and you find

c0 = 1, c1 − c0 = 0 =⇒ c1 = c0 = 1, c2 − c1 − c0 = 0 =⇒ c2 = c1 + c0 = 2

and in general

cn − cn−1 − cn−2 = 0 =⇒ cn = cn−1 + cn−2

Therefore the coefficients of the Taylor series T∞f(x) are exactly the Fibonacci numbers:

cn = fn for n = 0, 1, 2, 3, . . .

Since it is much easier to compute the Fibonacci numbers one by one than it is to compute
the derivatives of f(x) = 1/(1− x− x2), this is a better way to compute the Taylor series
of f(x) than just directly from the definition.

16.13. More about the Fibonacci numbers. In this example you’ll see a trick
that lets you compute the Taylor series of any rational function. You already know the
trick: find the partial fraction decomposition of the given rational function. Ignoring the
case that you have quadratic expressions in the denominator, this lets you represent your
rational function as a sum of terms of the form

A

(x− a)p
.

These are easy to differentiate any number of times, and thus they allow you to write their
Taylor series.

Let’s apply this to the function f(x) = 1/(1− x− x2) from the example 16.12. First
we factor the denominator.

1− x− x2 = 0 ⇐⇒ x2 + x− 1 = 0 ⇐⇒ x =
−1±

√
5

2
.

The number

φ =
1 +

√
5

2
≈ 1.618 033 988 749 89 . . .

is called the Golden Ratio. It satisfies6

φ+
1

φ
=

√
5.

The roots of our polynomial x2 + x− 1 are therefore

x− =
−1−

√
5

2
= −φ, x+ =

−1 +
√
5

2
=

1

φ
.

and we can factor 1− x− x2 as follows

1− x− x2 = −(x2 + x− 1) = −(x− x−)(x− x+) = −(x− 1

φ
)(x+ φ).

6To prove this, use
1

φ
=

2

1 +
√
5
=

2

1 +
√
5

1−
√
5

1−
√
5
=

−1 +
√
5

2
.



44

So f(x) can be written as

f(x) =
1

1− x− x2
=

−1

(x− 1
φ
)(x+ φ)

=
A

x− 1
φ

+
B

x+ φ

The Heaviside trick will tell you what A and B are, namely,

A =
−1

1
φ
+ φ

=
−1√
5
, B =

1
1
φ
+ φ

=
1√
5

The nth derivative of f(x) is

f (n)(x) =
A(−1)nn!
(

x− 1
φ

)n+1
+

B(−1)nn!

(x+ φ)n+1

Setting x = 0 and dividing by n! finally gives you the coefficient of xn in the Taylor series
of f(x). The result is the following formula for the nth Fibonacci number

cn =
f (n)(0)

n!
=

1

n!

A(−1)nn!
(

− 1
φ

)n+1
+

1

n!

B(−1)nn!

(φ)n+1
= −Aφn+1 −B

(
1

φ

)n+1

Using the values for A and B you find

(13) fn = cn =
1√
5

{

φn+1 − 1

φn+1

}

16.14. Differentiating Taylor polynomials. If

Tnf(x) = a0 + a1x+ a2x
2 + · · ·+ anx

n

is the Taylor polynomial of a function y = f(x), then what is the Taylor polynomial of its
derivative f ′(x)?

16.15. Theorem. The Taylor polynomial of degree n− 1 of f ′(x) is given by

Tn−1{f ′(x)} = a1 + 2a2x+ · · ·+ nanx
n−1.

In other words, “the Taylor polynomial of the derivative is the derivative of the Taylor
polynomial.”

Proof. Let g(x) = f ′(x). Then g(k)(0) = f (k+1)(0), so that

Tn−1g(x) = g(0) + g′(0)x+ g(2)(0)
x2

2!
+ · · ·+ g(n−1)(0)

xn−1

(n− 1)!

= f ′(0) + f (2)(0)x+ f (3)(0)
x2

2!
+ · · ·+ f (n)(0)

xn−1

(n− 1)!
($)

On the other hand, if Tnf(x) = a0 + a1x+ · · ·+ anx
n, then ak = f (k)(0)/k!, so that

kak =
k

k!
f (k)(0) =

f (k)(0)

(k − 1)!
.

In other words,

1 · a1 = f ′(0), 2a2 = f (2)(0), 3a3 =
f (3)(0)

2!
, etc.

So, continuing from ($) you find that

Tn−1{f ′(x)} = Tn−1g(x) = a1 + 2a2x+ · · ·+ nanx
n−1

as claimed. �
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16.16. Example. We compute the Taylor polynomial of f(x) = 1/(1−x)2 by noting
that

f(x) = F ′(x), where F (x) =
1

1− x
.

Since

Tn+1F (x) = 1 + x+ x2 + x3 + · · ·+ xn+1,

theorem 16.15 implies that

Tn

{
1

(1− x)2

}

= 1 + 2x+ 3x2 + 4x3 + · · ·+ (n+ 1)xn

16.17. Example. [Example: Taylor polynomials of arctan x. ] Let f(x) = arctan x.
Then know that

f ′(x) =
1

1 + x2
.

By substitution of t = −x2 in the Taylor polynomial of 1/(1− t) we had found

T2n{f ′(x)} = T2n

{
1

1 + x2

}

= 1− x2 + x4 − x6 + · · ·+ (−1)nx2n.

This Taylor polynomial must be the derivative of T2n+1f(x), so we have

T2n+1 {arctan x} = x− x3

3
+
x5

5
+ · · ·+ (−1)n

x2n+1

2n+ 1
.

17. The limit n→ ∞, keeping x fixed

17.1. Sequences and their limits. We shall call a sequence any ordered sequence
of numbers a1, a2, a3, . . .: for each positive integer n we have to specify a number an.

17.2. Examples of sequences.

definition first few number in the sequence

↓ ↓
an = n 1, 2, 3, 4, . . .

bn = 0 0, 0, 0, 0, . . .

cn =
1

n
1
1
, 1
2
, 1
3
, 1
4
, . . .

dn =
(
− 1

3

)n − 1
3
, 1
9
,− 1

27
, 1
81
, . . .

En = 1 +
1

1!
+

1

2!
+

1

3!
+ · · ·+ 1

n!
1, 2, 2 1

2
, 2 2

3
, 2 17

24
, 2 43

60
, . . .

Sn = T2n+1{sin x} = x− x3

3!
+ · · ·+ (−1)n

x2n+1

(2n+ 1)!
x, x− x3

3!
, x− x3

3!
+
x5

5!
, . . .

The last two sequences are derived from the Taylor polynomials of ex (at x = 1) and
sin x (at any x). The last example Sn really is a sequence of functions, i.e. for every choice
of x you get a different sequence.

17.3. Definition. A sequence of numbers (an)
∞
n=1 converges to a limit L, if for every

ǫ > 0 there is a number Nǫ such that for all n > Nǫ one has

|an − L| < ǫ.

One writes

lim
n→∞

an = L
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17.4. Example: lim
n→∞

1

n
= 0. The sequence cn = 1/n converges to 0. To prove this

let ǫ > 0 be given. We have to find an Nǫ such that

|cn| < ǫ for all n > Nǫ.

The cn are all positive, so |cn| = cn, and hence

|cn| < ǫ ⇐⇒ 1

n
< ǫ ⇐⇒ n >

1

ǫ
,

which prompts us to choose Nǫ = 1/ǫ. The calculation we just did shows that if n > 1
ǫ
=

Nǫ, then |cn| < ǫ. That means that limn→∞ cn = 0.

17.5. Example: lim
n→∞

an = 0 if |a| < 1. As in the previous example one can show

that limn→∞ 2−n = 0, and more generally, that for any constant a with −1 < a < 1 one
has

lim
n→∞

an = 0.

Indeed,

|an| = |a|n = en ln |a| < ǫ

holds if and only if
n ln |a| < ln ǫ.

Since |a| < 1 we have ln |a| < 0 so that dividing by ln |a| reverses the inequality, with
result

|an| < ǫ ⇐⇒ n >
ln ǫ

ln |a|
The choice Nǫ = (ln ǫ)/(ln |a|) therefore guarantees that |an| < ǫ whenever n > Nǫ.

One can show that the operation of taking limits of sequences obeys the same rules
as taking limits of functions.

17.6. Theorem. If

lim
n→∞

an = A and lim
n→∞

bn = B,

then one has

lim
n→∞

an ± bn = A±B

lim
n→∞

anbn = AB

lim
n→∞

an
bn

=
A

B
(assuming B 6= 0).

The so-called “sandwich theorem” for ordinary limits also applies to limits of sequences.
Namely, one has

17.7. “Sandwich theorem”. If an is a sequence which satisfies bn < an < cn for
all n, and if limn→∞ bn = limn→∞ cn = 0, then limn→∞ an = 0. Finally, one can show
this:

17.8. Theorem. If f(x) is a function which is continuous at x = A, and an is a
sequence which converges to A, then

lim
n→∞

f(an) = f
(

lim
n→∞

an
)

= f(A).

17.9. Example. Since limn→∞ 1/n = 0 and since f(x) = cos x is continuous at
x = 0 we have

lim
n→∞

cos
1

n
= cos 0 = 1.
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17.10. Example. You can compute the limit of any rational function of n by divid-
ing numerator and denominator by the highest occurring power of n. Here is an example:

lim
n→∞

2n2 − 1

n2 + 3n
= lim
n→∞

2−
(
1
n

)2

1 + 3 · 1
n

=
2− 02

1 + 3 · 02 = 2

17.11. Example. [Application of the Sandwich theorem. ] We show that limn→∞
1√
n2+1

=

0 in two different ways.

Method 1: Since
√
n2 + 1 >

√
n2 = n we have

0 <
1√

n2 + 1
<

1

n
.

The sequences “0” and 1
n
both go to zero, so the Sandwich theorem implies that 1/

√
n2 + 1

also goes to zero.

Method 2: Divide numerator and denominator both by n to get

an =
1/n

√
1 + (1/n)2

= f

(
1

n

)

, where f(x) =
x√

1 + x2
.

Since f(x) is continuous at x = 0, and since 1
n

→ 0 as n → ∞, we conclude that an
converges to 0.

17.12. Example: lim
n→∞

xn

n!
= 0 for any real number x. If |x| ≤ 1 then this is

easy, for we would have |xn| ≤ 1 for all n ≥ 0 and thus
∣
∣
∣
∣

xn

n!

∣
∣
∣
∣
≤ 1

n!
=

1

1 · 2 · 3 · · · (n− 1) · n
︸ ︷︷ ︸

n−1 factors

≤ 1

1 · 2 · 2 · · · 2 · 2
︸ ︷︷ ︸

n−1 factors

=
1

2n−1

which shows that limn→∞
xn

n!
= 0, by the Sandwich Theorem.

For arbitrary x you first choose an integer N ≥ 2x. Then for all n ≥ N one has

xn

n!
≤ |x| · |x| · · · |x| · |x|

1 · 2 · 3 · · ·n use |x| ≤ N

2

≤ N ·N ·N · · ·N ·N
1 · 2 · 3 · · ·n

(
1

2

)n

Split fraction into two parts, one containing the first N factors from both numerator and
denominator, the other the remaining factors:

N

1
· N
2

· N
3

· · · N
N

︸ ︷︷ ︸

=NN/N!

· N

N + 1
· · · N

n
=
NN

N !
· N

N + 1
︸ ︷︷ ︸

<1

· N

N + 2
︸ ︷︷ ︸

<1

· · · N
n
︸︷︷︸

<1

≤ NN

N !

Hence we have
∣
∣
∣
∣

xn

n!

∣
∣
∣
∣
≤ NN

N !

(
1

2

)n

if 2|x| ≤ N and n ≥ N .

Here everything is independent of n, except for the last factor ( 1
2
)n which causes the

whole thing to converge to zero as n→ ∞.
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18. Convergence of Taylor Series

18.1. Definition. Let y = f(x) be some function defined on an interval a < x < b
containing 0. We say the Taylor series T∞f(x) converges to f(x) for a given x if

lim
n→∞

Tnf(x) = f(x).

The most common notations which express this condition are

f(x) =

∞∑

k=0

f (k)(0)
xk

k!

or

f(x) = f(0) + f ′(0)x+ f ′′(0)
x2

2!
+ f (3)(0)

x3

3!
+ · · ·

In both cases convergence justifies the idea that you can add infinitely many terms,
as suggested by both notations.

There is no easy and general criterion which you could apply to a given function f(x)
that would tell you if its Taylor series converges for any particular x (except x = 0 – what
does the Taylor series look like when you set x = 0?). On the other hand, it turns out
that for many functions the Taylor series does converge to f(x) for all x in some interval
−ρ < x < ρ. In this section we will check this for two examples: the “geometric series”
and the exponential function.

Before we do the examples I want to make this point about how we’re going to prove
that the Taylor series converges: Instead of taking the limit of the Tnf(x) as n→ ∞, you
are usually better off looking at the remainder term. Since Tnf(x) = f(x)−Rnf(x) you
have

lim
n→∞

Tnf(x) = f(x) ⇐⇒ lim
n→∞

Rnf(x) = 0

So: to check that the Taylor series of f(x) converges to f(x) we must show that the
remainder term Rnf(x) goes to zero as n→ ∞.

18.2. Example: The Geometric series converges for −1 < x < 1. If f(x) =
1/(1− x) then by the formula for the Geometric Sum you have

f(x) =
1

1− x

=
1− xn+1 + xn+1

1− x

= 1 + x+ x2 + · · ·+ xn +
xn+1

1− x

= Tnf(x) +
xn+1

1− x
.

We are not dividing by zero since |x| < 1 so that 1− x 6= 0. The remainder term is

Rnf(x) =
xn+1

1− x
.

Since |x| < 1 we have

lim
n→∞

|Rnf(x)| = lim
n→∞

|x|n+1

|1− x| =
limn→∞ |x|n+1

|1− x| =
0

|1− x| = 0.

Thus we have shown that the series converges for all −1 < x < 1, i.e.

1

1− x
= lim
n→∞

{
1 + x+ x2 + · · ·+ xn

}
= 1 + x+ x2 + x3 + · · ·
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18.3. Convergence of the exponential Taylor series. Let f(x) = ex. It turns
out the Taylor series of ex converges to ex for every value of x. Here’s why: we had found
that

Tne
x = 1 + x+

x2

2!
+ · · ·+ xn

n!
,

and by Lagrange’s formula the remainder is given by

Rne
x = eξ

xn+1

(n+ 1)!
,

where ξ is some number between 0 and x.

If x > 0 then 0 < ξ < x so that eξ ≤ ex; if x < 0 then x < ξ < 0 implies that
eξ < e0 = 1. Either way one has eξ ≤ e|x|, and thus

|Rnex| ≤ e|x|
|x|n+1

(n+ 1)!
.

We have shown before that limn→∞ xn+1/(n + 1)! = 0, so the Sandwich theorem again
implies that limn→∞ |Rnex| = 0.

Conclusion:

ex = lim
n→∞

{

1 + x+
x2

2!
+ · · ·+ xn

n!

}

= 1 + x+
x2

2!
+
x3

3!
+
x4

4!
+ · · ·

Do Taylor series always converge? And if the series of some function y = f(x)
converges, must it then converge to f(x)? Although the Taylor series of most function we
run into converge to the functions itself, the following example shows that it doesn’t have
to be so.

18.4. The day that all Chemistry stood still. The rate at which a chemical
reaction “A→B” proceeds depends among other things on the temperature at which the
reaction is taking place. This dependence is described by the Arrhenius law which states
that the rate at which a reaction takes place is proportional to

f(T ) = e−
∆E

kT

where ∆E is the amount of energy involved in each reaction, k is Boltzmann’s constant,
and T is the temperature in degrees Kelvin. If you ignore the constants ∆E and k (i.e. if
you set them equal to one by choosing the right units) then the reaction rate is proportional
to

f(T ) = e−1/T .

If you have to deal with reactions at low temperatures you might be inclined to replace
this function with its Taylor series at T = 0, or at least the first non-zero term in this
series. If you were to do this you’d be in for a surprise. To see what happens, let’s look
at the following function,

f(x) =

{

e−1/x x > 0

0 x ≤ 0

This function goes to zero very quickly as x→ 0. In fact one has

lim
xց0

f(x)

xn
= lim
xց0

e−1/x

xn
= lim
t→∞

tne−t = 0. (set t = 1/x)

This implies

f(x) = o(xn) (x→ 0)

for any n = 1, 2, 3 . . .. As x→ 0, this function vanishes faster than any power of x.
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The Taylor series

at this point does

not converge to f

1 2 3

y = e−1/x

Figure 6. An innocent looking function with an unexpected Taylor series.
See example 18.4 which shows that even when a Taylor series of some
function f converges you can’t be sure that it converges to f – it could
converge to a different function.

If you try to compute the Taylor series of f you need its derivatives at x = 0 of
all orders. These can be computed (not easily), and the result turns out to be that all
derivatives of f vanish at x = 0,

f(0) = f ′(0) = f ′′(0) = f (3)(0) = · · · = 0.

The Taylor series of f is therefore

T∞f(x) = 0 + 0 · x+ 0 · x
2

2!
+ 0 · x

3

3!
+ · · · = 0.

Clearly this series converges (all terms are zero, after all), but instead of converging to
the function f(x) we started with, it converges to the function g(x) = 0.

What does this mean for the chemical reaction rates and Arrhenius’ law? We wanted
to “simplify” the Arrhenius law by computing the Taylor series of f(T ) at T = 0, but we
have just seen that all terms in this series are zero. Therefore replacing the Arrhenius
reaction rate by its Taylor series at T = 0 has the effect of setting all reaction rates equal
to zero.

19. Leibniz’ formulas for ln 2 and π/4

Leibniz showed that

1

1
− 1

2
+

1

3
− 1

4
+

1

5
− · · · = ln 2

and
1

1
− 1

3
+

1

5
− 1

7
+

1

9
− · · · = π

4

Both formulas arise by setting x = 1 in the Taylor series for

ln(1 + x) = x− x2

2
+
x3

3
+
x4

4
− · · ·

arctan x = x− x3

3
+
x5

5
+
x7

7
− · · ·

This is only justified if you show that the series actually converge, which we’ll do here, at
least for the first of these two formulas. The proof of the second is similar. The following
is not Leibniz’ original proof.

You begin with the geometric sum

1− x+ x2 − x3 + · · ·+ (−1)nxn =
1

1 + x
+

(−1)n+1xn+1

1 + x
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Then you integrate both sides from x = 0 to x = 1 and get

1

1
− 1

2
+

1

3
− · · ·+ (−1)n

1

n+ 1
=

∫ 1

0

dx

1 + x
+ (−1)n+1

∫ 1

0

xn+1dx

1 + x

= ln 2 + (−1)n+1

∫ 1

0

xn+1dx

1 + x

(Use
∫ 1

0
xkdx = 1

k+1
.) Instead of computing the last integral you estimate it by saying

0 ≤ xn+1

1 + x
≤ xn+1 =⇒ 0 ≤

∫ 1

0

xn+1dx

1 + x
≤
∫ 1

0

xn+1dx =
1

n+ 2

Hence

lim
n→∞

(−1)n+1

∫ 1

0

xn+1dx

1 + x
= 0,

and we get

lim
n→∞

1

1
− 1

2
+

1

3
− · · ·+ (−1)n

1

n+ 1
= ln 2 + lim

n→∞
(−1)n+1

∫ 1

0

xn+1dx

1 + x

= ln 2.

Euler proved that

π2

6
= 1 +

1

4
+

1

9
+ · · · 1

n2
+ · · ·

20. Proof of Lagrange’s formula

For simplicity assume x > 0. Consider the function

g(t) = f(0) + f ′(0)t+
f ′′(0)

2
t2 + · · ·+ f (n)(0)

n!
tn +Ktn+1 − f(t),

where

(14) K
def
= −f(0) + f ′(0)x+ · · ·+ f(n)(0)

n!
xn − f(x)

xn+1

We have chosen this particular K to be sure that

g(x) = 0.

Just by computing the derivatives you also find that

g(0) = g′(0) = g′′(0) = · · · = g(n)(0) = 0,

while

(15) g(n+1)(t) = (n+ 1)!K − f (n+1)(t).

We now apply Rolle’s Theorem n times:

• since g(t) vanishes at t = 0 and at t = x there exists an x1 with 0 < x1 < x
such that g′(x1) = 0

• since g′(t) vanishes at t = 0 and at t = x1 there exists an x2 with 0 < x2 < x1

such that g′(x2) = 0
• since g′′(t) vanishes at t = 0 and at t = x2 there exists an x3 with 0 < x3 < x2

such that g′′(x3) = 0
...

• since g(n)(t) vanishes at t = 0 and at t = xn there exists an xn+1 with 0 <

xn+1 < xn such that g(n)(xn+1) = 0.
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We now set ξ = xn+1, and observe that we have shown that g(n+1)(ξ) = 0, so by (15) we
get

K =
f (n+1)(ξ)

(n+ 1)!
.

Apply that to (14) and you finally get

f(x) = f(0) + f ′(0)x+ · · ·+ f (n)(0)

n!
xn +

f (n+1)(ξ)

(n+ 1)!
xn+1.

21. Proof of Theorem 16.8

21.1. Lemma. If h(x) is a k times differentiable function on some interval con-

taining 0, and if for some integer k < n one has h(0) = h′(0) = · · · = h(k−1)(0) = 0,
then

(16) lim
x→0

h(x)

xk
=
h(k)(0)

k!
.

Proof. Just apply l’Hopital’s rule k times. You get

lim
x→0

h(x)

xk
= 0

0= lim
x→0

h′(x)

kxk−1

= 0
0= lim
x→0

h(2)(x)

k(k − 1)xk−2

= 0
0= · · ·

· · · = lim
x→0

h(k−1)(x)

k(k − 1) · · · 2x1

= 0
0=

h(k)(0)

k(k − 1) · · · 2 · 1
�

First define the function h(x) = f(x)−g(x). If f(x) and g(x) are n times differentiable,
then so is h(x).

The condition Tnf(x) = Tng(x) means that

f(0) = g(0), f ′(0) = g′(0), . . . , f (n)(0) = g(n)(0),

which says, in terms of h(x),

(†) h(0) = h′(0) = h′′(0) = · · · = h(n)(0) = 0,

i.e.

Tnh(x) = 0.

We now prove the first pat of the theorem: suppose f(x) and g(x) have the same nth
degree Taylor polynomial. Then we have just argued that Tnh(x) = 0, and Lemma 21.1
(with k = n) says that limx→0 h(x)/x

n = 0, as claimed.

To conclude we show the converse also holds. So suppose that limx→0 h(x)/x
n = 0.

We’ll show that (†) follows. If (†) were not true then there would be a smallest integer
k ≤ n such that

h(0) = h′(0) = h′′(0) = · · · = h(k−1)(0) = 0, but h(k)(0) 6= 0.

This runs into the following contradiction with Lemma 21.1

0 6= h(k)(0)

k!
= lim
x→0

h(x)

xk
= lim
x→0

h(x)

xn
· x

n

xk
= 0 · lim

x→0
xn−k

︸ ︷︷ ︸

(∗)

= 0.

Here the limit (∗) exists because n ≥ k.
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22. PROBLEMS

TAYLOR’S FORMULA

179. Find a second order polynomial (i.e.
a quadratic function) Q(x) such that
Q(7) = 43, Q′(7) = 19, Q′′(7) = 11.

180. Find a second order polynomial p(x)
such that p(2) = 3, p′(2) = 8, and
p′′(2) = −1.

181. A Third order polynomial P (x) sat-
isfies P (0) = 1, P ′(0) = −3, P ′′(0) =
−8, P ′′′(0) = 24. Find P (x).

182. Let f(x) =
√
x+ 25. Find the poly-

nomial P (x) of degree three such that

P (k)(0) = f (k)(0) for k = 0, 1, 2, 3.

183. Let f(x) = 1 + x − x2 − x3. Com-
pute and graph T0f(x), T1f(x), T2f(x),
T3f(x), and T4f(x), as well as f(x) itself
(so, for each of these functions find where
they are positive or negative, where they
are increasing/decreasing, and find the
inflection points on their graph.)

184. Find T3 sin x and T5 sin x.

Graph T3 sin x and T5 sin x as well
as y = sin x in one picture. (As be-
fore, find where these functions are posi-
tive or negative, where they are increas-
ing/decreasing, and find the inflection
points on their graph. This problem
can&should be done without a graphing
calculator.)

Compute T a0 f(x), T a1 f(x) and
T a2 f(x) for the following functions.

185. f(x) = x3, a = 0; then for a = 1 and
a = 2.

186. f(x) =
1

x
, a = 1. Also do a = 2.

187. f(x) =
√
x, a = 1.

188. f(x) = ln x, a = 1. Also a = e2.

189. f(x) = ln
√
x, a = 1.

190. f(x) = sin(2x), a = 0, also a = π/4.

191. f(x) = cos(x), a = π.

192. f(x) = (x−1)2, a = 0, and also a = 1.

193. f(x) =
1

ex
, a = 0.

194. Find the nth degree Taylor polyno-
mial T anf(x) of the following functions
f(x)

n a f(x)

2 0 1 + x− x3

3 0 1 + x− x3

25 0 1 + x− x3

25 2 1 + x− x3

2 1 1 + x− x3

1 1 x2

2 1 x2

5 1 1/x
5 0 1/(1 + x)
3 0 1/(1− 3x+ 2x2)

For which of these combinations
(n, a, f(x)) is T anf(x) the same as f(x)?

∗ ∗ ∗
Compute the Taylor series T∞f(t) for
the following functions (α is a constant).
Give a formula for the coefficient of xn

in T∞f(t). (Be smart. Remember prop-
erties of the logarithm, definitions of the
hyperbolic functions, partial fraction de-
composition.)

195. et

196. eαt

197. sin(3t)

198. sinh t

199. cosh t

200.
1

1 + 2t

201.
3

(2− t)2

202. ln(1 + t)

203. ln(2 + 2t)

204. ln
√
1 + t

205. ln(1 + 2t)

206. ln

√

1 + t

1− t

207.
1

1− t2
[hint:PFD!]
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208.
t

1− t2

209. sin t+ cos t

210. 2 sin t cos t

211. tan t (3 terms only)

212. 1 + t2 − 2

3
t4

213. (1 + t)5

214. 3
√
1 + t

215. f(x) = x4

1+4x2
, what is f (10)(0)?

216. Group problem. Compute the Tay-
lor series of the following two functions

f(x) = sin a cosx+ cos a sin x

and

g(x) = sin(a+ x)

where a is a constant.

217. Group problem. Compute the Tay-
lor series of the following two functions

h(x) = cos a cos x− sin a sin x

and

k(x) = cos(a+ x)

where a is a constant.

218. Group problem. The following
questions ask you to rediscover New-
ton’s Binomial Formula, which is just
the Taylor series for (1 + x)n. New-
ton’s formula generalizes the formulas
for (a + b)2, (a + b)3, etc that you get
using Pascal’s triangle. It allows non in-
teger exponents which are allowed to be
either positive and negative. Reread sec-
tion 13 before doing this problem.

(a) Find the Taylor series of f(x) =√
1 + x (= (1 + x)1/2)

(b) Find the coefficient of x4 in the
Taylor series of f(x) = (1 + x)π (don’t
do the arithmetic!)

(c) Let p be any real number. Com-
pute the terms of degree 0, 1, 2 and 3 of
the Taylor series of

f(x) = (1 + x)p

(d) Compute the Taylor polynomial
of degree n of f(x) = (1 + x)p.

(e) Write the result of (d) for the
exponents p = 2, 3 and also, for p =
−1,−2,−3 and finally for p = 1

2
. The

Binomial Theorem states that this se-
ries converges when |x| < 1.

LAGRANGE’S FORMULA FOR THE REMAINDER

219. Find the fourth degree Taylor polyno-
mial T4{cos x} for the function f(x) =
cosx and estimate the error | cos x −
P4(x)| for |x| < 1.

220. Find the 4th degree Taylor polyno-
mial T4{sin x} for the function f(x) =
sin x. Estimate the error | sin x −
T4{sin x}| for |x| < 1.

221. (Computing the cube root of 9) The
cube root of 8 = 2× 2× 2 is easy, and 9
is only one more than 8. So you could try
to compute 3

√
9 by viewing it as 3

√
8 + 1.

(a) Let f(x) = 3
√
8 + x. Find

T2f(x), and estimate the error | 3
√
9 −

T2f(1)|.
(b) Repeat part (i) for “n = 3”,

i.e. compute T3f(x) and estimate | 3
√
9−

T3f(1)|.

222. Follow the method of problem 221 to
compute

√
10:

(a) Use Taylor’s formula with

f(x) =
√
9 + x, n = 1, to calculate

√
10

approximately. Show that the error is
less than 1/216.

(b) Repeat with n = 2. Show that
the error is less than 0.0003.

223. Find the eighth degree Taylor poly-
nomial T8f(x) about the point 0 for the
function f(x) = cosx and estimate the
error | cosx− T8f(x)| for |x| < 1.

Now find the ninth degree Tay-
lor polynomial, and estimate | cos x −
T9f(x)| for |x| ≤ 1.
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LITTLE-OH AND MANIPULATING TAYLOR POLYNOMIALS

Are the following statements True
or False? In mathematics this means
that you should either show that the
statement always holds or else give at
least one counterexample, thereby show-
ing that the statement is not always true.

224. (1 + x2)2 − 1 = o(x)?

225. (1 + x2)2 − 1 = o(x2)?

226.
√
1 + x−

√
1− x = o(x) ?

227. o(x) + o(x) = o(x)?

228. o(x)− o(x) = o(x)?

229. o(x) · o(x) = o(x) ?

230. o(x2) + o(x) = o(x2)?

231. o(x2)− o(x2) = o(x3)?

232. o(2x) = o(x) ?

233. o(x) + o(x2) = o(x)?

234. o(x) + o(x2) = o(x2)?

235. 1− cos x = o(x)?

236. Define

f(x) =

{

e−1/x2 x 6= 0

0 x = 0

This function goes to zero very quickly
as x → 0 but is 0 only at 0. Prove that
f(x) = o(xn) for every n.

237. For which value(s) of k is
√
1 + x2 =

1 + o(xk) (as x→ 0)?

For which value(s) of k is 3
√
1 + x2 =

1 + o(xk) (as x→ 0)?

For which value(s) of k is 1 −
cosx2 = o(xk) (as x→ 0)?

238. Group problem. Let gn be the co-
efficient of xn in the Taylor series of the
function

g(x) =
1

2− 3 x+ x2

(a) Compute g0 and g1 directly from
the definition of the Taylor series.

(b) Show that the recursion relation
gn = 3gn−1 − 2gn−2 holds for all n ≥ 2.

(c) Compute g2, g3, g4, g5.

(d) Using a partial fraction de-
composition of g(x) find a formula for

g(n)(0), and hence for gn.

239. Answer the same questions as in the
previous problem, for the functions

h(x) =
x

2− 3x+ x2

and

k(x) =
2− x

2− 3x+ x2
.

240. Let hn be the coefficient of xn in the
Taylor series of

h(x) =
1 + x

2− 5x+ 2x2
.

(a) Find a recursion relation for the
hn.

(b) Compute h0, h1, . . . , h8.

(c) Derive a formula for hn valid for
all n, by using a partial fraction expan-
sion.

(d) Is h2009 more or less than a mil-
lion? A billion?

Find the Taylor series for the
following functions, by substituting,
adding, multiplying, applying long divi-
sion and/or differentiating known series
for 1

1+x
, ex, sin x, cosx and ln x.

241. eat

242. e1+t

243. e−t
2

244.
1 + t

1− t

245.
1

1 + 2t

246.

f(x) =

{
sin(x)
x

if x 6= 0
1 if x = 0

247.
ln(1 + x)

x

248.
et

1− t

249.
1√
1− t
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250.
1√

1− t2
(recommendation: use the

answer to problem 249)

251. arcsin t
(use problem 249 again)

252. Compute T4[e
−t cos t] (See example

16.11.)

253. T4[e
−t sin 2t]

254.
1

2− t− t2

255.
3
√

1 + 2t+ t2

256. ln(1− t2)

257. sin t cos t

LIMITS OF SEQUENCES

Compute the following limits:

258. lim
n→∞

n

2n− 3

259. lim
n→∞

n2

2n− 3

260. lim
n→∞

n2

2n2 + n− 3

261. lim
n→∞

2n + 1

1− 2n

262. lim
n→∞

2n + 1

1− 3n

263. lim
n→∞

en + 1

1− 2n

264. lim
n→∞

n2

(1.01)n

265. lim
n→∞

1000n

n!

266. lim
n→∞

n! + 1

(n+ 1)!

267. Group problem. Compute

lim
n→∞

(n!)2

(2n)!
[Hint: write out all the fac-

tors in numerator and denominator.]

268. Group problem. Let fn be the nth
Fibonacci number. Compute

lim
n→∞

fn
fn−1

CONVERGENCE OF TAYLOR SERIES

269. Prove that the Taylor series for
f(x) = cos x converges to f(x) for all
real numbers x (by showing that the re-
mainder term goes to zero as n→ ∞).

270. Prove that the Taylor series for
g(x) = sin(2x) converges to g(x) for all
real numbers x .

271. Prove that the Taylor series for
h(x) = cosh(x) converges to h(x) for all
real numbers x .

272. Prove that the Taylor series for
k(x) = e2x+3 converges to k(x) for all
real numbers x .

273. Prove that the Taylor series for ℓ(x) =
cos
(
x− π

7

)
converges to ℓ(x) for all real

numbers x.

274. Group problem. If the Taylor se-
ries of a function y = f(x) converges for

all x, does it have to converge to f(x),
or could it converge to some other func-
tion?

275. For which real numbers x does the

Taylor series of f(x) =
1

1− x
converge

to f(x)?

276. For which real numbers x does the

Taylor series of f(x) =
1

1− x2
con-

verge to f(x)? (hint: a substitution may
help.)

277. For which real numbers x does the

Taylor series of f(x) =
1

1 + x2
converge

to f(x)?

278. For which real numbers x does the

Taylor series of f(x) =
1

3 + 2x
converge

to f(x)?
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279. For which real numbers x does the
Taylor series of f(x) = 1

2−5x
converge to

f(x)?

280. Group problem. For which real
numbers x does the Taylor series of

f(x) =
1

2− x− x2
converge to f(x)?

(hint: use pfd and the Geometric Series
to find the remainder term.)

281. Show that the Taylor series for f(x) =
ln(1+ x) converges when −1 < x < 1 by
integrating the Geometric Series

1

1 + t
= 1− t+ t2 − t3 + · · ·

+ (−1)ntn + (−1)n+1 t
n+1

1 + t

from t = 0 to t = x. (See §19.)
282. Show that the Taylor series for f(x) =

e−x
2

converges for all real numbers x.
(Set t = −x2 in the Taylor series with
remainder for et.)

283. Show that the Taylor series for f(x) =
sin(x4) converges for all real numbers x.
(Set t = x4 in the Taylor series with re-
mainder for sin t.)

284. Show that the Taylor series for f(x) =
1/(1+x3) converges whenever −1 < x <
1 (Use the Geometric Series.)

285. For which x does the Taylor series of
f(x) = 2/(1 + 4x2) converge? (Again,
use the Geometric Series.)

286. Group problem. The error function
from statistics is defined by

erf(x) =
1√
π

∫ x

0

e−t
2/2 dt

(a) Find the Taylor series of the er-
ror function from the Taylor series of
f(r) = er (set r = −t2/2 and integrate).

(b) Estimate the error term and
show that the Taylor series of the error
function converges for all real x.

287. Group problem. Prove Leibniz’ for-

mula for
π

4
by mimicking the proof in

section 19. Specifically, find a formula
for the remainder in :

1

1 + t2
= 1− t2+ · · ·+(−1)nt2n+R2n(t)

and integrate this from t = 0 to t = 1.

APPROXIMATING INTEGRALS

288. (a) Compute T2{sin t} and give an up-
per bound for R2{sin t} for 0 ≤ t ≤ 0.5

(b) Use part (a) to approximate
∫ 0.5

0

sin(x2) dx, and give an upper

bound for the error in your approxima-
tion.

289. (a) Find the second degree Taylor
polynomial for the function et.

(b) Use it to give an estimate for the
integral

∫ 1

0

ex
2

dx

(c) Suppose instead we used the 5th
degree Taylor polynomial p(t) for et to
give an estimate for the integral:

∫ 1

0

ex
2

dx

Give an upper bound for the error:
∣
∣
∣
∣

∫ 1

0

ex
2

dx−
∫ 1

0

p(x2) dx

∣
∣
∣
∣

Note: You need not find p(t) or the in-

tegral
∫ 1

0
p(x2) dx.

290. Approximate

∫ 0.1

0

arctan x dx and es-

timate the error in your approximation
by analyzing T2f(t) and R2f(t) where
f(t) = arctan t.

291. Approximate

∫ 0.1

0

x2e−x
2

dx and es-

timate the error in your approximation
by analyzing T3f(t) and R3f(t) where
f(t) = te−t.

292. Estimate

∫ 0.5

0

√

1 + x4 dx with an er-

ror of less than 10−4.

293. Estimate

∫ 0.1

0

arctan x dx with an er-

ror of less than 0.001.
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Chapter 3: Complex Numbers and the

Complex Exponential

23. Complex numbers

The equation x2 + 1 = 0 has no solutions, because for any real number x the square
x2 is nonnegative, and so x2 + 1 can never be less than 1. In spite of this it turns out to
be very useful to assume that there is a number i for which one has

(17) i2 = −1.

Any complex number is then an expression of the form a + bi, where a and b are old-
fashioned real numbers. The number a is called the real part of a+ bi, and b is called its
imaginary part.

Traditionally the letters z and w are used to stand for complex numbers.

Since any complex number is specified by two real numbers one can visualize them
by plotting a point with coordinates (a, b) in the plane for a complex number a+ bi. The
plane in which one plot these complex numbers is called the Complex plane, or Argand
plane.

z = a+ bi

a = Re(z)

b = Im(z)

θ = arg zr =
|z| =

√ a
2 + b

2

Figure 7. A complex number.

You can add, multiply and divide complex numbers. Here’s how:

To add (subtract) z = a+ bi and w = c+ di

z + w = (a+ bi) + (c+ di) = (a+ c) + (b+ d)i,

z − w = (a+ bi)− (c+ di) = (a− c) + (b− d)i.
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To multiply z and w proceed as follows:

zw = (a+ bi)(c+ di)

= a(c+ di) + bi(c+ di)

= ac+ adi+ bci+ bdi2

= (ac− bd) + (ad+ bc)i

where we have use the defining property i2 = −1 to get rid of i2.

To divide two complex numbers one always uses the following trick.

a+ bi

c+ di
=
a+ bi

c+ di
· c− di

c− di

=
(a+ bi)(c− di)

(c+ di)(c− di)

Now
(c+ di)(c− di) = c2 − (di)2 = c2 − d2i2 = c2 + d2,

so

a+ bi

c+ di
=

(ac+ bd) + (bc− ad)i

c2 + d2

=
ac+ bd

c2 + d2
+
bc− ad

c2 + d2
i

Obviously you do not want to memorize this formula: instead you remember the trick,
i.e. to divide c+ di into a+ bi you multiply numerator and denominator with c− di.

For any complex number w = c+di the number c−di is called its complex conjugate.
Notation:

w = c+ di, w̄ = c− di.

A frequently used property of the complex conjugate is the following formula

(18) ww̄ = (c+ di)(c− di) = c2 − (di)2 = c2 + d2.

The following notation is used for the real and imaginary parts of a complex number
z. If z = a+ bi then

a = the Real Part of z = Re(z), b = the Imaginary Part of z = Im(z).

Note that both Rez and Imz are real numbers. A common mistake is to say that Imz = bi.
The “i” should not be there.

24. Argument and Absolute Value

For any given complex number z = a+ bi one defines the absolute value or modulus
to be

|z| =
√

a2 + b2,

so |z| is the distance from the origin to the point z in the complex plane (see figure 7).

The angle θ is called the argument of the complex number z. Notation:

arg z = θ.

The argument is defined in an ambiguous way: it is only defined up to a multiple of
2π. E.g. the argument of −1 could be π, or −π, or 3π, or, etc. In general one says
arg(−1) = π + 2kπ, where k may be any integer.

From trigonometry one sees that for any complex number z = a+ bi one has

a = |z| cos θ, and b = |z| sin θ,
so that

|z| = |z| cos θ + i|z| sin θ = |z|
(
cos θ + i sin θ

)
.
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and

tan θ =
sin θ

cos θ
=
b

a
.

24.1. Example: Find argument and absolute value of z = 2 + i. Solution:
|z| =

√
22 + 12 =

√
5. z lies in the first quadrant so its argument θ is an angle between 0

and π/2. From tan θ = 1
2
we then conclude arg(2 + i) = θ = arctan

1

2
.

25. Geometry of Arithmetic

Since we can picture complex numbers as points in the complex plane, we can also
try to visualize the arithmetic operations “addition” and “multiplication.” To add z and

a

b
c

d

z

w

z +w

Figure 8. Addition of z = a+ bi and w = c+ di

w one forms the parallelogram with the origin, z and w as vertices. The fourth vertex
then is z + w. See figure 8.

z = a+ bi

iz = −b+ ai

Figure 9. Multiplication of a+ bi by i.

To understand multiplication we first look at multiplication with i. If z = a+ bi then

iz = i(a+ bi) = ia+ bi2 = ai− b = −b+ ai.

Thus, to form iz from the complex number z one rotates z counterclockwise by 90 degrees.
See figure 9.

If a is any real number, then multiplication of w = c+ di by a gives

aw = ac+ adi,
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−2z

−z

z

2z

3z

Figure 10. Multiplication of a real and a complex number

so aw points in the same direction, but is a times as far away from the origin. If a < 0
then aw points in the opposite direction. See figure 10.

Next, to multiply z = a+ bi and w = c+ di we write the product as

zw = (a+ bi)w = aw + biw.

Figure 11 shows a+ bi on the right. On the left, the complex number w was first drawn,

iw

w

aw

aw+biw

a

a+bi

biw

θ
θ

ϕ

b

Figure 11. Multiplication of two complex numbers

then aw was drawn. Subsequently iw and biw were constructed, and finally zw = aw+biw
was drawn by adding aw and biw.

One sees from figure 11 that since iw is perpendicular to w, the line segment from 0
to biw is perpendicular to the segment from 0 to aw. Therefore the larger shaded triangle
on the left is a right triangle. The length of the adjacent side is a|w|, and the length of
the opposite side is b|w|. The ratio of these two lengths is a : b, which is the same as for
the shaded right triangle on the right, so we conclude that these two triangles are similar.

The triangle on the left is |w| times as large as the triangle on the right. The two
angles marked θ are equal.

Since |zw| is the length of the hypothenuse of the shaded triangle on the left, it is |w|
times the hypothenuse of the triangle on the right, i.e. |zw| = |w| · |z|.
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The argument of zw is the angle θ + ϕ; since θ = arg z and ϕ = argw we get the
following two formulas

|zw| = |z| · |w|(19)

arg(zw) = arg z + argw,(20)

in other words,

when you multiply complex numbers, their lengths get multiplied
and their arguments get added.

26. Applications in Trigonometry

26.1. Unit length complex numbers. For any θ the number z = cos θ + i sin θ
has length 1: it lies on the unit circle. Its argument is arg z = θ. Conversely, any complex
number on the unit circle is of the form cosφ+ i sinφ, where φ is its argument.

26.2. The Addition Formulas for Sine & Cosine. For any two angles θ and
φ one can multiply z = cos θ + i sin θ and w = cosφ + i sinφ. The product zw is a
complex number of absolute value |zw| = |z| · |w| = 1 · 1, and with argument arg(zw) =
arg z + argw = θ + φ. So zw lies on the unit circle and must be cos(θ + φ) + i sin(θ + φ).
Thus we have

(21) (cos θ + i sin θ)(cos φ+ i sinφ) = cos(θ + φ) + i sin(θ + φ).

By multiplying out the Left Hand Side we get

(cos θ + i sin θ)(cos φ+ i sinφ) = cos θ cosφ− sin θ sinφ(22)

+ i(sin θ cosφ+ cos θ sinφ).

Compare the Right Hand Sides of (21) and (22), and you get the addition formulas for
Sine and Cosine:

cos(θ + φ) = cos θ cosφ− sin θ sinφ

sin(θ + φ) = sin θ cos φ+ cos θ sinφ

26.3. De Moivre’s formula. For any complex number z the argument of its square
z2 is arg(z2) = arg(z · z) = arg z + arg z = 2arg z. The argument of its cube is arg z3 =
arg(z · z2) = arg(z)+ arg z2 = arg z+2arg z = 3arg z. Continuing like this one finds that

(23) arg zn = n arg z

for any integer n.

Applying this to z = cos θ + i sin θ you find that zn is a number with absolute value
|zn| = |z|n = 1n = 1, and argument n arg z = nθ. Hence zn = cosnθ + i sinnθ. So we
have found

(24) (cos θ + i sin θ)n = cosnθ + i sinnθ.

This is de Moivre’s formula.

For instance, for n = 2 this tells us that

cos 2θ + i sin 2θ = (cos θ + i sin θ)2 = cos2 θ − sin2 θ + 2i cos θ sin θ.

Comparing real and imaginary parts on left and right hand sides this gives you the double
angle formulas cos 2θ = cos2 θ − sin2 θ and sin 2θ = 2 sin θ cos θ.

For n = 3 you get, using the Binomial Theorem, or Pascal’s triangle,

(cos θ + i sin θ)3 = cos3 θ + 3i cos2 θ sin θ + 3i2 cos θ sin2 θ + i3 sin3 θ

= cos3 θ − 3 cos θ sin2 θ + i(3 cos2 θ sin θ − sin3 θ)
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so that

cos 3θ = cos3 θ − 3 cos θ sin2 θ

and

sin 3θ = cos2 θ sin θ − sin3 θ.

In this way it is fairly easy to write down similar formulas for sin 4θ, sin 5θ, etc.. . .

27. Calculus of complex valued functions

A complex valued function on some interval I = (a, b) ⊆ R is a function f : I → C.
Such a function can be written as in terms of its real and imaginary parts,

(25) f(x) = u(x) + iv(x),

in which u, v : I → R are two real valued functions.

One defines limits of complex valued functions in terms of limits of their real and
imaginary parts. Thus we say that

lim
x→x0

f(x) = L

if f(x) = u(x) + iv(x), L = A+ iB, and both

lim
x→x0

u(x) = A and lim
x→x0

v(x) = B

hold. From this definition one can prove that the usual limit theorems also apply to
complex valued functions.

27.1. Theorem. If limx→x0 f(x) = L and limx→x0 g(x) =M , then one has

lim
x→x0

f(x)± g(x) = L±M,

lim
x→x0

f(x)g(x) = LM,

lim
x→x0

f(x)

g(x)
=

L

M
, provided M 6= 0.

The derivative of a complex valued function f(x) = u(x)+ iv(x) is defined by simply
differentiating its real and imaginary parts:

(26) f ′(x) = u′(x) + iv′(x).

Again, one finds that the sum,product and quotient rules also hold for complex valued
functions.

27.2. Theorem. If f, g : I → C are complex valued functions which are differentiable
at some x0 ∈ I, then the functions f±g, fg and f/g are differentiable (assuming g(x0) 6= 0
in the case of the quotient.) One has

(f ± g)′(x0) = f ′(x0)± g′(x0)

(fg)′(x0) = f ′(x0)g(x0) + f(x0)g
′(x0)

(
f

g

)′
(x0) =

f ′(x0)g(x0)− f(x0)g
′(x0)

g(x0)2

Note that the chain rule does not appear in this list! See problem 324 for more about the
chain rule.

28. The Complex Exponential Function

We finally give a definition of ea+bi. First we consider the case a = 0:
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1

eiθ = cos θ + i sin θ

θ

Figure 12. Euler’s definition of eiθ

28.1. Definition. For any real number t we set

eit = cos t+ i sin t.

See Figure 12.

28.2. Example. eπi = cos π + i sin π = −1. This leads to Euler’s famous formula

eπi + 1 = 0,

which combines the five most basic quantities in mathematics: e, π, i, 1, and 0.

Reasons why the definition 28.1 seems a good definition.

Reason 1. We haven’t defined eit before and we can do anything we like.

Reason 2. Substitute it in the Taylor series for ex:

eit = 1 + it+
(it)2

2!
+

(it)3

3!
+

(it)4

4!
+ · · ·

= 1 + it− t2

2!
− i

t3

3!
+
t4

4!
+ i

t5

5!
− · · ·

= 1− t2/2! + t4/4!− · · ·
+ i
(
t− t3/3! + t5/5!− · · ·

)

= cos t+ i sin t.

This is not a proof, because before we had only proved the convergence of the Taylor series
for ex if x was a real number, and here we have pretended that the series is also good if
you substitute x = it.

Reason 3. As a function of t the definition 28.1 gives us the correct derivative.
Namely, using the chain rule (i.e. pretending it still applies for complex functions) we
would get

deit

dt
= ieit.

Indeed, this is correct. To see this proceed from our definition 28.1:

deit

dt
=
d cos t+ i sin t

dt

=
d cos t

dt
+ i

d sin t

dt
= − sin t+ i cos t

= i(cos t+ i sin t)
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Reason 4. The formula ex · ey = ex+y still holds. Rather, we have eit+is = eiteis.
To check this replace the exponentials by their definition:

eiteis = (cos t+ i sin t)(cos s+ i sin s) = cos(t+ s) + i sin(t+ s) = ei(t+s).

Requiring ex · ey = ex+y to be true for all complex numbers helps us decide what
ea+bi shoud be for arbitrary complex numbers a+ bi.

28.3. Definition. For any complex number a+ bi we set

ea+bi = ea · eib = ea(cos b+ i sin b).

One verifies as above in “reason 3” that this gives us the right behaviour under differen-
tiation. Thus, for any complex number r = a+ bi the function

y(t) = ert = eat(cos bt+ i sin bt)

satisfies

y′(t) =
dert

dt
= rert.

29. Complex solutions of polynomial equations

29.1. Quadratic equations. The well-known quadratic formula tells you that the
equation

(27) ax2 + bx+ c = 0

has two solutions, given by

(28) x± =
−b±

√
D

2a
, D = b2 − 4ac.

If the coefficients a, b, c are real numbers and if the discriminant D is positive, then this
formula does indeed give two real solutions x+ and x−. However, if D < 0, then there are
no real solutions, but there are two complex solutions, namely

x± =
−b
2a

± i

√
−D
2a

29.2. Example: solve x2 + 2x + 5 = 0. Solution: Use the quadratic formula, or
complete the square:

x2 + 2x+ 5 = 0

⇐⇒ x2 + 2x+ 1 = −4

⇐⇒ (x+ 1)2 = −4

⇐⇒ x+ 1 = ±2i

⇐⇒ x = −1± 2i.

So, if you allow complex solutions then every quadratic equation has two solutions,
unless the two solutions coincide (the case D = 0, in which there is only one solution.)
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1

1
2
+ i

2

√
3− 1

2
+ i

2

√
3

−1

− 1
2
− i

2

√
3 1

2
− i

2

√
3

Figure 13. The sixth roots of 1. There are six of them, and they re
arranged in a regular hexagon.

29.3. Complex roots of a number. For any given complex number w there is a
method of finding all complex solutions of the equation

(29) zn = w

if n = 2, 3, 4, · · · is a given integer.

To find these solutions you write w in polar form, i.e. you find r > 0 and θ such that
w = reiθ. Then

z = r1/neiθ/n

is a solution to (29). But it isn’t the only solution, because the angle θ for which w = reiθ

isn’t unique – it is only determined up to a multiple of 2π. Thus if we have found one
angle θ for which w = riθ , then we can also write

w = rei(θ+2kπ), k = 0,±1,±2, · · ·

The nth roots of w are then

zk = r1/nei
(

θ

n
+2 k

n
π
)

Here k can be any integer, so it looks as if there are infinitely many solutions. However,
if you increase k by n, then the exponent above increases by 2πi, and hence zk does not
change. In a formula:

zn = z0, zn+1 = z1, zn+2 = z2, . . . zk+n = zk

So if you take k = 0, 1, 2, · · · , n− 1 then you have had all the solutions.

The solutions zk always form a regular polygon with n sides.
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29.4. Example: find all sixth roots of w = 1. We are to solve z6 = 1. First
write 1 in polar form,

1 = 1 · e0i = 1 · e2kπi, (k = 0,±1,±2, . . .).

Then we take the 6th root and find

zk = 11/6e2kπi/6 = ekπi/3, (k = 0,±1,±2, . . .).

The six roots are

z0 = 1 z1 = eπi/3 = 1
2
+ i

2

√
3 z2 = e2πi/3 = − 1

2
+ i

2

√
3

z3 = −1 z4 = e4πi/3 = − 1
2
− i

2

√
3 z5 = e5πi/3 = 1

2
− i

2

√
3

30. Other handy things you can do with complex numbers

30.1. Partial fractions. Consider the partial fraction decomposition

x2 + 3x− 4

(x− 2)(x2 + 4)
=

A

x− 2
+
Bx+C

x2 + 4

The coefficient A is easy to find: multiply with x − 2 and set x = 2 (or rather, take the
limit x→ 2) to get

A =
22 + 3 · 2− 4

22 + 4
= · · · .

Before we had no similar way of finding B and C quickly, but now we can apply the same
trick: multiply with x2 + 4,

x2 + 3x− 4

(x− 2)
= Bx+ C + (x2 + 4)

A

x− 2
,

and substitute x = 2i. This make x2 + 4 = 0, with result

(2i)2 + 3 · 2i− 4

(2i− 2)
= 2iB + C.

Simplify the complex number on the left:

(2i)2 + 3 · 2i− 4

(2i− 2)
=

−4 + 6i− 4

−2 + 2i

=
−8 + 6i

−2 + 2i

=
(−8 + 6i)(−2− 2i)

(−2)2 + 22

=
28 + 4i

8

=
7

2
+
i

2

So we get 2iB + C = 7
2
+ i

2
; since B and C are real numbers this implies

B =
1

4
, C =

7

2
.
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30.2. Certain trigonometric and exponential integrals. You can compute

I =

∫

e3x cos 2xdx

by integrating by parts twice. You can also use that cos 2x is the real part of e2ix. Instead
of computing the real integral I , we look at the following related complex integral

J =

∫

e3xe2ixdx

which we get from I by replacing cos 2x with e2ix. Since e2ix = cos 2x+ i sin 2x we have

J =

∫

e3x(cos 2x+ i sin 2x)dx =

∫

e3x cos 2xdx+ i

∫

e3x sin 2xdx

i.e.,
J = I + something imaginary.

The point of all this is that J is easier to compute than I :

J =

∫

e3xe2ixdx =

∫

e3x+2ixdx =

∫

e(3+2i)xdx =
e(3+2i)x

3 + 2i
+ C

where we have used that ∫

eaxdx =
1

a
eax +C

holds even if a is complex is a complex number such as a = 3 + 2i.

To find I you have to compute the real part of J , which you do as follows:

e(3+2i)x

3 + 2i
= e3x

cos 2x+ i sin 2x

3 + 2i

= e3x
(cos 2x+ i sin 2x)(3− 2i)

(3 + 2i)(3− 2i)

= e3x
3 cos 2x+ 2 sin 2x+ i(· · · )

13
so ∫

e3x cos 2xdx = e3x
(

3
13

cos 2x+ 2
13

sin 2x
)
+ C.

30.3. Complex amplitudes. A harmonic oscillation is given by

y(t) = A cos(ωt− φ),

where A is the amplitude, ω is the frequency, and φ is the phase of the oscillation.
If you add two harmonic oscillations with the same frequency ω, then you get another
harmonic oscillation with frequency ω. You can prove this using the addition formulas for
cosines, but there’s another way using complex exponentials. It goes like this.

Let y(t) = A cos(ωt − φ) and z(t) = B cos(ωt − θ) be the two harmonic oscillations
we wish to add. They are the real parts of

Y (t) = A {cos(ωt− φ) + i sin(ωt− φ)} = Aeiωt−iφ = Ae−iφeiωt

Z(t) = B {cos(ωt− θ) + i sin(ωt− θ)} = Beiωt−iθ = Be−iθeiωt

Therefore y(t) + z(t) is the real part of Y (t) + Z(t), i.e.

y(t) + z(t) = Re
(
Y (t)

)
+Re

(
Z(t)

)
= Re

(
Y (t) + Z(t)

)
.

The quantity Y (t) + Z(t) is easy to compute:

Y (t) + Z(t) = Ae−iφeiωt +Be−iθeiωt =
(

Ae−iφ +Be−iθ
)

eiωt.

If you now do the complex addition

Ae−iφ +Be−iθ = Ce−iψ,
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w

i.e. you add the numbers on the right, and compute the absolute value C and argument
−ψ of the sum, then we see that Y (t) + Z(t) = Cei(ωt−ψ). Since we were looking for the
real part of Y (t) + Z(t), we get

y(t) + z(t) = A cos(ωt− φ) +B cos(ωt− θ) = C cos(ωt− ψ).

The complex numbers Ae−iφ, Be−iθ and Ce−iψ are called the complex amplitudes for the
harmonic oscillations y(t), z(t) and y(t) + z(t).

The recipe for adding harmonic oscillations can therefore be summarized as follows:
Add the complex amplitudes.

31. PROBLEMS

COMPUTING AND DRAWING COMPLEX NUMBERS

294. Compute the following complex num-
bers by hand.

Draw all numbers in the complex
(or “Argand”) plane (use graph paper or
quad paper if necessary).

Compute absolute value and argu-
ment of all numbers involved.

i2; i3; i4; 1/i;

(1 + 2i)(2− i);

(1 + i)(1 + 2i)(1 + 3i);

( 1
2

√
2 + i

2

√
2)2; ( 1

2
+ i

2

√
3)3;

1

1 + i
; 5/(2− i);

295. Simplify your answer.

• For z = 2 + 3i find:
(1) z2

(2) z
(3) |z|
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(4) 1
z

• For z = 2e3i find:
(1) arg(z)
(2) |z|
(3) z2

(4) 1
z

• For z = −πe π

2
i find:

(1) |z|
(2) arg(z)

296. Plot the following four points in the
complex plane. Be sure and label them.

P =
√
2 e

5π
4
i Q = 1 + 2i

R = 1 + 2i Z = 1
1+2i

297. [Deriving the addition formula
for tan(θ + φ)] Group problem. Let
θ, φ ∈

(
−π

2
, π
2

)
be two angles.

(a) What are the arguments of

z = 1 + i tan θ and w = 1 + i tanφ?

(Draw both z and w.)

(b) Compute zw.

(c) What is the argument of zw?

(d) Compute tan(arg zw).

298. Find formulas for cos 4θ, sin 4θ, cos 5θ
and sin 6θ in terms of cos θ and sin θ, by
using de Moivre’s formula.

299. In the following picture draw 2w, 3
4
w,

iw, −2iw, (2+ i)w and (2− i)w. (Try to
make a nice drawing, use a ruler.)

Make a new copy of the picture, and
draw w̄, −w̄ and −w.

Make yet another copy of the draw-
ing. Draw 1/w, 1/w̄, and −1/w. For
this drawing you need to know where the
unit circle is in your drawing: Draw a
circle centered at the origin with radius
of your choice, and let this be the unit
circle. [Depending on which circle you
draw you will get a different answer!]

300. Verify directly from the definition of
addition and multiplication of complex
numbers that

(a) z +w = w + z

(b) zw = wz

(c) z(v + w) = zv + zw

holds for all complex numbers v, w, and
z.

301. True or False? (In mathematics this
means that you should either give a
proof that the statement is always true,
or else give a counterexample, thereby
showing that the statement is not always
true.)

For any complex numbers z and w
one has

(a) Re(z) +Re(w) = Re(z +w)

(b) z + w = z̄ + w̄

(c) Im(z) + Im(w) = Im(z + w)

(d) zw = (z̄)(w̄)

(e) Re(z)Re(w) = Re(zw)

(f) z/w = (z̄)/(w̄)

(g) Re(iz) = Im(z)

(h) Re(iz) = iRe(z)

(i) Re(iz) = iIm(z)

(j) Im(iz) = Re(z)

(k) Re(z̄) = Re(z)

302. Group problem. The imaginary
part of a complex number is known to be
twice its real part. The absolute value
of this number is 4. Which number is
this?

303. The real part of a complex number is
known to be half the absolute value of
that number. The imaginary part of the
number is 1. Which number is it?

THE COMPLEX EXPONENTIAL

304. Compute and draw the following
numbers in the complex plane

eπi/3; eπi/2;
√
2e3πi/4; e17πi/4.

eπi + 1; ei ln 2.

1

eπi/4
;
e−πi

eπi/4
;
e2−πi/2

eπi/4

e2009πi; e2009πi/2 .

−8e4πi/3 ; 12eπi + 3e−πi.
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305. Compute the absolute value and ar-
gument of e(ln 2)(1+i).

306. Group problem. Suppose z can be
any complex number.

(a) Is it true that ez is always a pos-
itive number?

(b) Is it true that ez 6= 0?

307. Group problem. Verify directly
from the definition that

e−it =
1

eit

holds for all real values of t.

308. Show that

cos t =
eit + e−it

2
, sin t =

eit − e−it

2i

309. Show that

cosh x = cos ix, sinh x =
1

i
sin ix.

310. The general solution of a second or-
der linear differential equation contains
expressions of the form Aeiβt + Be−iβt.
These can be rewritten as C1 cosβt +
C2 sin βt.

If Aeiβt + Be−iβt = 2 cos βt +
3 sin βt, then what are A and B?

311. Group problem. (a) Show that you
can write a “cosine-wave” with ampli-
tude A and phase φ as follows

A cos(t− φ) = Re
(

zeit
)

,

where the “complex amplitude” is given
by z = Ae−iφ. (See §30.3).

(b) Show that a “sine-wave” with
amplitude A and phase φ as follows

A sin(t− φ) = Re
(

zeit
)

,

where the “complex amplitude” is given
by z = −iAe−iφ.

312. Find A and φ where A cos(t − φ) =
2 cos(t) + 2 cos(t− 2

3
π).

313. Find A and φ where A cos(t − φ) =
12 cos(t− 1

6
π) + 12 sin(t− 1

3
π).

314. Find A and φ where A cos(t − φ) =
12 cos(t− π/6) + 12 cos(t− π/3).

315. Find A and φ such that A cos(t−φ) =
cos
(
t− 1

6
π
)
+

√
3 cos

(
t− 2

3
π
)
.

REAL AND COMPLEX SOLUTIONS OF ALGEBRAIC EQUATIONS

316. Find and draw all real and complex
solutions of

(a) z2 + 6z + 10 = 0

(b) z3 + 8 = 0

(c) z3 − 125 = 0

(d) 2z2 + 4z + 4 = 0

(e) z4 + 2z2 − 3 = 0

(f) 3z6 = z3 + 2

(g) z5 − 32 = 0

(h) z5 − 16z = 0

(i) z4 + z2 − 12 = 0

CALCULUS OF COMPLEX VALUED FUNCTIONS

317. Compute the derivatives of the fol-
lowing functions

f(x) =
1

x+ i

g(x) = log x+ i arctan x

h(x) = eix
2

Try to simplify your answers.

318. (a) Compute

∫
(
cos 2x

)4
dx

by using cos θ = 1
2
(eiθ + e−iθ) and ex-

panding the fourth power.

(b) Assuming a ∈ R, compute

∫

e−2x
(
sin ax

)2
dx.
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(same trick: write sin ax in terms of com-
plex exponentials; make sure your final
answer has no complex numbers.)

319. Use cosα = (eiα + e−iα)/2, etc. to
evaluate these indefinite integrals:

(a)

∫

cos2 xdx

(b)

∫

cos4 xdx,

(c)

∫

cos2 x sin xdx,

(d)

∫

sin3 x dx,

(e)

∫

cos2 x sin2 x dx,

(f)

∫

sin6 xdx

(g)

∫

sin(3x) cos(5x) dx

(h)

∫

sin2(2x) cos(3x) dx

(i)

∫ π/4

0

sin(3x) cos(x) dx

(j)

∫ π/3

0

sin3(x) cos2(x) dx

(k)

∫ π/2

0

sin2(x) cos2(x) dx

(l)

∫ π/3

0

sin(x) cos2(x) dx

320. Group problem. Compute the fol-
lowing integrals when m 6= n are distinct
integers.

(a)

∫ 2π

0

sin(mx) cos(nx) dx

(b)

∫ 2π

0

sin(nx) cos(nx) dx

(c)

∫ 2π

0

cos(mx) cos(nx) dx

(d)

∫ π

0

cos(mx) cos(nx) dx

(e)

∫ 2π

0

sin(mx) sin(nx) dx

(f)

∫ π

0

sin(mx) sin(nx) dx

These integrals are basic to the
theory of Fourier series, which occurs
in many applications, especially in the
study of wave motion (light, sound, eco-
nomic cycles, clocks, oceans, etc.). They
say that different frequency waves are
“independent”.

321. Show that cosx+sinx = C cos(x+β)
for suitable constants C and β and use
this to evaluate the following integrals.

(a)

∫
dx

cos x+ sin x

(b)

∫
dx

(cos x+ sin x)2

(c)

∫
dx

A cos x+B sin x

where A and B are any constants.

322. Group problem. Compute the in-
tegrals

∫ π/2

0

sin2 kx sin2 lxdx,

where k and l are positive integers.

323. Group problem. Show that for any
integers k, l,m

∫ π

0

sin kx sin lx sinmxdx = 0

if and only if k + l +m is even.

324. Group problem. (i) Prove the fol-
lowing version of the Chain rule: If
f : I → C is a differentiable complex
valued function, and g : J → I is a
differentiable real valued function, then
h = f ◦ g : J → C is a differentiable
function, and one has

h′(x) = f ′(g(x))g′(x).

(ii) Let n ≥ 0 be a nonnegative integer.
Prove that if f : I → C is a differentiable
function, then g(x) = f(x)n is also dif-
ferentiable, and one has

g′(x) = nf(x)n−1f ′(x).

Note that the chain rule from part (a)
does not apply! Why?

Complex roots of real polynomials

325. For a and b complex numbers show that
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(a) a+ b = a+ b

(b) a · b = a · b
(c) a is real iff a = a

326. For p(x) = a0 + a1x + a2x
2 + · · · anxn a polynomial and z a complex number, show

that
p(z) = a0 + a1 z + a2 (z)2 + · · · an (z)n

327. For p a real polynomial, i.e., the coefficients ak of p are real numbers, if z is a complex
root of p, i.e., p(z) = 0, show z is also a root of p. Hence the complex roots of p occur in
conjugate pairs.

328. Using the quadratic formula show directly that the roots of a real quadratic are either
both real or a complex conjugate pair.

329. Show that 2 + 3i and its conjugate 2− 3i are the roots of a real polynomial.

330. Show that for every complex number a there is a real quadratic whose roots are a and
a.

331. The Fundamental theorem of Algebra states that every complex polynomial of degree
n can be completely factored as a constant multiple of

(x− al1)(x− α2) · · · (x− αn)

(The αi may not be distinct.) It was proved by Gauss. Proofs of it are given in courses
on Complex Analysis.

Use the Fundamental Theorem of Algebra to show that every real polynomial can be
factored into a product real polynomials, each of degree 1 or 2.
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Chapter 4: Differential Equations

32. What is a DiffEq?

A differential equation is an equation involving an unknown function and its deriva-
tives. The order of the differential equation is the order of the highest derivative which
appears. A linear differential equation is one of form

y(n) + a1(x)y
(n−1) + · · ·+ an−1(x)y

′ + an(x)y = k(x)

where the coefficients a1(x), . . . , an(x) and the right hand side k(x) are given functions of
x and y is the unknown function. Here

y(k) =
dky

dxk

denotes the kth derivative of y so this equation has order n. We shall mainly study the
case n = 1 where the equation has form

y′ + a(x)y = k(x)

and the case n = 2 with constant coefficients where the equation has form

y′′ + ay′ + by = k(x).

When the right hand side k(x) is zero the equation is called homogeneous linear and
otherwise it is called inhomogeneous linear (or nonhomogeneous linear by some peo-
ple). For a homogeneous linear equation the sum of two solutions is a solution and a
constant multiple of a solution is a solution. This property of linear equations is called
the principle of superposition.

33. First Order Separable Equations

A separable differential equation is a diffeq of the form

(30) y′(x) = F (x)G(y(x)), or
dy

dx
= F (x)G(y).

To solve this equation divide by G(y(x)) to get

(31)
1

G(y(x))

dy

dx
= F (x).

Next find a function H(y) whose derivative with respect to y is

(32) H ′(y) =
1

G(y)

(

solution: H(y) =

∫
dy

G(y)
.

)

Then the chain rule implies that (31) can be written as

dH(y(x))

dx
= F (x).

In words: H(y(x)) is an antiderivative of F (x), which means we can find H(y(x)) by
integrating F (x):

(33) H(y(x)) =

∫

F (x)dx+ C.
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Once you’ve found the integral of F (x) this gives you y(x) in implicit form: the equation
(33) gives you y(x) as an implicit function of x. To get y(x) itself you must solve the
equation (33) for y(x).

A quick way of organizing the calculation goes like this:

To solve
dy

dx
= F (x)G(y) you first separate the variables,

dy

G(y)
= F (x) dx,

and then integrate,
∫

dy

G(y)
=

∫

F (x) dx.

The result is an implicit equation for the solution y with one unde-
termined integration constant.

Determining the constant. The solution you get from the above procedure
contains an arbitrary constant C. If the value of the solution is specified at some given
x0, i.e. if y(x0) is known then you can express C in terms of y(x0) by using (33).

A snag: You have to divide by G(y) which is problematic when G(y) = 0. This
has as consequence that in addition to the solutions you found with the above procedure,
there are at least a few more solutions: the zeroes of G(y) (see Example 33.2 below). In
addition to the zeroes of G(y) there sometimes can be more solutions, as we will see in
Example 35.2 on “Leaky Bucket Dating.”

33.1. Example. We solve

dz

dt
= (1 + z2) cos t.

Separate variables and integrate
∫

dz

1 + z2
=

∫

cos t dt,

to get

arctan z = sin t+ C.

Finally solve for z and you find the general solution

z(t) = tan
(
sin(t) + C

)
.

33.2. Example: The snag in action. If you apply the method to y′(x) = Ky

with K a constant, you get y(x) = eK(x+C). No matter how you choose C you never get
the function y(x) = 0, even though y(x) = 0 satisfies the equation. This is because here
G(y) = Ky, and G(y) vanishes for y = 0.

34. First Order Linear Equations

There are two systematic methods which solve a first order linear inhomogeneous
equation

dy

dx
+ a(x)y = k(x). (‡)

You can multiply the equation with an “integrating factor”, or you do a substitution
y(x) = c(x)y0(x), where y0 is a solution of the homogeneous equation (that’s the equation
you get by setting k(x) ≡ 0).
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34.1. The Integrating Factor. Let

A(x) =

∫

a(x) dx, m(x) = eA(x).

Multiply the equation (‡) by the “integrating factor” m(x) to get

m(x)
dy

dx
+ a(x)m(x)y = m(x)k(x).

By the chain rule the integrating factor satisfies

dm(x)

dx
= A′(x)m(x) = a(x)m(x).

Therefore one has

dm(x)y

dx
= m(x)

dy

dx
+ a(x)m(x)y = m(x)

{
dy

dx
+ a(x)y

}

= m(x)k(x).

Integrating and then dividing by the integrating factor gives the solution

y =
1

m(x)

(∫

m(x)k(x) dx+ C

)

.

In this derivation we have to divide bym(x), but sincem(x) = eA(x) and since exponentials
never vanish we know that m(x) 6= 0, no matter which problem we’re doing, so it’s OK,
we can always divide by m(x).

34.2. Variation of constants for 1st order equations. Here is the second method
of solving the inhomogeneous equation (‡). Recall again that the homogeneous equation
associated with (‡) is

dy

dx
+ a(x)y = 0. (†)

The general solution of this equation is

y(x) = Ce−A(x).

where the coefficient C is an arbitrary constant. To solve the inhomogeneous equation (‡)
we replace the constant C by an unknown function C(x), i.e. we look for a solution in the
form

y = C(x)y0(x) where y0(x)
def
= e−A(x).

(This is how the method gets its name: we are allowing the constant C to vary.)

Then y′0(x) + a(x)y0(x) = 0 (because y0(x) solves (†)) and

y′(x) + a(x)y(x) = C′(x)y0(x) + C(x)y′0(x) + a(x)C(x)y0(x) = C′(x)y0(x)

so y(x) = C(x)y0(x) is a solution if C′(x)y0(x) = k(x), i.e.

C(x) =

∫
k(x)

y0(x)
dx.

Once you notice that y0(x) =
1

m(x)
, you realize that the resulting solution

y(x) = C(x)y0(x) = y0(x)

∫
k(x)

y0(x)
dx

is the same solution we found before, using the integrating factor.

Either method implies the following:
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34.3. Theorem. The initial value problem

dy

dx
+ a(x)y = 0, y(0) = y0,

has exactly one solution. It is given by

y = y0e
−A(x), where A(x) =

∫ x

0

a(t) dt.

The theorem says three things: (1) there is a solution, (2) there is a formula for the
solution, (3) there aren’t any other solutions (if you insist on the initial value y(0) = y0.)
The last assertion is just as important as the other two, so I’ll spend a whole section trying
to explain why.

35. Dynamical Systems and Determinism

A differential equation which describes how something (e.g. the position of a particle)
evolves in time is called a dynamical system. In this situation the independent variable
is time, so it is customary to call it t rather than x; the dependent variable, which depends
on time is often denoted by x. In other words, one has a differential equation for a function
x = x(t). The simplest examples have form

(34)
dx

dt
= f(x, t).

In applications such a differential equation expresses a law according to which the quan-
tity x(t) evolves with time (synonyms: “evolutionary law”, “dynamical law”, “evolution
equation for x”).

A good law is deterministic, which means that any solution of (34) is completely
determined by its value at one particular time t0: if you know x at time t = t0, then the
“evolution law” (34) should predict the values of x(t) at all other times, both in the past
(t < t0) and in the future (t > t0).

Our experience with solving differential equations so far (§33 and §34) tells us that
the general solution to a differential equation like (34) contains an unknown integration
constant C. Let’s call the general solution x(t;C) to emphasize the presence of this
constant. If the value of x at some time t0 is known to be, say, x0, then you get an
equation

(35) x(t0;C) = x0

which you can try to solve for C. If this equation always has exactly one solution C then
the evolutionary law (34) is deterministic (the value of x(t0) always determines x(t) at
all other times t); if for some prescribed value x0 at some time t0 the equation (35) has
several solutions, then the evolutionary law (34) is not deterministic (because knowing
x(t) at time t0 still does not determine the whole solution x(t) at times other than t0).

35.1. Example: Carbon Dating. Suppose we have a fossil, and we want to know
how old it is.

All living things contain carbon, which naturally occurs in two isotopes, C14 (unsta-
ble) and C12 (stable). A long as the living thing is alive it eats & breaths, and its ratio
of C12 to C14 is kept constant. Once the thing dies the isotope C14 decays into C12 at a
steady rate.

Let x(t) be the ratio of C14 to C12 at time t. The laws of radioactive decay says that
there is a constant k > 0 such that

dx(t)

dt
= −kx(t).
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Solve this differential equation (it is both separable and first order linear: you choose your
method) to find the general solution

x(t;C) = Ce−kt.

After some lab work it is found that the current C14/C12 ratio of our fossil is xnow. Thus
we have

xnow = Ce−ktnow =⇒ C = xnowe
tnow .

Therefore our fossil’s C14/C12 ratio at any other time t is/was

x(t) = xnowe
k(tnow−t).

This allows you to compute the time at which the fossil died. At this time the C14/C12

ratio must have been the common value in all living things, which can be measured, let’s
call it xlife. So at the time tdemise when our fossil became a fossil you would have had
x(tdemise) = xlife. Hence the age of the fossil would be given by

xlife = x(tdemise) = xnowe
k(tnow−tdemise) =⇒ tnow − tdemise =

1

k
ln
xlife

xnow

35.2. Example: On Dating a Leaky Bucket. A bucket is filled with water.
There’s a hole in the bottom of the bucket so the water streams out at a certain rate.

h(t) the height of water in the bucket
A area of cross section of bucket
a area of hole in the bucket
v velocity with which water goes through the hole.

h(t)
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v

area = A

The amount of water in the bucket is A× h(t);

The rate at which water is leaving the bucket is a× v(t);

Hence
dAh(t)

dt
= −av(t).

In fluid mechanics it is shown that the velocity of the water as it passes through the hole
only depends on the height h(t) of the water, and that, for some constant K,

v(t) =
√

Kh(t).

The last two equations together give a differential equation for h(t), namely,

dh(t)

dt
= − a

A

√

Kh(t).

To make things a bit easier we assume that the constants are such that a
A

√
K = 2. Then

h(t) satisfies

(36) h′(t) = −2
√

h(t).

This equation is separable, and when you solve it you get

dh

2
√
h

= −1 =⇒
√

h(t) = −t+ C.
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Figure 14. Several solutions h(t;C) of the Leaking Bucket Equation (36).
Note how they all have the same values when t ≥ 1.

This formula can’t be valid for all values of t, for if you take t > C, the RHS becomes
negative and can’t be equal to the square root in the LHS. But when t ≤ C we do get a
solution,

h(t;C) = (C − t)2.

This solution describes a bucket which is losing water until at time C it is empty. Motivated
by the physical interpretation of our solution it is natural to assume that the bucket stays
empty when t > C, so that the solution with integration constant C is given by

h(t) =

{

(C − t)2 when t ≤ C

0 for t > C.

We now come to the question: is the Leaky Bucket Equation deterministic? The
answer is: NO. If you let C be any negative number, then h(t;C) describes the water level
of a bucket which long ago had water, but emptied out at time C < 0. In particular, for
all these solutions of the diffeq (36) you have h(0) = 0, and knowing the value of h(t) at
t = 0 in this case therefore doesn’t tell you what h(t) is at other times.

Once you put it in terms of the physical interpretation it is actually quite obvious
why this system can’t be deterministic: it’s because you can’t answer the question “If you
know that the bucket once had water and that it is empty now, then how much water did
it hold one hour ago?”

36. Higher order equations

After looking at first order differential equations we now turn to higher order equa-
tions.

36.1. Example: Spring with a weight. A body of mass m is suspended by a
spring. There are two forces on the body: gravity and the tension in the spring. Let F
be the sum of these two forces. Newton’s law says that the motion of the weight satisfies
F = ma where a is the acceleration. The force of gravity is mg where g=32ft/sec2; the
quantity mg is called the weight of the body. We assume Hooke’s law which says that
the tension in the spring is proportional to the amount by which the spring is stretched;
the constant or proportionality is called the spring constant. We write k for this spring
constant.

m

spring

gravity

y(t)

F

F
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The total force acting on the body is therefore

F = mg − ky(t).

According to Newton’s first/second/third law the acceleration a of the body satisfies
F = ma. Since the acceleration a is the second derivative of position y we get the following
differential equation for y(t)

(37) m
d2y

dt2
= mg − ky(t).

36.2. Example: the pendulum.

Fstring

θ

θ
L

F
gravity

=mg

m

P

The velocity of the weight on the pendulum is Ldθ
dt
, hence its acceleration is a = Ld2θ/dt2.

There are two forces acting on the weight: gravity (strength mg; direction vertically down)
and the tension in the string (strength: whatever it takes to keep the weight on the circle
of radius L and center P ; direction parallel to the string). Together they leave a force of
size Fgravity · sin θ which accelerates the weight. By Newton’s “F = ma” law you get

mL
d2θ

dt2
= −mg sin θ(t),

or, canceling ms,

(38)
d2θ

dt2
+
g

L
sin θ(t) = 0.

37. Constant Coefficient Linear Homogeneous Equations

37.1. Differential operators. In this section we study the homogeneous linear
differential equation

(39) y(n) + a1y
(n−1) + · · ·+ an−1y

′ + any = 0

where the coefficients a1, . . . , an are constants.
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37.2. Examples. The three equations

dy

dx
− y = 0,

y′′ − y = 0, y′′ + y = 0

y(iv) − y = 0

are homogeneous linear differential equations with constant coefficients. Their degrees are
1, 2, 2, and 4.

It will be handy to have an abbreviation for the Left Hand Side in (39), so we agree
to write L[y] for the result of substituting a function y in the LHS of (39). In other words,
for any given function y = y(x) we set

L[y](x)
def
= y(n)(x) + a1y

(n−1)(x) + · · ·+ an−1y
′(x) + any(x).

We call L an operator. An operator is like a function in that you give it an input, it does
a computation and gives you an output. The difference is that ordinary functions take a
number as their input, while the operator L takes a function y(x) as its input, and gives
another function (the LHS of (39)) as its output. Since the computation of L[y] involves
taking derivatives of y, the operator L is called a differential operator.

37.3. Example. The differential equations in the previous example correspond to
the differential operators

L1[y] = y′ − y,

L2[y] = y′′ − y, L3[y] = y′′ + y

L4[y] = y(iv) − y.

So one has

L3[sin 2x] =
d2 sin 2x

dx2
+ sin 2x = −4 sin 2x+ sin 2x = −3 sin 2x.

37.4. The superposition principle. The following theorem is the most important
property of linear differential equations.

37.5. Superposition Principle. For any two functions y1 and y2 we have

L[y1 + y2] = L[y1] + L[y2].

For any function y and any constant c we have

L[cy] = cL[y].

The proof, which is rather straightforward once you know what to do, will be given in
lecture. It follows from this theorem that if y1, . . . , yk are given functions, and c1, . . . , ck
are constants, then

L[c1y1 + · · ·+ ckyk] = c1L[y1] + · · ·+ ckL[yk].

The importance of the superposition principle is that it allows you to take old solutions
to the homogeneous equation and make new ones. Namely, if y1, . . . , yk are solutions to
the homogeneous equation L[y] = 0, then so is c1y1+ · · ·+ckyk for any choice of constants
c1, . . . , ck.
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37.6. Example. Consider the equation

y′′ − 4y = 0.

My cousin Bruce says that the two functions y1(x) = e2x and y2(x) = e−2x both are
solutions to this equations. You can check that Bruce is right just by substituting his
solutions in the equation.

The Superposition Principle now implies that

y(x) = c1e
2x + c2e

−2x

also is a solution, for any choice of constants c1, c2.

37.7. The characteristic polynomial. This example contains in it the general
method for solving linear constant coefficient ODEs. Suppose we want to solve the equa-
tion (39), i.e.

L[y]
def
= y(n) + a1y

(n−1) + · · ·+ an−1y
′ + any = 0.

Then the first thing to do is to see if there are any exponential functions y = erx which
satisfy the equation. Since

derx

dx
= rerx,

d2erx

dx2
= r2erx,

d3erx

dx3
= r3erx, etc. . . .

we see that

(40) L[erx] =
(
rn + a1r

n−1 + · · · an−1r + an
)
erx.

The polynomial

P (r) = rn + a1r
n−1 + · · ·+ an−1r + an.

is called the characteristic polynomial.

We see that y = erx is a solution of L[y] = 0 if and only if P (r) = 0.

37.8. Example. We look for all exponential solutions of the equation

y′′ − 4y = 0.

Substitution of y = erx gives

y′′ − 4y = r2erx − 4erx =
(
r2 − 4

)
erx.

The exponential erx can’t vanish, so y′′ − 4y = 0 will hold exactly when r2 − 4 = 0,
i.e. when r = ±2. Therefore the only exponential functions which satisfy y′′ − 4y = 0 are
y1(x) = e2x and y2(x) = e−2x.

37.9. Theorem. Suppose the polynomial P (r) has n distinct roots r1, r2, . . . , rn.
Then the general solution of L[y] = 0 is

y = c1e
r1x + c2e

r2x + · · ·+ cne
rnx

where c1, c2, . . . , cn are arbitrary constants.

Proof. We have just seen that the functions y1(x) = er1x, y2(x) = er2x, y3(x) =
er3x, etc. are solutions of the equation L[y] = 0. In Math 320 (or 319, or. . . ) you prove
that these are all the solutions (it also follows from the method of variation of parameters
that there aren’t any other solutions).

�

37.10. Complex roots and repeated roots. If the characteristic polynomial has
n distinct real roots then Theorem 37.9 tells you what the general solution to the equation
L[y] = 0 is. In general a polynomial equation like P (r) = 0 can have repeated roots, and
it can have complex roots.
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37.11. Example. Solve y′′ + 2y′ + y = 0.

The characteristic polynomial is P (r) = r2 + 2r + 1 = (r + 1)2, so the only root of
the characteristic equation r2 + 2r + 1 = 0 is r = −1 (it’s a repeated root). This means
that for this equation we only get one exponential solution, namely y(x) = e−x.

It turns out that for this equation there is another solution which is not exponential.
It is y2(x) = xe−x. You can check that it really satisfies the equation y′′ + 2y′ + y = 0.

When there are repeated roots there are other solutions: if P (r) = 0, then tjert is
a solution if j is a nonnegative integer less than the multiplicity of r. Also, if any of
the roots are complex, the phrase general solution should be understood to mean general
complex solution and the coefficients cj should be complex. If the equation is real, the
real and imaginary part of a complex solution are again solutions. We only describe the
case n = 2 in detail.

37.12. Theorem. Consider the differential equation

d2y

dx2
+ a1

dy

dx
+ a2y = 0 (†)

and suppose that r1 and r2 are the solutions of the characteristic equation of r2+a1r+a2 =
0. Then

(i): If r1 and r2 are distinct and real, the general solution of (†) is

y = c1e
r1x + c2e

r2x.

(ii): If r1 = r2, the general solution of (†) is

y = c1e
r1x + c2xe

r1x.

(iii): If r1 = α+ βi and r2 = α− βi, the general solution of (†) is

y = c1e
αx cos(βx) + c2e

αx sin(βx).

In each case c1 and c2 are arbitrary constants.

Case (i) and case (iii) can be subsumed into a single case using complex notation:

e(α±βi)x = eαx cos βx± ieαx sin βx,

eαx cos βx =
e(α+βi)x + e(α−βi)x

2
, eαx sin βx =

e(α+βi)x − e(α−βi)x

2i
.

38. Inhomogeneous Linear Equations

In this section we study the inhomogeneous linear differential equation

y(n) + a1y
(n−1) + · · ·+ an−1y

′ + any = k(x)

where the coefficients a1, . . . , an are constants and the function k(x) is a given function.
In the operator notation this equation may be written

L[y] = k(x).

The following theorem says that once we know one particular solution yp of the inhomoge-
neous equation L[y] = k(x) we can find all the solutions y to the inhomogeneous equation
L[y] = k(x) by finding all the solutions yh to the homogeneous equation L[y] = 0.
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38.1. Another Superposition Principle. Assume L[yp] = k(x). Then L[y] =
k(x) if and only if y = yp + yh where L[yh] = 0.

Proof. Suppose L[yp] = k(x) and y = yp + yh. Then

L[y] = L[yp + yh] = L[yp] + L[yh] = k(x) + L[yh].

Hence L[y] = k(x) if and only if L[yh] = 0. �

39. Variation of Constants

There is a method to find the general solution of a linear inhomogeneous equation
of arbitrary order, provided you already know the solutions to the homogeneous equation.
We won’t explain this method here, but merely show you the answer you get in the case
of second order equations.

If y1(x) and y2(x) are solutions to the homogeneous equation

y′′(x) + a(x)y′(x) + b(x)y(x) = 0

for which

W (x)
def
= y1(x)y

′
2(x)− y′1(x)y2(x) 6= 0,

then the general solution of the inhomogeneous equation

y′′(x) + a(x)y′(x) + b(x)y(x) = f(x)

is given by

y(x) = −y1(x)
∫
y2(ξ)f(ξ)

W (ξ)
dξ + y2(x)

∫
y1(ξ)f(ξ)

W (ξ)
dξ.

For more details you should take a more advanced course like Math 319 or 320.

39.1. Undetermined Coefficients. The easiest way to find a particular solution
yp to the inhomogeneous equation is the method of undetermined coefficients or “educated
guessing.” Unlike the method of “variation of constants” which was (hardly) explained in
the previous section, this method does not work for all equations. But it does give you
the answer for a few equations which show up often enough to make it worth knowing the
method.

The basis of the “method” is this: it turns out that many of the second order equations
with you run into have the form

y′′ + ay′ + by = f(t),

where a and b are constants, and where the righthand side f(t) comes from a fairly short
list of functions. For all f(t) in this list you memorize (yuck!) a particular solution yp.
With the particular solution in hand you can then find the general solution by adding it
to the general solution of the homogeneous equation.

Here is the list:

f(t) = polynomial in t: In this case you try yp(t) = some other polynomial in t
with the same degree as f(t).

Exceptions: if r = 0 is a root of the characteristic equation, then you must
try a polynomial yp(t) of degree one higher than f(t);

if r = 0 is a double root then the degree of yp(t) must be two more than
the degree of f(t).

f(t) = eat: try yp(t) = Aeat.
Exceptions: if r = a is a root of the characteristic equation, then you must

try yp(t) = Ateat;
if r = a is a double root then try yp(t) = At2eat.
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f(t) = sin bt or f(t) = cos bt: In both cases, try yp(t) = A cos bt+B sin bt.
Exceptions: if r = bi is a root of the characteristic equation, then you

should try yp(t) = t(A cos bt+B sin bt).
f(t) = eat sin bt or f(t) = eat cos bt: Try yp(t) = eat(A cos bt+B sin bt).

Exceptions: if r = a+ bi is a root of the characteristic equation, then you
should try yp(t) = teat(A cos bt+B sin bt).

39.2. Example. Find the general solution to the following equations

y′′ + xy′ − y = 2ex(41)

y′′ − 2y′ + y =
√

1 + x2(42)

The first equation does not have constant coefficients so the method doesn’t apply. Sorry,
but we can’t solve this equation in this course.7

The second equation does have constant coefficients, so we can solve the homogeneous
equation (y′′ − 2y′ + y = 0), but the righthand side does not appear in our list. Again,
the method doesn’t work.

39.3. A more upbeat example. To find a particular solution of

y′′ − y′ + y = 3t2

we note that (1) the equation is linear with constant coefficients, and (2) the right hand
side is a polynomial, so it’s in our list of “right hand sides for which we know what to
guess.” We try a polynomial of the same degree as the right hand side, namely 2. We
don’t know which polynomial, so we leave its coefficients undetermined (whence the name
of the method.) I.e. we try

yp(t) = A+Bt+Ct2.

To see if this is a solution, we compute

y′p(t) = B + 2Ct, y′′p (t) = 2C,

so that

y′′p − y′p + yp = (A−B + 2C) + (B − 2C)t+ Ct2.

Thus y′′p − y′p + yp = 3t2 if and only if

A−B + 2C = 0, B − 2C = 0, C = 3.

Solving these equations leads to C = 3, B = 2C = 6 and A = B − 2C = 0. We conclude
that

yp(t) = 6t+ 3t2

is a particular solution.

39.4. Another example, which is rather long, but that’s because it is meant
to cover several cases. Find the general solution to the equation

y′′ + 3y′ + 2y = t+ t3 − et + 2e−2t − e−t sin 2t.

Solution: First we find the characteristic equation,

r2 + 3r + 2 = (r + 2)(r + 1) = 0.

The characteristic roots are r1 = −1, and r2 = −2. The general solution to the homoge-
neous equation is

yh(t) = C1e
−t + C2e

−2t.

7Who says you can’t solve this equation? For equation (41) you can find a solution by
computing its Taylor series! For more details you should again take a more advanced course (like
Math 319), or, in this case, give it a try yourself.
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We now look for a particular solutions. Initially it doesn’t look very good as the righthand
side does not appear in our list. However, the righthand side is a sum of five terms, each
of which is in our list.

Abbreviate L[y] = y′′ +3y′ +2y. Then we will find functions y1, . . . , y4 for which one
has

L[y1] = t+ t3, L[y2] = −et, L[y3] = 2e−2t, L[y4] = −e−t sin 2t.
Then, by the Superposition Principle (Theorem 37.5) you get that yp

def
= y1 + y2 + y3 + y4

satisfies

L[yp] = L[y1] + L[y2] + L[y3] + L[y4] = t+ t3 − et + 2e−2t − e−t sin 2t.

So yp (once we find it) is a particular solution.

Now let’s find y1, . . . , y4.

y1(t): the righthand side t + t3 is a polynomial, and r = 0 is not a root of the
characteristic equation, so we try a polynomial of the same degree. Try

y1(t) = A+Bt+ Ct2 +Dt3.

Here A,B,C,D are the undetermined coefficients that give the method its name.
You compute

L[y1] = y′′1 + 3y′1 + 2y1

= (2C + 6Dt) + 3(B + 2Ct + 3Dt2) + 2(A+Bt+Ct2 +Dt3)

= (2C + 3B + 2A) + (2B + 6C + 6D)t + (2C + 9D)t2 + 2Dt3.

So to get L[y1] = t+ t3 we must impose the equations

2D = 1, 2C + 9D = 0, 2B + 6C + 6D = 1, 2C + 6B + 2A = 0.

You can solve these equations one-by-one, with result

D = 1
2
, C = − 9

4
, B = − 23

4
, A = 87

8
,

and thus

y1(t) =
87
8
− 23

4
t− 9

4
t2 + 1

2
t3.

y2(t): We want y2(t) to satisfy L[y2] = −et. Since et = eat with a = 1, and a = 1
is not a characteristic root, we simply try y2(t) = Aet. A quick calculation gives

L[y2] = Aet + 3Aet + 2Aet = 6Aet.

To achieve L[y2] = −et we therefore need 6A = −1, i.e. A = − 1
6
. Thus

y2(t) = − 1
6
et.

y3(t): We want y3(t) to satisfy L[y3] = −e−2t. Since e−2t = eat with a = −2, and
a = −2 is a characteristic root, we can’t simply try y3(t) = Ae−2t. Instead you
have to try y3(t) = Ate−2t. Another calculation gives

L[y3] = (4t− 4)Ae−2t + 3(−2t+ 2)Ae−2t + 2Ate−2t (factor out Ae−2t)

=
[
(4 + 3(−2) + 2)t + (−4 + 3)

]
Ae−2t

= −Ae−2t.

Note that all the terms with te−2t cancel: this is no accident, but a consequence
of the fact that a = −2 is a characteristic root.

To get L[y3] = 2e−2t we see we have to choose A = −2. We find

y3(t) = −2te−2t.
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y4(t): Finally, we need a function y4(t) for which one has L[y4] = −e−t sin 2t. The
list tells us to try

y4(t) = e−t
(
A cos 2t +B sin 2t

)
.

(Since −1 + 2i is not a root of the characteristic equation we are not in one of
the exceptional cases.)

Diligent computation yields

y4(t) = Ae−t cos 2t + Be−t sin 2t
y′4(t) = (−A+ 2B)e−t cos 2t + (−B − 2A)e−t sin 2t
y′′4 (t) = (−3A− 4B)e−t cos 2t + (−3B + 4A)e−t sin 2t

so that

L[y4] = (−4A+ 2B)e−t cos 2t+ (−2A− 4B)e−t sin 2t.

We want this to equal −e−t sin 2t, so we have to find A,B with

−4A+ 2B = 0, −2A− 4B = −1.

The first equation implies B = 2A, the second then gives −10A = −1, so A = 1
10

and B = 2
10
. We have found

y4(t) =
1
10
e−t cos 2t+ 2

10
e−t sin 2t.

After all these calculations we get the following impressive particular solution of our
differential equation,

yp(t) =
87
8
− 23

4
t− 9

4
t2 + 1

2
t3 − 1

6
et − 2te−2t + 1

10
e−t cos 2t+ 2

10
e−t sin 2t

and the even more impressive general solution to the equation,

y(t) = yh(y) + yp(t)

= C1e
−t +C2e

−2t

+ 87
8
− 23

4
t− 9

4
t2 + 1

2
t3

− 1
6
et − 2te−2t + 1

10
e−t cos 2t+ 2

10
e−t sin 2t.

You shouldn’t be put off by the fact that the result is a pretty long formula, and that the
computations took up two pages. The approach is to (i) break up the right hand side into
terms which are in the list at the beginning of this section, (ii) to compute the particular
solutions for each of those terms and (iii) to use the Superposition Principle (Theorem
37.5) to add the pieces together, resulting in a particular solution for the whole right hand
side you started with.

40. Applications of Second Order Linear Equations

40.1. Spring with a weight. In example 36.1 we showed that the height y(t) a
mass m suspended from a spring with constant k satisfies

(43) my′′(t) + ky(t) = mg, or y′′(t) +
k

m
y(t) = g.

This is a Linear Inhomogeneous Equation whose homogeneous equation, y′′+ k
m
y = 0 has

yh(t) = C1 cosωt+ C2 sinωt

as general solution, where ω =
√
k/m. The right hand side is a constant, which is a

polynomial of degree zero, so the method of “educated guessing” applies, and we can find
a particular solution by trying a constant yp = A as particular solution. You find that
y′′p +

k
m
yp = k

m
A, which will equal g if A = mg

k
. Hence the general solution to the “spring

with weight equation” is

y(t) =
mg

k
+ C1 cosωt+ C2 sinωt.
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To solve the initial value problem y(0) = y0 and y′(0) = v0 we solve for the constants C1

and C2 and get

y(t) =
mg

k
+
v0
ω

sin(ωt) +
(
y0 −

mg

k

)
cos(ωt).

which you could rewrite as

y(t) =
mg

k
+ Y cos(ωt− φ)

for certain numbers Y, φ.

The weight in this model just oscillates up and down forever: this motion is called
a simple harmonic oscillation, and the equation (43) is called the equation of the
Harmonic Oscillator.

40.2. The pendulum equation. In example 36.2 we saw that the angle θ(t) sub-
tended by a swinging pendulum satisfies the pendulum equation,

(38)
d2θ

dt2
+
g

L
sin θ(t) = 0.

This equation is not linear and cannot be solved by the methods you have learned in
this course. However, if the oscillations of the pendulum are small, i.e. if θ is small, then
we can approximate sin θ by θ. Remember that the error in this approximation is the
remainder term in the Taylor expansion of sin θ at θ = 0. According to Lagrange this is

sin θ = θ +R2(θ), R2(θ) = cos θ̃
θ3

3!
with |θ̃| ≤ θ.

When θ is small, e.g. if |θ| ≤ 10◦ ≈ 0.175 radians then compared to θ the error is at most
∣
∣
∣
∣

R3(θ)

θ

∣
∣
∣
∣
≤ (0.175)2

3!
≈ 0.005,

in other words, the error is no more than half a percent.

So for small angles we will assume that sin θ ≈ θ and hence θ(t) almost satisfies the
equation

(44)
d2θ

dt2
+
g

L
θ(t) = 0.

In contrast to the pendulum equation (38), this equation is linear, and we could solve it
right now.

The procedure of replacing inconvenient quantities like sin θ by more manageable
ones (like θ) in order to end up with linear equations is called linearization. Note that
the solutions to the linearized equation (44), which we will derive in a moment, are not
solutions of the Pendulum Equation (38). However, if the solutions we find have small
angles (have |θ| small), then the Pendulum Equation and its linearized form (44) are
almost the same, and “you would think that their solutions should also be almost the
same.” I put that in quotation marks, because (1) it’s not a very precise statement and
(2) if it were more precise, you would have to prove it, which is not easy, and not a topic
for this course (or even Math 319 – take Math 419 or 519 for more details.)

Let’s solve the linearized equation (44). Setting θ = ert you find the characteristic
equation

r2 +
g

L
= 0

which has two complex roots, r± = ±i
√

g
L
. Therefore, the general solution to (44) is

θ(t) = A cos
(
√
g

L
t
)
+B sin

(
√
g

L
t
)
,
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and you would expect the general solution of the Pendulum Equation (38) to be almost
the same. So you see that a pendulum will oscillate, and that the period of its oscillation
is given by

T = 2π

√
L

g
.

Once again: because we have used a linearization, you should expect this statement to be
valid only for small oscillations. When you study the Pendulum Equation instead of its
linearization (44), you discover that the period T of oscillation actually depends on the
amplitude of the oscillation: the bigger the swings, the longer they take.

40.3. The effect of friction. A real weight suspended from a real spring will of
course not oscillate forever. Various kinds of friction will slow it down and bring it to
a stop. As an example let’s assume that air drag is noticeable, so, as the weight moves
the surrounding air will exert a force on the weight (To make this more likely, assume the
weight is actually moving in some viscous liquid like salad oil.) This drag is stronger as the
weight moves faster. A simple model is to assume that the friction force is proportional
to the velocity of the weight,

Ffriction = −hy′(t).
This adds an extra term to the oscillator equation (43), and gives

my′′(t) = Fgrav + Ffriction = −ky(t) +mg − hy′(t)

i.e.

(45) my′′(t) + hy′(t) + ky(t) = mg.

This is a second order linear homogeneous differential equation with constant coefficients.
A particular solution is easy to find, yp = mg/k works again.

m

gravity

F
springdrag

F

y(t)

salad dressing

F

To solve the homogeneous equation you try y = ert, which leads to the characteristic
equation

mr2 + hr + k = 0,

whose roots are

r± =
−h±

√
h2 − 4mk

2m

If friction is large, i.e. if h >
√
4km, then the two roots r± are real, and all solutions are

of exponential type,

y(t) =
mg

k
+ C+e

r+t + C−e
r−t.

Both roots r± are negative, so all solutions satisfy

lim
t→∞

y(t) = 0.

If friction is weak, more precisely, if h <
√
4mk then the two roots r± are complex

numbers,

r± = − h

2m
± iω, with ω =

√
4km− h2

2m
.

The general solution in this case is

y(t) =
mg

k
+ e−

h

2m
t
(

A cosωt+B sinωt
)

.

These solutions also tend to zero as t→ ∞, but they oscillate infinitely often.
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40.4. Electric circuits. Many equations in physics and engineering have the form (45).
For example in the electric circuit in the diagram a time varying voltage Vin(t) is applied
to a resistor R, an inductance L and a capacitor C. This causes a current I(t) to flow
through the circuit. How much is this current, and how much is, say, the voltage across
the resistor?

V   =

V
L

C
V

R outR

C

L

V
in

V

Electrical engineers will tell you that the total voltage Vin(t) must equal the sum of the
voltages VR(t), VL(t) and VC(t) across the three components. These voltages are related
to the current I(t) which flows through the three components as follows:

VR(t) = RI(t)

dVC(t)

dt
=

1

C
I(t)

VL(t) = L
dI(t)

dt
.

Surprisingly, these little electrical components know calculus! (Here R, C and L are
constants depending on the particular components in the circuit. They are measured in
“Ohm,” “Farad,” and “Henry.”)

Starting from the equation

Vin(t) = VR(t) + VL(t) + VC(t)

you get

V ′
in(t) = V ′

R(t) + V ′
L(t) + V ′

C(t)

= RI ′(t) + LI ′′(t) +
1

C
I(t)

In other words, for a given input voltage the current I(t) satisfies a second order inhomo-
geneous linear differential equation

(46) L
d2I

dt2
+R

dI

dt
+

1

C
I = V ′

in(t).

Once you know the current I(t) you get the output voltage Vout(t) from

Vout(t) = RI(t).

In general you can write down a differential equation for any electrical circuit. As you
add more components the equation gets more complicated, but if you stick to resistors,
inductances and capacitors the equations will always be linear, albeit of very high order.
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41. PROBLEMS

GENERAL QUESTIONS

332. Classify each of the following as homogeneous linear, inhomogeneous linear, or nonlinear
and specify the order. For each linear equation say whether or not the coefficients are
constant.

(i) y′′ + y = 0 (ii) xy′′ + yy′ = 0

(iii) xy′′ − y′ = 0 (iv) xy′′ + yy′ = x

(v) xy′′ − y′ = x (vi) y′ + y = xex.

333. (i) Show that y = x2 + 5 is a solution of xy′′ − y′ = 0.

(ii) Show that y = C1x
2 + C2 is a solution of xy′′ − y′ = 0.

334. (i) Show that y = (tan(c1x+ c2))/c1 is a solution of yy′′ = 2(y′)2 − 2y′.

(ii) Show that y1 = tan(x) and y2 = 1 are solutions of this equation, but that y1 + y2 is
not.

(iii) Is the equation linear homogeneous?

SEPARATION OF VARIABLES

335. Consider the differential equation

dy

dt
=

4− y2

4
.

(a) Find the solutions y0, y1, y2, and
y3 which satisfy y0(0) = 0, y1(0) = 1,
y2(0) = 2 and y3(0) = 3.

(b) Find limt→∞ yk(t) for k =
1, 2, 3.

(c) Find limt→−∞ yk(t) for k =
1, 2, 3.

(d) Graph the four solutions y0, . . . ,
y3.

(e) Show that the quantity x =
(y + 2)/4 satisfies the so-called Logistic
Equation

dx

dt
= x(1− x).

(Hint: if x = (y+2)/4, then y = 4x− 2;
substitute this in both sides of the diffeq
for y).

∗ ∗ ∗
In each of the following problems you
should find the function y of x which sat-
isfies the conditions (A is an unspecified
constant: you should at least indicate for
which values of A your solution is valid.)

336.
dy

dx
+ x2y = 0, y(1) = 5.

337.
dy

dx
+ (1 + 3x2)y = 0, y(1) = 1.

338.
dy

dx
+ x cos2 y = 0, y(0) = π

3
.

339.
dy

dx
+

1 + x

1 + y
= 0, y(0) = A.

340.
dy

dx
+ 1− y2 = 0, y(0) = A.

341.
dy

dx
+ 1 + y2 = 0, y(0) = A.

342. Find the function y of x which satis-
fies the initial value problem:

dy

dx
+

x2 − 1

y
= 0 y(0) = 1

343. Find the general solution of

dy

dx
+ 2y + ex ≡ 0

344.
dy

dx
− (cosx)y = esinx, y(0) = A.

345. y2
dy

dx
+ x3 = 0, y(0) = A.

346. Group problem. Read Example
35.2 on “Leaky bucket dating” again. In
that example we assumed that a

A

√
K =

2.

(a) Solve diffeq for h(t) without as-

suming a
A

√
K = 2. Abbreviate C =

a
A

√
K.
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(b) If in an experiment one found
that the bucket empties in 20 seconds
after being filled to height 20 cm, then
how much is the constant C?

LINEAR HOMOGENEOUS

347. (a) Show that y = 4ex + 7e2x is a so-
lution of y′′ − 3y′ + 2y = 0.
(b) Show that y = C1e

x +C2e
2x is a so-

lution of y′′ − 3y′ + 2y = 0.
(c) Find a solution of y′′ − 3y′ + 2y = 0
such that y(0) = 7 and y′(0) = 9.

348. (a) Find all solutions of dy
dx

+ 2y = 0.

(b) Find all solutions of dy
dx

+ 2y = e−x.

(c) Find y if dy
dx

+ 2y = e−x and y = 7
when x = 0.

349. (a) Find all real solutions of

d2y

dt2
− 6

dy

dt
+ 10y = 0.

(b) Find y if

y′′ − 6y′ + 10y = 0,

and in addition y satisfies the initial con-
ditions y(0) = 7, and y′(0) = 11.

350. Solve the initial value problem:

y′′ − 5y′ + 4y ≡ 0

y(0) = 2

y′(0) = −1

351. For y as a function of x, find the gen-
eral solution of the equation:

y′′ − 2y′ + 10y ≡ 0

∗ ∗ ∗
Find the general solution y = y(x) of the
following differential equations

352.
d4y

dx4
= y

353.
d4y

dx4
+ y = 0

354.
d4y

dx4
− d2y

dx2
= 0

355.
d4y

dx4
+

d2y

dx2
= 0

356.
d3y

dx3
+ y = 0

357.
d3y

dx3
− y = 0

358. y(4)(t)− 2y′′(t)− 3y(t) = 0

359. y(4)(t) + 4y′′(t) + 3y(t) = 0.

360. y(4)(t) + 2y′′(t) + 2y(t) = 0.

361. y(4)(t) + y′′(t)− 6y(t) = 0.

362. y(4)(t)− 8y′′(t) + 15y(t) = 0.

363. f ′′′(x)− 125f(x) = 0.

364. u(5)(x)− 32u(x) = 0.

365. u(5)(x) + 32u(x) = 0.

366. y′′′(t)−5y′′(t)+6y′(t)−2y(t) = 0.

367. h(4)(t)− h(3)(t) + 4h′′(t)− 4h(t) = 0.

368. z′′′(x)− 5z′′(x) + 4z(x) = 0.

∗ ∗ ∗
Solve each of the following initial value
problems. Your final answer should not
use complex numbers, but you may use
complex numbers to find it.

369. y′′ + 9y = 0, y(0) = 0, y′(0) = −3.

370. y′′ + 9y = 0, y(0) = −3, y′(0) = 0.

371. y′′−5y′+6y = 0, y(0) = 0, y′(0) = 1.

372. y′′+5y′+6y = 0, y(0) = 1, y′(0) = 0.

373. y′′+5y′+6y = 0, y(0) = 0, y′(0) = 1.

374. y′′−6y′+5y = 0, y(0) = 1, y′(0) = 0.

375. y′′−6y′+5y = 0, y(0) = 0, y′(0) = 1.

376. y′′+6y′+5y = 0, y(0) = 1, y′(0) = 0.

377. y′′+6y′+5y = 0, y(0) = 0, y′(0) = 1.

378. y′′−4y′+5y = 0, y(0) = 1, y′(0) = 0.

379. y′′−4y′+5y = 0, y(0) = 0, y′(0) = 1.

380. y′′+4y′+5y = 0, y(0) = 1, y′(0) = 0.

381. y′′+4y′+5y = 0, y(0) = 0, y′(0) = 1.

382. y′′−5y′+6y = 0, y(0) = 1, y′(0) = 0.
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383. f ′′′(t) + f ′′(t) − f ′(t) + 15f(t) = 0,
with initial conditions f(0) = 0, f ′(0) =
1, f ′′(0) = 0.

LINEAR INHOMOGENEOUS

384. Find particular solutions of

y′′ − 3y′ + 2y = e3x

y′′ − 3y′ + 2y = ex

y′′ − 3y′ + 2y = 4e3x + 5ex

∗ ∗ ∗

385. Find a particular solution of the
equation:

y′′ + y′ + 2y = ex + x+ 1

Find the general solution y(t) of the
following differential equations

386.
d2y

dt2
− y = 2

387.
d2y

dt2
− y = 2et

388.
d2y

dt2
+ 9y = cos 3t

389.
d2y

dt2
+ 9y = cos t

390.
d2y

dt2
+ y = cos t

391.
d2y

dt2
+ y = cos 3t.

392. Find y if

(a)
d2y

dx2
+ 2

dy

dx
+ y = 0 y(0) = 2, y′(0) = 3

(b)
d2y

dx2
+ 2

dy

dx
+ y = e−x y(0) = 0, y′(0) = 0

(c)
d2y

dx2
+ 2

dy

dx
+ y = xe−x y(0) = 0, y′(0) = 0

(d)
d2y

dx2
+ 2

dy

dx
+ y = e−x + xe−x y(0) = 2, y′(0) = 3.

Hint: Use the Superposition Principle to save work.

393. Group problem. (i) Find the general solution of

z′′ + 4z′ + 5z = eit

using complex exponentials.

(ii) Solve

z′′ + 4z′ + 5z = sin t

using your solution to question (i).

(iii) Find a solution for the equation

z′′ + 2z′ + 2z = 2e−(1−i)t

in the form z(t) = u(t)e−(1−i)t.

(iv) Find a solution for the equation

x′′ + 2x′ + 2x = 2e−t cos t.

Hint: Take the real part of the previous answer.

(v) Find a solution for the equation

y′′ + 2y′ + 2y = 2e−t sin t.
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APPLICATIONS

394. A population of bacteria grows at a rate proportional to its size. Write and solve a
differential equation which expresses this. If there are 1000 bacteria after one hour and
2000 bacteria after two hours, how many bacteria are there after three hours?

395. Rabbits in Madison have a birth rate of 5% per year and a death rate (from old age)
of 2% per year. Each year 1000 rabbits get run over and 700 rabbits move in from Sun
Prairie. (i) Write a differential equation which describes Madison’s rabbit population
at time t.

(ii) If there were 12,000 rabbits in Madison in 1991, how many are there in 1994?

396. Group problem. According to Newton’s law of cooling the rate dT/dt at which
an object cools is proportional to the difference T −A between its temperature T and the
ambient temperature A. The differential equation which expresses this is

dT

dt
= k(T − A)

where k < 0 and A are constants.

(i) Solve this equation and show that every solution satisfies

lim
t→∞

T = A.

(ii) A cup of coffee at a temperature of 180oF sits in a room whose temperature is 750F. In
five minutes its temperature has dropped to 150◦F. When will its temperature be 90◦F?
What is the limit of the temperature as t→ ∞?

397. Retaw is a mysterious living liquid; it grows at a rate of 5% of its volume per hour. A
scientist has a tank initially holding y0 gallons of retaw and removes retaw from the tank
continuously at the rate of 3 gallons per hour.

(i) Find a differential equation for the number y(t) of gallons of retaw in the tank at time
t.

(ii) Solve this equation for y as a function of t. (The initial volume y0 will appear in your
answer.)

(iii) What is limt→∞ y(t) if y0 = 100?

(iv) What should the value of y0 be so that y(t) remains constant?

398. A 1000 gallon vat is full of 25% solution of acid. Starting at time t = 0 a 40% solution
of acid is pumped into the vat at 20 gallons per minute. The solution is kept well mixed
and drawn off at 20 gallons per minute so as to maintain the total value of 1000 gallons.
Derive an expression for the acid concentration at times t > 0. As t→ ∞ what percentage
solution is approached?

399. The volume of a lake is V = 109 cubic feet. Pollution P runs into the lake at 3 cubic
feet per minute, and clean water runs in at 21 cubic feet per minute. The lake drains at
a rate of 24 cubic feet per minute so its volume is constant. Let C be the concentration
of pollution in the lake; i.e. C = P/V .

(i) Give a differential equation for C.

(ii) Solve the differential equation. Use the initial condition C = C0 when t = 0 to
evaluate the constant of integration.

(iii) There is a critical value C∗ with the property that for any solution C = C(t) we have

lim
t→∞

C = C∗.

Find C∗. If C0 = C∗, what is C(t)?
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400. Group problem. A philanthropist endows a chair. This means that she donates an
amount of money B0 to the university. The university invests the money (it earns interest)
and pays the salary of a professor. Denote the interest rate on the investment by r (e.g.
if r = .06, then the investment earns interest at a rate of 6% per year) the salary of the
professor by a (e.g. a = $50, 000 per year), and the balance in the investment account at
time t by B.

(i) Give a differential equation for B.

(ii) Solve the differential equation. Use the initial condition B = B0 when t = 0 to
evaluate the constant of integration.

(iii) There is a critical value B∗ with the property that (1) if B0 < B∗, then there is a
t > 0 with B(t) = 0 (i.e. the account runs out of money) while (2) if B0 > B∗, then
limt→∞B = ∞. Find B∗.

(iv) This problem is like the pollution problem except for the signs of r and a. Explain.

401. Group problem. A citizen pays social security taxes of a dollars per year for T1

years, then retires, then receives payments of b dollars per year for T2 years, then dies.
The account which receives and dispenses the money earns interest at a rate of r% per
year and has no money at time t = 0 and no money at the time t = T1+T2 of death. Find
two differential equations for the balance B(t) at time t; one valid for 0 ≤ t ≤ T1, the other
valid for T1 ≤ t ≤ T1 + T2. Express the ratio b/a in terms of T1, T2, and r. Reasonable
values for T1, T2, and r are T1 = 40, T2 = 20, and r = 5% = .05. This model ignores
inflation. Notice that 0 < dB/dt for 0 < t < T1, that dB/dt < 0 for T1 < t < T1 + T2,
and that the account earns interest even for T1 < t < T1 + T2.

402. A 300 gallon tank is full of milk containing 2% butterfat. Milk containing 1% butterfat
is pumped in a 10 gallons per minute starting at 10:00 AM and the well mixed milk is
drained off at 15 gallons per minute. What is the percent butterfat in the milk in the tank
5 minutes later at 10:05 AM? Hint: How much milk is in the tank at time t? How much
butterfat is in the milk at time t = 0?

403. A sixteen pound weight is suspended from the lower end of a spring whose upper end
is attached to a rigid support. The weight extends the spring by half a foot. It is struck
by a sharp blow which gives it an initial downward velocity of eight feet per second. Find
its position as a function of time.

404. A sixteen pound weight is suspended from the lower end of a spring whose upper end
is attached to a rigid support. The weight extends the spring by half a foot. The weight
is pulled down one feet and released. Find its position as a function of time.

405. The equation for the displacement y(t) from equilibrium of a spring subject to a forced
vibration of frequency ω is

(47)
d2y

dt2
+ 4y = sin(ωt).

(i) Find the solution y = y(ω, t) of (47) for ω 6= 2 if y(0) = 0 and y′(0) = 0.

(ii) What is limω→2 y(ω, t)?

(iii) Find the solution y(t) of

(48)
d2y

dt2
+ 4y = sin(2t)

if y(0) = 0 and y′(0) = 0. (Hint: Compare with (47).)
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406. Group problem. Suppose that an undamped spring is subjected to an external
periodic force so that its position y at time t satisfies the differential equation

d2y

dt2
+ ω2

0y = c sin(ωt).

(i) Show that the general solution is

y = C1 cosω0t+ C2 sinω0t+
c

ω2
0 − ω2

sinωt.

when ω0 6= ω.

(ii) Solve the equation when ω = ω0.

(iii) Show that in part (i) the solution remains bounded as t → ∞ but in part (ii) this
is not so. (This phenomenon is called resonance. To see an example of resonance try
Googling “Tacoma Bridge Disaster.”)

407. Group problem. Have look at the electrical circuit equation (46) from §40.4.
(i) Find the general solution of (46), assuming that Vin(t) does not depend on time t.
What is limt→∞ I(t)?

(ii) Assume for simplicity that L = C = 1, and that the resistor has been short circuited,
i.e. that R = 0. If the input voltage is a sinusoidal wave,

Vin(t) = A sinωt, (ω 6= 1)

then find a particular solution, and then the general solution.

(iii) Repeat problem (ii) with ω = 1.

(iv) Suppose again that L = C = 1, but now assume that R > 0. Find the general
solution when Vin(t) is constant.

(v) Still assuming L = C = 1, R > 0 find a particular solution of the equation when the
input voltage is a sinusoidal wave

Vin(t) = A sinωt.

408. You are watching a buoy bobbing up and down in the water. Assume that the buoy
height with respect to the surface level of the water satisfies the damped oscillator equation:
z′′ + bz′ + kz ≡ 0 where b and k are positive constants.

Something has initially disturbed the buoy causing it to go up and down, but friction
will gradually cause its motion to die out.

You make the following observations: At time zero the center of the buoy is at z(0) = 0
, i.e., the position it would be in if it were at rest. It then rises up to a peak and falls
down so that at time t = 2 it again at zero, z(2) = 0 descends downward and then comes
back to 0 at time 4, i.e, z(4) = 0. Suppose z(1) = 25 and z(3) = −16.

(a) How high will z be at time t = 5?

(b) What are b and k?

Hint: Use that z = Aeαt sin(ωt+B).

409. Contrary to what one may think the buoy does not reach its peak at time t = 1 which is
midway between its first two zeros, at t = 0 and t = 2. For example, suppose z = e−t sin t.
Then z is zero at both t = 0 and t = π. Does z have a local maximum at t = π

2
?

410. In the buoy problem 408 suppose you make the following observations:

It rises up to its first peak at t = 1 where z(1) = 25 and then descends downward to
a local minimum at at t = 3 where z(3) = −16.

(a) When will the buoy reach its second peak and how high will that be?

(b) What are b and k?
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Note: It will not be the case that z(0) = 0.

Linear operators

Given a polynomial p = p(x) = a0+a1x+a2x
2+ . . .+anx

n and z = z(t) an infinitely
differentiable function of t define

Lp(z) = a0z + a1z
(1) + a2z

(2) + . . .+ anz
(n)

where z(k) = dkz
dtk

is the kth derivative of z with respect to t.

411. Show for L = Lp that

(a) L(z1 + z2) = L(z1) + L(z2)

(b) L(Cz) = CL(z) where C is any constant

Such an L is called a linear operator. Operator because it takes as input a function and
then ouputs another function. Linear refers to properties (a) and (b).

412. Let r be any constant and p any polynomial. Show that Lp(e
rt) = p(r)ert.

413. For p and q polynomials show that

Lp+q(z) = Lp(z) + Lq(z)

414. For p and q polynomials show that

Lp·q(z) = Lp(Lq(z))

Here p · q refers to the ordinary product of the two polynomials.

415. Let α be a constant. For any u an infinitely differentiable function of t show that

(a) Lx−α(u · eαt) = u(1)eαt

(b) L(x−α)n(u · eαt) = u(n)eαt

416. Let α be any constant, p a polynomial, and suppose that (x−α)n divides p. Show that
for any k < n

Lp(t
keαt) ≡ 0

417. Suppose that p(x) = (x − α1)
n1 · · · (x − αm)nm where the αi are distinct constants.

Suppose that

z = C1
1e
α1t+C2

1 te
α1t+ · · ·Cn1

1 tn1−1eα1t+ · · ·+C1
me

αmt+C2
mte

αmt + · · ·Cnm

m tnm−1eαmt

Show that Lp(z) ≡ 0.

In a more advanced course in the theory of differential equations it would be proved
that every solution of Lp(z) ≡ 0 has this form, i.e., z satisfies the above formula for some
choice of the constants Cij .

418. Suppose L is a linear operator and b = b(t) is a fixed function of t. Suppose that zP is
one particular solution of L(z) = b, i.e., L(zP ) = b. Suppose that z is any other solution of
L(z) = b. Show that L(z − zP ) ≡ 0. Show that for any solution of the equation L(z) = b
there is a solution zH of the associated homogenous equation such that z = zP + zH .

Variations of Parameters
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419. Given the equation
L(z) = z′′ + a0z

′ + a1z ≡ b

where a0, a1, b are given functions of t. Then

L(fz1 + gz2) = b

where
zh = C1z1 + C2z2

is the general solution of the associated homogenous equation L(z) ≡ 0 and the derivatives
of f and g satisfy:

f ′ =

det

(
0 z2
b z′2

)

det

(
z1 z2
z′1 z′2

) g′ =

det

(
z1 0
z′1 b

)

det

(
z1 z2
z′1 z′2

)

Use these formulas to find the general solution of

z′′ + z ≡ (cos t)2

420. Use these formulas to find the general solution of

z′′ + z ≡ 1

sin t

421. Solve the initial value problem:

z′′ + z ≡ (tan t)2

z(0) = 1

z′(0) = −1

422. Find the general solution of

z′′ − z ≡ 1

et + e−t

423.

Given a system of linear equations

a x + b y = r

c x + d y = s

show that the solution is given by:

x =

det

(
r b
s d

)

det

(
a b
c d

) y =

det

(
a r
c s

)

det

(
a b
c d

)

You may assume the determinant:

det

(
a b
c d

)

= ad− bc

is not zero.

424. Given the linear operator L(z) = z′′ +a0z
′ +a1z suppose L(z1) ≡ 0 and L(z2) ≡ 0 and

that f and g are functions of t which satisfy f ′z1 + g′z2 ≡ 0. Show that

L(fz1 + gz2) = f ′z′1 + g′z′2

425. Prove that the formulas given problem 419 work.
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Chapter 5: Vectors

42. Introduction to vectors

42.1. Definition. A vector is a column of two, three, or more numbers, written as

~a =

(
a1
a2

)

or ~a =





a1
a2
a3



 or ~a =






a1
...
an






in general.

The length of a vector ~a =
( a1
a2
a3

)

is defined by

‖~a‖ =

∥
∥
∥
∥
∥
∥





a1
a2
a3





∥
∥
∥
∥
∥
∥

=
√

a21 + a22 + a23.

We will always deal with either the two or three dimensional cases, in other words, the
cases n = 2 or n = 3, respectively. For these cases there is a geometric description of
vectors which is very useful. In fact, the two and three dimensional theories have their
origins in mechanics and geometry. In higher dimensions the geometric description fails,
simply because we cannot visualize a four dimensional space, let alone a higher dimensional
space. Instead of a geometric description of vectors there is an abstract theory called
Linear Algebra which deals with “vector spaces” of any dimension (even infinite!). This
theory of vectors in higher dimensional spaces is very useful in science, engineering and
economics. You can learn about it in courses like math 320 or 340/341.

42.2. Basic arithmetic of vectors. You can add and subtract vectors, and you
can multiply them with arbitrary real numbers. this section tells you how.

The sum of two vectors is defined by

(49)

(
a1
a2

)

+

(
b1
b2

)

=

(
a1 + b1
a2 + b2

)

,

and




a1
a2
a3



+





b1
b2
b3



 =





a1 + b1
a2 + b2
a3 + b3



 .

The zero vector is defined by

~0 =

(
0
0

)

or ~0 =





0
0
0



 .

It has the property that

~a+ ~0 = ~0+ ~a = ~a

no matter what the vector ~a is.
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You can multiply a vector ~a =





a1
a2
a3



 with a real number t according to the rule

t~a =





ta1
ta2
ta3



 .

In particular, “minus a vector” is defined by

−~a = (−1)~a =





−a1
−a2
−a3



 .

The difference of two vectors is defined by

~a− ~b = ~a+ (−~b).

So, to subtract two vectors you subtract their components,

~a− ~b =





a1
a2
a3



−





b1
b2
b3



 =





a1 − b1
a2 − b2
a3 − b3





42.3. Some GOOD examples.
(
2
3

)

+

(
−3
π

)

=

(
−1

3 + π

)

2

(
1
0

)

+ 3

(
0
1

)

=

(
2
3

)

(
1
0
3

)

−
(−1

12√
2

)

=

(
2

−12

3−
√

2

)

a
(

1
0
0

)

+ b
(

0
1
0

)

+ c
(

0
0
1

)

=
(
a
b
c

)

0 ·
(

12
√
39

π2 − ln 3

)

=

(
0
0

)

= ~0

(
t+ t2

1− t2

)

= (1 + t)

(
t

1− t

)

42.4. Two very, very BAD examples. Vectors must have the same size to be
added, therefore

(
2
3

)

+





1
3
2



 = undefined!!!

Vectors and numbers are different things, so an equation like

~a = 3 is nonsense!

This equation says that some vector (~a) is equal to some number (in this case: 3). Vectors
and numbers are never equal!

42.5. Algebraic properties of vector addition and multiplication. Addition
of vectors and multiplication of numbers and vectors were defined in such a way that the

following always hold for any vectors ~a, ~b, ~c (of the same size) and any real numbers s, t

~a+ ~b = ~b+ ~a [vector addition is commutative](50)

~a+ (~b+ ~c) = (~a+ ~b) + ~c [vector addition is associative](51)

t(~a+ ~b) = t~a+ t~b [first distributive property](52)

(s+ t)~a = s~a+ t~a [second distributive property](53)
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42.6. Prove (50). Let ~a =
( a1
a2
a3

)

and ~b =

(
b1
b2
b3

)

be two vectors, and consider both

possible ways of adding them:





a1
a2
a3



+





b1
b2
b3



 =





a1 + b1
a2 + b2
a3 + b3



 and





b1
b2
b3



+





a1
a2
a3



 =





b1 + a1
b2 + a2
b3 + a3





We know (or we have assumed long ago) that addition of real numbers is commutative,
so that a1 + b1 = b1 + a1, etc. Therefore

~a+ ~b =

(
a1+b1
a2+b2
a3+b3

)

=

(
b1+a1
b2+a2
b3+a3

)

= ~b+ ~a.

This proves (50).

42.7. Example. If ~v and ~w are two vectors, we define

~a = 2~v + 3~w, ~b = −~v + ~w.

Problem: Compute ~a+ ~b and 2~a− 3~b in terms of ~v and ~w.

Solution:

~a+ ~b = (2~v + 3~w) + (−~v + ~w) = (2− 1)~v + (3 + 1)~w = ~v + 4~w

2~a− 3~b = 2(2~v + 3~w)− 3(−~v + ~w) = 4~w + 6~w + 3~v − 3~w = 7~v + 3~w.

Problem: Find s, t so that s~a+ t~b = ~v.

Solution: Simplifying s~a+ t~b you find

s~a+ t~b = s(2~v + 3~w) + t(−~v + ~w) = (2s− t)~v + (3s+ t)~w.

One way to ensure that s~a+ t~b = ~v holds is therefore to choose s and t to be the solutions
of

2s− t = 1

3s+ t = 0

The second equation says t = −3s. The first equation then leads to 2s+3s = 1, i.e. s = 1
5
.

Since t = −3s we get t = − 3
5
. The solution we have found is therefore

1
5
~a− 3

5
~b = ~v.

42.8. Geometric description of vectors. Vectors originally appeared in mechan-
ics, where they represented forces: a force acting on some object has a magnitude and
a direction. Thus a force can be thought of as an arrow, where the length of the arrow
indicates how strong the force is (how hard it pushes or pulls).

So we will think of vectors as arrows: if you specify two points P and Q, then the

arrow pointing from P to Q is a vector and we denote this vector by
−−→
PQ.

The precise mathematical definition is as follows:
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42.9. Definition. For any pair of points P and Q whose coordinates are (p1, p2, p3)

and (q1, q2, q3) one defines a vector
−−→
PQ by

−−→
PQ =





q1 − p1
q2 − p2
q3 − p3



 .

If the initial point of an arrow is the origin O, and the final point is any point Q, then the

vector
−−→
OQ is called the position vector of the point Q.

P

P

Q

Q

~p ~q

−−→
PQ

−−→
PQ

q1 − p1

q 2
−
p
2

two pictures of

the vector
−−→
PQ = ~q − ~pIf ~p and ~q are the position vectors of P and Q, then one can write

−−→
PQ as

−−→
PQ =





q1
q2
q3



−





p1
p2
p3



 = ~q − ~p.

For plane vectors we define
−−→
PQ similarly, namely,

−−→
PQ =

(
q1−p1
q2−p2

)
. The old formula for

the distance between two points P and Q in the plane

distance from P to Q =
√

(q1 − p1)2 + (q2 − p2)2

says that the length of the vector
−−→
PQ is just the distance between the points P and Q,

i.e.

distance from P to Q =
∥
∥
∥
−−→
PQ
∥
∥
∥ .

This formula is also valid if P and Q are points in space.
a1

a1

a2

a2

a3

~a

~a

A

A

O

O

position vectors in the

plane and in space
42.10. Example. The point P has coordinates (2, 3); the point Q has coordinates

(8, 6). The vector
−−→
PQ is therefore

−−→
PQ =

(
8− 2
6− 3

)

=

(
6
3

)

.

This vector is the position vector of the point R whose coordinates are (6, 3). Thus

−−→
PQ =

−→
OR =

(
6
3

)

.

The distance from P to Q is the length of the vector−−→
PQ, i.e.

distance P to Q =

∥
∥
∥
∥

(
6
3

)∥
∥
∥
∥
=
√

62 + 32 = 3
√
5.

2

3

4

5

6

2 3 4 5 6 7 81

1

P

Q

R

O

−−→
PQ

−→
OR

42.11. Example. Find the distance between the points A and B whose position

vectors are ~a =
(

1
1
0

)

and ~b =
(

0
1
1

)

respectively.

Solution: One has

distance A to B = ‖−→AB‖ = ‖~b− ~a‖ =

∥
∥
∥
∥
∥
∥





−1
0
1





∥
∥
∥
∥
∥
∥

=
√

(−1)2 + 02 + 12 =
√
2
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42.12. Geometric interpretation of vector addition and multiplication. Sup-

pose you have two vectors ~a and ~b. Consider them as position vectors, i.e. represent them
by vectors that have the origin as initial point:

~a =
−→
OA, ~b =

−−→
OB.

Then the origin and the three endpoints of the vectors ~a, ~b and ~a+~b form a parallelogram.
See figure 15.

To multiply a vector ~a with a real number t you multiply its length with |t|; if t < 0
you reverse the direction of ~a.

~a ~a~b

~b

~a+ ~b

~a+ ~b

~a

~b

~a+ ~b

x

y

z

Figure 15. Two ways of adding plane vectors, and an addition of space vectors

~a

2~a

−~a

~a

~b

~a− ~b

~b− ~a−~a

−~b

Figure 16. Multiples of a vector, and the difference of two vectors.

~a
~a ~a

~b
~b

~v ~v

~w

~w

~w

−~v

3
~w

3
~w

2~v

2~v ~a+ ~b = ~v + 4~w

Figure 17. Picture proof that ~a+ ~b = ~v + 4~w in example 42.13.
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42.13. Example. In example 42.7 we assumed two vectors ~v and ~w were given,

and then defined ~a = 2~v + 3~w and ~b = −~v + ~w. In figure 17 the vectors ~a and ~b
are constructed geometrically from some arbitrarily chosen ~v and ~w. We also found

algebraically in example 42.7 that ~a + ~b = ~v + 4~w. The third drawing in figure 17
illustrates this.

43. Parametric equations for lines and planes
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A

B

X

−−→
AX

−→
AB

Given two distinct points A andB we consider the line segment
AB. If X is any given point on AB then we will now find a formula
for the position vector of X.

Define t to be the ratio between the lengths of the line segments
AX and AB,

t =
length AX

length AB
.

Then the vectors
−−→
AX and

−→
AB are related by

−−→
AX = t

−→
AB. Since AX is shorter than AB

we have 0 < t < 1.

The position vector of the point X on the line segment AB is

−−→
OX =

−→
OA+

−−→
AX =

−→
OA+ t

−→
AB.

If we write ~a,~b, ~x for the position vectors of A,B,X, then we get

(54) ~x = (1− t)~a+ t~b = ~a+ t(~b− ~a).

This equation is called the parametric equation for the line through A and B. In
our derivation the parameter t satisfied 0 ≤ t ≤ 1, but there is nothing that keeps us from
substituting negative values of t, or numbers t > 1 in (54). The resulting vectors ~x are
position vectors of points X which lie on the line ℓ through A and B.

O O

A A

BB X

~x

ℓℓ

~a~a

~b~b

−→
AB

=
~b−

~a

t(
~b −

~a)

Figure 18. Constructing points on the line through A and B

43.1. Example. [Find the parametric equation for the line ℓ through the points
A(1, 2) and B(3,−1), and determine where ℓ intersects the x1 axis. ]



105

2

1

3

3

1 2 x1

x2

A

B

Solution: The position vectors of A,B are ~a = ( 1
2 ) and

~b =
(

3
−1

)
, so the position vector of an arbitrary point on ℓ is

given by

~x = ~a+ t(~b− ~a) =

(
1
2

)

+ t

(
3− 1
−1− 2

)

=

(
1
2

)

+ t

(
2
−3

)

=

(
1 + 2t
2− 3t

)

where t is an arbitrary real number.

This vector points to the point X = (1 + 2t, 2 − 3t). By
definition, a point lies on the x1-axis if its x2 component vanishes.
Thus if the point

X = (1 + 2t, 2− 3t)

lies on the x1-axis, then 2 − 3t = 0, i.e. t = 2
3
. The intersection point X of ℓ and the

x1-axis is therefore X|t=2/3 = (1 + 2 · 2
3
, 0) = ( 5

3
, 0).

43.2. Midpoint of a line segment. If M is the midpoint of the line segment AB,

then the vectors
−−→
AM and

−−→
MB are both parallel and have the same direction and length

(namely, half the length of the line segment AB). Hence they are equal:
−−→
AM =

−−→
MB. If

~a, ~m, and ~b are the position vectors of A , M and B, then this means

~m− ~a =
−−→
AM =

−−→
MB = ~b− ~m.

Add ~m and ~a to both sides, and divide by 2 to get

~m = 1
2
~a+ 1

2
~b =

~a+ ~b

2
.

43.3. Parametric equations for planes in space*. You can specify a plane in
three dimensional space by naming a point A on the plane P, and two vectors ~v and ~w
parallel to the plane P, but not parallel to each other. Then any point on the plane P has
position vector ~x given by

(55) ~x = ~a+ s~v + t~w.

~v

~w

s~v

t~w
P

~a

~x
=
~a
+
s~v

+
t~w

O

A

X

Figure 19. Generating points on a plane P

The following construction explains why (55) will give you any point on the plane
through A, parallel to ~v, ~w.

Let A, ~v, ~w be given, and suppose we want to express the position vector of some

other point X on the plane P in terms of ~a =
−→
OA, ~v, and ~w.
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First we note that −−→
OX =

−→
OA+

−−→
AX.

Next, you draw a parallelogram in the plane P whose sides are parallel to the vectors ~v and
~w, and whose diagonal is the line segment AX. The sides of this parallelogram represent

vectors which are multiples of ~v and ~w and which add up to
−−→
AX. So, if one side of the

parallelogram is s~v and the other t~w then we have
−−→
AX = s~v+ t~w. With

−−→
OX =

−→
OA+

−−→
AX

this implies (55).

44. Vector Bases

44.1. The Standard Basis Vectors. The notation for vectors which we have been
using so far is not the most traditional. In the late 19th century Gibbs and Heavyside

adapted Hamilton’s theory of Quaternions to deal with vectors. Their notation is still
popular in texts on electromagnetism and fluid mechanics.

Define the following three vectors:

~i =





1
0
0



 , ~j =





0
1
0



 , ~k =





0
0
1



 .

Then every vector can be written as a linear combination of ~i, ~j and ~k, namely as follows:




a1
a2
a3



 = a1~i+ a2~j + a3~k.

Moreover, there is only one way to write a given vector as a linear combination of {~i,~j, ~k}.
This means that

a1~i+ a2~j + a3~k = b1~i+ b2~j + b3~k ⇐⇒







a1 = b1

a2 = b2

a3 = b3

For plane vectors one defines

~i =

(
1
0

)

, ~j =

(
0
1

)

and just as for three dimensional vectors one can write every (plane) vector ~a as a linear

combination of ~i and ~j,
(
a1
a2

)

= a1~i+ a2~j.

Just as for space vectors, there is only one way to write a given vector as a linear combi-

nation of ~i and ~j.

44.2. A Basis of Vectors (in general)*. The vectors ~i,~j, ~k are called the stan-
dard basis vectors. They are an example of what is called a “basis”. Here is the definition
in the case of space vectors:

44.3. Definition. A triple of space vectors {~u, ~v, ~w} is a basis if every space vector
~a can be written as a linear combination of {~u, ~v, ~w}, i.e.

~a = au~u+ av~v + aw ~w,

and if there is only one way to do so for any given vector ~a (i.e. the vector ~a determines
the coefficients au, av, aw). For plane vectors the definition of a basis is almost the same,
except that a basis consists of two vectors rather than three:
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44.4. Definition. A pair of plane vectors {~u, ~v} is a basis if every plane vector ~a
can be written as a linear combination of {~u, ~v}, i.e. ~a = au~u + av~v, and if there is
only one way to do so for any given vector ~a (i.e. the vector ~a determines the coefficients
au, av).

45. Dot Product

45.1. Definition. The “inner product” or “dot product” of two vectors is given by




a1
a2
a3



 ···





b1
b2
b3



 = a1b1 + a2b2 + a3b3.

Note that the dot-product of two vectors is a number!

The dot product of two plane vectors is (predictably) defined by
(
a1
a2

)

···
(
b1
b2

)

= a1b1 + a2b2.

An important property of the dot product is its relation with the length of a vector:

(56) ‖~a‖2 = ~a···~a.

45.2. Algebraic properties of the dot product. The dot product satisfies the
following rules,

~a···~b = ~b···~a(57)

~a···(~b+ ~c) = ~a···~b+ ~a···~c(58)

(~b+ ~c)···~a = ~b···~a+ ~c···~a(59)

t(~a···~b) = (t~a)···~b(60)

which hold for all vectors ~a,~b,~c and any real number t.

45.3. Example. Simplify ‖~a + ~b‖2.
One has

‖~a+ ~b‖2 = (~a+ ~b)···(~a+ ~b)

= ~a···(~a+ ~b) + ~b···(~a+ ~b)

= ~a···~a+ ~a···~b+ ~b···~a
︸ ︷︷ ︸

=2~a···~b by (57)

+~b···~b

= ‖~a‖2 + 2~a···~b+ ‖~b‖2

45.4. The diagonals of a parallelogram. Here is an example of how you can use
the algebra of the dot product to prove something in geometry.

Suppose you have a parallelogram one of whose vertices is the origin. Label the
vertices, starting at the origin and going around counterclockwise, O, A, C and B. Let

~a =
−→
OA, ~b =

−−→
OB, ~c =

−−→
OC. One has

−−→
OC = ~c = ~a+ ~b, and

−→
AB = ~b− ~a.

These vectors correspond to the diagonals OC and AB
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45.5. Theorem. In a parallelogram OACB the sum of the squares of the lengths of
the two diagonals equals the sum of the squares of the lengths of all four sides.

Proof. The squared lengths of the diagonals are

‖−−→OC‖2 = ‖~a+ ~b‖2 = ‖~a‖2 + 2~a···~b+ ‖~b‖2

‖−→AB‖2 = ‖~a− ~b‖2 = ‖~a‖2 − 2~a···~b+ ‖~b‖2

Adding both these equations you get

‖−−→OC‖2 + ‖−→AB‖2 = 2
(

‖~a‖2 + ‖~b‖2
)

.

The squared lengths of the sides are

‖−→OA‖2 = ‖~a‖2, ‖−→AB‖2 = ‖~b‖2, ‖−−→BC‖2 = ‖~a‖2, ‖−−→OC‖2 = ‖~b‖2.

Together these also add up to 2
(

‖~a‖2 + ‖~b‖2
)

. �

Figure 20. Proof of the law of cosines

45.6. The dot product and the angle between two vectors. Here is the most
important interpretation of the dot product:

45.7. Theorem. If the angle between two vectors ~a and ~b is θ, then one has

~a···~b = ‖~a‖ · ‖~b‖ cos θ.

Proof. We need the law of cosines from high-school trigonometry. Recall that for a
triangle OAB with angle θ at the point O, and with sides OA and OB of lengths a and
b, the length c of the opposing side AB is given by

(61) c2 = a2 + b2 − 2ab cos θ.

In trigonometry this is proved by dropping a perpendicular line from B onto the side
OA. The triangle OAB gets divided into two right triangles, one of which has AB as
hypotenuse. Pythagoras then implies

c2 = (b sin θ)2 + (a− b cos θ)2 .

After simplification you get (61).

To prove the theorem you let O be the origin, and then observe that the length of

the side AB is the length of the vector
−→
AB = ~b− ~a. Here ~a =

−→
OA, ~b =

−−→
OB, and hence

c2 = ‖~b − ~a‖2 = (~b− ~a)···(~b− ~a) = ‖~b‖2 + ‖~a‖2 − 2~a···~b.
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Compare this with (61), keeping in mind that a = ‖~a‖ and b = ‖~b‖: you are led to

conclude that −2~a···~b = −2ab cos θ, and thus ~a···~b = ‖~a‖ · ‖~b‖ cos θ. �

~a

~x//
= λ~a

~x
~x
⊥

Given ~x and ~a, find ~x⊥
and ~x//.

45.8. Orthogonal projection of one vector onto an-
other. The following construction comes up very often. Let
~a 6= ~0 be a given vector. Then for any other vector ~x there is
a number λ such that

~x = λ~a+ ~y

where ~y ⊥ ~a. In other words, you can write any vector ~x as the
sum of one vector parallel to ~a and another vector orthogonal
to ~a. The two vectors λ~a and ~y are called the parallel and
orthogonal components of the vector ~x (with respect to ~a),
and sometimes the following notation is used

~x// = λ~a, ~x⊥ = ~y,

so that

~x = ~x// + ~x⊥.

There are moderately simple formulas for ~x// and ~x⊥, but it is better to remember the
following derivation of these formulas.

Assume that the vectors ~a and ~x are given. Then we look for a number λ such that
~y = ~x− λ~a is perpendicular to ~a. Recall that ~a ⊥ (~x− λ~a) if and only if

~a···(~x− λ~a) = 0.

Expand the dot product and you get this equation for λ

~a···~x− λ~a···~a = 0,

whence

(62) λ =
~a···~x
~a···~a =

~a···~x
‖~a‖2

To compute the parallel and orthogonal components of ~x w.r.t. ~a you first compute λ
according to (62), which tells you that the parallel component is given by

~x// = λ~a =
~a···~x
~a···~a ~a.

The orthogonal component is then “the rest,” i.e. by definition ~x⊥ = ~x− ~x//, so

~x⊥ = ~x− ~x// = ~x− ~a···~x
~a···~a ~a.

45.9. Defining equations of lines. In § 43 we saw how to generate points on a
line given two points on that line by means of a “parametrization.” I.e. given points A

and B on the line ℓ the point whose position vector is ~x = ~a + t(~b − ~a) will be on ℓ for
any value of the “parameter” t.
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~a

~n

~x
A

O

X

ℓ

Is X on ℓ?

In this section we will use the dot-product to give a
different description of lines in the plane (and planes in three
dimensional space.) We will derive an equation for a line.
Rather than generating points on the line ℓ this equation
tells us if any given point X in the plane is on the line or
not.

Here is the derivation of the equation of a line in the
plane. To produce the equation you need two ingredients:

1. One particular point on the line (let’s call this point
A, and write ~a for its position vector),

2. a normal vector ~n for the line, i.e. a nonzero vector which is perpendicular to
the line.

Now let X be any point in the plane, and consider the line segment AX.

• Clearly, X will be on the line if and only if AX is parallel to ℓ 8

• Since ℓ is perpendicular to ~n, the segment AX and the line ℓ will be parallel if
and only if AX ⊥ ~n.

• AX ⊥ ~n holds if and only if
−−→
AX···~n = 0.

So in the end we see that X lies on the line ℓ if and only if the following vector equation
is satisfied:

(63)
−−→
AX···~n = 0 or (~x− ~a) ···~n = 0

This equation is called a defining equation for the line ℓ.

Any given line has many defining equations. Just by changing the length of the
normal you get a different equation, which still describes the same line.

45.10. Line through one point and perpendicular to another. Find a defining
equation for the line ℓ which goes through A(1, 1) and is perpendicular to the line segment
AB where B is the point (3,−1).

−2

21

−1

3
0

1

2

ℓ

A

B

Solution. We already know a point on the line, namely
A, but we still need a normal vector. The line is required to

be perpendicular to AB, so ~n =
−→
AB is a normal vector:

~n =
−→
AB =

(
3− 1

(−1)− 1

)

=

(
2
−2

)

Of course any multiple of ~n is also a normal vector, for in-
stance

~m = 1
2
~n =

(
1
−1

)

is a normal vector.

With ~a = ( 1
1 ) we then get the following equation for ℓ

~n···(~x− ~a) =

(
2
−2

)

···
(
x1 − 1
x2 − 1

)

= 2x1 − 2x2 = 0.

If you choose the normal ~m instead, you get

~m···(~x− ~a) =

(
1
−1

)

···
(
x1 − 1
x2 − 1

)

= x1 − x2 = 0.

Both equations 2x1 − 2x2 = 0 and x1 − x2 = 0 are equivalent.

8 From plane Euclidean geometry: parallel lines either don’t intersect or they coincide.
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45.11. Distance to a line. Let ℓ be a line in the plane and assume a point A on
the line as well as a vector ~n perpendicular to ℓ are known. Using the dot product one
can easily compute the distance from the line to any other given point P in the plane.
Here is how:

Draw the line m through A perpendicular to ℓ, and drop a perpendicular line from P
onto m. let Q be the projection of P onto m. The distance from P to ℓ is then equal to
the length of the line segment AQ. Since AQP is a right triangle one has

AQ = AP cos θ.

Here θ is the angle between the normal ~n and the vector
−→
AP . One also has

~n···(~p− ~a) = ~n···−→AP = ‖−→AP‖ ‖~n‖ cos θ = AP ‖~n‖ cos θ.
Hence we get

dist(P, ℓ) =
~n···(~p− ~a)

‖~n‖ .

A

P

Q

~n

θ

ℓ

m

dist(P, ℓ)

θ <
π

2

A

P

Q

~n

θ

ℓ

m
dist(P, ℓ)

θ >
π

2

This argument from a drawing contains a hidden assumption, namely that the point P lies
on the side of the line ℓ pointed to by the vector ~n. If this is not the case, so that ~n and−→
AP point to opposite sides of ℓ, then the angle between them exceeds 90◦, i.e. θ > π/2.
In this case cos θ < 0, and one has AQ = −AP cos θ. the distance formula therefore has
to be modified to

dist(P, ℓ) = − ~n···(~p− ~a)

‖~n‖ .

A

X

−−→
AX

~n

~a

~x

45.12. Defining equation of a plane. Just as
we have seen how you can form the defining equation
for a line in the plane from just one point on the line
and one normal vector to the line, you can also form the
defining equation for a plane in space, again knowing
only one point on the plane, and a vector perpendicular
to it.

If A is a point on some plane P and ~n is a vector

perpendicular to P, then any other point X lies on P if and only if
−−→
AX ⊥ ~n. In other

words, in terms of the position vectors ~a and ~x of A and X,

the point X is on P ⇐⇒ ~n···(~x− ~a) = 0.

Arguing just as in § 45.11 you find that the distance
of a point X in space to the plane P is

(64) dist(X,P) = ± ~n···(~x− ~a)

‖~n‖ .
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Here the sign is “+” if X and the normal ~n are on the same side of the plane P; otherwise
the sign is “−”.

45.13. Example. Find the defining equation for the plane P through the point

A(1, 0, 2) which is perpendicular to the vector
(

1
2
1

)

.

Solution: We know a point (A) and a normal vector ~n =
(

1
2
1

)

for P. Then any point

X with coordinates (x1, x2, x3), or, with position vector ~x =
( x1
x2
x3

)

, will lie on the plane

P if and only if

~n···(~x− ~a) = 0 ⇐⇒





1
2
1



 ···











x1

x2

x3



−





1
0
2










= 0

⇐⇒





1
2
1



 ···





x1 − 1
x2

x3 − 2



 = 0

⇐⇒ 1 · (x1 − 1) + 2 · (x2) + 1 · (x3 − 2) = 0

⇐⇒ x1 + 2x2 + x3 − 3 = 0.

2 31

2

3

1

1

2

3

x1

x2

x3

A

~n =
(

1
2
1

)

45.14. Example continued. Let P be the plane from the previous example. Which
of the points P (0, 0, 1), Q(0, 0, 2), R(−1, 2, 0) and S(−1, 0, 5) lie on P? Compute the
distances from the points P,Q,R, S to the plane P. Separate the points which do not lie
on P into two group of points which lie on the same side of P.

Solution: We apply (64) to the position vectors ~p, ~q, ~r,~s of the points P,Q,R, S.
For each calculation we need

‖~n‖ =
√

12 + 22 + 12 =
√
6.

The third component of the given normal ~n =
(

1
2
1

)

is positive, so ~n points “upwards.”

Therefore, if a point lies on the side of P pointed to by ~n, we shall say that the point lies
above the plane.
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P : ~p =
(

0
0
1

)

, ~p− ~a =
(−1

0
−1

)

, ~n···(~p− ~a) = 1 · (−1) + 2 · (0) + 1 · (−1) = −2

~n···(~p− ~a)

‖~n‖ = − 2√
6
= −1

3

√
6.

This quantity is negative, so P lies below P. Its distance to P is 1
3

√
6.

Q: ~q =
(

0
0
2

)

, ~p− ~a =
(−1

0
0

)

, ~n···(~p− ~a) = 1 · (−1) + 2 · (0) + 1 · (0) = −1

~n···(~p− ~a)

‖~n‖ = − 1√
6
= −1

6

√
6.

This quantity is negative, so Q also lies below P. Its distance to P is 1
6

√
6.

R: ~r =
(−1

2
0

)

, ~p− ~a =
(−2

2
−2

)

, ~n···(~p− ~a) = 1 · (−2) + 2 · (2) + 1 · (−2) = 0

~n···(~p− ~a)

‖~n‖ = 0.

Thus R lies on the plane P, and its distance to P is of course 0.

S: ~s =
(−1

0
5

)

, ~p− ~a =
(−2

0
3

)

, ~n···(~p− ~a) = 1 · (−1) + 2 · (0) + 1 · (3) = 2

~n···(~p− ~a)

‖~n‖ =
2√
6
=

1

3

√
6.

This quantity is positive, so S lies above P. Its distance to P is 1
3

√
6.

We have found that P and Q lie below the plane, R lies on the plane, and S is above the
plane.

45.15. Where does the line through the points B(2, 0, 0) and C(0, 1, 2) inter-
sect the plane P from example 45.13? Solution: Let ℓ be the line through B and
C. We set up the parametric equation for ℓ. According to §43, (54) every point X on ℓ
has position vector ~x given by

(65) ~x = ~b+ t(~c− ~b) =





2
0
0



+ t





0− 2
1− 0
2− 0



 =





2− 2t
t
2t





for some value of t.

The point X whose position vector ~x is given above lies on the plane P if ~x satisfies
the defining equation of the plane. In example 45.13 we found this defining equation. It
was

(66) ~n···(~x− ~a) = 0, i.e. x1 + 2x2 + x3 − 3 = 0.

So to find the point of intersection of ℓ and P you substitute the parametrization (65) in
the defining equation (66):

0 = x1 + 2x2 + x3 − 3 = (2− 2t) + 2(t) + (2t)− 3 = 2t− 1.

This implies t = 1
2
, and thus the intersection point has position vector

~x = ~b+ 1
2
(~c− ~b) =





2− 2t
t
2t



 =





1
1
2

1



 ,

i.e. ℓ and P intersect at X(1, 1
2
, 1).
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46. Cross Product

46.1. Algebraic definition of the cross product. Here is the definition of the
cross-product of two vectors. The definition looks a bit strange and arbitrary at first sight
– it really makes you wonder who thought of this. We will just put up with that for
now and explore the properties of the cross product. Later on we will see a geometric
interpretation of the cross product which will show that this particular definition is really
useful. We will also find a few tricks that will help you reproduce the formula without
memorizing it.

46.2. Definition. The “outer product” or “cross product” of two vectors is given by




a1
a2
a3



×××





b1
b2
b3



 =





a2b3 − a3b2
a3b1 − a1b3
a1b2 − a2b1





Note that the cross-product of two vectors is again a vector!

46.3. Example. If you set ~b = ~a in the definition you find the following important
fact: The cross product of any vector with itself is the zero vector:

~a××× ~a = ~0 for any vector ~a.

46.4. Example. Let ~a =
(

1
2
3

)

, ~b =
(−2

1
0

)

and compute the cross product of these

vectors.

Solution:

~a××× ~b =





1
2
3



×××





−2
1
0



 =






2 · 0− 3 · 1
3 · (−2)− 1 · 0

1 · 1− 2 · (−2)




 =





−3
−6
5



××× ~i ~j ~k

~i ~0 ~k −~j
~j −~k ~0 ~i
~k ~j −~i ~0

i

jk

In terms of the standard basis vectors you can check the multiplication table. An easy

way to remember the multiplication table is to put the vectors ~i,~j, ~k clockwise in a circle.
Given two of the three vectors their product is either plus or minus the remaining vector.
To determine the sign you step from the first vector to the second, to the third: if this
makes you go clockwise you have a plus sign, if you have to go counterclockwise, you get
a minus.

The products of ~i,~j and ~k are all you need to know to compute the cross product.

Given two vectors ~a and ~b write them as ~a = a1~i + a2~j + a3~k and ~b = b1~i + b2~j + b3~k,
and multiply as follows

~a××× ~b =(a1~i + a2~j + a3~k)××× (b1~i+ b2~j + b3~k)

= a1~i××× (b1~i+ b2~j + b3~k)

+a2~j ××× (b1~i+ b2~j + b3~k)

+a3~k××× (b1~i+ b2~j + b3~k)

= a1b1~i×××~i + a1b2~i××× ~j + a1b3~i××× ~k +

a2b1~j ×××~i + a2b2~j ××× ~j + a2b3~j ××× ~k +

a3b1~k×××~i + a3b2~k××× ~j + a3b3~k××× ~k

= a1b1~0 + a1b2~k − a1b3~j

−a2b1~k + a2b2~0 + a2b3~i +

a3b1~j − a3b2~i + a3b3~0

=(a2b3 − a3b2)~i + (a3b1 − a1b3)~j + (a1b2 − a2b1)~k
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This is a useful way of remembering how to compute the cross product, particularly when
many of the components ai and bj are zero.

46.5. Example. Compute ~k××× (p~i+ q~j + r~k):

~k××× (p~i+ q~j + r~k) = p(~k×××~i) + q(~k××× ~j) + r(~k××× ~k) = −q~i+ p~j.

There is another way of remembering how to find ~a ××× ~b. It involves the “triple
product” and determinants. See § 46.7.

46.6. Algebraic properties of the cross product. Unlike the dot product, the
cross product of two vectors behaves much less like ordinary multiplication. To begin
with, the product is not commutative – instead one has

(67) ~a××× ~b = −~b××× ~a for all vectors ~a and ~b.

This property is sometimes called “anti-commutative.”

~i××× (~i××× ~j) = ~i××× ~k = −~j,
(~i×××~i)××× ~j = ~0××× ~j = ~0
so “×××” is not associative

Since the crossproduct of two vectors is again
a vector you can compute the cross product of

three vectors ~a,~b,~c. You now have a choice: do

you first multiply ~a and ~b, or ~b and ~c, or ~a and ~c?
With numbers it makes no difference (e.g. 2×(3×5) = 2×15 = 30 and (2×3)×5 = 6×5 =
also 30) but with the cross product of vectors it does matter: the cross product is not
associative, i.e.

~a××× (~b××× ~c) 6=6=6= (~a×××~b)××× ~c for most vectors ~a,~b,~c.

The distributive law does hold, i.e.

~a××× (~b+ ~c) = ~a××× ~b+ ~a××× ~c, and (~b+ ~c)××× ~a = ~b××× ~a+ ~c××× ~a

is true for all vectors ~a,~b,~c.

Also, an associative law, where one of the factors is a number and the other two are
vectors, does hold. I.e.

t(~a××× ~b) = (t~a)××× ~b = ~a××× (t~b)

holds for all vectors ~a,~b and any number t. We were already using these properties when

we multiplied (a1~i+ a2~j + a3~k)××× (b1~i+ b2~j + b3~k) in the previous section.

Finally, the cross product is only defined for space vectors, not for plane vectors.

46.7. The triple product and determinants.

46.8. Definition. The triple product of three given vectors ~a,~b, and ~c is defined to
be

~a···(~b×××~c).
In terms of the components of ~a,~b, and ~c one has

~a···(~b××× ~c) =





a1
a2
a3



 ···





b2c3 − b3c2
b3c1 − b1c3
b1c2 − b2c1





= a1b2c3 − a1b3c2 + a2b3c1 − a2b1c3 + a3b1c2 − a3b2c1.

This quantity is called a determinant, and is written as follows

(68)

∣
∣
∣
∣
∣
∣

a1 b1 c1
a2 b2 c2
a3 b3 c3

∣
∣
∣
∣
∣
∣

= a1b2c3 − a1b3c2 + a2b3c1 − a2b1c3 + a3b1c2 − a3b2c1
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− − + ++−

a1a1a1a1a1 b1b1 c1

a2 a2a2 b2b2 c2

a3a3a3 b3b3 c3

There’s a useful shortcut for computing such a de-
terminant: after writing the determinant, append a
fourth and a fifth column which are just copies of the
first two columns of the determinant. The determinant
then is the sum of six products, one for each dotted line
in the drawing. Each term has a sign: if the factors are
read from top-left to bottom-right, the term is positive,
if they are read from top-right to bottom left the term is negative. This shortcut is also
very useful for computing the crossproduct. To compute the cross product of two given

vectors ~a and ~b you arrange their components in the following determinant

(69) ~a××× ~b =

∣
∣
∣
∣
∣
∣
∣

~i a1 b1
~j a2 b2
~k a3 b3

∣
∣
∣
∣
∣
∣
∣

= (a2b3 − a3b2)~i+ (a3b1 − a1b3)~j + (a1b2 − a2b1)~k.

This is not a normal determinant since some of its entries are vectors, but if you ignore
that odd circumstance and simply compute the determinant according to the definition
(68), you get (69).

An important property of the triple product is that it is much more symmetric in the

factors ~a,~b,~c than the notation ~a···(~b×××~c) suggests.

46.9. Theorem. For any triple of vectors ~a,~b,~c one has

~a···(~b××× ~c) = ~b···(~c××× ~a) = ~c···(~a××× ~b),

and

~a···(~b××× ~c) = −~b···(~a×××~c) = −~c···(~b××× ~a).

In other words, if you exchange two factors in the product ~a···(~b×××~c) it changes its sign. If
you “rotate the factors,” i.e. if you replace ~a by ~b, ~b by ~c and ~c by ~a, the product doesn’t
change at all.

46.10. Geometric description of the cross product.

46.11. Theorem.

~a××× ~b ⊥ ~a,~b

~a

~b

~a××× ~b

θ
Proof. We use the triple product:

~a···(~a××× ~b) = ~b···(~a××× ~a) = ~0

since ~a ××× ~a = ~0 for any vector ~a. It follows that ~a ××× ~b is
perpendicular to ~a.

Similarly, ~b···(~a ××× ~b) = ~a···(~b ××× ~b) = ~0 shows that ~a···~b is

perpendicular to ~b. �
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46.12. Theorem.
‖~a××× ~b‖ = ‖~a‖ ‖~b‖ sin θ

Proof. Bruce9 just slipped us a piece of paper with the following formula on it:

(70) ‖~a××× ~b‖2 + (~a···~b)2 = ‖~a‖2‖~b‖2.

After setting ~a =
( a1
a2
a3

)

and ~b =

(
b1
b2
b3

)

and diligently computing both sides we find that

this formula actually holds for any pair of vectors ~a,~b! The (long) computation which
implies this identity will be presented in class (maybe).

If we assume that Lagrange’s identity holds then we get

‖~a×××~b‖2 = ‖~a‖2‖~b‖2 − (~a···~b)2 = ‖~a‖2‖~b‖2 − ‖~a‖2‖~b‖2 cos2 θ = ‖~a‖2‖~b‖2 sin2 θ

since 1− cos2 θ = sin2 θ. The theorem is proved. �

These two theorems almost allow you to construct the cross product of two vectors

geometrically. If ~a and ~b are two vectors, then their cross product satisfies the following
description:

(1) If ~a and ~b are parallel, then the angle θ between them vanishes, and so their

cross product is the zero vector. Assume from here on that ~a and ~b are not
parallel.

(2) ~a×××~b is perpendicular to both ~a and ~b. In other words, since ~a and ~b are not par-
allel, they determine a plane, and their cross product is a vector perpendicular
to this plane.

(3) the length of the cross product ~a×××~b is ‖~a‖ · ‖~b‖ sin θ.

~a

~b

~a××× ~b
There are only two vectors that satisfy conditions 2 and

3: to determine which one of these is the cross product you
must apply the Right Hand Rule (screwdriver rule, corkscrew

rule, etc.) for ~a,~b, ~a ××× ~b: if you turn a screw whose axis is

perpendicular to ~a and ~b in the direction from ~a to ~b, the

screw moves in the direction of ~a××× ~b.

Alternatively, without seriously injuring yourself, you should
be able to make a fist with your right hand, and then stick out
your thumb, index and middle fingers so that your thumb is ~a,

your index finger is ~b and your middle finger is ~a×××~b. Only people with the most flexible
joints can do this with their left hand.

47. A few applications of the cross product

47.1. Area of a parallelogram. Let ABCD be a parallelogram. Its area is given
by “height times base,” a formula which should be familiar from high school geometry.

If the angle between the sides AB and AD is θ, then the height of the parallelogram
is ‖−−→AD‖ sin θ, so that the area of ABCD is

(71) area of ABCD = ‖−→AB‖ · ‖−−→AD‖ sin θ = ‖−→AB ×××−−→
AD‖ .

The area of the triangle ABD is of course half as much,

area of triangle ABD = 1
2
‖−→AB×××−−→

AD‖ .

9It’s actually called Lagrange’s identity. Yes, the same Lagrange who found the formula for
the remainder term.
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These formulae are valid even when the points A,B,C, and D are points in space.
Of course they must lie in one plane for otherwise ABCD couldn’t be a parallelogram.

47.2. Example. Let the points A(1, 0, 2), B(2, 0, 0), C(3, 1,−1) and D(2, 1, 1) be
given.

Show that ABCD is a parallelogram, and compute its area.

Solution: ABCD will be a parallelogram if and only if
−→
AC =

−→
AB +

−−→
AD. In terms

of the position vectors ~a,~b, ~c and ~d of A,B,C,D this boils down to

~c− ~a = (~b− ~a) + (~d− ~a), i.e. ~a+ ~c = ~b+ ~d.

For our points we get

~a+ ~c =





1
0
2



+





3
1
−1



 =





4
1
1



 , ~b+ ~d =





2
0
0



+





2
1
1



 =





4
1
1



 .

So ABCD is indeed a parallelogram. Its area is the length of

−→
AB×××−−→

AD =





2− 1
0

0− 2



×××





2− 1
1− 0
1− 2



 =





1
0
−2



×××





1
−1
−1



 =





−2
−1
−1



 .

So the area of ABCD is
√

(−2)2 + (−1)2 + (−1)2 =
√
6.

~a
~b

~n = ~a××× ~b

47.3. Finding the normal to a plane. If you know two vec-

tors ~a and ~b which are parallel to a given plane P but not parallel
to each other, then you can find a normal vector for the plane P by
computing

~n = ~a×××~b.

We have just seen that the vector ~n must be perpendicular to both ~a and ~b, and hence10

it is perpendicular to the plane P.

This trick is especially useful when you have three points A, B and C, and you want
to find the defining equation for the plane P through these points. We will assume that
the three points do not all lie on one line, for otherwise there are many planes through A,
B and C.

To find the defining equation we need one point on the plane (we have three of them),
and a normal vector to the plane. A normal vector can be obtained by computing the

cross product of two vectors parallel to the plane. Since
−→
AB and

−→
AC are both parallel to

P, the vector ~n =
−→
AB×××−→

AC is such a normal vector.

Thus the defining equation for the plane through three given points A, B and C is

~n···(~x− ~a) = 0, with ~n =
−→
AB×××−→

AC = (~b− ~a)××× (~c− ~a).

10This statement needs a proof which we will skip. Instead have a look at the picture



119

47.4. Example. Find the defining equation of the plane P through the pointsA(2,−1, 0),
B(2, 1,−1) and C(−1, 1, 1). Find the intersections of P with the three coordinate axes,
and find the distance from the origin to P.

Solution: We have

−→
AB =





0
2
−1



 and
−→
AC =





−3
2
1





so that

~n =
−→
AB×××−→

AC =





0
2
−1



×××





−3
2
1



 =





4
3
6





is a normal to the plane. The defining equation for P is therefore

0 = ~n···(~x− ~a) =





4
3
6



 ···





x1 − 2
x2 + 1
x3 − 0





i.e.
4x1 + 3x2 + 6x3 − 5 = 0.

The plane intersects the x1 axis when x2 = x3 = 0 and hence 4x1 −5 = 0, i.e. in the point
( 5
4
, 0, 0). The intersections with the other two axes are (0, 5

3
, 0) and (0, 0, 5

6
).

The distance from any point with position vector ~x to P is given by

dist = ± ~n···(~x− ~a)

‖~n‖ ,

so the distance from the origin (whose position vector is ~x = ~0 =
(

0
0
0

)

) to P is

distance origin to P = ± ~a···~n
‖~n‖ = ±2 · 4 + (−1) · 3 + 0 · 6√

42 + 32 + 62
=

5√
61

(≈ 1.024 · · · ).

47.5. Volume of a parallelepiped.

baseA

D

H

E

C

G

F

B

A height

E

D

H

F

B

C

G

A parallelepiped is a three dimensional body whose sides are parallelograms. For instance,
a cube is an example of a parallelepiped; a rectangular block (whose faces are rectangles,
meeting at right angles) is also a parallelepiped. Any parallelepiped has 8 vertices (corner
points), 12 edges and 6 faces.

Let ABCD
EFGH

be a parallelepiped. If we call one of the faces, say ABCD, the base of
the parallelepiped, then the other face EFGH is parallel to the base. The height of the
parallelepiped is the distance from any point in EFGH to the base, e.g. to compute the
height of ABCD

EFGH
one could compute the distance from the point E (or F , or G, or H) to

the plane through ABCD.

The volume of the parallelepiped ABCD
EFGH

is given by the formula

Volume
ABCD

EFGH
= Area of base× height.
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Since the base is a parallelogram we know its area is given by

Area of baseABCD = ‖−→AB×××−−→
AD‖

We also know that ~n =
−→
AB×××−−→

AD is a vector perpendicular to the plane through ABCD,
i.e. perpendicular to the base of the parallelepiped. If we let the angle between the edge
AE and the normal ~n be ψ, then the height of the parallelepiped is given by

height = ‖−→AE‖ cosψ.
Therefore the triple product of

−→
AB,

−−→
AD,

−→
AE is

Volume
ABCD

EFGH
= height× Area of base

= ‖−→AE‖ cosψ ‖−→AB×××−−→
AD‖ ,

i.e.

Volume
ABCD

EFGH
=

−→
AE···(−→AB×××−−→

AD).

48. Notation

In the next chapter we will be using vectors, so let’s take a minute to summarize the
concepts and notation we have been using.

Given a point in the plane, or in space you can form its position vector. So associated
to a point we have three different objects: the point, its position vector and its coordinates.
here is the notation we use for these:

Object Notation

Point. . . . . . . . . . . . . . . . . . . . Upper case letters, A, B, etc.

Position vector . . . . . . . . . . Lowercase letters with an arrow on top.

The position vector
−→
OA of the point A

should be ~a, so that letters match across
changes from upper to lower case.

Coordinates of a point. . . The coordinates of the point A are the
same as the components of its position
vector ~a: we use lower case letters with
a subscript to indicate which coordinate
we have in mind: (a1, a2).

49. PROBLEMS

COMPUTING AND DRAWING VECTORS

426. Simplify the following

~a =





1
−2
3



+ 3





0
1
3



 ;

~b = 12

(
1

1/3

)

− 3

(
4
1

)

;

~c = (1 + t)

(
1

1− t

)

− t

(
1
−t

)

,

~d = t





1
0
0



+ t2





0
−1
2



−





0
0
1



 .

427. If ~a,~b,~c are as in the previous prob-
lem, then which of the following expres-
sions mean anything? Compute those
expressions that are well defined.

(i) ~a+ ~b (ii) ~b+ ~c (iii) π~a

(iv) ~b
2

(v) ~b/~c (vi) ‖~a‖+ ‖~b‖
(vii) ‖~b‖2 (viii) ~b/ ‖~c‖
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428. Let ~a =





1
−2
2



 and ~b =





2
−1
1



.

Compute:

(1) ||~a||
(2) 2~a
(3) ||2~a||2
(4) ~a+~b

(5) 3~a−~b

429. Let ~u, ~v, ~w be three given vectors,
and suppose

~a = ~v+~w, ~b = 2~u−~w, ~c = ~u+~v+~w.

(a) Simplify ~p = ~a + 3~b − ~c and ~q =
~c− 2(~u+ ~a).

(b) Find numbers r, s, t such that r~a +

s~b+ t~c = ~u.

(c) Find numbers k, l,m such that k~a+

l~b+m~c = ~v.

430. Prove the Algebraic Properties (50),
(51), (52), and (53) in section 42.5.

431. (a) Does there exist a number x such
that (

1
2

)

+

(
x
x

)

=

(
2
1

)

?

(b) Make a drawing of all points P whose
position vectors are given by

~p =

(
1
2

)

+

(
x
x

)

.

(c) Do there exist a numbers x and y
such that

x

(
1
2

)

+ y

(
1
1

)

=

(
2
1

)

?

432. Given points A(2, 1) and B(−1, 4)

compute the vector
−→
AB. Is

−→
AB a po-

sition vector?

433. Given: points A(2, 1), B(3, 2), C(4, 4)
and D(5, 2). Is ABCD a parallelo-
gram?

434. Given: points A(0, 2, 1), B(0, 3, 2),
C(4, 1, 4) and D.

(a) If ABCD is a parallelogram, then
what are the coordinates of the point D?

(b) If ABDC is a parallelogram, then
what are the coordinates of the point
D?

435. You are given three points in the
plane: A has coordinates (2, 3), B has
coordinates (−1, 2) and C has coordi-
nates (4,−1).

(a) Compute the vectors
−→
AB,

−→
BA,

−→
AC,−→

CA,
−−→
BC and

−−→
CB.

(b) Find the points P,Q,R and S whose

position vectors are
−→
AB,

−→
BA,

−→
AC, and−−→

BC, respectively. Make a precise draw-
ing in figure 21.

436. Have a look at figure 22

(a) Draw the vectors 2~v+ 1
2
~w, − 1

2
~v+ ~w,

and 3
2
~v − 1

2
~w

(b) Find real numbers s, t such that
s~v + t~w = ~a.

(c) Find real numbers p, q such that

p~v + q~w = ~b.

(d) Find real numbers k, l,m, n such that

~v = k~a+ l~b, and ~w = m~a+ n~w.

O

A

B

PARAMETRIC EQUATIONS FOR A LINE
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Figure 21. Your drawing for problem 435

437. In the figure above draw the points
whose position vectors are given by ~x =

~a + t(~b − ~a) for t = 0, 1, 1
3
, 3
4
,−1, 2. (as

always, ~a =
−→
OA, etc.)

438. In the figure above also draw the
points whose position vector are given by

~x = ~b+ s(~a−~b) for s = 0, 1, 1
3
, 3
4
,−1, 2.

439. (a) Find a parametric equation for the
line ℓ through the points A(3, 0, 1) and
B(2, 1, 2).

(b) Where does ℓ intersect the coor-
dinate planes?

440. (a) Find a parametric equation for the
line which contains the two vectors

~a

~b

~v

~w

Figure 22. Drawing for problem 436
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~a =





2
3
1



 and ~b =





3
2
3



.

(b) The vector ~c =





c1
1
c3



 is on

this line. What is ~c?

441. Group problem. Consider a trian-

gle ABC and let ~a,~b,~c be the position
vectors of A,B, and C.

(a) Compute the position vector of
the midpoint P of the line segment BC.
Also compute the position vectors of the
midpoints Q of AC and R of AB. (Make
a drawing.)

(b) Let M be the point on the line
segment AP which is twice as far from A
as it is from P . Find the position vector
of M .

(c) Show thatM also lies on the line
segments BQ and CR.

442. Group problem. Let ABCD be a

tetrahedron, and let ~a,~b,~c, ~d be the po-
sition vectors of the points A,B,C,D.

(i) Find position vectors of the midpoint
P of AB, the midpoint Q of CD and the
midpoint M of PQ.

(ii) Find position vectors of the mid-
point R of BC, the midpoint S of AD
and the midpoint N of RS.

D

A

B

C

ORTHOGONAL DECOMPOSITION OF ONE VECTOR WITH RESPECT TO ANOTHER

443. Given the vectors ~a =
(

2
1
3

)

and

~b =
(

1
1
0

)

find ~a//, ~a⊥, ~b
//
, ~b

⊥
for which

~a = ~a// + ~a⊥, with a////~b, a⊥ ⊥ ~b,

and

~b = ~b
//
+ ~b

⊥
, with b////~a, b⊥ ⊥ ~a.

444. Bruce left his backpack on a hill,
which in some coordinate system hap-
pens to be the line with equation 12x1+
5x2 = 130.

The force exerted by gravity on the

backpack is ~fgrav =
(

0
−mg

)
. Decompose

this force into a part perpendicular to
the hill, and a part parallel to the hill.

445. An eraser is lying on the plane P with
equation x1+3x2+x3 = 6. Gravity pulls
the eraser down, and exerts a force given
by

~fgrav =





0
0

−mg



 .

(a) Find a normal ~n for the plane P.

(b) Decompose the force ~f into a
part perpendicular to the plane P and a
part perpendicular to ~n.

THE DOT PRODUCT
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446. (i) Simplify ‖~a− ~b‖2.
(ii) Simplify ‖2~a − ~b‖2.
(iii) If ~a has length 3, ~b has length

7 and ~a···~b = −2, then compute ‖~a+ ~b‖,
‖~a− ~b‖ and ‖2~a − ~b‖.

447. Simplify (~a+ ~b)···(~a− ~b).

448. Find the lengths of the sides, and the
angles in the triangle ABC whose ver-
tices are A(2, 1), B(3, 2), and C(1, 4).

449. Group problem. Given: A(1, 1),
B(3, 2) and a point C which lies on
the line with parametric equation ~c =
( 0
3 ) + t

(
1
−1

)
. If △ABC is a right trian-

gle, then where is C? (There are three
possible answers, depending on whether
you assume A, B or C is the right an-
gle.)

450. (i) Find the defining equation and a
normal vector ~n for the line ℓ which is
the graph of y = 1 + 1

2
x.

(ii) What is the distance from the origin
to ℓ?

(iii) Answer the same two questions for
the line m which is the graph of y =
2− 3x.

(iv) What is the angle between ℓ and
m?

451. Let ℓ and m be the lines with
parametrizations

ℓ : ~x =

(
2
0

)

+t

(
1
2

)

, m : ~x =

(
0
−1

)

+s

(
−2
3

)

Where do they intersect, and find the
angle between ℓ and m.

452. Let ℓ and m be the lines with
parametrizations

ℓ : ~x =





2
1
−4



+t





1
2
0



 , m : ~x =





0
1
−1



+s





−2
0
3





Do ℓ and m intersect? Find the angle
between ℓ and m.

453. Let ℓ and m be the lines with
parametrizations

ℓ : ~x =





2
α
1



+t





1
2
0



 , m : ~x =





0
1
−1



+s





−2
0
3





Here α is some unknown number.

If it is known that the lines ℓ and m
intersect, what can you say about α?

THE CROSS PRODUCT

454. Compute the following cross products

(i)





3
1
2



×××





3
2
1





(ii)





12
−71
3 1
2



×××





12
−71
3 1
2





(iii)





1
0
0



×××





1
1
0





(iv)





√
2
1
0



×××





0√
2
0





455. Compute the following cross products

(i) ~i××× (~i+ ~j)

(ii) (
√
2~i+ ~j)×××

√
2~j

(iii) (2~i + ~k)××× (~j − ~k)

(iv) (cos θ~i + sin θ~k)××× (sin θ~i− cos θ~k)

456. (i) Simplify (~a+ ~b)××× (~a+ ~b).

(ii) Simplify (~a− ~b)××× (~a− ~b).

(iii) Simplify (~a+ ~b)××× (~a− ~b).

457. True or False: If ~a××× ~b = ~c××× ~b and
~b 6= ~0 then ~a = ~c?
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458. Group problem. Given A(2, 0, 0),
B(0, 0, 2) and C(2, 2, 2). Let P be the
plane through A, B and C.

(i) Find a normal vector for P.

(ii) Find a defining equation for P.

(iii) What is the distance from D(0, 2, 0)
to P? What is the distance from the ori-
gin O(0, 0, 0) to P?

(iv) Do D and O lie on the same side of
P?

(v) Find the area of the triangle
ABC.

(vi) Where does the plane P intersect
the three coordinate axes?

459. (i) Does D(2, 1, 3) lie on the plane P

through the points A(−1, 0, 0), B(0, 2, 1)
and C(0, 3, 0)?

(ii) The point E(1, 1, α) lies on P. What
is α?

460. Given points A(1,−1, 1), B(2, 0, 1)
and C(1, 2, 0).

(i) Where is the point D which makes
ABCD into a parallelogram?

(ii) What is the area of the parallelo-
gram ABCD?

(iii) Find a defining equation for the
plane P containing the parallelogram
ABCD.

(iv) Where does P intersect the coordi-
nate axes?

461. Given points A(1, 0, 0), B(0, 2, 0) and
D(−1, 0, 1) and E(0, 0, 2).

(i) If P = ABCD
EFGH

is a parallelepiped,
then where are the points C,F,G and
H?

(ii) Find the area of the base ABCD of
P.

(iii) Find the height of P.

(iv) Find the volume of P.

B C

A

E

F G

H

D

462. Group problem. Let ABCD
EFGH

be the
cube with A at the origin, B(1, 0, 0),
D(0, 1, 0) and E(0, 0, 1).

(i) Find the coordinates of all the points
A, B, C, D, E, F , G, H .

(ii) Find the position vectors of the mid-
points of the line segments AG, BH , CE
and DF . Make a drawing of the cube
with these line segments.

(iii) Find the defining equation for the
plane BDE. Do the same for the plane
CFH . Show that these planes are par-
allel.

(iv) Find the parametric equation for
the line through AG.

(v) Where do the planes BDE and
CFH intersect the line AG?

(vi) Find the angle between the planes
BDE and BGH .

(vii) Find the angle between the planes
BDE and BCH . Draw these planes.
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Chapter 6: Vector Functions and

Parametrized Curves

50. Parametric Curves

50.1. Definition. A vector function ~f of one variable is a function of one real vari-

able, whose values ~f(t) are vectors. In other words for any value of t (from a domain of

allowed values, usually an interval) the vector function ~f produces a vector ~f(t). Write
~f in components:

~f(t) =

(
f1(t)
f2(t)

)

.

The components of a vector function ~f of t are themselves functions of t. They are
ordinary first-semester-calculus-style functions. An example of a vector function is

~f(t) =

(
t− 2t2

1 + cos2 πt

)

, so ~f(1) =

(
1− 2(1)2

1 + (cos π)2

)

=

(
−1
2

)

(just to mention one.)

50.2. Definition. A parametric curve is a vector function ~x = ~x(t) of one real
variable t. The variable t is called the parameter. Synonyms: “Parametrized curve,”
or “parametrization,” or “vector function (of one variable).”

Logically speaking a parametrized curve is the same thing as a vector function. The
name “parametrized curve” is used to remind you of a very natural and common inter-
pretation of the concept “parametric curve.” In this interpretation a vector function, or
parametric curve ~x(t) describes the motion of a point in the plane or space. Here t stands
for time, and ~x(t) is the position vector at time t of the moving point.

−1.0

0.5

1.0

1.5

2.0

2.5

3.5

3.0
t=−1.5

t=0.0

−0.5

A picture of a vector function.

Instead of writing a parametrized curve as a vector function, one sometimes specifies
the two (or three) components of the curve. Thus one will say that a parametric curve is
given by

x1 = x1(t), x2 = x2(t), (and x3 = x3(t) if we have a space curve).
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51. Examples of parametrized curves

51.1. An example of Rectilinear Motion. Here’s a parametric curve:

(72) ~x(t) =

(
1 + t
2 + 3t

)

.

The components of this vector function are

(73) x1(t) = 1 + t, x2(t) = 2 + 3t.

Both components are linear functions of time (i.e. the parameter t), so every time t
increases by an amount ∆t (every time ∆t seconds go by) the first component increases
by ∆t, and the x2 component increases by 3∆t. So the point at ~x(t) moves horizontally
to the left with speed 1, and it moves vertically upwards with speed 3.

t = 0

t = 1

t = −1

∆t

3∆t

Which curve is traced out by this vector function? In this
example we can find out by eliminating the parameter, i.e. solve
one of the two equations (73) for t, and substitute the value of t
you find in the other equation. Here you can solve x1 = 1+ t for t,
with result t = x1 − 1. From there you find that

x2 = 2 + 3t = 2 + 3(x1 − 1) = 3x1 − 1.

So for any t the vector ~x(t) is the position vector of a point on the
line x2 = 3x1−1 (or, if you prefer the old fashioned x, y coordinates,
y = 3x− 1).

Conclusion: This particular parametric curve traces out a straight
line with equation x2 = 3x1 − 1, going from left to right.

51.2. Rectilinear Motion in general. This example gener-
alizes the previous example. The parametric equation for a straight
line from the previous chapter

~x(t) = ~a+ t~v,

is a parametric curve. We had ~v = ~b− ~a in §43. At time t = 0 the object is at the point
with position vector ~a, and every second (unit of time) the object translates by ~v. The
vector ~v is the velocity vector of this motion.

In the first example we had ~a = ( 1
2 ), and ~v = ( 1

3 ).

51.3. Going back and forth on a straight line. Consider

~x(t) = ~a+ sin(t)~v.

At each moment in time the object whose motion is described by this parametric curve

finds itself on the straight line ℓ with parametric equation ~x = ~a+s(~b−~a), where ~b = ~a+~v.

However, instead of moving along the line from one end to the other, the point at
~x(t) keeps moving back and forth along ℓ between ~a+ ~v and ~a− ~v.

51.4. Motion along a graph. Let y = f(x) be some function of one variable
(defined for x in some interval) and consider the parametric curve given by

~x(t) =

(
t

f(t)

)

= t~i+ f(t)~j.

At any moment in time the point at ~x(t) has x1 coordinate equal to t, and x2 = f(t) =
f(x1), since x1 = t. So this parametric curve describes motion on the graph of y = f(x)
in which the horizontal coordinate increases at a constant rate.
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~x(θ)

θ

51.5. The standard parametrization of a circle. Con-
sider the parametric curve

~x(θ) =

(
cos θ
sin θ

)

.

The two components of this parametrization are

x1(θ) = cos θ, x2(θ) = sinθ,

and they satisfy
x1(θ)

2 + x2(θ)
2 = cos2 θ + sin2 θ = 1,

so that ~x(θ) always points at a point on the unit circle.

As θ increases from −∞ to +∞ the point will rotate through the circle, going around
infinitely often. Note that the point runs through the circle in the counterclockwise
direction, which is the mathematician’s favorite way of running around in circles.

51.6. The Cycloid. The Free Ferris Wheel Foundation is an organization whose
goal is to empower fairground ferris wheels to roam freely and thus realize their potential.
With blatant disregard for the public, members of the F2WF will clandestinely unhinge
ferris wheels, thereby setting them free to roll throughout the fairground and surroundings.

Suppose we were to step into the bottom of a ferris wheel at the moment of its
liberation: what would happen? Where would the wheel carry us? Let our position be
the point X, and let its position vector at time t be ~x(t). The parametric curve ~x(t) which
describes our motion is called the cycloid.

In this example we are given a description of a motion, but no formula for the
parametrization ~x(t). We will have to derive this formula ourselves. The key to find-
ing ~x(t) is the fact that the arc AX on the wheel is exactly as long as the line segment
OA on the ground (i.e. the x1 axis). The length of the arc AX is exactly the angle θ (“arc
= radius times angle in radians”), so the x1 coordinate of A and hence the center C of
the circle is θ. To find X consider the right triangle BCX. Its hypothenuse is the radius
of the circle, i.e. CX has length 1. The angle at C is θ, and therefore you get

BX = sin θ, BC = cos θ,

and

x1 = OA−BX = θ − sin θ, x2 = AC −BC = 1− cos θ.
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So the parametric curve defined in the beginning of this example is

~x(θ) =

(
θ − sin θ
1− cos θ

)

.

Here the angle θ is the parameter, and we can let it run from θ = −∞ to θ = ∞.

x1

x2

x3

θ

height = aθ

θ = 0

θ = 2π

θ = 4π

51.7. A three dimensional example: the Helix. Consider the vector function

~x(θ) =





cos θ
sin θ
aθ





where a > 0 is some constant.

If you ignore the x3 component of this vector function you get the parametrization of
the circle from example 51.5. So as the parameter θ runs from −∞ to +∞, the x1, x2 part
of ~x(θ) runs around on the unit circle infinitely often. While this happens the vertical
component, i.e. x3(θ) increases steadily from −∞ to ∞ at a rate of a units per second.

52. The derivative of a vector function

If ~x(t) is a vector function, then we define its derivative to be

~x′(t) =
d~x

dt
= lim
h→0

~x(t+ h)− ~x(t)

h
.

This definition looks very much like the first-semester-calculus-definition of the derivative
of a function, but for it to make sense in the context of vector functions we have to explain
what the limit of a vector function is.

By definition, for a vector function ~f(t) =
(
f1(t)
f2(t)

)

one has

lim
t→a

~f (t) = lim
t→a

(
f1(t)
f2(t)

)

=

(
limt→a f1(t)
limt→a f2(t)

)

In other words, to compute the limit of a vector function you just compute the limits of
its components (that will be our definition.)
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Let’s look at the definition of the velocity vector again. Since

~x(t+ h)− ~x(t)

h
=

1

h

{(
x1(t+ h)
x2(t+ h)

)

−
(
x1(t)
x2(t)

)}

=






x1(t+ h)− x1(t)

h
x2(t+ h)− x2(t)

h






we have

~x′(t) = lim
h→0

~x(t+ h)− ~x(t)

h

=






lim
h→0

x1(t+ h)− x1(t)

h

lim
h→0

x2(t+ h)− x2(t)

h






=

(
x′
1(t)
x′
2(t)

)

So: To compute the derivative of a vector function you must differentiate its components.

52.1. Example. Compute the derivative of

~x(t) =

(
cos t
sin t

)

and of ~y(t) =

(
t− sin t
1− cos t

)

.

Solution:

~x′(t) =
d

dt

(
cos t
sin t

)

=

(
− sin t
cos t

)

~y′(t) =
d

dt

(
t− sin t
1− cos t

)

=

(
1− cos t
sin t

)

.

53. Higher derivatives and product rules

If you differentiate a vector function ~x(t) you get another vector function, namely
~x′(t), and you can try to differentiate that vector function again. If you succeed, the
result is called the second derivative of ~x(t). All this is very similar to how the second
(and higher) derivative of ordinary functions were defined in 1st semester calculus. One
even uses the same notation:11

~x′′(t) =
d~x′(t)

dt
=

d2~x

dt2
=

(
x′′
1 (t)
x′′
2 (t)

)

.

53.1. Example. Compute the second derivative of

~x(t) =

(
cos t
sin t

)

and of ~y(t) =

(
t− sin t
1− cos t

)

.

Solution: In example 52.1 we already found the first derivatives, so you can use those.
You find

~x′′(t) =
d

dt

(
− sin t
cos t

)

=

(
− cos t
− sin t

)

~y′′(t) =
d

dt

(
1− cos t
sin t

)

=

(
sin t
cos t

)

.

Note that our standard parametrization ~x(t) of the circle satisfies

~x′′(t) = −~x(t).

11Not every function has a derivative, so it may happen that you can find ~x′(t) but not ~x′′(t)
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After defining the derivative in first semester calculus one quickly introduces the
various rules (sum, product, quotient, chain rules) which make it possible to compute
derivatives without ever actually having to use the limit-of-difference-quotient-definition.
For vector functions there are similar rules which also turn out to be useful.

The Sum Rule holds. It says that if ~x(t) and ~y(t) are differentiable12 vector functions,
then so is ~z(t) = ~x(t)± ~y(t), and one has

d~x(t)± ~y(t)

dt
=

d~x(t)

dt
± d~y(t)

dt
.

The Product Rule also holds, but it is more complicated, because there are several
different forms of multiplication when you have vector functions. The following three
versions all hold:

If ~x(t) and ~y(t) are differentiable vector functions and f(t) is an ordinary differentiable
function, then

df(t)~x(t)

dt
= f(t)

d~x(t)

dt
+

df(t)

dt
~x(t)

d~x(t)···~y(t)
dt

= ~x(t)···d~y(t)
dt

+
d~x(t)

dt
···~y(t)

d~x(t)××× ~y(t)

dt
= ~x(t)××× d~y(t)

dt
+

d~x(t)

dt
××× ~y(t)

I hope these formulae look plausible because they look like the old fashioned product rule,
but even if they do, you still have to prove them before you can accept their validity. I
will prove one of these in lecture. You will do some more as an exercise.

As an example of how these properties get used, consider this theorem:

53.2. Theorem. Let ~f(t) be a vector function of constant length (i.e. ‖~f(t)‖ is con-

stant.) Then ~f
′
(t) ⊥ ~f(t).

Proof. If ‖~f‖ is constant, then so is ~f(t)···~f(t) = ‖~f(t)‖2. the derivative of a constant
function is zero, so

0 =
d

dt

(
‖~f(t)‖2

)
=

d

dt

(
‖~f (t)‖ ··· ‖~f(t)‖

)
= 2~f (t)···d

~f(t)

dt
.

So we see that ~f···~f ′
= 0 which means that ~f

′ ⊥ ~f . �

54. Interpretation of ~x′(t) as the velocity vector

~x(t)
~x(t+ h)

~x(t+ h)− ~x(t)

Figure 23. The vector velocity of a motion in the plane.

12A vector function is differentiable if its derivative actually exists, i.e. if all its components
are differentiable.
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Let ~x(t) be some vector function and interpret it as describing the motion of some
point in the plane (or space). At time t the point has position vector ~x(t); a little later,
more precisely, h seconds later the point has position vector ~x(t+ h). Its displacement is
the difference vector

~x(t+ h) − ~x(t).

Its average velocity vector between times t and t+ h is

displacement vector

time lapse
=
~x(t+ h)− ~x(t)

h
.

If the average velocity between times t and t + h converges to one definite vector as
h→ 0, then this limit is a reasonable candidate for the velocity vector at time t of the
parametric curve ~x(t).

Being a vector, the velocity vector has both magnitude and direction. The length
of the velocity vector is called the speed of the parametric curve. We use the following
notation: we always write

~v(t) = ~x′(t)

for the velocity vector, and

v(t) = ‖~v(t)‖ = ‖~x′(t)‖
for its length, i.e. the speed.

The speed v is always a nonnegative number; the velocity is always a vector.

54.1. Velocity of linear motion. If ~x(t) = ~a + t~v, as in examples 51.1 and 51.2,
then

~x(t) =

(
a1 + tv1
a2 + tv2

)

so that

~x′(t) =

(
v1
v2

)

= ~v.

So when you represent a line by a parametric equation ~x(t) = ~a+ t~v, the vector ~v is the
velocity vector. The length of ~v is the speed of the motion.

In example 51.1 we had ~v = ( 1
3 ), so the speed with which the point at ~x(t) =

(
1+t
1+3t

)

traces out the line is v = ‖~v‖ =
√
12 + 32 =

√
10.

R~v(t)

~x(t)

ωt
54.2. Motion on a circle. Consider the parametriza-

tion

~x(t) =

(
R cosωt
R sinωt

)

.

The point X at ~x(t) is on the circle centered at the origin with
radius R. The segment from the origin to X makes an angle
ωt with the x-axis; this angle clearly increases at a constant
rate of ω radians per second. The velocity vector of this motion is

~v(t) = ~x′(t) =

(
−ωR sinωt
ωR cosωt

)

= ωR

(
− sinωt
cosωt

)

.

This vector is not constant. however, if you calculate the speed of the point X, you find

v = ‖~v(t)‖ = ωR

∥
∥
∥
∥

(
sinωt
cosωt

)∥
∥
∥
∥
= ωR.

So while the direction of the velocity vector ~v(t) is changing all the time, its magnitude is
constant. In this parametrization the point X moves along the circle with constant speed
v = ωR.
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54.3. Velocity of the cycloid. Think of the dot X on the wheel in the cycloid
example 51.6. We know its position vector and velocity at time t

~x(t) =

(
t− sin t
1− cos t

)

, ~x′(t) =

(
1− cos t
sin t

)

.

The speed with which X traces out the cycloid is

v = ‖~x′(t)‖
=
√

(1− cos t)2 + (sin t)2

=
√

1− 2 cos t+ cos2 t+ sin2 t

=
√

2(1− cos t).

You can use the double angle formula cos 2α = 1− 2 sin2 α with α = t
2
to simplify this to

v =
√

4 sin2 t
2
= 2

∣
∣
∣
∣
sin

t

2

∣
∣
∣
∣
.

The speed of the point X on the cycloid is therefore always between 0 and 2. At times
t = 0 and other multiples of 2π we have ~x′(t) = ~0. At these times the point X has come
to a stop. At times t = π+2kπ one has v = 2 and ~x′(t) = ( 2

0 ), i.e. the point X is moving
horizontally to the right with speed 2.

55. Acceleration and Force

Just as the derivative ~x′(t) of a parametric curve can be interpreted as the velocity
vector ~v(t), the derivative of the velocity vector measures the rate of change with time of
the velocity and is called the acceleration of the motion. The usual notation is

~a(t) = ~v′(t) =
d~v(t)

dt
=

d2~x

dt2
= ~x′′(t).

Sir Isaac Newton’s law relating force and acceleration via the formula “F = ma” has
a vector version. If an object’s motion is given by a parametrized curve ~x(t) then this

motion is the result of a force ~F being exerted on the object. The force ~F is given by

~F = m~a = m
d2~x

dt2

where m is the mass of the object.

Somehow it is always assumed that the mass m is a positive number.

55.1. How does an object move if no forces act on it? If ~F (t) = ~0 at all

times, then, assuming m 6= 0 it follows from ~F = m~a that ~a(t) = ~0. Since ~a(t) = ~v′(t)
you conclude that the velocity vector ~v(t) must be constant, i.e. that there is some fixed
vector ~v such that

~x′(t) = ~v(t) = ~v for all t.

This implies that

~x(t) = ~x(0) + t~v.

So if no force acts on an object, then it will move with constant velocity vector along a
straight line (said Newton – Archimedes long before him thought that the object would
slow down and come to a complete stop unless there were a force to keep it going.)
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55.2. Compute the forces acting on a point on a circle. Consider an object
moving with constant angular velocity ω on a circle of radius R, i.e. consider ~x(t) as in
example 54.2,

~x(t) =

(
R cosωt
R sinωt

)

= R

(
cosωt
sinωt

)

.

Then its velocity and acceleration vectors are

~v(t) = ωR

(
− sinωt
cosωt

)

and

~a(t) = ~v′(t) = ω2R

(
− cosωt
− sinωt

)

= −ω2R

(
cosωt
sinωt

)

~F
θ

~v

Since both ( cos θ
sin θ ) and

(− sin θ
cos θ

)
are unit vectors, we see that

the velocity vector changes its direction but not its size: at all
times you have v = ‖~v‖ = ωR. The acceleration also keeps
changing its direction, but its magnitude is always

a = ‖~a‖ = ω2R =
( v

R

)2

R =
v2

R
.

The force which must be acting on the object to make it go
through this motion is

~F = m~a = −mω2R

(
cosωt
sinωt

)

.

To conclude this example note that you can write this force as

~F = −mω2~x(t)

which tells you which way the force is directed: towards the center of the circle.

55.3. How does it feel, to be on the Ferris wheel? In other words, which force
acts on us if we get carried away by a “liberated ferris wheel,” as in example 51.6?

AO

C

X
~a

t

Well, you get pushed around by a force ~F , which according

to Newton is given by ~F = m~a, where m is your mass and ~a is
your acceleration, which we now compute:

~a(t) = ~v′(t)

=
d

dt

(
1− cos t
sin t

)

=

(
sin t
cos t

)

.

This is a unit vector: the force that’s pushing you around is con-
stantly changing its direction but its strength stays the same. If
you remember that t is the angle ∠ACX you see that the force
~F is always pointed at the center of the wheel: its direction is given by the vector

−−→
XC.
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56. Tangents and the unit tangent vector

Here we address the problem of finding the tangent line at a point on a parametric
curve.

Let ~x(t) be a parametric curve, and let’s try to find the tangent line at a particular
point X0, with position vector ~x(t0) on this curve. We follow the same strategy as in 1st
semester calculus: pick a point Xh on the curve near X0, draw the line through X0 and
Xh and let Xh → X0.

The line through two points on a curve is often called a secant to the curve. So we
are going to construct a tangent to the curve as a limit of secants.

The point X0 has position vector ~x(t0), the point Xh is at ~x(t0 + h). Consider the
line ℓh parametrized by

(74) ~y(s;h) = ~x(t0) + s
~x(t0 + h)− ~x(t0)

h
,

in which s is the parameter we use to parametrize the line.

ℓ ℓh

X0

Xh

ℓ

X0

O

~x′(t0)

~x(t0)

The line ℓh contains both X0 (set s = 0) and Xh (set s = h), so it is the line through
X0 and Xh, i.e. a secant to the curve.

Now we let h→ 0, which gives

~y(s)
def
= lim

h→0
~y(s;h) = ~x(t0) + s lim

h→0

~x(t0 + h)− ~x(t0)

h
= ~x(t0) + s~x′(t0),

In other words, the tangent line to the curve ~x(t) at the point with position vector ~x(t0)
has parametric equation

~y(s) = ~x(t0) + s~x′(t0),

and the vector ~x′(t0) = ~v(t0) is parallel to the tangent line ℓ. Because of this one calls
the vector ~x′(t0) a tangent vector to the curve. Any multiple λ~x′(t0) with λ 6= 0 is still
parallel to the tangent line ℓ and is therefore also called a tangent vector.

A tangent vector of length 1 is called a unit tangent vector. If ~x′(t0) 6= 0 then
there are exactly two unit tangent vectors. They are

~T (t0) = ± ~v(t0)

‖~v(t0)‖
= ±~v(t0)

v(t0)
.

56.1. Example. Find Tangent line, and unit tangent vector at ~x(1), where ~x(t) is
the parametric curve given by

~x(t) =

(
t
t2

)

, so that ~x′(t) =

(
1
2t

)

.
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1

1

10.5

1

0.5

1.5 ~T

−~T

parabola with tangent line parabola with unit tangent vectors

Circle with radius 1

Solution: For t = 1 we have ~x′(1) = ( 1
2 ), so the tangent line has parametric equation

~y(s) = ~x(1) + s~x′(1) =

(
1
1

)

+ s

(
1
2

)

=

(
1 + s
1 + 2s

)

.

In components one could write this as y1(s) = 1 + s, y2(s) = 1 + 2s. After eliminating s
you find that on the tangent line one has

y2 = 1 + 2s = 1 + 2(y1 − 1) = 2y1 − 1.

The vector ~x′(1) = ( 1
2 ) is a tangent vector to the parabola at ~x(1). To get a unit tangent

vector we normalize this vector to have length one, i.e. we divide i by its length. Thus

~T (1) =
1√

12 + 22

(
1
2

)

=

(
1
5

√
5

2
5

√
5

)

is a unit tangent vector. There is another unit tangent vector, namely

−~T (1) = −
(

1
5

√
5

2
5

√
5

)

.

56.2. Tangent line and unit tangent vector to Circle. In example 51.5 and
52.1 we had parametrized the circle and found the velocity vector of this parametrization,

~x(θ) =

(
cos θ
sin θ

)

, ~x′(θ) =

(
− sin θ
cos θ

)

.

If we pick a particular value of θ then the tangent line to the circle at ~x(θ0) has parametric
equation

~y(s) = ~x(θ0) + s~x′(θ0) =

(
cos θ + s sin θ
sin θ − s cos θ

)

This equation completely describes the tangent line, but you can try to write it in a more
familiar form as a graph

y2 = my1 + n.

To do this you have to eliminate the parameter s from the parametric equations

y1 = cos θ + s sin θ, y2 = sin θ − s cos θ.

When sin θ 6= 0 you can solve y1 = cos θ + s sin θ for s, with result

s =
y1 − cos θ

sin θ
.
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So on the tangent line you have

y2 = sin θ − s cos θ = sin θ − cos θ
y1 − cos θ

sin θ

which after a little algebra (add fractions and use sin2 θ + cos2 θ = 1) turns out to be the
same as

y2 = − cot θ y1 +
1

sin θ
.

θ

π

2
− θ

1
1

sin θ

The tangent line therefore hits the vertical axis when y1 = 0, at height n = 1/ sin θ, and
it has slope m = − cot θ.

For this example you could have found the tangent line without using any calculus
by studying the drawing above carefully.

Finally, let’s find a unit tangent vector. A unit tangent is a multiple of ~x′(θ) whose
length is one. But the vector ~x′(θ) =

(− sin θ
cos θ

)
already has length one, so the two possible

unit vectors are

~T (θ) = ~x′(θ) =

(
− sin θ
cos θ

)

and − ~T (θ) =

(
sin θ

− cos θ

)

.

57. Sketching a parametric curve

For a given parametric curve, like

(75) ~x(t) =

(
1− t2

3t− t3

)

you might want to know what the curve looks like. The most straightforward way of
getting a picture is to compute x1(t) and x2(t) for as many values of t as you feel like,
and then plotting the computed points. This computation is the kind of repetitive task
that computers are very good at, and there are many software packages and graphing
calculators that will attempt to do the computation and drawing for you.

If the vector function has a constant whose value is not (completely) known, e.g. if
we wanted to graph the parametric curve

(76) ~x(t) =

(
1− t2

3at− t3

)

(a is a constant)

then plugging parameter values and plotting the points becomes harder, since the unknown
constant a shows up in the computed points.

On a graphing calculator you would have to choose different values of a and see what
kind of pictures you get (you would expect different pictures for different values of a).



138

In this section we will use the information stored in the derivative ~x′(t) to create a
rough sketch of the graph by hand.

Let’s do the specific curve (75) first. The derivative (or velocity vector) is

~x′(t) =

(
−2t

3− 3t2

)

, so

{
x′
1(t) = −2t
x′
1(t) = 3(1− t2)

We see that x′
1(t) changes its sign at t = 0, while x′

2(t) = 2(1− t)(1 + t) changes its sign
twice, at t = −1 and then at t = +1. You can summarize this in a drawing:

−+ + ++ + −−−−− −+ − −

−+ + + + −− −− − − − − + + +

t = −1 t = 0 t = 1

sign of x′
1(t)

sign of x′
2(t)

The arrows indicate the wind direction of the velocity vector ~x′(t) for the various values
of t.

For instance, when t < −1 you have x′
1(t) > 0 and x′

2(t) < 0, so

that the vector ~x′(t) =
(
x′1(t)

x′2(t)

)

=
(
+
−
)
points in the direction

“South-East.” You see that there are three special t values at
which ~x′(t) is either purely horizontal or vertical. Let’s compute
~x(t) at those values

t = −1 ~x(−1) =
(

0
−2

)
~x′(−1) = ( 2

0 )

t = 0 ~x(0) = ( 1
0 ) ~x′(0) = ( 0

3 )

t = −1 ~x(1) = ( 0
2 ) ~x′(1) = (−2

0 )

This leads you to the following sketch:

?

? 1

1

1

-2

2

( 0
3 )

(−2
0 )

( 2
0 )

If you use a plotting program like Gnuplot you get this picture
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58. Length of a curve

If you have a parametric curve ~x(t), a ≤ t ≤ b, then there is a formula for the length
of the curve it traces out. We’ll go through a brief derivation of this formula before stating
it.

t = a

t = b

~x(ti−1)

~x(ti)

To compute the length of the curve {~x(t) :
a ≤ t ≤ b} we divide it into lots of short pieces.
If the pieces are short enough they will be almost
straight line segments, and we know how do com-
pute the length of a line segment. After comput-
ing the lengths of all the short line segments, you
add them to get an approximation to the length
of the curve. As you divide the curve into finer
& finer pieces this approximation should get bet-
ter & better. You can smell an integral in this
description of what’s coming. Here are some more details:

Divide the parameter interval into N pieces,

a = t0 < t1 < t2 < · · · < tN−1 < tN = b.

Then we approximate the curve by the polygon with vertices at ~x(t0) = ~x(a), ~x(t1), . . . ,
~x(tN ). The distance between to consecutive points at ~x(ti−1) and ~x(ti) on this polygon
is

‖~x(ti)− ~x(ti−1)‖ .
Since we are going to take ti−1− ti “very small,” we can use the derivative to approximate
the distance by

~x(ti)− ~x(ti−1) =
~x(ti)− ~x(ti−1)

ti − ti−1

(
ti − ti−1

)
≈ ~x′(ti)

(
ti − ti−1

)
,

so that

‖~x(ti)− ~x(ti−1)‖ ≈
∥
∥~x′(ti)

∥
∥
(
ti − ti−1

)
.

Now add all these distances and you get

Length polygon ≈
N∑

i=1

∥
∥~x′(ti)

∥
∥
(
ti − ti−1

)
≈
∫ b

t=a

∥
∥~x′(t)

∥
∥ dt.

This is our formula for the length of a curve.

Just in case you think this was a proof, it isn’t! First, we have used the symbol ≈
which stands for “approximately equal,” and we said “very small” in quotation marks, so
there are several places where the preceding discussion is vague. But most of all, we can’t
prove that this integral is the length of the curve, since we don’t have a definition of “the
length of a curve.” This is an opportunity, since it leaves us free to adopt the formula we
found as our formal definition of the length of a curve. Here goes:

58.1. Definition. If {~x(t) : a ≤ t ≤ b} is a parametric curve, then its length is
given by

Length =

∫ b

a

∥
∥~x′(t)

∥
∥ dt

provided the derivative ~x′(t) exists, and provided ‖~x′(t)‖ is a Riemann-integrable function.
In this course we will not worry too much about the two caveats about differentiability
and integrability at the end of the definition.
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58.2. Length of a line segment. How long is the line segment AB connecting two
points A(a1, a2) and B(b1, b2)?

Solution: Parametrize the segment by

~x(t) = ~a+ t(~b− ~a), (0 ≤ t ≤ 1).

Then

‖~x′(t)‖ = ‖~b − ~a‖ ,
and thus

Length(AB) =

∫ 1

0

‖~x′(t)‖ dt =

∫ 1

0

‖~b− ~a‖ dt = ‖~b− ~a‖ .

In other words, the length of the line segment AB is the distance between the two points
A and B. It looks like we already knew this, but no, we didn’t: what this example shows
is that the length of the line segment AB as defined in definition 58.1 is the distance
between the points A and B. So definition 58.1 gives the right answer in this example. If
we had found anything else in this example we would have had to change the definition.

58.3. Perimeter of a circle of radius R. What is the length of the circle of
radius R centered at the origin? This is another example where we know the answer in
advance. The following computation should give us 2πR or else there’s something wrong
with definition 58.1.

We parametrize the circle as follows:

~x(t) = R cos θ~i+R sin θ~j, (0 ≤ θ ≤ 2π).

Then

~x′(θ) = −R sin θ~i +R cos θ~j, and ‖~x′(θ)‖ =
√

R2 sin2 θ +R2 cos2 θ = R.

The length of this circle is therefore

Length of circle =

∫ 2π

0

Rdθ = 2πR.

Fortunately we don’t have to fix the definition!

And now the bad news: The integral in the definition of the length looks innocent
enough and hasn’t caused us any problems in the two examples we have done so far. It
is however a reliable source of very difficult integrals. To see why, you must write the
integral in terms of the components x1(t), x2(t) of ~x(t). Since

~x′(t) =

(
x′
1(t)
x′
2(t)

)

and thus ‖~x′(t)‖ =
√

x′
1(t)

2 + x′
2(t)

2

the length of the curve parametrized by {~x(t) : a ≤ t ≤ b} is

Length =

∫ b

a

√

x′
1(t)

2 + x′
2(t)

2 dt.

For most choices of x1(t), x2(t) the sum of squares under the square root cannot be
simplified, and, at best, leads to a difficult integral, but more often to an impossible
integral.

But, chin up, sometimes, as if by a miracle, the two squares add up to an expression
whose square root can be simplified, and the integral is actually not too bad. Here is an
example:
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58.4. Length of the Cycloid. After getting in at the bottom of a liberated ferris
wheel we are propelled through the air along the cycloid whose parametrization is given
in example 51.6,

~x(θ) =

(
θ − sin θ
1− cos θ

)

.

How long is one arc of the Cycloid?

Solution: Compute ~x′(θ) and you find

~x′(θ) =

(
1− cos θ
sin θ

)

so that
‖~x′(θ)‖ =

√

(1− cos θ)2 + (sin θ)2 =
√
2− 2 cos θ.

This doesn’t look promising (this is the function we must integrate!), but just as in example
54.3 we can put the double angle formula cos θ = 1− 2 sin2 θ

2
to our advantage:

‖~x′(θ)‖ =
√
2− 2 cos θ =

√

4 sin2 θ

2
= 2

∣
∣
∣
∣
sin

θ

2

∣
∣
∣
∣
.

We are concerned with only one arc of the Cycloid, so we have 0 ≤ θ < 2π, which implies
0 ≤ θ

2
≤ π, which in turn tells us that sin θ

2
> 0 for all θ we are considering. Therefore

the length of one arc of the Cycloid is

Length =

∫ 2π

0

‖~x′(θ)‖ dθ

=

∫ 2π

0

2

∣
∣
∣
∣
sin

θ

2

∣
∣
∣
∣
dθ

= 2

∫ 2π

0

sin
θ

2
dθ

=

[

−4 cos
θ

2

]2π

0

= 8.

To visualize this answer: the height of the cycloid is 2 (twice the radius of the circle), so
the length of one arc of the Cycloid is four times its height (Look at the drawing on page
126.)

59. The arclength function

X(t)
X(t0)

s(t)

If you have a parametric curve ~x(t) and you pick a par-
ticular point on this curve, say, the point corresponding to
parameter value t0, then one defines the arclength function
(starting at t0) to be

(77) s(t) =

∫ t

t0

‖~x′(τ )‖ dτ

Thus s(t) is the length of the curve segment {~x(τ ) : t0 ≤ τ ≤ t}. (τ is a dummy variable.)

If you interpret the parametric curve ~x(t) as a description of the motion of some
object, then the length s(t) of the curve {~x(τ ) : t0 ≤ τ ≤ t} is the distance traveled by
the object since time t0.

If you differentiate the distance traveled with respect to time you should get the speed,
and indeed, by the Fundamental Theorem of Calculus one has

s′(t) =
d

dt

∫ t

t0

‖~x′(τ )‖ dτ = ‖~x′(t)‖ ,
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which we had called the speed v(t) in § 54.

60. Graphs in Cartesian and in Polar Coordinates

Cartesian graphs. Most of first-semester-calculus deals with a particular kind of
curve, namely, the graph of a function, “y = f(x)”. You can regard such a curve as a
special kind of parametric curve, where the parametrization is

~x(t) =

(
t

f(t)

)

and we switch notation from “(x, y)” to “(x1, x2).”

For this special case the velocity vector is always given by

~x′(t) =

(
1

f ′(t)

)

,

the speed is

v(t) = ‖~x′(t)‖ =
√

1 + f ′(t)2,

and the length of the segment between t = a and t = b is

Length =

∫ b

a

√

1 + f ′(t)2 dt.

r
P

θ

Polar graphs. Instead of choosing Cartesian coordinates
(x1, x2) one can consider so-called Polar Coordinates in the plane.
We have seen these before in the section on complex numbers: to
specify the location of a point in the plane you can give its x1, x2

coordinates, but you could also give the absolute value and argument of the complex
number x1 + ix2 (see §24.) Or, to say it without mentioning complex numbers, you can
say where a point P in the plane is by saying (1) how far it is from the origin, and (2) how
large the angle between the line segment OP and a fixed half line (usually the positive
x-axis) is.

The Cartesian coordinates of a point with polar coordinates (r, θ) are

(78) x1 = r cos θ, x2 = r sin θ,

or, in our older notation,
x = r cos θ, y = r sin θ.

These are the same formulas as in §24, where we had “ r = |z| and θ = arg z.”

r = f(θ)

θ

X

x1

x2Often a curve is given as a graph in polar coordi-
nates, i.e. for each angle θ there is one point (X) on the
curve, and its distance r to the origin is some function
f(θ) of the angle. In other words, the curve consists of
all points whose polar coordinates satisfy the equation
r = f(θ). You can parametrize such a curve by

(79) ~x(θ) =

(
r cos θ
r sin θ

)

=

(
f(θ) cos θ
f(θ) sin θ

)

.

or,

~x(θ) = f(θ) cos θ~i+ f(θ) sin θ~j.

You can apply the formulas for velocity, speed and arclength to this parametrization, but
instead of doing the straightforward calculation, let’s introduce some more notation. For
any angle θ we define the vector

~u(θ) =

(
cos θ
sin θ

)

= cos θ~i+ sin θ~j.
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~u(θ) θ

~u′(θ)

The derivative of ~u is

~u′(θ) =

(
− sin θ
cos θ

)

= − sin θ~i+ cos θ~j.

The vectors ~u(θ) and ~u′(θ) are perpendicular unit vectors.

Then we have
~x(θ) = f(θ)~u(θ),

so by the product rule one has

~x′(θ) = f ′(θ)~u(θ) + f(θ)~u′(θ).

~x′(θ)

~x′(θ)

f ′(θ)~u(θ)

f(θ)~u′(θ)

~x′(θ)

~u(θ)
~u′(θ)

ψ
ψ

Since ~u(θ) and ~u′(θ) are perpendicular unit vectors this implies

v(θ) = ‖~x′(θ)‖ =
√

f ′(θ)2 + f(θ)2.

The length of the piece of the curve between polar angles α and β is therefore

(80) Length =

∫ β

α

√

f ′(θ)2 + f(θ)2 dθ.

You can also read off that the angle ψ between the radius OX and the tangent to the
curve satisfies

tanψ =
f(θ)

f ′(θ)
.

61. PROBLEMS

SKETCHING PARAMETRIZED CURVES

Sketch the curves which are traced
out by the following parametrizations.
Describe the motion (is the curve you
draw traced out once or several times?
In which direction?)

In all cases the parameter is allowed
to take all values from −∞ to ∞.

If a curve happens to be the graph of
some function x2 = f(x1) (or y = f(x)
if you prefer), then find the function
f(· · · ).

Is there a geometric interpretation
of the parameter as an angle, or a dis-
tance, etc?

463. ~x(t) =

(
1− t
2− t

)

464. ~x(t) =

(
3t+ 2
3t+ 2

)

465. ~x(t) =

(
et

et

)

466. ~x(t) =

(
et

t

)

467. ~x(t) =

(
et

e−t

)

468. ~x(t) =

(
t
t2

)

469. ~x(t) =

(
sin t
t

)

470. ~x(t) =

(
sin t
cos 2t

)
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471. ~x(t) =

(
sin 25t
cos 25t

)

472. ~x(t) =

(
1 + cos t
1 + sin t

)

473. ~x(t) =

(
2 cos t
sin t

)

474. ~x(t) =

(
t2

t3

)

∗ ∗ ∗
Find parametric equations for the

curve traced out by the X in each of the
following descriptions.

475. A circle of radius 1 rolls over the x1

axis, and X is a point on a spoke of the
circle at a distance a > 0 from the cen-
ter of the circle (the case a = 1 gives the
cycloid.)

476. Group problem. A circle of radius
r > 0 rolls on the outside of the unit
circle. X is a point on the rolling circle
(These curves are called epicycloids.)

477. Group problem. A circle of radius
0 < r < 1 rolls on the inside of the unit
circle. X is a point on the rolling circle.

478. Let O be the origin, A the point (1, 0),
and B the point on the unit circle for
which the angle ∠AOB = θ. Then X
is the point on the tangent to the unit
circle through B for which the distance
BX equals the length of the circle arc
AB.

479. X is the point where the tangent line
at ~x(θ) to the helix of example 51.7 in-
tersects the x1x2 plane.

PRODUCT RULES

480. Group problem. If a moving object has position vector ~x(t) at time t, and if it’s
speed is constant, then show that the acceleration vector is always perpendicular to the
velocity vector. [Hint: differentiate v2 = ~v···~v with respect to time and use some of the
product rules from §53.]

481. Group problem. If a charged particle moves in a magnetic field ~B, then the laws of
electromagnetism say that the magnetic field exerts a force on the particle and that this
force is given by the following miraculous formula:

~F = q~v××× ~B.

where q is the charge of the particle, and ~v is its velocity.

Not only does the particle know calculus (since Newton found ~F = m~a), it also knows
vector geometry!

Show that even though the magnetic field is pushing the particle around, and even
though its velocity vector may be changing with time, its speed v = ‖~v‖ remains constant.

482. Group problem. Newton’s law of gravitation states that the Earth pulls any object
of mass m towards its center with a force inversely proportional to the squared distance
of the object to the Earth’s center.

(i) Show that if the Earth’s center is the origin, and ~r is the position vector of the object
of mass m, then the gravitational force is given by

~F = −C ~r

‖~r‖3
(C is a positive constant.)

[No calculus required. You are supposed to check that this vector satisfies the description
in the beginning of the problem, i.e. that it has the right length and direction.]

(ii) If the object is moving, then its angular momentum is defined in physics books by

the formula ~L = m~r ××× ~v. Show that, if the Earth’s gravitational field is the only force
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acting on the object, then its angular momentum remains constant. [Hint: you should

differentiate ~L with respect to time, and use a product rule.]

CURVE SKETCHING, USING THE TANGENT VECTOR

483. Consider a triangle ABC and let ~a,~b
and ~c be the position vectors of A,B and
C.

(i) Show that the parametric curve given
by

~x(t) = (1− t)2~a+ 2t(1− t)~b+ t2~c,

goes through the points A and C, and
that at these points it is tangent to the
sides of the triangle. Make a drawing.
(ii) At which point on this curve is the
tangent parallel to the side AC of the
triangle?

484. Let ~a,~b,~c, ~d be four given vectors.
Consider the parametric curve (known

as a Bezier curve)

~x(t) = (1−t)3~a+3t(1−t)2~b+3t2(1−t)~c+t3~d
where 0 ≤ t ≤ 1.

Compute ~x(0), ~x(1), ~x′(0), and
~x′(1).

The characters in most fonts (like
the fonts used for these notes) are made
up of lots of Bezier curves.

485. Sketch the following curves by finding all points at which the tangent is either horizontal
or vertical (in these problems, a is a positive constant.)

(i) ~x(t) =

(
1− t2

t+ 2t2

)

(ii) ~x(t) =

(
sin t
sin 2t

)

(iii) ~x(t) =

(
cos t
sin 2t

)

(iv) ~x(t) =

(
1− t2

3at− t3

)

(v) ~x(t) =

(
1− t2

3at+ t3

)

(vi) ~x(t) =

(
cos 2t
sin 3t

)

(vii) ~x(t) =

(
t/(1 + t2)

t2

)

(viii) ~x(t) =

(
t2

sin t

)

(ix) ~x(t) =

(
1 + t2

2t4

)

LENGTHS OF CURVES

486. Find the length of each of the following curve segments. An “
∫
” indicates a difficult but

possible integral which you should do; “
∫∫

” indicates that the resulting integral cannot
reasonably be done with the methods explained in this course – you may leave an integral
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in your answer after simplifying it as much as you can. All other problems lead to integrals
that shouldn’t be too hard.

(i) The cycloid ~x(θ) =
(
R(θ−sin θ)
R(1−cos θ)

)

, with 0 ≤ θ ≤ 2π.

(ii)
[∫∫ ]

The ellipse ~x(t) =

(
cos t
A sin t

)

with 0 ≤ t ≤ 2π.

(iii)
[∫ ]

The parabola ~x(t) =

(
t
t2

)

with 0 ≤ t ≤ 1.

(iv)
[∫∫ ]

The Sine graph ~x(t) =

(
t

sin t

)

with 0 ≤ t ≤ π.

(v) The evolute of the circle ~x =

(
cos t+ t sin t
sin t− t cos t

)

(with 0 ≤ t ≤ L).

(vi) The Catenary, i.e. the graph of y = cosh x =
ex + e−x

2
for −a 6 x 6 a.

(vii) The Cardioid, which in polar coordinates is given by r = 1 + cos θ, (|θ| < π), so

~x(θ) =

(
(1 + cos θ) cos θ
(1 + cos θ) sin θ

)

.

(viii) The Helix from example 51.7, ~x(θ) =





cos θ
sin θ
aθ



, 0 ≤ θ ≤ 2π.

487. Below are a number of parametrized curves. For each of these curves find all points
with horizontal or vertical tangents; also find all points for which the tangent is parallel
to the diagonal. Finally, find the length of the piece of these curves corresponding to
the indicated parameter interval (I tried hard to find examples where the integral can be
done).

(i) ~x(t) =

(
t1/3 − 9

20
t5/3

t

)

0 ≤ t ≤ 1

(ii) ~x(t) =

(
t2

t2
√
t

)

1 ≤ t ≤ 2

(iii) ~x(t) =

(
t2

t− t3/3

)

0 ≤ t ≤ √
3

(iv) ~x(t) =

(
8 sin t

7t− sin t cos t

)

|t| ≤ π

2

(v) Groupproblem~x(t) =

(
t√
1 + t

)

0 ≤ t ≤ 1

(The last problem is harder, but it can be done. In all the other ones the quantity under
the square root that appears when you set up the integral for the length of the curve is a
perfect square.)

488. Consider the polar graph r = ekθ, with −∞ < θ < ∞, where k is a positive constant.
This curve is called the logarithmic spiral.

(i) Find a parametrization for the polar graph of r = ekθ.

(ii) Compute the arclength function s(θ) starting at θ0 = 0.

(iii) Show that the angle between the radius and the tangent is the same at all points on
the logarithmic spiral.

(iv) Which points on this curve have horizontal tangents?



147

489. Group problem. The Archimedean spiral is the polar graph of r = θ, where θ ≥ 0.

(i) Which points on the part of the spiral with 0 < θ < π have a horizontal tangent?
Which have a vertical tangent?

(ii) Find all points on the whole spiral (allowing all θ > 0) which have a horizontal tangent.

(iii) Show that the part of the spiral with 0 < θ < π is exactly as long as the piece of the
parabola y = 1

2
x2 between x = 0 and x = π. (It is not impossible to compute the lengths

of both curves, but you don’t have to to answer this problem!)

KEPLER’s LAW’s

Kepler’s first law: Planets move in a plane in an ellipse with the sun at one focus.

Kepler’s second law: The position vector from the sun to a planet sweeps out area at a
constant rate.

Kepler’s third law: The square of the period of a planet is proportional to the cube of
its mean distance from the sun. The mean distance is the average of the closest distance
and the furthest distance. The period is the time required to go once around the sun.

Let ~p = x~i + y~j + z~k be the position of a planet in space where x, y and z are all
function of time t. Assume the sun is at the origin. Newton’s law of gravity implies that

d2~p

dt2
= α

~p

||~p||3 (1)

where α is −GM , G is a universal gravitational constant and M is the mass of the sun.
It does not depend on the mass of the planet.

First let us show that planets move in a plane. By the product rule

d

dt
(~p× d~p

dt
) = (

d~p

dt
× d~p

dt
) + (~p× d2~p

dt2
) (2)

By (1) and the fact that the cross product of parallel vectors is ~0 the right hand side of

(2) is ~0. It follows that there is a constant vector ~c such that at all times

~p× d~p

dt
= ~c (3)

Thus we can conclude that both the position and velocity vector lie in the plane with

normal vector ~c. Without loss of generality we assume that ~c = β~k for some scaler β and

~p = x~i+ y~j. Let x = r cos(θ) and y = r sin(θ) where we consider r and θ as functions of
t. If we calculate the derivative of ~p we get

d~p

dt
=
[dr

dt
cos(θ)− r sin(θ)

dθ

dt

]
~i+

[dr

dt
sin(θ) + r cos(θ)

dθ

dt

]
~j (4)

Since ~p× d~p
dt

= β~k we have

r cos(θ)
(dr

dt
sin(θ) + r cos(θ)

dθ

dt

)
− r sin(θ)

(dr

dt
cos(θ)− r sin(θ)

dθ

dt

)
= β (5)

After multiplying out and simplifying this reduces to

r2
dθ

dt
= β (6)

The area swept out from time t0 to time t1 by a curve in polar coordinates is

A =
1

2

∫ t1

t0

r2
dθ

dt
dt (7)

By (6) A is proportional to t1 − t0. This is Kepler’s second law.
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We will now prove Kepler’s third law for the special case of a circle. So let T be the
time it takes the planet to go around the sun one time and let r be its distance from the
sun. We will show that

T 2

r3
= − (2π)2

α
(8)

The second law implies that θ(t) is a linear function of t and so in fact

dθ

dt
=

2π

T
(9)

Since r is constant we have that dr
dt

= 0 and so (4) simplifies to

d~p

dt
=
[
−r sin(θ)2π

T

]
~i+

[
r cos(θ)

2π

T

]
~j (10)

Differentiating once more we get

d2~p

dt2
=
[
−r cos(θ)

(2π

T

)2]~i+
[
−r sin(θ)

(2π

T

)2]~j = −
(2π

T

)2
~p (11)

Noting that r = ||~p|| and using (1) we get

α

r3
= −

(2π

T

)2
(12)

from which (8) immediately follows.

Complete derivations of the three laws from Newton’s law of gravity can be found
in T.M.Apostal, Calculus vol I , Blaisdel(1967), p.545-548. Newton deduced the law of
gravity from Kepler’s laws. The argument can be found in L.Bers, Calculus vol II ,
Holt,Rinhart,and Winston(1969), p.748-754.

The planet earth is 93 million miles from the sun. The year has 365 days. The moon
is 250,000 miles from the earth and circles the earth once every 28 days. The earth’s
diameter is 7850 miles. In the first four problems you may assume orbits are circular. Use
only the data in this paragraph.

490. The former planet Pluto takes 248 years to orbit the sun. How far is Pluto from the
sun? Mercury is 36 million miles from the sun. How many (Earth) days does it take for
Mercury to complete one revolution of the sun?

491. Russia launched the first orbital satelite in 1957. Sputnik orbited the earth every 96
minutes. How high off the surface of the earth was this satelite?

492. A communication satellite is to orbit the earth around the equator at such a distance so
as to remain above the same spot on the earth’s surface at all times. What is the distance
from the center of the earth such a satellite should orbit?

493. Find the ratio of the masses of the sun and the earth.

494. The Kmart7 satellite is to be launched into polar earth orbit by firing it from a large
cannon. This is possible since the satellite is very small, consisting of a single blinking
blue light. Polar orbit means that the orbit passes over both the north and south poles.
Let p(t) be the point on the earth’s surface at which the blinking blue light is directly
overhead at time t. Find the largest orbit that the Kmart7 can have so that every person
on earth will be within 1000 miles of p(t) at least once a day. You may assume that the
satellite orbits the earth exactly n times per day for some integer n.

495. Let A be the total area swept out by an elliptical orbit. Show that β = 2A
T
.

496. Let E be an ellipse with one of the focal points f . Let d be the minimum distance from
some point of the ellipse to f and let D be the maximum distance. In terms of d and D
only what is the area of the ellipse E?
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Hint: The area of an ellipse is πab where a is its minimum radius and b its maximum
radius (both from the center of the ellipse). If f1 and f2 are the focal points of E then
the sum of the distances from f1 to p and f2 to p is constant for all points p on E.

497. Halley’s comet orbits the sun every 77 years. Its closest approach is 53 million miles.
What is its furthest distance from the sun? What is the maximum speed of the comet
and what is the minimum speed?
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license, unlimited in duration, to use that work under the conditions stated herein. The “Document”, below,
refers to any such manual or work. Any member of the public is a licensee, and is addressed as “you”. You
accept the license if you copy, modify or distribute the work in a way requiring permission under copyright law.

A “Modified Version” of the Document means any work containing the Document or a portion of it, either
copied verbatim, or with modifications and/or translated into another language.

A “Secondary Section” is a named appendix or a front-matter section of the Document that deals exclusively
with the relationship of the publishers or authors of the Document to the Document’s overall subject (or to related
matters) and contains nothing that could fall directly within that overall subject. (Thus, if the Document is
in part a textbook of mathematics, a Secondary Section may not explain any mathematics.) The relationship
could be a matter of historical connection with the subject or with related matters, or of legal, commercial,
philosophical, ethical or political position regarding them.

The “Invariant Sections” are certain Secondary Sections whose titles are designated, as being those of Invariant
Sections, in the notice that says that the Document is released under this License. If a section does not fit the
above definition of Secondary then it is not allowed to be designated as Invariant. The Document may contain
zero Invariant Sections. If the Document does not identify any Invariant Sections then there are none.

The “Cover Texts” are certain short passages of text that are listed, as Front-Cover Texts or Back-Cover Texts,
in the notice that says that the Document is released under this License. A Front-Cover Text may be at most 5
words, and a Back-Cover Text may be at most 25 words.

A “Transparent” copy of the Document means a machine-readable copy, represented in a format whose specifi-
cation is available to the general public, that is suitable for revising the document straightforwardly with generic
text editors or (for images composed of pixels) generic paint programs or (for drawings) some widely available
drawing editor, and that is suitable for input to text formatters or for automatic translation to a variety of for-
mats suitable for input to text formatters. A copy made in an otherwise Transparent file format whose markup,
or absence of markup, has been arranged to thwart or discourage subsequent modification by readers is not
Transparent. An image format is not Transparent if used for any substantial amount of text. A copy that is not
“Transparent” is called “Opaque”.

Examples of suitable formats for Transparent copies include plain ASCII without markup, Texinfo input format,
LaTeX input format, SGML or XML using a publicly available DTD, and standard-conforming simple HTML,
PostScript or PDF designed for human modification. Examples of transparent image formats include PNG,
XCF and JPG. Opaque formats include proprietary formats that can be read and edited only by proprietary
word processors, SGML or XML for which the DTD and/or processing tools are not generally available, and the
machine-generated HTML, PostScript or PDF produced by some word processors for output purposes only.

The “Title Page” means, for a printed book, the title page itself, plus such following pages as are needed to
hold, legibly, the material this License requires to appear in the title page. For works in formats which do not
have any title page as such, “Title Page” means the text near the most prominent appearance of the work’s title,
preceding the beginning of the body of the text.
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The “publisher” means any person or entity that distributes copies of the Document to the public.

A section “Entitled XYZ” means a named subunit of the Document whose title either is precisely XYZ or
contains XYZ in parentheses following text that translates XYZ in another language. (Here XYZ stands for a
specific section name mentioned below, such as “Acknowledgements”, “Dedications”, “Endorsements”, or
“History”.) To “Preserve the Title” of such a section when you modify the Document means that it remains
a section “Entitled XYZ” according to this definition.

The Document may include Warranty Disclaimers next to the notice which states that this License applies to
the Document. These Warranty Disclaimers are considered to be included by reference in this License, but only
as regards disclaiming warranties: any other implication that these Warranty Disclaimers may have is void and
has no effect on the meaning of this License.

2. VERBATIM COPYING

You may copy and distribute the Document in any medium, either commercially or noncommercially, provided
that this License, the copyright notices, and the license notice saying this License applies to the Document are
reproduced in all copies, and that you add no other conditions whatsoever to those of this License. You may not
use technical measures to obstruct or control the reading or further copying of the copies you make or distribute.
However, you may accept compensation in exchange for copies. If you distribute a large enough number of copies
you must also follow the conditions in section 3.

You may also lend copies, under the same conditions stated above, and you may publicly display copies.

3. COPYING IN QUANTITY

If you publish printed copies (or copies in media that commonly have printed covers) of the Document, numbering
more than 100, and the Document’s license notice requires Cover Texts, you must enclose the copies in covers
that carry, clearly and legibly, all these Cover Texts: Front-Cover Texts on the front cover, and Back-Cover Texts
on the back cover. Both covers must also clearly and legibly identify you as the publisher of these copies. The
front cover must present the full title with all words of the title equally prominent and visible. You may add
other material on the covers in addition. Copying with changes limited to the covers, as long as they preserve
the title of the Document and satisfy these conditions, can be treated as verbatim copying in other respects.

If the required texts for either cover are too voluminous to fit legibly, you should put the first ones listed (as
many as fit reasonably) on the actual cover, and continue the rest onto adjacent pages.

If you publish or distribute Opaque copies of the Document numbering more than 100, you must either include
a machine-readable Transparent copy along with each Opaque copy, or state in or with each Opaque copy a
computer-network location from which the general network-using public has access to download using public-
standard network protocols a complete Transparent copy of the Document, free of added material. If you use the
latter option, you must take reasonably prudent steps, when you begin distribution of Opaque copies in quantity,
to ensure that this Transparent copy will remain thus accessible at the stated location until at least one year
after the last time you distribute an Opaque copy (directly or through your agents or retailers) of that edition
to the public.

It is requested, but not required, that you contact the authors of the Document well before redistributing any
large number of copies, to give them a chance to provide you with an updated version of the Document.

4. MODIFICATIONS

You may copy and distribute a Modified Version of the Document under the conditions of sections 2 and 3 above,
provided that you release the Modified Version under precisely this License, with the Modified Version filling the
role of the Document, thus licensing distribution and modification of the Modified Version to whoever possesses
a copy of it. In addition, you must do these things in the Modified Version:

A. Use in the Title Page (and on the covers, if any) a title distinct from that of the Document, and
from those of previous versions (which should, if there were any, be listed in the History section of
the Document). You may use the same title as a previous version if the original publisher of that
version gives permission.

B. List on the Title Page, as authors, one or more persons or entities responsible for authorship of the
modifications in the Modified Version, together with at least five of the principal authors of the
Document (all of its principal authors, if it has fewer than five), unless they release you from this
requirement.

C. State on the Title page the name of the publisher of the Modified Version, as the publisher.
D. Preserve all the copyright notices of the Document.
E. Add an appropriate copyright notice for your modifications adjacent to the other copyright notices.
F. Include, immediately after the copyright notices, a license notice giving the public permission to use

the Modified Version under the terms of this License, in the form shown in the Addendum below.
G. Preserve in that license notice the full lists of Invariant Sections and required Cover Texts given in

the Document’s license notice.
H. Include an unaltered copy of this License.
I. Preserve the section Entitled “History”, Preserve its Title, and add to it an item stating at least

the title, year, new authors, and publisher of the Modified Version as given on the Title Page. If
there is no section Entitled “History” in the Document, create one stating the title, year, authors,
and publisher of the Document as given on its Title Page, then add an item describing the Modified
Version as stated in the previous sentence.

J. Preserve the network location, if any, given in the Document for public access to a Transparent copy
of the Document, and likewise the network locations given in the Document for previous versions it
was based on. These may be placed in the “History” section. You may omit a network location for
a work that was published at least four years before the Document itself, or if the original publisher
of the version it refers to gives permission.

K. For any section Entitled “Acknowledgements” or “Dedications”, Preserve the Title of the section,
and preserve in the section all the substance and tone of each of the contributor acknowledgements
and/or dedications given therein.
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L. Preserve all the Invariant Sections of the Document, unaltered in their text and in their titles.
Section numbers or the equivalent are not considered part of the section titles.

M. Delete any section Entitled “Endorsements”. Such a section may not be included in the Modified
Version.

N. Do not retitle any existing section to be Entitled “Endorsements” or to conflict in title with any
Invariant Section.

O. Preserve any Warranty Disclaimers.

If the Modified Version includes new front-matter sections or appendices that qualify as Secondary Sections and
contain no material copied from the Document, you may at your option designate some or all of these sections
as invariant. To do this, add their titles to the list of Invariant Sections in the Modified Version’s license notice.
These titles must be distinct from any other section titles.

You may add a section Entitled “Endorsements”, provided it contains nothing but endorsements of your Modified
Version by various parties—for example, statements of peer review or that the text has been approved by an
organization as the authoritative definition of a standard.

You may add a passage of up to five words as a Front-Cover Text, and a passage of up to 25 words as a Back-
Cover Text, to the end of the list of Cover Texts in the Modified Version. Only one passage of Front-Cover
Text and one of Back-Cover Text may be added by (or through arrangements made by) any one entity. If the
Document already includes a cover text for the same cover, previously added by you or by arrangement made
by the same entity you are acting on behalf of, you may not add another; but you may replace the old one, on
explicit permission from the previous publisher that added the old one.

The author(s) and publisher(s) of the Document do not by this License give permission to use their names for
publicity for or to assert or imply endorsement of any Modified Version.

5. COMBINING DOCUMENTS

You may combine the Document with other documents released under this License, under the terms defined in
section 4 above for modified versions, provided that you include in the combination all of the Invariant Sections
of all of the original documents, unmodified, and list them all as Invariant Sections of your combined work in its
license notice, and that you preserve all their Warranty Disclaimers.

The combined work need only contain one copy of this License, and multiple identical Invariant Sections may be
replaced with a single copy. If there are multiple Invariant Sections with the same name but different contents,
make the title of each such section unique by adding at the end of it, in parentheses, the name of the original
author or publisher of that section if known, or else a unique number. Make the same adjustment to the section
titles in the list of Invariant Sections in the license notice of the combined work.

In the combination, you must combine any sections Entitled “History” in the various original documents, forming
one section Entitled “History”; likewise combine any sections Entitled “Acknowledgements”, and any sections
Entitled “Dedications”. You must delete all sections Entitled “Endorsements”.

6. COLLECTIONS OF DOCUMENTS

You may make a collection consisting of the Document and other documents released under this License, and
replace the individual copies of this License in the various documents with a single copy that is included in the
collection, provided that you follow the rules of this License for verbatim copying of each of the documents in
all other respects.

You may extract a single document from such a collection, and distribute it individually under this License,
provided you insert a copy of this License into the extracted document, and follow this License in all other
respects regarding verbatim copying of that document.

7. AGGREGATION WITH INDEPENDENT WORKS

A compilation of the Document or its derivatives with other separate and independent documents or works, in
or on a volume of a storage or distribution medium, is called an “aggregate” if the copyright resulting from the
compilation is not used to limit the legal rights of the compilation’s users beyond what the individual works
permit. When the Document is included in an aggregate, this License does not apply to the other works in the
aggregate which are not themselves derivative works of the Document.

If the Cover Text requirement of section 3 is applicable to these copies of the Document, then if the Document
is less than one half of the entire aggregate, the Document’s Cover Texts may be placed on covers that bracket
the Document within the aggregate, or the electronic equivalent of covers if the Document is in electronic form.
Otherwise they must appear on printed covers that bracket the whole aggregate.

8. TRANSLATION

Translation is considered a kind of modification, so you may distribute translations of the Document under
the terms of section 4. Replacing Invariant Sections with translations requires special permission from their
copyright holders, but you may include translations of some or all Invariant Sections in addition to the original
versions of these Invariant Sections. You may include a translation of this License, and all the license notices
in the Document, and any Warranty Disclaimers, provided that you also include the original English version of
this License and the original versions of those notices and disclaimers. In case of a disagreement between the
translation and the original version of this License or a notice or disclaimer, the original version will prevail.

If a section in the Document is Entitled “Acknowledgements”, “Dedications”, or “History”, the requirement
(section 4) to Preserve its Title (section 1) will typically require changing the actual title.

9. TERMINATION
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You may not copy, modify, sublicense, or distribute the Document except as expressly provided under this
License. Any attempt otherwise to copy, modify, sublicense, or distribute it is void, and will automatically
terminate your rights under this License.

However, if you cease all violation of this License, then your license from a particular copyright holder is reinstated
(a) provisionally, unless and until the copyright holder explicitly and finally terminates your license, and (b)
permanently, if the copyright holder fails to notify you of the violation by some reasonable means prior to 60
days after the cessation.

Moreover, your license from a particular copyright holder is reinstated permanently if the copyright holder notifies
you of the violation by some reasonable means, this is the first time you have received notice of violation of this
License (for any work) from that copyright holder, and you cure the violation prior to 30 days after your receipt
of the notice.

Termination of your rights under this section does not terminate the licenses of parties who have received copies
or rights from you under this License. If your rights have been terminated and not permanently reinstated,
receipt of a copy of some or all of the same material does not give you any rights to use it.

10. FUTURE REVISIONS OF THIS LICENSE

The Free Software Foundation may publish new, revised versions of the GNU Free Documentation License from
time to time. Such new versions will be similar in spirit to the present version, but may differ in detail to address
new problems or concerns. See http://www.gnu.org/copyleft/.

Each version of the License is given a distinguishing version number. If the Document specifies that a particular
numbered version of this License “or any later version” applies to it, you have the option of following the terms
and conditions either of that specified version or of any later version that has been published (not as a draft)
by the Free Software Foundation. If the Document does not specify a version number of this License, you may
choose any version ever published (not as a draft) by the Free Software Foundation. If the Document specifies
that a proxy can decide which future versions of this License can be used, that proxy’s public statement of
acceptance of a version permanently authorizes you to choose that version for the Document.

11. RELICENSING

“Massive Multiauthor Collaboration Site” (or “MMC Site”) means any World Wide Web server that publishes
copyrightable works and also provides prominent facilities for anybody to edit those works. A public wiki that
anybody can edit is an example of such a server. A “Massive Multiauthor Collaboration” (or “MMC”) contained
in the site means any set of copyrightable works thus published on the MMC site.

“CC-BY-SA” means the Creative Commons Attribution-Share Alike 3.0 license published by Creative Commons
Corporation, a not-for-profit corporation with a principal place of business in San Francisco, California, as well
as future copyleft versions of that license published by that same organization.

“Incorporate” means to publish or republish a Document, in whole or in part, as part of another Document.

An MMC is “eligible for relicensing” if it is licensed under this License, and if all works that were first published
under this License somewhere other than this MMC, and subsequently incorporated in whole or in part into the
MMC, (1) had no cover texts or invariant sections, and (2) were thus incorporated prior to November 1, 2008.

The operator of an MMC Site may republish an MMC contained in the site under CC-BY-SA on the same site
at any time before August 1, 2009, provided the MMC is eligible for relicensing.
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