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A very short summary of
the theory of Distributions

Test functions, Convergence of test functions, Distributions, Locally integrable functions,

Dirac's delta function, Principal Value of 1=x, Derivatives of distributions, Derivatives of the

delta function, Other derivative examples, Convergence of distributions, Multiplication of

distributions with smooth functions, Appendix: Examples of test functions, appendix: A

Motivating example

Textbooks to look at: Both [5, 8] o�er a chapter introducing you to the theory of
distributions, but are written with the assumption that you know something about
locally convex topological vector spaces. The shorter text [3] is entirely devoted to
distributions and, like these notes and the material presented in class, it is written
on a more elementary level.

1. Test functions

Let 
 be an open subset of Rd . A test function on 
 is a function ' : 
 ! R
for which

1. supp' is compact, and
2. ' has derivatives of all orders

The space of test functions on 
 is denoted by D(
).

Exercise 1. If ';  2 D(
) then a'+ b 2 D(
) for any a; b 2 R.

1.1. Convergence of test functions.

A sequence of test functions 'n 2 D(
) converges in D(
) to ' if

1. there is a compact K � 
 with supp'n � K for all n,
2. all derivatives @�'n converge uniformly to @�'

Here I've used the \multi-index notation" for partial derivatives, where

@�'(x) =
@a1+:::+ad '

(@x1)a1 : : : (@xd)ad

and where the so-called \multi-index" � = (a1; : : : ; ad) is a d-tuple of nonnegative
integers. One de�nes j�j = a1 + : : :+ ad.
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2. Distributions

A distribution is a linear map T : D(
) ! R which is continuous in the sense
that

lim
n!1

T ('n) = T (') for any sequence 'n
D(
)�! '.

The space of distributions on 
 is denoted by D0(
).

3. Examples

3.1. Locally integrable functions.

Let f 2 L1
loc(
) be given. Then we de�ne Tf 2 D0(
) by setting

Tf (') =

Z



f(x)'(x) dx:

Exercise 2. Show that Tf is a distribution, in particular verify the continuity condition
Tf ('n)! Tf (').

Lemma 1. If f; g are locally integrable functions which are the same almost every-
where, then Tf and Tg are the same distribution.

Conversely, if Tf = Tg then f = g a.e.

Proof. For h = f � g we have Th = Tf � Tg = 0, which means thatZ



h(x)'(x) dx = 0 for all ' 2 D(
).

This implies h(x) = 0 a.e. (I postpone the proof of this statement to section 7.)

3.2. Dirac's delta function.

The distribution de�ned by

hÆ; 'i = '(0); 8' 2 D(R);
is called Dirac's delta function.

Exercise 3.

(i) Verify that Æ is a distribution.
(ii) Show that Æ 6= Tf for any locally integrable function f on R.

Generalizations of Dirac's delta function are Borel measures on 
. If � is a Radon
measure on 
, then

h�; �i =
Z



'(x)d�(x)

again de�nes a distribution.
For example, if � � R2 is a curve, and ds is arc length along the curve, then

hT; 'i =
Z
�

' ds

de�nes a distribution on R2 . In this case the associated measure � is given by
�(E) = length of the portion of the curve � contained in the set E
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3.3. Principal Value of 1=x.

The function f(x) = 1=x is measurable but not locally integrable near x = 0.
Nevertheless, one can de�ne a distribution by

hT; 'i = lim
"&0

Z
jxj�"

'(x)

x
dx:

Exercise 4. Prove that the limit exists, and show that it de�nes a distribution in D0(R).

The distribution thus de�ned is called the Cauchy Principal Value of 1=x, and is

denoted by P:V:
1

x
.

Exercise 5. The limit

hS; 'i = lim
"&0

Z �"

�1
+

Z 1

2"

'(x)

x
dx

also de�nes a distribution.
Compute S � T , where T is as above.

4. Derivatives of distributions

If T 2 D0(
) is a distribution, then we de�ne its partial derivative with respect
to xi to be the distribution DiT , speci�ed by

hDiT; 'i = �hT; @'
@xi

i:

Exercise 6. Check that DiT does indeed de�ne a distribution.

4.1. Consistency of the de�nition.

If T = Tf , and f is a continuously di�erentiable function then we now have
two de�tions of the partial derivatives of f . Integration by parts shows that

T@f=@xi = DiTf ;

indeed, for any ' 2 D(
) we have

hT@f=@xi ; 'i =
Z

@f

@xi
' dx

=

Z �
@f'

@xi
� f

@'

@xi

�
dx

= �
Z
f
@'

@xi
dx

= �hTf ; @'
@xi

i
= hDiTf ; 'i:

Here we have used the fact that if g is a continuously di�erentiable function with
compact support in 
, then Z




@g

@xi
dx = 0:
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Since the new and old de�nitions for derivative coincide for continuously di�eren-
tiable functions we will use any of the usual notations for derivatives, i.e. @if =
Dif = fxi =

@f
@xi

.
Once one has de�ned the derivative one can de�ne higher derivatives by induc-

tion, e.g. DiDjT is Di(DjT ).

Exercise 7. Show that for distributions DiDjT = DjDiT , without any further restric-
tions on T 2 D0(
).

4.2. Derivatives of the delta function.

Applying the de�nition one �nds that the derivative of the Dirac Æ is given by

hDÆ; 'i = �'0(0):
The nth derivative is given by

hDnÆ; 'i = (�1)n'(n)(0):

4.3. Other derivative examples.

Exercise 8. Show that Æ = DT where T = T�[0;1)
.

Compute the second derivative in D0(R) of f(x) = jxj.

Exercise 9. Show, by integrating by parts, that

P:V:
1

x
= DT

where T = Tln jxj.

Exercise 10. Let f be the measurable function de�ned on Rd by f(x) = jxj�a, in which
a is a positive constant, and where jxj = p

(x21 + : : :+ x2d).
For which a > 0 is f locally integrable?
For x 6= 0 one has

@if(x) = �a xi
jxja+2

:

For which values of a does the righthandside de�ne a locally integrable function, and does
the equation also hold in the sense of distributions?

Exercise 11. Let a = a0 < a1 < : : : < an = b be given real numbers. Given k functions
fi 2 C2([ai�1; ai]) (i = 1; : : : ; k) de�ned on adjacent intervals we consider the piecewise
continuous function f : (a; b)! R

f(x) = fi(x) if x 2 (ai�1; ai).

At x = ai we de�ne f(x) = 0.
(i) Compute Df 2 D0(
), where 
 = (a; b).
(ii) Compute D2f 2 D0(
).
(iii) When is Df a locally integrable function?
(iv) When is D2f a locally integrable function?

Exercise 12. Let E � R
2 be a bounded subset whose boundary is a di�erentiable

curve (e.g. E is a disc). Then the characteristic function �E(x) of the set E is a locally
integrable function, and thus de�nes a distribution. Compute Di�E for i = 1; 2.
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Exercise 13. For any constant K 2 R we let f(x; y) = K � x2 � y2 for x2 + y2 < 1
and f(x; y) = 0 elsewhere in R2 .

(i) Compute Dxf and Dyf .
(ii) For which value(s) of K are Dxf and Dyf locally integrable functions?

(iii) Assume K is such that Dxf;Dyf 2 L1
loc(R

2), and compute �f = @2f
@x2

+ @2f
@y2

.

Exercise 14. Let E � R
d be a bounded subset whose boundary @E is smooth. Let

~f : E ! R be a C2 function which vanishes on @E, i.e. ~f(x) = 0 for all x 2 @E. Consider
the function

f(x) =

(
~f(x) if x 2 E
0 elsewhere

Compute �f .

5. Convergence of distributions

A sequence of distributions Tn 2 D0(
) converges in the sense of distributions
to T 2 D0(
), if for every test function ' 2 D(
) one has

lim
n!1

hTn; 'i = hT; 'i:

Notation: Tn
D
0(
)�! T , or \Tn ! T in D0(
)."

Exercise 15. Show that if Tn
D
0(
)�! T then DiTn

D
0(
)�! DiT .

A typical example is this: Let 
 = R and considerfn(x) =
1
n sinnx. Then fn

converges uniformly to zero, and hence Tfn
D
0(
)�! 0.

By the previous exercise the derivative cosnx = D(n�1 sinnx) also converges
to zero in D0(
)! This is an instance of the \Riemann-Lebesgue Lemma" which
states

lim
n!1

Z
R

'(x) cos nx dx = 0

for any ' 2 L1(R). Here we have proved this for the case that ' is a test function,
' 2 D(R).

Exercise 16. Show that n1999 sinnx! 0 in D0(R) as n!1.

The following problem has perhaps a surprising answer:

Exercise 17. If fn(x) = cos nx then fn ! 0 in D0(R). Compute the limit in D0(R) of
gn(x) = (fn(x))

2 = cos2 nx. (Hint: use a double angle formula)

6. Multiplication of distributions with smooth functions

In general one cannot multiply distributions with each other in the same way
that old fashioned functions can be multiplied. The best one can do for distributions
is this: If T 2 D0(
) and if g 2 C1(
) then the product g � T is de�ned by

hgT; 'i = hT; g'i:
The crucial remark here is that g' is again a test function for any test function '.

Exercise 18. Show that gTf = Tgf for any locally integrable f .
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Exercise 19. Prove the product rule, i.e. show that if T 2 D0(
) and f 2 C1(
) then
one has

Di(fT ) = fDiT + (Dif)T:

The following example shows that, in order to de�ne the product of a function
f(x) and a distribution (Æ(n)(x) in this case) one may need derivatives of f(x) of
arbitrary high order. This indicates why one cannot expect to give a good de�nition
of the product of a function f with any distributution T 2 D(R) if the function
only has a �nite number of derivatives.

Exercise 20.

(i) Prove

xÆ(x) = 0

xÆ0(x) = �Æ(x)
xÆ00(x) = �2Æ0(x)

(ii) Show that for any f 2 C1(R) one has

f(x)Æ(x) = f(0)Æ(x);

f(x)Æ0(x) = f(0)Æ0(x)� f 0(0)Æ(x);

f(x)Æ00(x) = f(0)Æ00(x)� 2f 0(0)Æ0(x) + f 00(0)Æ(x)

(iii) Show that for any f 2 C1(R) one has and any n 2 N one has

f(x) � Æ(n)(x) =
nX

k=0

 
n

k

!
(�1)kf (n�k)(0)Æ(k)(x):

where both sides are interpreted as distributions in D0(R).

7. Appendix: Examples of test functions

The function

�(x) =

(
e�1=x for x > 0

0 for x � 0

is a C1 function on R. This function is monotone nondecreasing, and satis�es

lim
x!1

�(x) = 1:

For any positive � and any interval (a; b) the function

��;a;b(x) = �(�(b� x)(x � a))

is strictly positive on the interval (a; b) and zero elsewhere. It is the composition
of C1 functions and hence again C1.

As �%1 the functions ��;a;b(x) converge monotonically to the characteristic
function �(a;b) of the interval (a; b).

Thus if h(x) is a locally integrable function on R for which
R
R
h(x)'(x)dx = 0

for all ' 2 D(R), then this also holds for all ' = ��;a;b, and by taking the limit
�%1 the dominated convergence theorem implies that

R
(a;b) h(x)dx = 0 for every

interval (a; b). This implies that h(x) = 0 a.e.
For functions of several variables one can use the same arguments and thus

prove:
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Theorem 2. If h 2 L1
loc(
) satis�es

R
h(x)'(x) dx = 0 for all test functions

' 2 D(
) then h(x) = 0 a.e.

Proof. For every \rectangle" (a1; b1)� : : :� (ad; bd) one considers the function

��(x1; : : : ; xd) =
dY
i=1

��;ai;bi(xi):

As in the one dimensional case these ��(x) converge monotonically to the charac-
teristic function of the rectangle R = (a1; b1)� : : :� (ad; bd).

The hypothesis that
R
h'dx = 0 for every ' 2 D(
) then implies

R
h��dx = 0

for any � > 0, and any rectangle R which is contained in 
. Letting �%1 again
we conclude that

R
R
h(x)dx = 0 for every rectangle R � 
. The theory of Lebesgue

integration then implies that h(x) = 0 a.e. in 
.

8. Appendix: A Motivating example

In the theory of conformal mappings one encounters the following so-called
\Dirichlet-problem": Given a domain 
 � R2 with a smooth boundary @
, and a
function g : @
 ! R de�ned one this boundary, �nd a function f : 
 ! R which
satis�es Laplace's equation

�f
def
=
@2f

@x2
+
@2f

@y2
= 0

in the domain 
, and which equals g on @
.
Dirichlet observed that if there is a solution f� to this problem, then it mini-

mizes the Dirichlet integral

D(f)
def
=

1

2

Z



jrf(x)j2 dx

among all functions f with f(x) = g(x) for all x 2 @
. Conversely, if a given f�
minimizes D(f), then it must be a solution to the Dirichlet problem.

Here we will prove this converse, assuming that f� is only a C1 function.

Theorem 3. Let X be the set of functions f : �
 ! R which are continuous on �

and which have continuous �rst derivatives in 
. Assume that f� 2 X minimizes
D(f) among all f 2 X with f = g on @
. Then f� satis�es Laplace's equation in
the sense of distributions.

Proof. Let ' 2 D(
) be a test function. Then f� + t' 2 X for all t 2 R and so
D(f� + t') � D(f�) for all t 2 R. Moreover D(f� + t') attains its minimum value
at t = 0. Now exand D(f� + t'):

D(f� + t') =
1

2

Z
jr(f� + t')j2 dx

=
1

2

Z
fjrf�j2 + 2rf� � r'+ jr'j2g dx
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and compute the derivative of this expression at t = 0

dD(f� + t')

dt

����
t=0

=

Z
rf� � r' dx

=

Z
f@xf�@x'+ @yf�@y'g dx

= h@xf�; @x'i+ h@yf�; @y'i
= h��f�; 'i

Since this derivative must vanish we see that �f� = 0 in the sense of distributions.

If you look carefully at the proof then you see that the same argument shows that
any f� which minimizes D(f), and whose second derivatives are continuous must be
a solution to Laplace's equation in the ordinary, non-distribution, sense. So what
did we gain by using the theory of distributions here?

If you try to construct a solution to Dirichlet's problem by showing that there
exists a function f� which minimizes D(f) then it is not clear a priori that such
a minimizer will be C2 rather than C1. It may be easier to �nd a C1 minimizer
than a C2 minimizer. The theory of distributions allows us to state that even C1

minimizers satisfy Laplace's equation, at least in a generalized sense.

Exercise 21. Let fi 2 C(�
) be a sequence of solutions (in the sense of distributions)
of Laplace's equation, and assume that the fi converge uniformly to some function f1.
Prove that f1 is again a solution of Laplace's equation.
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Banach Spaces
Norms and Seminorms, Equivalent norms, Finite dimensional examples, An in�nite

dimensional Banach space, Bounded linear operators and the dual space, Linear subspaces,

The unit ball, Series in Banach spaces, Sums and quotients of Banach spaces.

Text books to look at: In the library there are many books called \Functional
Analysis," and almost all of them present the theory of Banach spaces in varying
degrees of detail. The material in this section is usually found in a �rst chapter of
such a book. Books you could look at are [4, 5, 6, 8].

Rudin's [4] is a good choice to read next to these notes, in particular because
I'll follow parts of this book later on in the course. Rudin's other book [5] gives
a more comprehensive account of Functional Analysis, but it takes the theory of
Locally Convex Topological Vector Spaces as its starting point, which may make
for diÆcult �rst reading, and is a level of generality we won't pursue in this course.

9. Norms and Seminorms

A seminorm on a vector space X is a nonnegative function p : X ! R which
is homogeneous,

p(�x) = j�jp(x)for all x 2 X , and all � 2 R;
and subadditive,

p(x+ y) � p(x) + p(y) for all x; y 2 X .

A seminorm p : X ! R is a norm if it satis�es

p(x) = 0, x = 0:

Norms are usually denoted by kxkX with a subscript to indicate which norm, if
confusion is possible.

A norm de�nes a metric (distance function) by

dX (x; y) = kx� ykX :
A Banach space is a normed vector space (X; k � k) which is complete for the metric
dX . Recall that completeness means that every Cauchy sequence fxi 2 Xgi2N must
have a limit.
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10. Equivalent norms

Two norms k : : : k1 and k : : : k2 on the same vector space X are called equivalent
if there exist constants c; C > 0 such that

ckxk1 � kxk2 � Ckxk1 for all x 2 X .

If k : : : k1 and k : : : k2 are equivalent norms then sequences fxi : i 2 Ng converge
in one norm if and only if the converge in the other. Put di�erently, we have two
distance functions di(x; y) = kx� yki on X , and the identity map idX : X ! X is
a homeomorphism from (X; d1) to (X; d2).

The same de�nition may be applied to seminorms instead of norms.

Exercise 22. Let X be a vector space and fps : s 2 Sg a collection of seminorms on
X. Show that, if

q(x) = sup
s2S

ps(x)

is �nite for all x 2 X, then q is again a seminorm; i.e. \the sup of seminorms is again a
seminorm."

(No assumption on the size of S is intended, S could be �nite , countable, or uncount-
able.)

11. Finite dimensional examples

If X is a �nite dimensional vectorspace then we may choose a basis and identify
X with RN . The quantity

p(x1; : : : ; xN ) = jx1j
de�nes a seminorm. The quantities

p1(x) = maxfjxij : i = 1; 2; : : : ; Ng (maximum norm)

p1(x) =
PN

i=1 jxij (sum norm)

p2(x) = jxj =px21 + : : :+ x2N (Euclidean length)

all de�ne norms on RN .

Exercise 23. Show that the norms p1, p2, and p1 are pairwise equivalent and �nd the
constants \c; C."

Exercise 24. (Constructing new seminorms from old ones.)
If p1; p2; : : : ; pN : X ! R are seminorms on a vector space X, then the quantities

q(x) =
P

i pi(x);

r(x) = maxi pi(x);

s(x) =
p
p1(x)2 + : : : + pN(x)2

are also seminorms on X.
Show this and also show that these seminorms are equivalent.

Exercise 25. A function f : X ! R is called convex if it satis�es

f(tx+ (1� t)y) � tf(x) + (1� t)f(y)

for all x; y 2 X and 0 � t � 1.
Show that any seminorm is convex, and conversely that any convex function f : X ! R

which is homogeneous (f(�x) = j�jf(x) for all � 2 R) is a seminorm.

The following theorem shows that all norms de�ne the same topology on RN .
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Theorem 4. Every norm p(x) on RN is equivalent to the Euclidean norm p2(x).

Proof. We will denote the Euclidean norm by jxj, as is more customary.
If e1; : : : ; eN is the standard basis for RN then any vector x is of the form

x =
P

i xiei, and one has

p(x) = p(x1e1 + : : :+ xNeN )

� jx1jp(e1) + : : :+ jxN jp(eN)
� C

q
x21 + : : :+ x2N ; (Cauchy-Schwarz �)

= Cjxj:

where C =
p
(p(e1)

2 + : : :+ p(eN )
2).

This implies that the norm p is a continuous function on RN , since

jp(x)� p(y)j � p(x� y) � Cjx � yj:

Thus p is a continuous function which is strictly positive on the unit sphere S =
fx 2 RN : jxj = 1g. This sphere is compact, and hence pjS is bounded from below
by a positive constant, i.e.

inf
x2S

p(x) = c > 0:

Consequently we have

p(x) = jxjp
�
x

jxj
�
� cjxj

for all x 2 RN . The norms p(x) and jxj are therefore equivalent.

Exercise 26.

(i) We just used the following inequality: jp(x)� p(y)j � p(x� y). Derive this from
the axioms of a seminorm.

(ii) How does jp(x)� p(y)j � Cjx� yj imply that p is continuous?

12. An in�nite dimensional Banach space

Let K be a compact metric space, e.g. K could be a compact subset of Rd , or
even K = [0; 1]. Then C(K) is by de�nition the set of continuous functions on K.
This is a vector space, and the quantity

kfk = sup
x2K

jf(x)j

de�nes a norm. A sequence of functions fi converges to some f 2 C(K) exactly if
the fi converge uniformly on K to f .

Exercise 27. Verify that k : : : k is indeed a norm, and show that C(K) is a Banach
space with this norm (i.e. verify that C(K) is complete.)
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13. Bounded linear operators and the dual space

Let X and Y be Banach spaces, and let T : X ! Y be a linear mapping. Then
T is called bounded if

kTxkY � CkxkX
for some constant C <1 which does not depend on x 2 X .

The smallest constant C one can take is called the operator norm of T . Equiv-
alent expressions for the operator norm of T are

kTk def= sup
x6=0

kTxkY
kxkX = sup

kxkX�1

kTxkY = sup
kxkX=1

kTxkY :

Lemma 5. A linear map T : X ! Y of normed vector spaces is continuous if and
only if it is bounded.

Proof. Suppose T is bounded. Let x 2 X and " > 0 be given. Then choose
Æ = "=kTk and observe that kx0 � xkX < Æ implies

kTx0 � TxkY = kT (x0 � x)kY � kTk � kx0 � xkX < ":

Hence T is continuous at x 2 X .
Conversely, suppose T is continuous. Since T is linear one has T (0) = 0, and

hence there exists a Æ > 0 such that kxkX < Æ implies kTxkY < 1. For arbitrary
x 2 X we then have

kTxk =




kxkXÆ T

�
Æ

x

kxkX

�



 � kxkX
Æ

;

so that T is bounded with kTk � Æ�1.

The space of bounded operators from X to Y is denoted by L(X;Y ). With the
operator norm L(X;Y ) is a normed vector space.

Di�erent notation and terminology is used in the special case which you get by
choosing Y = R (the real numbers with \norm" given by kxk = jxj is a Banach
space!). A linear map T : X ! R is called a \linear functional," its \operator
norm" is de�ned in the same way,

kTk = sup
kxk�1

jT (x)j;

and the space of bounded linear functionals T : X ! R is called the dual space of
X . It is denoted by X� = L(X;R).

Exercise 28. Verify that the operator norm is indeed a norm.

Finally, one has the following important observation.

Theorem 6. If X is a normed vector space and Y is a Banach space then L(X;Y )
with the operator norm is a Banach space.

In particular, the dual X� of any normed vector space X is a Banach space.

You could provide a proof yourself, or use the absolutely convergent series
approach, which will be discussed shortly, to prove completeness.
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14. Linear subspaces

A subset L � X is a linear subspace if ax+ by 2 L for all x; y 2 L and a; b 2 R.
If X is �nite dimensional, i.e. if X = RN with some norm, then all linear

subspaces of X are closed subsets. In in�nite dimensional spaces this is not always
true as the following example shows.

Let X = C(K) with K = [0; 1], and let L be the space consisting of all poly-
nomials f(x) = amx

m + : : : + a1x + a0. Then clearly L 6= X , but the Weierstrass
approximation theorem states that the closure of L is X , i.e. every continuous
function can be approximated uniformly by polynomials.

15. The unit ball

The set BX = fx 2 X : kxk � 1g has the following four properties:
1. It is convex, i.e. the linesegment connecting any two points x; y 2 BX is again

in BX ,
2. it is symmetric: x 2 BX if and only if �x 2 BX ,
3. it is absorbing, meaning that every x 2 X is contained in some homothetic

copy tBX
def
= ftx : x 2 BXg with t > 0 of the unit ball.

4. if tx 2 BX for all t > 0 then x = 0

Conversely, if B � X is a set satisfying these four properties then

pB(x) = infft > 0 : x 2 tBg
de�nes a norm on X .

Exercise 29. Verify these statements.

Exercise 30. Draw the unit balls in R3 for the norms p1, p2 and p1

Lemma 7. The unit ball BX is compact if and only if X is �nite dimensional.

Proof. If X is �nite dimensional then X = RN for some N , and BX is a closed and
bounded subset of X . The Bolzano-Weierstrass-Heine-Borel theorem implies that
BX is compact.

Suppose X is not �nite dimensional. Then we will construct a sequence of
vectors xi 2 X with kxik = 1 and kxi � xjk = 1 for all i 6= j. Such a sequence is
bounded but has no convergent subsequence, so that BX is not compact.

To construct the xi we choose x1 with kx1k = 1, but arbitrarily otherwise.
Assuming the �rst n vectors x1; : : : ; xn have been constructed we let L be the
linear subspace of X spanned by fx1; : : : ; xng. Since X is in�nite dimensional L is
a proper subset of X and hence a vector y 2 X n L exists.

Let z 2 L be a point which minimizes the distance ky � zk. To see that such
a z must exist we consider the function f : L ! R given by f(z) = kz � yk. Let
R = kyk. Then, since L is �nite dimensional, the set K = fz 2 L : kzk � 3Rg
is compact, and f attains a minimum on K, say at some z� 2 K. This minimum
value cannot exceed f(0) = kyk = R. On the complement of K, i.e. on L nK one
has

f(z) = kz � yk � kzk� kyk � 3R�R = 2R > f(z�):

So z� is a nearest point to y in L.
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We now de�ne

xn+1 =
y � z�
ky � z�k :

Then xn+1 is clearly a unit vector, and by construction its distance to L also equals
1. Hence kxn+1 � xik = 1 for 1 � i � n.

16. Series in Banach spaces

A series
P1

i=1 xi whose terms lie in a normed vector space X converges if the

partial sums sN =
PN

1 xi converge. The limit of the partial sums is the sum of the
series, P1

i=1 xi = limN!1

PN
1 xi:

A series
P

i xi is called absolutely convergent if the series
P

i kxik converges (in R).
Theorem 8. A normed vector space X is complete if and only if every absolutely
convergent series in X converges.

Proof. If X is complete (X is a Banach space), then the sequence of partial sums
sN is a Cauchy sequence. Indeed, given " > 0 choose N" so that

P1
N"
kxik < ".

Then one has for all n > m � N"

ksm � snk =







nX
i=m+1

xi






 �
nX

m+1

kxik < ":

Conversely, suppose every absolutely convergent series in X converges. To establish
completeness of X we let fxi : i � 1g be a Cauchy sequence in X , and we look
for a limit of this sequence. It suÆces to �nd a convergent subsequence xnk , for
if a Cauchy sequence has a convergent subsequence then the whole sequence must
converge.

Since xi is a Cauchy sequence there exist n1 < n2 < : : : such that

kxm � xnkk � 2�k for all m � nk and k � 1.

The series
P
yi with y1 = xn1 and yk = xnk+1

� xnk is then absolutely convergent
since

kykk = kxnk+1
� xnkk � 2�k:

The partial sums of this series are precisely the xnk , and by hypothesis they converge
to some x� 2 X .

Exercise 31. Use this completeness criterion to prove Theorem 6.

17. Sums of Banach spaces

If X and Y are Banach spaces, then the product space X�Y is again a vector
space, with addition de�ned by

(x1; y1) + (x2; y2)
def
=(x1 + x2; y1 + y2);

and scalar multiplication similarly. The product space is usually written as X � Y
and called the direct sum of X and Y (to distinguish the set X�Y from the vector
space X � Y { yes, this is pedantic.)
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The direct sum of two Banach spaces can be given a norm by

k(x; y)kX�Y def
= kxkX + kykY :

With this norm X � Y is a Banach space.

Exercise 32. Prove that (X � Y; k : : : kX�Y ) is complete.

One can also de�ne several other equivalent norms on the direct sum, such as
k(x; y)k0 def= maxfkxkX ; kykY g.

18. Quotients of Banach spaces

We recall that for a vector space X and a linear subspace L � X the quotient

X=L is de�ned to be the set of equivalence classes of the equivalence relation x
L�

y , x � y 2 L. If we denote the equivalence class of x 2 X by either x + L
or by [x]L then X=L is a vector space with addition and multilication de�ned by
[x]L + [y]L = [x+ y]L, �[x]L = [�x]L.

If X is a normed vector space then the quantity

k[x]LkL def
= inffkyk : y L� xg

is a seminorm on X=L.

Exercise 33. Show that k[x]LkL is the distance from x to L, and that k[x]LkL is indeed
a seminorm.

In general k[x]LkL will not be a norm: in fact k[x]LkL is a norm if and only if L
is a closed subspace of X .

Theorem 9. If X is a Banach space and if L is a closed subspace then X=L with
the norm k[x]LkL is a Banach space.
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Function Spaces
The Lp spaces, `p, weighted Lp spaces, L1 and `1, BC(
), H�older continuous functions,

Sobolev Spaces

Text books to look at: The books [4, 6], as well as most other books in the
library with the title \Functional Analysis," describe the \classical Banach spaces"
Lp, `p and C(
). The H�older spaces and Sobolev spaces are easier to found in
textbooks on PDE [2] or harmonic analysis.

19. The Lp spaces

In this section let p 2 [1;1) be given.
Let 
 be a set with a �-algebra � and a countably additive measure � : � !

[0;1]. Then in 721 (1st semester real analysis) one de�nes Lp(
;�; �) to be the
set of � measurable functions f : 
! R for which

kfkp =
�Z




jf(x)jp d�(x)
�1=p

<1

The quantity k : : : kp thus de�ned is a seminorm, but not a norm as it vanishes on
all functions f 2 N, where N is the set of functions which vanish almost everywhere.
It is shown in 721 that N is a linear subspace of Lp, and one de�nes Lp = L

p=N.
In the standard \abuse of language" we agree to forget to distinguish between

a measurable function f and the equivalence class of functions g which coincide a.e.
with f .

The quantity kfkp does not depend on which measurable function f one chooses
to represent f , and thus de�nes a norm on Lp. The proof of the triangle inequality
is not totally trivial but was given in 721. It was also shown in 721 that Lp is
complete, so that Lp is a Banach space.

19.1. Special case { the sequence spaces `p.

If one chooses 
 to be the �nite set 
 = f1; : : : ; Ng and de�nes � to be the
\counting measure", i.e. �(E) is the number of elements of E � f1; : : : ; Ng, then
Lp is a �nite (N) dimensional space with norm

k(x1; : : : ; xN )kp = fjx1jp + : : :+ jxN jpg1=p:
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If one sets 
 = N, and lets � again be the counting measure, then Lp is the space
of sequences fxi : i 2 Ng for which

k(xi)i�1kp = fP1
i=1 jxijpg

1=p
<1:

This space is denoted by `p, or `p(N).
One can also consider the space of bi-in�nite sequences (xi)i2Zwhose p-normP

i2Zjxijp is �nite. This space is denoted by `p(Z).

19.2. Special case { weighted Lp spaces.

Let 
 be an open subset of Rn , and let w : 
! (0;1) be a positive measurable
function. We let � be the measure d� = w(x)dx, i.e. for any measurable E � 
 we
put

�(E)
def
=

Z
E

w(x) dx:

Then Lp(
; w(x)dx) is the space of measurable functions for which

kfkLp(
;w(x)dx) =
�Z




w(x)jf(x)jp dx
�1=p

is �nite.
The choice w(x) = 1 gives us the space commonly denoted by Lp(
).

20. L1 and `1

We have introduced the Lp spaces for 1 � p < 1. It is natural to extend the
de�nition to p = 1 by de�ning the essential supremum of a measurable function
f : 
! R by

ess:sup
x2


f(x)
def
= inffM 2 R : �fx : f(x) �Mg = 0g:

The L1 norm is then de�ned to be

kfk1 def
= ess:sup

x2

jf(x)j:

If we again agree to identify functions which coincide except on a set of �-measure
zero then

L1(
;�; �)
def
= ff : kfk1 <1g

is a Banach space. Elements of L1 are called essentially bounded functions.
If one chooses 
 = N or 
 = Z then the corresponding L1 space is a space of

bounded sequences (xi)i2N (or (xi)i2Z respectively) with the supremum norm

k(xi)k1 = sup
i
jxij:

The resulting sequence space is denoted by `1(N) or `1(Z).
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21. H�older's inequality.

For f 2 Lp and g 2 Lq where p and q are conjugate exponents, meaning
1

p
+
1

q
= 1

the product fg is integrable and one has

kfgk1 � kfkp kgkq
i.e. Z




jf(x)g(x)j d� �
�Z




jf(x)jp d�
�1=p�Z




jg(x)jq d�
�1=q

:

(When p = 1 one has q =1. The inequality still holds provided kgk1 is properly
interpreted { see below.)

The following statement shows that H�older's inequality is in a sense optimal.
It also provides a useful description of the Lp norm.

Lemma 10. Let 1 � p � 1.
For any f 2 Lp(
;�; �) one has

kfkp = sup
kgkq�1

Z



f(x)g(x)d�(x):(y)

If p <1 then the supremum is attained by the choice

g(x) = Ajf(x)jp�1signf(x);
where A = kfk1�pp , and where signf(x) is +1, 0 or �1 depending on whether
f(x) > 0, = 0 or < 0 respectively.

This Lemma immediately implies that the Lp norm is a seminorm. Indeed, for
each �xed g 2 Lq the integral in the righthand side in (y) is linear in f and hence
de�nes a seminorm. The supremum of these seminorms must again be a seminorm.

Proof. H�older's inequality directly implies that kfkp does not exceed the supremum,
and if p <1 one can substitute the given g(x) to verify that kfkp actually equals
the supremum.

If p = 1 then one takes E" = fx : jf(x)j � kfk1 � "g. By assumption
�(E") > 0 for all " > 0 (this is essentially the de�nition of the ess:sup) so we can
de�ne g"(x) = jE"j�1�E"(x)signf(x).

One then has Z
f(x)g"(x)d�(x) =

1

jE"j
Z
E"

jf(x)jd�(x)

� kfk1 � "

with " > 0 arbitrary.

Exercise 34. Let X be the unit ball in L1(�1; 1). Does the function F : X ! R given
by

F (f)
def
=

Z 1

�1

(1� x2)f(x) dx

attain a maximum on X?
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Exercise 35. Prove that for any measurable f : 
 ! R with kfkp < 1 for all p < 1
one has

lim
p!1

kfkp = kfk1:

Exercise 36. (An interpolation inequality.) Suppose that f 2 Lp0 and f 2 Lp1 for
1 � p0 < p1 <1. Show that f 2 Lp for all p 2 [p0; p1], and that

kfkp � kfk1��p0 kfk�p1 ;
provided 1

p
= 1��

p0
+ �

p1
.

Exercise 37.

(i) Show that if �(
) <1 then Lp � Lp
0

if and only if p � p0.
(ii) Assume again that �(
) < 1 and let 1 � p < 1. Show that L1(
) is a dense

subspace of Lp(
).

(iii) Show that `p(N) � `p
0

(N) if and only if p � p0.

Exercise 38.

(i) Let 
 = R
n and let � be Lebesgue measure. Give an example of a function f which

belongs to Lp if and only if p = 1999.
(ii) Give an example which belongs to all Lp with p <1, but not to L1.
(iii) Give an example of a function f 2 \p<1Lp which is not essentially bounded on

any open E � R
n .

22. BC(
)

Let 
 be a topological space, and let BC(
) be the set of bounded and con-
tinuous real valued functions on 
. This is a Banach space with norm

kfk = sup
x2


jf(x)j:

If 
 is compact then all continuous fuctions on 
 are bounded and we simply write
C(
).

Exercise 39. Observe that if 
 = N then BC(
) = `1(N).

Exercise 40. Let 
 = R
n . Then every bounded continuous function is also an essentially

bounded measurable function on Rn .
Show that BC(Rn) � L1(Rn) is a closed subspace and that BC(Rn) 6= L1(Rn).
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Exercise 41. If 
 is a metric space then we can distinguish uniformly continuous
functions among the merely continuous functions on 
. (Recall f is uniformly continuous
if for all " > 0 a Æ" > 0 exists such that jf(x) � f(y)j � " for all x; y 2 
 with
d(x; y) < Æ".)

(i) Show that BUC(
), the space of bounded uniformly continuous functions on 
, is
a closed subspace of BC(
).

(ii) Find a function f 2 BC(R) which does not lie in BUC(R).
(iii) Let

t(x) =

(
1� 2jxj for jxj � 1=2

0 otherwise

be the \tent function," and consider the map F from `1(Z) to BUC(R) which assigns
the function

F ((si)i2Z)(x) =
X
i2Z

sit(x� i)

to the sequence (si)i2Z2 `1(Z).
Show that F is an isometry.

23. H�older continuous functions

Let 
 � Rn be open, and let � 2 (0; 1] be a �xed constant. A continuous
function f : 
 ! R is said to H�older continuous with exponent � if there is a
constant C <1 such that for all x; y 2 


jf(x)� f(y)j � Cjx� yj�:

In the special case � = 1 one speaks of Lipschitz continuous functions rather than
H�older continuous functions.

The best constant C is given by

[f ]�;
 = sup
x6=y

jf(x)� f(y)j
jx� yj�

The space of �-H�older continuous functions is denoted by C�(
).

Exercise 42. Show that [f ]�;
 is a seminorm on C�(
).
(Suggestion: For each x 6= y the quantity px;y(f) = jx � yj��jf(x) � f(y)j is a

seminorm.)

The space of �-H�older continuous functions with norm

kfkC� = sup
x2


jf(x)j+ sup
x 6=y

jf(x)� f(y)j
jx� yj�

= kfkL1 + [f ]�;
:

is a Banach space.

Exercise 43. Show that the norm kfkC� is complete.
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Exercise 44. Let 
 = (�1; 1) � R, and de�ne f(x) =
pjxj.

(i) For which � 2 (0; 1] does f(x) belong to C�(
)?
(ii) Let g(x) be a continuously di�erentiable function on the closed interval�1 � x � 1.

Show that

kf � gkC1=2 � 1:

Are polynomials dense in C1=2(�1; 1)? (Compare your answer with the Stone Weierstrass
theorem.)

(iii) For each a 2 (�1; 1) de�ne fa(x) = pjx � aj. Show that fa ! f uniformly as
a! 0. Is it true that

lim
a!0

kfa � fkC1=2 = 0?

(iv) Is the space C1=2(�1; 1) separable?

Why were H�older continuous functions introduced?

H�older spaces are used extensively in the study of partial di�erential equations.
One of the �rst places where one encounters them is in \potential theory," where
one looks for solutions f : R3 ! R of the Poisson equation

�f =
@2f

@x21
+
@2f

@x22
+
@2f

@x23
= �(x)

for a given function � : R3 ! R. (If � represents the distribution of charge, then
the solution to this equation represents the potential of the electric �eld produced
by the charges.) If � is compactly supported and continuous then the solution is
given by

f(x) = � 1

4�

Z
R3

�(y)

jx� yj dy:

The integral in this formula is called the Newton potential of the charge distribution
�.

Instead of wondering how this formula was derived one can try to simply verify
it by computing the second derivatives of the function f(x) de�ned by the Newton
potential. After di�erentiating under the integral one ends up with the following
integrals

@2f

@xi@xj
=

1

4�

Z
R3

jx� yj2Æij � 3(xi � yi)(xj � yj)

jx� yj5 �(y) dy(�)

where Æij = 0 for i 6= j and 1 if i = j.
Now the integrand in these integrals are bounded by Cjx � yj�3, which is not

an integrable function, so that the integrals cannot be interpreted as Lebesgue
integrals, and so that the di�erentiation under the integral which gave us (�) may
not even be justi�ed.

It turns out that if � is merely continuous then the Newton potential need not
be a twice di�erentiable function. However, if � is known to be H�older continuous
of some exponent � 2 (0; 1), then one can justify (�) and the second derivatives of
f turn out to exist and they even turn out to be H�older continuous functions of the
same exponent �.
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24. Sobolev Spaces

Let 
 � Rn be open. Then W 1;p(
) is the set of functions f 2 Lp(
) whose
partial derivatives in the sense of distributions are again Lp functions, i.e. the
distributions Dif 2 D0(
) are actually of the form Dif = gi for certain gi 2 Lp(
).

One can formulate this without referring to distributions by saying that f 2
Lp(
) belongs to W 1;p(
) if there are functions g1; : : : ; gn 2 Lp(
) such that for
all smooth compactly supported functions ' : 
! R one hasZ




f(x)
@'

@xi
dx =

Z



gi(x)'(x) dx:

The space W 1;p(
) can be given the following norm

kfkW 1;p
def
= kfkLp + k@1fkLp + : : :+ k@nfkLp

or the equivalent norms

kfk0W 1;p =

�Z



(jf jp + j@1f(x)jp + : : :+ j@nf(x)jp) dx
�1=p

:

and

kfk00W 1;p =

�Z



(jf jp + jrf(x)jp) dx
�1=p

:

Exercise 45. Verify that W 1;p(
) with the given norm is complete.

More generally one de�nesWm;p(
) to be the space of functions which together
with their distributional derivatives of order at most m belong to Lp(
). A norm
on Wm;p(
) is

kfkpWm;p =
X

0�j�j�m

Z



jD�f(x)j dx:

Exercise 46. Let 
 = fx 2 Rn : jxj < 1g be the open unit ball in Rn .
(i) For which a 2 R does the function f(x) = jxja belong to W 1;p(
)?
(ii) Assume 1 � p < n and construct a function f 2 W 1;p(
) which is unbounded in

every open subset 
0 � 
. (Suggestion: try a function of the form
P1

i=1 cijx � rij�a
where ri is an enumeration of the points in 
 with rational coordinates, and a, ci are to
be chosen appropriately.)

Exercise 47. Let f : Rn ! R be a continuously di�erentiable function, and de�ne

g(x) =

(
f(x) jxj � 1

0 jxj > 1

Does f belong to W 1;p(Rn) for any p 2 [1;1]?
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Approximation Theorems
Approximation of Lp functions by continuous functions, The convolution product,

Molli�cation, Smoothness of the molli�cation, Approximation in Sobolev spaces,

Approximation of H�older continuous functions

25. Approximation of Lp functions by continuous functions

Let 
 � Rn be an open subset, and �x some p 2 [1;1). Denote the space of
compactly supported continuous functions on 
 by Cc(
).

Theorem 11. Cc(
) is dense in Lp(
).

Proof. Let f 2 Lp and " > 0 be given. The sequence of functions

fk(x) =

8>>><>>>:
0 if jxj � k; otherwise, if jxj < k then,

k when f(x) > k

f(x) when jf(x)j � k

�k when f(x) < �k
converges in Lp to f (use the dominated convergence theorem to verify this.)

We choose k large enough so that kf � fkkp < "=2.
By Lusin's theorem from \721" (e.g. see [4, theorem 2.23]) there exists a con-

tinuous function ' whose support is contained in fx 2 
 : jxj < kg, which satis�es
j'(x)j � k, and which coincides with fk except on a set whose measure we can
assume is arbitrarily small. We will assume that E = fx : '(x) 6= fk(x)g has
measure at most ("=4k)p. Then on E one has j'� fkj � 2k and thus

k'� fkkp �
�Z

E

(2k)p dx

�1=p

= 2km(E)1=p � "=2:

The compactly supported function ' is our approximation to f . Indeed one has

kf � 'kp � kf � fkkp + kfk � 'kp � ":

Exercise 48. Does this proof also work if p =1? Is Cc(
) dense in L
1(
)?
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The approximation theorem we have just shown has a few drawbacks. First,
the approximation is only continuous, and this can be improved. Second, the
method of approximation is not \transparent" in the sense that we do not have an
explicit formula for the approximation function. One consequence of this is that the
approximation only applies to Lp spaces, and that it is not clear how to generalize
it to Sobolev or H�older spaces.

There is a standard method, called \molli�cation," of approximating rough
functions which does not su�er from these defects. Brie
y stated, molli�cation of
a function f is the same as computing the convolution of f with a suitable test
function ', so we begin by collecting some facts about the convolution of functions.

26. The convolution product

The following is known as Jensen's inequality.

Lemma 12. Let � : R ! R be convex, let � be a measure on 
 with �(
) = 1, and
let g : 
! R be � integrable. Then

�

�Z



g(x) d�(x)

�
�
Z



�(g(x)) d�(x):

Proof. Since � is convex we have

�(s) = sup
t2R

f�(t) + �0(t)(s� t)g :

Thus

�

�Z



g(x) d�(x)

�
= sup

t2R
�(t) + �0(t)

�Z



g(x) d�(x) � t

�
= sup

t2R

Z



(�(t) + �0(t)(g(x) � t)) d�(x)

�
Z



sup
t2R

(�(t) + �0(t)(g(x) � t)) d�(x)

=

Z



�(g(x)) d�(x):

For any two functions f; g : Rn ! R one de�nes the convolution

f � g(x) =
Z
Rn

f(y)g(x� y) dy;(1)

provided one can make sense of the integral. This is clearly the case if, say, f 2
L1(Rn ) and g 2 L1(Rn ). More generally one has

Theorem 13. If f 2 Lp(Rn ) and g 2 Lq(Rn ) with q = p=(p� 1), then the convo-
lution product f � g(x) is well de�ned for each x 2 Rn , and one has

jf � g(x)j � kfkLpkgkLq :
Proof. Apply H�older's inequality.

Exercise 49. Show that under the same hypotheses f � g is actually a continuous
function on Rn , and that

lim
jxj!1

f � g(x) = 0:
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Theorem 14. If f 2 L1(Rn ) and g 2 Lp(Rn ) then f(y)g(x � y) is a Lebesgue
integrable function of y for almost every x 2 Rn , and the convolution product
f � g(x) de�ned in (1) is a measurable function.

Moreover one has f � g 2 Lp and

kf � gkp � kfk1 kgkp:
Proof. We assume without loss of generality that f and g are nonnegative, and thatR
f(x) dx = 1.
The function �(s) = jsjp is convex and hence Jensen's inequality implies

(f � g)(x)p �
Z
f(x)g(x � y)p dy:

Integration over x and application of the Fubini-Tonelli theorem then givesZ
Rn

(f � g)(x)p dx �
Z
Rn

Z
Rn

f(x)g(x� y)p dy dx

=

Z
Rn

Z
Rn

f(x)g(x� y)p dx dy

=

Z
Rn

f(x) dx �
Z
Rn

g(x� y)p dy

= kgkpp:

Exercise 50. Prove the following \local version" of Jensen's inequality.
If f 2 L1(Rn) vanishes outside of the ball of radius " > 0, and if g 2 Lp(
) for some

domain 
 � R
n , then the convolution f � g(x) as de�ned in (1) exists for almost every

x 2 
". Moreover,

kf � gkLp(
") � kfkL1(Rn)kgkLp(
):
Here 
"

def
= fx 2 
 : B(x; ") � 
g.

27. Molli�cation

To mollify a function f 2 L1
loc(
) one needs a compactly supported smooth

function ' 2 D(Rn ) with Z
Rn

'(x) dx = 1:

We will assume that ' is supported in the Euclidean unit ball of Rn , and that
' � 0. For each " > 0 we then de�ne

f"(x) =

Z
f(y)"�n'(

x� y

"
) dy(2)

=

Z
f(y)'"(x� y) dy
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where '"(x)
def
= "�n'(x="). Substitution y = x�z or y = x�"w gives the following

alternative expressions

f"(x) =

Z
f(x� z)'"(z) dz

=

Z
f(x� "w)'(w) dw:

The molli�cation f"(x) is only de�ned for x 2 
". Of course, for 
 = Rn one has

" = 
 so that f" is de�ned on all of Rn .

The integral(2) is taken over 
, but since '(x) = 0 for jxj � 1 we may also
integrate over B(x; ") = fy 2 
 : jx� yj � "g.

The de�nition shows that molli�cation is a linear operation: for any two locally
integrable f and g and any �; � 2 R one has

(�f + �g)" = �f" + �g":

Theorem 15.
(i) If f 2 Cc(Rn ) then f" converges uniformly to f .
(ii) If f 2 Lp(Rn ) then f" converges to f in Lp(Rn ).

Proof. (i) Since f is compactly supported and continuous it is uniformly continuous.
So, given " > 0 there exists Æ > 0 such that jf(x) � f(y)j < " if jx � yj < Æ. The
molli�cation fÆ0 with 0 < Æ0 < Æ then satis�es

jfÆ0(x) � f(x)j �
����Z 'Æ0(x� y)(f(y)� f(x)) dy

����
� sup
jy�xj�Æ0

jf(y)� f(x)j �
Z
'Æ0(x� y) dy

� ":

(ii) Let f 2 Lp(Rn ) be given. Choose a g 2 Cc(Rn ) with kg � fkp < "=3. The
triangle inequality gives us for any Æ > 0

kf � fÆkp � kf � gkp + kg � gÆkp + kgÆ � fÆkp:(3)

The �rst term is not more than "=3. The last term can be estimated by

kgÆ � fÆkp = k'Æ � (g � f)kp � k'k1kg � fkp = kg � fkp < "=3:

If g(x) � 0 for jxj � R then gÆ vanishes for jxj � R + Æ, and thus the middle term
in (3) is bounded by

kg � gÆkp �
�
mfx : jxj < R+ Æg�1=pkg � gÆk1

Since gÆ ! g uniformly we can make this less than "=3 by choosing Æ suÆciently
small.

Adding the three estimates for the respective terms in (3) we get

kf � fÆkp < "

3
+
"

3
+
"

3
= "

if Æ is small enough.

A similar argument using the \local version" of Jensen's inequality leads to the
following.
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Theorem 16.
(i) If f : 
! R is continuous then f" converges uniformly to f on any compact

K � 
.
(ii) If f 2 Lploc(
) then f" converges in Lp(K) for any compact K � 
.

28. Smoothness of the molli�cation

Theorem 17. Let f 2 L1
loc(
) for some open 
 � Rn .

(i) f" is a smooth function on 
".
(ii) The operations of molli�cation and di�erentiation commute, i.e. if both f

and Dif are locally integrable then Di(f") =
�
Dif

�
"
.

The second statement in this theorem says that the interchange of di�erentia-
tion and integration in

@

@xi

Z
f(x� z)'"(z) dz =

Z
@f(x� z)

@xi
'"(z) dz

is allowed when the derivative is interpreted in the sense of distributions.

Proof. Using the dominated convergence theorem one can justify di�erentiation
under the integral to obtain

@f"
@xi

(x) = lim
t!0

Z
f(y)

'"(x + tei � y)� '"(x� y)

t
dy

=

Z
f(y)

@'"
@xi

(x� y) dy:(�)
It follows that the molli�cation of any locally integrable function is in fact di�eren-
tiable. By repeating this argument one also obtains all higher derivatives, and one
has

D�f"(x) =

Z
f(y)D�'"(x� y) dy:

To prove (ii) we observe that

@'"(x� y)

@xi
= �@'"(x� y)

@yi

which allows us to rewrite (�) as
@f"
@xi

(x) = �
Z
f(y)

@'"
@yi

(x� y) dy

= �hf;Di'";xi
= hDif; '";xi

in which '";x(y) = '"(x � y) is a test function on 
 and the last line is to be
interpreted in the sense of distributions. We are assuming that the distributional
derivative Dif actually belongs to L1

loc and so we have

@f"
@xi

(x) = hDif; '";xi

=

Z
@f(y)

@yi
'"(x� y) dy

= (Dif)"(x):
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29. Approximation in Sobolev spaces

If f 2 Wm;p(Rn ) then we have just shown that for any multi-index � with
j�j � m one has

D�(f") = (D�f)";

and also that as " & 0 the smooth functions (D�f)" converge in L
p(Rn ) to D�f .

This implies that f" converges to f in Wm;p(Rn ) so that we have proved

Theorem 18. Wm;p(Rn ) \ C1(Rn ) is a dense subspace of Wm;p(Rn ).

For functions f 2 Wm;p(
) where 
 $ Rn is open, molli�cation does not
produce a function which is de�ned on all of 
, and we don't get an analogous
density theorem without some extra work. Nevertheless, the following is true and
I refer to [2, x5.3] for a proof.
Theorem 19. Wm;p(
) \ C1(
) is a dense subspace of Wm;p(
).

As Evans points out [2] the smaller space C1(�
) is in general NOT dense in
W k;p(
), but it is dense if one assumes that 
 has smooth boundary.

Using molli�cation one does obtain smooth approximations of functions f 2
W k;p(
), but only in the following sense.

Theorem 20. If f 2W k;p(
), then for any Æ > 0 the functions f"j
Æ converge in
W k;p(
Æ) to f j
Æ.

Exercise 51. Show that C1c (Rn) is dense in Wm;p(Rn).

Exercise 52. Show that if f; g 2 W 1;2(Rn) then the product h(x) = f(x)g(x) belongs
to W 1;1(Rn), and that the product rule holds, i.e.

Dih = fDig + gDif:

Hint: �rst prove this assuming f 2 C1 \W 1;2, then apply an approximation theorem.

Exercise 53. Let f 2 W 1;p(Rn), and assume that 	 : R ! R is a continuously di�er-
entiable function with 8s2Rj	0(s)j � M for some �nite M . Show that the composition
g(x) = 	(f(x)) again belongs to W 1;p(Rn), and that the chain rule holds, i.e.

Di	(f(x)) = 	0(f(x))Dif(x):

30. Approximation of H�older continuous functions

We have seen that smooth functions are not dense in C�(
) for any � 2 (0; 1)
so we cannot expect f" to converge to f in the � H�older norm for any f 2 C�(Rn ).
However, the molli�cations f" do converge uniformly to f and the way in which
they do this turns out to give a useful description of H�older continuity.

Theorem 21. Let f 2 C�(Rn ). Then f" converges uniformly to f as " & 0, and
one has

kf � f"k1 � [f ]�"
�

krf"k1 � C[f ]�"
��1

for some constant C which only depends on the function ' in the de�nition of the
molli�cation.
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We recall that the seminorm [f ]� is de�ned by

[f ]� = sup
x 6=y

jf(x)� f(y)j
jx� yj� :

Proof. For any x 2 Rn one has

f(x)� f"(x) =

Z
'"(x� y)(f(y)� f(x)) dy

since
R
'" = 1. The integral is taken over the ball jx� yj � " on which we have by

de�nition jf(x)� f(y)j � [f ]�"
�. This gives us the estimate

jf(x)� f"(x)j � [f ]�"
�:

To estimate the derivative we start with

Dif"(x) =

Z
Di'"(x� y)f(y) dy

=

Z
Di'"(x� y)(f(y)� f(x)) dy

where we have used
R
Di'"(x � y) dy = 0. As before the integral is over the ball

B(x; ") so that we have

jDif"(x)j �
Z
jDi'"(x� y)jjf(y)� f(x)j dy

� [f ]�"
�

Z
jDi'"(x� y)j dy

= C[f ]�"
��1

in which C =
R jr'(z)j dz, and where we have used the \scaling property"Z

Rn

jr'"(x)j dx = 1

"

Z
Rn

jr'(x)j dx:

This theorem tells us the following: given a H�older continuous function f one
can approximate f with smooth functions f". The closer these smooth functions
get to f the larger their derivatives must be. In fact one can �nd a function which
is at most C"� away from f , and whose derivative is nowhere larger than C="1��.
This turns out to be a characterization of H�older continuity.

Theorem 22. Let f : Rn ! R be a continuous function, and suppose that for any
" > 0 one can �nd a C1 function g" : Rn ! R with

kf � g"k1 � A"�; krg"k1 � A"��1;

then f is � H�older continuous and

[f ]� � 3A:

Proof. For given x; y 2 Rn we choose " = jx� yj. Then
jf(x)� g"(x)j � A"�; jf(y)� g"(y)j � A"�;

and

jg"(x) � g"(y)j � krg"k1jx� yj � A"��1 � ";= A"�:
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Add these three inequalities and you get

jf(x)� f(y)j � jf(x)� g"(x)j + jg"(x)� g"(y)j+ jf(y)� g"(y)j
� 3A"�

= 3Ajx� yj�;
as claimed.

Exercise 54. Let f 2 C�([0; 1]), and for any n 2 N let fn : [0; 1]! R be the continuous
function which coincides with f at x = 0, 1

n
, 2
n
, : : : , n�1

n
, and x = 1, and which is linear

on each interval [k=n; (k + 1)=n].
Estimate kf � fnk1 and kf 0nk1 in terms of " = 1=n.
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Embedding Theorems
The Sobolev embedding theorem for p > n, the case 1 � p < n, the Isoperimetric inequality

31. The Sobolev embedding theorem for p > n

The Sobolev embedding theorems say that if an Lp function has a derivative in
Lp then it must be more regular than just any Lp function. There are two di�erent
cases to be considered depending on the size of p, and the dividing line is at p = n.

Theorem 23. If f 2 W 1;p(Rn ) then f is �-H�older continuous, where � = 1� n
p ,

and moreover

[f ]� � CkrfkLp
for some �nite constant C.

The proof goes by showing that the molli�cations f" satisfy the characterization
of H�older continuous functions from the previous chapter. We begin with the
identity

Lemma 24. If f and Dif are locally integrable then

@f"(x)

@"
= �

Z
Rn

Dif(y)"
�n i(

x� y

"
) dy;(4)

where

 i(x) = xi'(x):

Formally one can derive (4) by di�erentiating

f"(x) =

Z
f(x� "y)'(y) dy

under the integral, and substituting y = z=". It is not clear that this is allowed
since f only has distributional derivatives.

Instead we argue as follows:
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Proof. One has

@f"(x)

@"
=

@

@"

Z
f(y)'"(x� y) dy

=

Z
f(y)

�
� n

"n+1
'(
x � y

"
)� xi � yi

"n+2
(@i')(

x � y

"
)

�
dy

=

Z
f(y)

�
� n

"n+1
'(
x � y

"
)� xi � yi

"n+1

@

@yi
'(
x� y

"
)

�
dy

=

Z
f(y)

@

@yi

�
xi � yi
"n+1

'(
x � y

"
)

�
dy

(apply the de�nition of distributional derivative)

= �
Z
Dif(y)"

�n i(
x� y

"
) dy

Proof of the Theorem.

We show that the f" converge uniformly. One has����@f"(x)@"

���� � �Z jrf(y)jpdy
�1=p

�
�Z

"�nq
���� i(x� y

"
)

����q dy�1=q

;

(substitute y = x+ "z in the second integral)

= krfkLp �
�Z

j i(z)jqdz
�1=q

"n=q�n

= CkrfkLp"�n=p:

For any two 0 < "1 < "2 < "� we therefore have

jf"1(x) � f"2(x)j =
Z "2

"1

����@f"(x)@"

���� d"
� CkrfkLp

Z "�

0

"�n=p d"

� C 0krfkLp"1�n=p� :

This estimate is independent of x and we therefore see that the f" form a Cauchy
sequence in the L1 norm. They must therefore converge uniformly to some contin-
uous function. Since we already know that the f" converge to f in Lp, we conclude
that f is continuous and that

kf � f"kL1 � CkrfkLp"1�n=p� :(5)
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To conclude the proof we estimate the size of rf". We have

jDi(f")(x)j = j(Dif)"(x)j

=

����Z Dif(y)'"(x � y) dy

����
�
Z
jDif(y)jj'"(x� y)j dy

� krfkLp � k'"kLq
= CkrfkLp"�n=p:

Together with (5) this inequality implies that f is H�older continuous of exponent
� = 1� n=p as claimed. �

Exercise 55. The one dimensional case of this theorem has an easier proof which is
worth remembering.

Let f : R ! R be an absolutely continuous function with f 0(x) 2 Lp(R). Prove that

jf(x)� f(y)j � kf 0kLp jx� yj1�1=p

by applying H�older's inequality to

f(x)� f(y) =

Z y

x

f 0(�) d�:

Exercise 56. Every f 2W 1;p is (1� n=p)-H�older continuous, but not every (1� n=p)-
H�older continuous function belongs to W 1;p(Rn). Illustrate this by giving an example of
a compactly supported function f : R ! R which is H�older continuous of exponent 1=2,
but which does not belong to W 1;2(R).

Exercise 57. Show that the unbounded function f(x) = log log

�
1 +

1

jxj
�

belongs to

W 1;n(
).

The analogous theorem which one would expect for general domains 
 � Rn ,
namely that any f 2 W 1;p(
) is H�older continuous with exponent � = 1� n=p is
unfortunately not true. It turns out that one must impose some regularity on the
boundary of the domain. Without proof I state the following;

Theorem 25. Let 
 � Rn be a bounded domain with smooth boundary @
. Then
any f 2 W 1;p(
) is H�older continuous on 
 of exponent 1� n=p.

A proof can be found in [2].

32. The Sobolev inequality in the case 1 � p < n

Theorem 26. If f 2 W 1;1(Rn ) then f 2 Ln=(n�1) and
kfkLn=(n�1) � n

qQn
i=1 kDifkL1 �

Z
Rn

jrf(x)j dx:(6)

When n = 1 one must interpret n=(n� 1) as 1.

The following proof can be found in many places. I follow Stein's exposition
[7, page 129] closely.

Proof. We will assume that f is actually smooth and compactly supported, and
prove the stated inequality. The general case is then obtained by using an approx-
imation theorem.
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One proves the inequality (6) by induction on the dimension n.
The case n = 1 is clear in view of the identity

f(x) =

Z x

�1

f 0(�) d�

which implies sup jf(x)j � kf 0kL1 .
Let n > 1 be given and assume the inequality has been proven for all dimensions

less than n. If x 2 Rn then we write x1 for the �rst coordinate of x, and x0 =
(x2; : : : ; xn). We introduce the following functions

I1(x2; : : : ; xn)
def
=

Z 1

�1

���� @f@x1 (x1; : : : ; xn)
���� dx1

Ij(x1)
def
=

Z
Rn�1

���� @f@xj (x1; : : : ; xn)
���� dx0

For each �xed x1 we may regard f(x1; x
0) as a compactly supported smooth function

of x0 2 Rn�1 and thus the induction hypothesis tells us that�Z
Rn�1

jf(x1; x0)j
n�1
n�2 dx0

�n�2
n�1

� (I2(x1)I3(x1) : : : In(x1))
1

n�1 :(7)

On the other hand we also have

jf(x1; x0)j � I1(x
0)

(this is the one dimensional case applied to the function x1 7! f(x1; x
0)). Since

n
n�1 = 1 + 1

n�1 this implies

jf(x)j n
n�1 � (I1(x

0))
1

n�1 jf(x)j:

Integration and H�older's inequality now give usZ
Rn�1

jf(x1; x0)j n
n�1 dx0

�
Z
Rn�1

(I1(x
0))

1
n�1 jf(x1; x0)j dx0

�
�Z

Rn�1

I1(x
0)dx0

� 1
n�1

�Z
Rn�1

jf(x1; x0)j
n�1
n�2 dx0

�n�2
n�1

(substitute (7))

�
�Z

Rn�1

I1(x
0)dx0

� 1
n�1

(I2(x1)I3(x1) : : : In(x1))
1

n�1 :

This holds for each x1 2 R. The �rst factor here is a constant, namely�Z
Rn�1

I1(x
0)dx0

� 1
n�1

= kD1fk1=(n�1)L1 ;
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the others depend on x1. If we integrate these use H�older's inequality again, we getZ 1

�1

(I2(x1)I3(x1) : : : In(x1))
1

n�1 dx1 �
nY
j=2

�Z 1

�1

Ij(x1)dx1

� 1
n�1

=

nY
j=2

kDjfk1=(n�1)L1 :

Finally we get

Z
Rn

jf j n
n�1 dx �

 
nY
i=1

kDifkL1

! 1
n�1

;

as promised.

The general case 1 < p < n now follows.

Theorem 27. If f 2W 1;p(Rn ) with 1 < p < n then f 2 Lr(Rn ) where 1
r =

1
p � 1

n .

One has

kfkLt � n� 1

n� p
pkrfkLp:

Proof. We assume that f is smooth and has compact support, and apply the p = 1
version to

g = jf jn�1
n�pp:

One has Z
jf j np

n�p dx =

Z
jgj n

n�1 dx

�
�Z

jrgj dx
� n

n�1

�
�
n� 1

n� p
p

Z
jf jn�1

n�pp�1jrf j dx
� n

n�1

Since

n� 1

n� p
p� 1 =

np� p� n+ p

n� p
=
n(p� 1)

n� p

we then get, by H�older's inequlity,�Z
jf j np

n�p dx

�n�1
n

� n� 1

n� p
p

Z
jf jn(p�1)

n�p jrf j dx

� n� 1

n� p
p

�Z
jf j np

n�p dx

� p�1
p
�Z

jrf jp dx
� 1

p

which after some manipulation yields the stated inequality.
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33. The isoperimetric inequality

Let 
 � Rn by a bounded domain whose boundary is smooth. We call the
(n� 1) dimensional measure of its boundary the perimiter of 
,written Per
 (for

 � R2 Per
 is the length of the boundary of 
; for 
 � R3 Per
 is the surface
area of @
, etc : : : )

The dimensionless quantity

(Per
)
n

n�1

Vol

is called the isoperimetric ratio of 
. The isoperimetric inequality states that the
isoperimetric ratio of any bounded domain with smooth boundary is strictly greater
than the isopermetric ratio of the unit ball in Rn , unles 
 itself is a ball B(x;R).
For instance, for plane domains 
 the length L of the boundary and area A of the
domain satisfy

L2

A
� 4�;

and that the only domains which actually attain this minimum value are circular
discs. See [1, chapter 2, x10] for a proof.

It turns out that a weaker version of the isoperimetric inequality follows from
the Sobolev inequality.

Theorem 28. For any bounded domain 
 with smooth boundary @
 one has

j
j � (Per
)
n

n�1 :(8)

Proof. For small h > 0 we consider the function fh : Rn ! R given by

fh(x) =

8><>:
1 (x 2 
)
1
h dist(x;
) (dist(x;
) < h)

0 (dist(x;
) � h)

Then fh converges monotonically to �
 so

lim
h&0

Z
jfh(x)j n

n�1 dx = j
j:
On the other hand

jrfh(x)j =
(

1
h for 0 < dist(x;
) < h

0 otherwise

so that Z
jrfh(x)j dx = 1

h
jfx : 0 < dist(x;
) < hgj:

which converges to the n � 1 dimensional measure of @
1. Sobolev's inequality
applied to fh then implies (8).

Exercise 58. For a 2 Rn with ai > 0 let R(a) be the rectangle (0; a1)� : : : � (0; an).
Which rectangle with Vol(R(a)) = 1 has smallest perimiter, and compute this minimal
perimiter.

1One may take this as de�nition of the perimiter of 




41

Compactness theorems
About compactness, Compact subsets of C(K), The Rellich-Kondrachov theorem

Text books to look at: Rudin [5, appendix] has a summary of the facts from
point-set topology about compactness, as well as a proof of the Ascoli-Arzela the-
orem. The Rellich-Kondrachov theorem is proven in Evans [2].

34. About Compactness

We �rst recall some notions from point-set topology.
A Hausdor� topological space X is compact if every open cover of X has a

�nite subcover. The space X is sequentially compact if every sequence in X has a
convergent subsequence.

For metric spaces (X; d) compactness and sequential compactness are equiva-
lent.

There is a third characterization of compactness, namely, a complete metric
space (X; d) is compact if and only if it is totally bounded. By de�nition, a metric
space (X; d) is totally bounded if for every " > 0 one can �nd a �nite number of
points x1; : : : ; xN 2 X such that X = [Ni=1B(xi; ").

A subset A of a topological space X is called precompact if the closure of A
in X is compact. If X is a metric space then A � X is precompact in X if every
sequence in A has a convergent subsequence (whose limit may or may not lie in A).

For instance, all bounded subsets of Rn are precompact, but only the bounded
and closed subsets are compact.

A subset A of a metric space is precompact in X if and only if it is totally
bounded.

35. Compact subsets of C(K)

If K is a compact metric space, then the space C(K) of continuous functions
on K is a complete metric space and the Ascoli-Arzela theorem characterizes which
subsets of C(K) are compact.

Let A � C(K) be any family of functions. Then A is said to be equicontinuous
if for any " > 0 there is a Æ > 0 such that

8x;y2K 8f2A d(x; y) < Æ ) jf(x)� f(y)j < ":
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Theorem 29 (Ascoli-Arzela). A subset A � C(K) is compact if and only if it is
bounded, closed and equicontinuous.

The proof will be given in class.

Exercise 59. Let A be the unit ball of C�(K). Then A is a subset of C(K). Show
that A is compact.

Exercise 60.

(i) Is A1 = fsinnx : n 2 Ng a precompact subset of C([0; 1])? Is A1 compact?
(ii) Is A1 as above a precompact subset of L1(0; 1)? Compact?
(iii) Is A2 = f 1

n
sinnx : n 2 Ng a precompact or compact subset of C([0; 1])?

(iv) Let A3 be the set of continuously di�erentiable functions f : [0; 1] ! R with
sup0�x�1 jf 0(x)j � 1. Is A3 a (pre)compact subset of C([0; 1])?

Exercise 61.

(i) Let fn 2 L1(
) \ L1(
) be a sequence of functions with jfn(x)j � M for all
n 2 N, x 2 
. Suppose fn converges in L1 and show that fn converges in Lp for any
1 � p <1.

(ii) Let 
 = R. Find an example of a sequence of functions fn as described above
which does not converge in L1(R).

(iii) Let fn 2 L1(
) \ L1(
) be a sequence of functions with kfnkL1 � M for
all n 2 N. Suppose fn converges in L1 and show that fn converges in Lp for any
1 < p � 1.

(iv) Let 
 = R. Find an example of a sequence of functions fn as described above in
(iii) which does not converge in L1(R).

(v) Let A � L1(
) \ L1(
) be a family of functions which is bounded in L1 and
precompact in L1. Show that A � Lp(
) and that A is precompact in Lp(
).

36. The Rellich-Kondrachov theorem

Theorem 30. Let 
 � Rn be a bounded domain. Then any sequence of functions
fi 2W 1;p(Rn ) with

supp fi � 


and

sup
i2N

kfikW 1;p <1

has a subsequence which converges in Lp(
).

Proof. For 0 < " < 1 we de�ne

fi;" = f � '":
If 
 � B(0; R) then the fi;" are supported in B(0; R+ 1) for all i and " 2 (0; 1].

The fi;" are di�erentiable, and one has rfi;" = (rfi) � '" so that
krfi;"k1 � krfikLpk'"kLq < C(")

for some C(") which does not depend on ".
By the mean value theorem one has

jfi;"(x)� fi;"(y)j � C(")jx� yj;(9)

so that the molli�cations fi;" are equicontinuous.
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Since each fi;" vanishes outside of B(0; R+ 1) (9) implies that

jfi;"(x) � 2C(")(R + 1):(10)

Together (9),(10) imply that the fi;" are uniformly bounded and equicontinuous,
so the Ascoli-Arzela theorem guarantees the existence of a convergent subsequence
ffij;" : j 2 Ng for any �xed " > 0. We will now apply Cantor's diagonal trick to

produce a subsequence which converges for " = (1=2)k for all k 2 N at the same
time.

Cantor's argument goes like this: First choose a subsequence

i
(1)
1 < i

(1)
2 < i

(1)
3 < � � �

of the integers such that f
i
(1)
j ;1=2

converges uniformly. Next, extract a subsequence

fi(2)j : j 2 Ng from our �rst sequence fi(1)j : j 2 Ng such that f
i
(2)

j;(1=2)j

also converges

uniformly.

Continuing inductively one �nds a sequence of sequences i
(k)
j , where each fi(k)j :

j 2 Ng is a subsequence of fi(k�1)j : j 2 Ng, and where for each l = 1, 2, : : : , k,
f
i
(k)
j ;(1=2)l

converges uniformly as j !1.

We now de�ne mk = i
(k)
k . Then fmk;(1=2)j converges uniformly for every j 2 N,

since for each k the \tail" fml : l � kg is a subsequence of n(k)j .
Since the fi;" have their support in a bounded set, it follows that for each j the

fmk;(1=2)j also converge in L
p(Rn ).

We now estimate the Lp norm of fi � fi;". By Lemma 24 we have

@fi;"
@"

=
nX
`=1

 `;" �D`fi where  i;"(x) =
xi
"n
'(
x

"
)

(see (4).) Hence it follows that



@fi;"@"






Lp
� nk i;"kL1kDifikLp � C

where C does not depend on n or ". Integration from 0 to " gives

kfi � fi;"kLp �
Z "

0





@fi;"@"






Lp

d"0 � C":(11)

We conclude by proving that the subsequence fmk
we had found above is a Cauchy

sequence in Lp. To see why this is true let � > 0 be given, and set "� = �=3C so
kfi � fi;"kLp < �

3 for all i and all " 2 (0; "�). Choose some j 2 N with (1=2)j < "�.
Since the molli�ed sequence fmk;(1=2)j converges in L

p there is an N <1 such that

kfmk;(1=2)j � fml;(1=2)jkLp <
�

3

for all k; l > N . By the triangle inequality we then get

kfmk
� fml

kLp � kfmk
� fmk;(1=2)jkLp +

+ kfmk;(1=2)j � fml;(1=2)jkLp + kfml;(1=2)j � fml
kLp

<
�

3
+
�

3
+
�

3
= �

for all k; l > N .
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Exercise 62. Justify (11), i.e. prove that if f(x; ") is a continuously di�erentiable
function in ", then

kf(�; "1)� f(�; "2)kLp �
Z "2

"1





@f@"





Lp

d":

Observe that this can be seen as a \continuous version" of the triangle inequality. (Hint:
use lemma 10.)
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Boundary values
Some geometry, A trace theorem, Domains with general boundary, the space W 1;p

o (
).

Text books to look at: The material in this section is covered in more detail in
Evans' [2] in the section on \trace theorems."

Let 
 � Rn be a bounded domain. If f 2 Lp(
) then it is meaningless to
speak of the value of f at any particular point, or even of the restriction of f to
any subset E � 
 of measure zero. If the function has distributional derivatives in
Dif 2 L1(
) then it turns out that one can de�ne f j@
 if @
 is smooth enough.

37. Some geometry

Let @
 be C2. On @
 we have a measure, namely (n� 1) dimensional surface
measure, which we will denote by dS. The space Lp(@
; dS) is thus well de�ned.

rr

U
N(x)

x
$Ω

At each x 2 @
 one can de�ne the (inward pointing) unit normal N(x). In
di�erential geometry it is shown that the map � : @
� R ! Rn given by

�(x; s) = x+ sN(x)

is di�erentiable, and is one-to-one on @
 � (�r; r) for some small enough r > 0.
The image

U = �(@
� (�r; r))
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is an open (\tubular") neighbourhood of @
.
Moreover the measures ds dS and Lebesgue measure are \comparable" on U ,

by which we mean

Lemma 31. For any nonnegative f 2 L1(U) one has

c

Z
U

f(x) dx �
Z
@


Z r

�r

f(x+ sN(x)) ds dS � C

Z
U

f(x) dx

for constants 0 < c < C <1 which only depend on the domain 
.

38. A trace theorem

Theorem 32. Let f 2 C1(�
). Then there is a constant C <1 which only depends
on the domain 
, but not on f , such that

kf ��Lp(@
;dS) k � CkfkW 1;p(
):

Proof. Choose a nonincreasing smooth function � : R ! R which satis�es �(t) = 1
for t � r=3 and �(t) = 0 for t � 2r=3. Then one has for each x 2 @


f(x) = �
Z r

0

d�(s)f(x + sN(x))

ds
ds

= �
Z r

0

f� 0(s)f(x+ sN(x)) + �(s)N(x) � (rf)(x+ sN(x))g ds

Using Jensen's inequality one then getsZ
@


jf(x)jp dS � C

Z
@


Z r

0

fjf(x+ sN(x))jp

+jrf(x+ sN(x))jpg ds dS:
By Lemma 31 we thus getZ

@


jf(x)jp dS � C 0
Z
U\


fjf jp + jrf jpg dx � C 00kfkpW 1;p(
):

If f 2W 1;p(
) is not smooth then we can approximate f by smooth functions
and thus de�ne the restriction of f to @
. In detail, given f 2 W 1;p(
) we choose
a sequence of functions fi 2 C1(�
) which converges in W 1;p(
) to f . For each fi
restriction to @
 gives a C1 function on @
. Theorem 32 tells us that

kfij@
 � fj j@
kLp(@
) � Ckfi � fjkW 1;p(
):

Therefore, since the fi form a Cauchy sequence in W 1;p(
), their restrictions to @

form a Cauchy sequence in Lp(
). We call the limit of the fij@
 the restriction of
f to @
 or the trace of f on @
, i.e.

f j@
 def
= lim

i!1
fij@
 2 Lp(@
):

Exercise 63. The trace as de�ned here might depend on the particular sequence fi 2
C1(�
) one chooses to approximate f . Show that if one has two sequences fi; gi 2 C1(�
)
which both converge in W 1;p(
) to f , then their restrictions fij@
 and gij@
 converge
to the same function in Lp(@
).

Thus the restriction of any f 2 W 1;p(
) is a well de�ned function in Lp(@
).
On the other hand it cannot be true that every f� 2 Lp(@
) is the restriction of
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some f 2 W 1;p(
). Indeed, if p > n then the Sobolev embedding theorem tells us
that any f 2 W 1;p(
) is continuous, so that its restriction to @
 should also be
continuous and therefore cannot be just any Lp function on @
.

This raises the question Which f� 2 Lp(@
) are of the form f� = f j@
 for
some f 2W 1;p(
)? The answer involves functions with \fractional derivatives" is
beyond the scope of these notes.

39. Domains with general boundary

There is a di�erent approach to de�ning the \boundary values of a function
f 2 W 1;p(
)" which has the advantage that it makes no assumptions about the
regularity of @
. The trick is to abandon a direct de�nition of the boundary values
of an f 2 W 1;p(
) and merely to de�ne when two functions f; g 2 W 1;p(
) \have
the same boundary values."

Let 
 � Rn be open, not necessarily bounded. We de�ne

W 1;p
o (
) = Closure of D(
) in W 1;p(
)

and say that f; g 2W 1;p(
) have the same boundary values if f � g 2W 1;p
o (
).

That this use of the term \boundary value" is consistent with that introduced
in the previous section is the main content of the following lemma.

Lemma 33. If @
 is smooth (C2) and if f 2 W 1;p(
) then f 2 W 1;p
o (
) if and

only if the trace f j@
 of f on @
 vanishes.

A proof is given in [2].

Exercise 64. Let 
 � R
2 be the open unit disc with the line segment f(x; 0) : 0 � x < 1g

removed. Consider the function f(x; y) = r�, where r > 0 and � 2 (0; 2�) are polar
coordinates of (x; y).

Show that f 2 W 1;p(
) for any p � 1.
Compute

lim
P!Q
P2


f(P )

for any Q 2 @
. Discuss what boundary values f has, and which of the de�nitions given
above apply in this situation?

Exercise 65. Let 
 = R+, and show that for any f 2 W 1;2
o (
) one has

f(x)

x
2 L2(
),

as well as the following inequality



f(x)x





L2(
)

� 2kf 0(x)kL2(
):

Hint: First assume f 2 D(
). For such f integrate
R1
0
f(x)2x�2 dx by parts and apply

Cauchy Schwartz to the result. Finally approximate a general f by an ~f 2 D(
).
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The dual space
The dual of C(K), The dual of Lp(
), Functionals on other spaces, The Hahn-Banach

theorems, The subdi�erential, Weak and weak� convergence, The weak and weak�

topologies, The dual of the dual (re
exivity), The Banach-Alaoglu theorem, Application to

Partial Di�erential Equations.

Text books to look at: Except for the last part on PDEs the material in this
section is classical Functional Analysis, and is covered in great detail in [4, 5]. The
part on PDEs is also classical, but traditionally does not appear in books on (linear)
functional analysis.

First we identify the dual spaces of a number of Banach spaces.

40. The dual of C(K)

Let K be a compact metric space. If � is a signed Borel measure on K then

�� : f 7! ��(f) =

Z
K

f(x) d�(x)

de�nes a linear functional on C(K), which is bounded by

j��(f)j �
Z
K

jf(x)j dj�j(x) � j�j(K) � kfkC(K):

We denote the space of signed Borel measures � on K by M(K).

Theorem 34. The correspondence � 2M(K) 7! �� 2 C(K)� is bijective.

I refer to Rudin's [4, theorem 6.19] for the proof.

41. The dual of Lp(
)

For any g 2 Lq(
) one can de�ne a functional �g : L
p ! R by

�g(f) =

Z



f(x)g(x)d�(x):(12)

By H�older's inequality this functional is bounded and its norm is

k�gk(Lp)� = kgkLq :
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This was proven in Lemma 10 (page 22.) Thus we have an isometric mapping of
Lq(
) into the dual of Lp(
) for all p 2 [1;1].

Theorem 35. For 1 � p <1 the mapping g 7! �g is bijective, i.e. every bounded
linear functional on Lp(
) is of the form �g for some g 2 Lq(
).

Note that the case p =1 is excluded here.

Proof. I only outline a proof. For a complete proof see [4, theorem 6.16]. The proof
(or better, a proof) is based on the Radon-Nikodym theorem on di�erentiation of
measures. Given a functional � : Lp ! R one �rst de�nes

�(E) = �(�E)

for any measurable E � 
 with m(E) < 1 (m is the measure in the de�ni-
tion of the given Lp space.) Using the boundedness of � one veri�es that � is a
countably additive (signed) measure on 
. Since �(E) = 0 for any set E of vanish-
ing m-measure the Radon-Nikodym theorem implies that �(E) =

R
E g(x)dm(x)

for some measurable g : 
 ! R. The proof is completed by verifying that
�(f) =

R


f(x)d�(x) =

R


f(x)g(x)dm(x):

42. Functionals on other spaces

42.1. Sobolev spaces.

The Sobolev space W 1;p(Rn ) is a subset of Lp(Rn ) so any g 2 Lq(Rn ) with
q = p

p�1 de�nes a linear functional on W 1;p(Rn ) as in (12). However, these are

not all functionals on W 1;p(Rn ). First, q = p=(p� 1) is not the best exponent for
g 2 Lq to de�ne a bounded linear functional on W 1;p(Rn ).

Exercise 66.

(i) Let 1 � p < n, and set r =
np

np+ p� n
. If f 2 Lr(Rn) then

�f (g)
def
=

Z
Rn

f(x)g(x) dx

de�nes a bounded linear functional on W 1;p(Rn).
(ii) For which values of a > 0 does

�(g) =

Z
jxj�1

jxj�ag(x) dx

de�ne a bounded linear functional onW 1;2(R3)? (Hint: Problem (i) gives you a suÆcient
condition for � to be a bounded functional. If you think � is not bounded for some value
of a, compute �('") for all " 2 (0; 1), and look at how the W 1;p norm of '" depends on
". Here '" = "�n'(x=") is our favorite family of test functions.)

The following example shows how one can interpret \derivatives of Lq functions"
as elements of the dual of W 1;p(Rn ).

Exercise 67.

(i) Let h1; : : : ; hn 2 Lq(Rn), where q = p
p�1

. Then

Mh1;::: ;hn(g)
def
=

Z
Rn

fh1(x)D1g(x) + : : :+ hn(x)Dng(x)g dx

de�nes a linear functional.
(ii) If h1; : : : ; hn 2 C1c then �f = Mh1;::: ;hn , where

f(x) = div~h =
@h1
@x1

+ : : :+
@hn
@xn

:
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42.2. H�older spaces.

IfK is a compact metric space then C�(K) � C(K) so that any signed measure
� 2 M(K) de�nes a functional on C�(K). Here is an example of a functional on
C�(K) which is not de�ned by a (signed) measure � 2M(K).

Exercise 68. Let 0 < � � 1. For f 2 C�([�1; 1]) we de�ne

�f = lim
"&0

Z
J"

f(x)

x
dx:

where J" = [�1;�") [ ("; 1].
(i) Show that �f exists if f 2 C�([�1; 1]). (Hint: f(x) = f(x)� f(0) + f(0).)
(ii) Show that � de�nes a bounded linear functional on C�([�1; 1]).
(iii) Show that there is no C <1 such that j�(f)j � Ckfk1, and that f cannot be

extended to a bounded functional on C([�1; 1]).

42.3. Finite dimensional spaces.

There is some interesting geometry involved in �nding the dual norm on �nite
dimensional spaces which we won't go into here, apart from the following remarks.

If X = Rn then any functional � on X is completely determined by its values
�i = �(ei) on the standard basis. Thus we can identify X� with Rn , and if � =
(�i)

n
i=1, x = (xi)

n
i=1, then

�(x) = �1x1 + : : :+ �nxn:

Exercise 69.

(i) Let X = R
3 , and let the unit ball of a given metric be the unit cube B = [�1; 1]�

[�1; 1]� [�1; 1]. Find the unit ball of the norm of the dual.
(ii) If the unit ball of a norm on Rn is a polyhedron given by the inequalities

j�1(x)j � 1; j�2(x)j � 1; : : : ; j�m(x)j � 1;

then the unit ball of the dual norm on R
n is the convex polyhedron with vertices �1,

: : : , �m. (This problem may be easier after you absorb the geometric version of the
Hahn-Banach theorem, Theorem 37.)

(iii) Let X be the plane R2 , and let the unit ball of a given norm on X be the square
with vertices (�a;�a) for some constant a > 0. Find the unit ball of the dual norm.
Show that X is isometric with its dual space.

The dual of a direct sum of Banach spaces is the direct sum of their duals:

Exercise 70. If a Banach space X is the direct sum of two Banach spaces, X = V �W ,
then show X� = V � �W �.

Exercise 71. What is the dual of the space of vector valued Lp functions

Lp(
;Rk)
def
= ff : 
! R

k j
Z



jf(x)j dx <1g?

(Hint: Lp(
;Rk) = Lp(
)� : : : � Lp(
).)

43. The Hahn-Banach theorems

Notice the absence of topology in the statement of the following theorem.

Theorem 36 (Hahn-Banach). Let f : X ! R be a convex function on a real vector
space X and let � : L ! R be a linear functional de�ned on some linear subspace
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L � X. If �(x) � f(x) for all x 2 L, then there exists a linear functional � : X ! R
with �(x) � f(x) for all x 2 X, and �(x) = �(x) for all x 2 L.
Proof. The proof consists of two parts. First one assumes L has codimension one
in X . Then one applies an induction argument on the dimension of L, or if X is
in�nite dimensional one applies Zorn's lemma.

We begin with the �rst part where we have a vector v 2 X nL, and where every
x 2 X is of the form x = �v + l with l 2 L. Since v 62 L this decomposition of any
x is unique (why?).

The complement of L in X consists of two components,

X+
def
= f�v + l : l 2 L; � > 0g; X�

def
= f�v + l : l 2 L; � < 0g:

The extension � we are looking for is now completely determined by its value �(v),
since by linearity

�(�v + l) = ��(v) + �(l);

while �(l) = �(l) is prescribed.
We'll denote the extension for which �(v) = c by �c.
If we pick just any value c then the inequality �c(x) � f(x) may fail at certain

x 2 X n L. Let
Fc

def
= fx 2 X : �c(x) > f(x)g

denote the set where our extension fails to be bounded by f .
The set Fc is convex: if x; y 2 Fc then

f(tx+ (1� t)y) � tf(x) + (1� t)f(y)

< t�c(x) + (1� t)�c(y)

= �c(tx+ (1� t)y);

so tx+ (1� t)y 2 Fc.
Since Fc is convex, and since Fc \L = ? we have either Fc � X+ or Fc � X�.

Let J� � R be the set of c for which Fc � X� and Fc 6= ?.
The sets J� are disjoint. Indeed, we just observed that Fc � X+ or Fc � X�,

but not both at the same time.
The J� are open. To see why J+ is open let c� 2 J+ be given, and suppose

x� = �v + l 2 Fc� . Then �c(x) = �c + �(l) depends continuously on c. We have
�c�(x�) > f(x�), so for c close to c� we will still have �c(x) > f(x): in other words,
J+ contains a neighbourhood of c� 2 R.

The J� are non empty. J+ contains the interval (f(v);1), for if c > f(v)
then �c(v) = c > f(v). Likewise, J� contains the interval (�1;�f(�v)) since
c < �f(�v) implies �c(�v) = �c > f(�v).

The real line is connected and hence R 6= J+[J�, so we have a c� 2 RnJ+[J�.
By de�nition we have �c�(x) � f(x) for all x 2 X . This completes the �rst part of
the proof.

For the second part of the proof we assume that X and L are arbitrary. Let S
be the set of all pairs (M;�) of linear subspaces L �M � X and linear functionals
� : M ! R with � � f on M . The set S is partially ordered by (M;�) / (M 0;�0)
if M � M 0 and �0jM = �. Every chain f(M�; ��) : � 2 Ag has an upper bound
for the ordering /, namely [�2A(M�; ��). Thus we may apply Zorn's lemma and
conclude the existence of a maximal element (M;�) in (S; /). For this maximal
element one must have M = X , for otherwise one could select a v 2 X nM , de�ne
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c=c*

Xv

f(x)




Figure 1. The proof when X = R and L = f0g.

N = f�v + m : � 2 R;m 2 Mg and apply the �rst part of this proof to extend
� : M ! R to a functional on the larger domain N , keeping � � f all the time.
This would contradict maximality of (M;�), so M = X after all, and � is the
extension we are after.

Application of the Hahn-Banach theorem to the norm f(x) = kxk of a Ba-
nach space gives you the following alternative description of kxkX . (Compare with
Lemma 10.)

Exercise 72. Let X be a Banach space.
(i) If x 2 X then a functional � 2 X� exists with k�k = 1 and �(x) = kxk.
(ii) For any x 2 X one has kxk = maxk�k�1 �(x). (Note that it says \max" rather

than \sup.")
(iii) Show that not every element of the dual of L1(�1; 1) is given by �(g) =R 1

�1
f(x)g(x) dx for some f 2 L1. (Hint: use (i), (ii) and exercise 34.)

Another application of the Hahn-Banach theorem concerns �nding closed com-
plements to closed subspaces of Banach spaces. By de�nition, a closed complement
of a closed subspace L � X is another closed subspaceM � X such thatX =M�L,
i.e.

M \ Lf0g and X =M + L

In this case every x 2 X can be written in a unique manner as the sum x = m+ l
of m 2M and l 2 L.

Exercise 73.

(i) If L � X is closed and if k = dimX=L is �nite then L has a closed complement
M � X with dimM = k.

(ii) If L � X is �nite dimensional then L has a closed complement M . (Hint: use
Hahn-Banach and write M = fx : �1(x) = : : : = �k(x) = 0g for certain �1, : : : ,
�k 2 X�, where k = dimL.)

The following is sometimes called the geometric version of the Hahn-Banach
theorem.

Theorem 37. Let C be a closed and convex subset of the Banach space X, and let
x0 2 X nC. Then there exist � 2 X� and t 2 R with

�(x) < t < �(x0)
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for all x 2 C. In other words, the hyperplane fx 2 X : �(x) = tg separates C and
x0.

Proof. The statement is invariant under translations in X so we may assume that
the origin belongs to C.

Since C is closed an " > 0 exists with B(x0; 2") \ C = ?. Consider the set

C" =
[
x2C

B(x; "):

Then C" is open and convex, and B(x0; ") \ C = ?.
De�ne f : X ! R by

f(x) = inffr > 0 : x 2 rC"g:
This function is convex, and since B(0; ") � C", it satis�es

f(x) � 1

"
kxkX :(13)

It is also almost homogeneous in that f(tx) = tf(x) for all t > 0 (but not necessarily
for t < 0 since we don't know if C" is symmetric; see x15.)

On the one-dimensional subspace L � X spanned by x0 we de�ne a linear
functional � by setting �(x0) = f(x0). One then has � � f on L, and by Hahn-
Banach an extension � : X ! R exists with � � f . By (13) we also have

�(x) � 1

"
kxk

so that � is bounded.
To complete the proof we note that C � C", and that on C" one has f(x) � 1.

On the other hand one has f(x0) > 1, so

sup
x2C

�(x) � 1 < �(x0):

Exercise 74.

(i) If V � R
3 is a plane through the origin then the intersection of V with the unit

cube B = [�1; 1]3 is a polygon. How many sides can this polygon have?
(ii) Let X = R

n with the maximum norm k(xi)k = max1�i�n jxij. Denote the unit
ball in X by B. If T : R2 ! X is a linear map, then T�1(B) is a convex polygon. Which
polygons are of the form T�1(B)?

(iii) Suppose T : R2 ! `1 is a linear map. Then T�1(B) is a closed convex subset of
R
2 (B denotes the unit ball in `1.) Which closed convex subset of R2 are of the form

T�1(B)?
(iv)� Let X be a separable Banach space. Show that there exists an isometric embed-

ding T : X ,! `1.

Besides the extensions of linear functionals provided by the Hahn-Banach the-
orem there is a simpler extension theorem which is often useful:

Exercise 75. Let D � X be a dense linear subspace of the Banach space X, and let
� : D ! R be a linear functional which satis�es j�(x)j � Mkxk for all x 2 D. Show
that there is a unique bounded linear functional � 2 X� with �(x) = �(x) for all x 2 D.
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44. The dual of W 1;p(
)

In exercise 67 we saw that for any h0; : : : ; hn 2 Lq(Rn ), with q = p
p�1 the

expression

Mh0;::: ;hn(g)
def
=

Z
Rn

fh0(x)g(x) + h1(x)D1g(x) + : : :+ hn(x)Dng(x)g dx

de�nes a bounded linear functional on W 1;p(
), and that the operator norm of
Mh0;::: ;hn is bounded by

kMh0;::: ;hnk(W 1;p)� � C
X

khikLq :
Using the Hahn-Banach theorem we can show that there are no other bounded
linear functionals on W 1;p(
).

Theorem 38. Every M 2 (W 1;p(
))� is of the form M = Mh0;::: ;hn for certain

hi 2 Lp=(p�1)(
).
Proof. We begin by showing that W 1;p(
) is a closed subspace of

X =

n+ 1 termsz }| {
Lp(
)� : : :� Lp(
) :

Namely, one assigns to any function f 2 W 1;p(
) the n+1 tuple (f;D1f; : : : ; Dnf) 2
X . Not every n+1 tuple (f; g1; : : : ; gn) 2 X can be realized in this way. In fact the
de�nition of distributional derivative says that (f; g1; : : : ; gn) = (f;D1f; : : : ; Dnf)
if and only if

R

 fDi' � gi' = 0 holds for all test functions ' 2 D(
). Thus one

can identify W 1;p(
) with

Y =

�
(f; g1; : : : ; gn) 2 X : 8'2D(
)

Z



fDi'� gi' = 0

�
:

This subspace of X is closed, as you can check for yourself.
If M is a bounded linear functional on W 1;p(
) then we can regard it as a

bounded linear functional on Y , and by the Hahn-Banach theorem we may assume
that M is the restriction of some bounded linear functional on X , whcih we again
denote by M.

The proof is completed by observing that bounded linear functional on X are
all of the form

M(g0; : : : ; gn) =

Z
Rn

fh0(x)g0(x) + h1(x)g1(x) + : : :+ hn(x)gn(x)g dx:

for certain hi 2 Lq(
)
Exercise 76. Show that for 1 < p < 1 the dual of W 1;p(
) is a separable Banach
space.

45. The subdi�erential

If � : X ! R is a convex function on some Banach space then the subdi�erential
of � at some x0 2 X is the collection of all � 2 X� such that

�(x) � �(x0) + �(x � x0)(14)

holds for all x 2 X . Notation:

@�(x0)
def
= f� 2 X� : (14) holds for all x 2 X�g:
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Theorem 39. If � : X ! R is a continuous and convex function, then the subdif-
ferential @�(x0) is nonempty for all x0 2 X.

Proof. Given x0 we consider the function 	(x) = �(x0+x)��(x0). This function
is also convex and continuous.

The Hahn-Banach theorem gives us a linear functional � : X ! R which
satis�es �(x) � 	(x) for all x 2 X . Consequently (14) holds for �. To complete
the proof we must show that the linear functional � is bounded (Hahn-Banach does
not guarantee this).

Since 	 is continuous there is a Æ > 0 such that 	(x) � 1 for all x with kxk < Æ.
Hence �(x) < 1 for kxk < Æ, and therefore, by homogeneity of � and the norm on
X , j�(x)j � Æ�1kxk for arbitrary x 2 X .

Exercise 77.

(i) If � : R ! R is convex, and if � is di�erentiable at x0 2 R then @�(x0) = f�0(x0)g.
(ii) Compute @�(x) if � : R ! R is given by �(x) = jxj.
(iii) Compute @�(x0) at x0 = (1; 1) if � : R2 ! R is given by �(x; y) = maxfjxj; jyjg

(i.e. � is the `1 norm on R2 .)

46. Weak and weak� convergence

Let X be a Banach space.
A sequence fxn 2 X : n 2 Ng converges weakly to x 2 X, written xn*x, if for

every � 2 X� one has limn!1 �(xn) = �(x).
A sequence of functionals �n 2 X� converges weak� to � 2 X�, written �n

**�,
if for any x 2 X one has limn!1 �n(x) = �(x).

Exercise 78. Show that any norm convergent sequence fxi 2 X : i 2 Ng is weakly
convergent. Show that any norm convergent sequence f�i 2 X� : i 2 Ng is weak�

convergent.

Exercise 79.

(i) Show that the sequence fk(x) = �[k;k+1](x) converges weakly to zero in Lp(R) if
1 < p <1. What happens when p = 1?

(ii) Does the sequence fk(x) = k�[k;k+1](x) converge weakly to zero in Lp(R)?
(iii) Does the sequence fk(x) = (ln ln k)�[k;k+1](x) converge weakly to zero in Lp(R)?

We have seen that Lp(
) is also the dual space of Lq(
) if q = p=(p�1), 1 < p �1.
We can therefore speak of weak and of weak� convergence of sequences in Lp(
).

Exercise 80. Show that if 1 < p < 1 the notions of weak and of weak� convergence
coincide on Lp(
).

The following exercises show that the notions of weak convergence in Lp and
convergence in the sense of distributions are very similar, but not the same.

Exercise 81. Let 
 � R
n be an open domain, and let 1 � p < 1. Let fk 2 Lp(
)

be a bounded sequence. Show that the sequence fk converges weakly in Lp to f 2 Lp if
and only if the fk converge in the sense of distributions to f 2 Lp

Exercise 82.

(i) (The Riemann-Lebesgue Lemma) We have seen that one can identify L1(R) with
the dual space of L1(R). Show that the sequence fn(x) = sinnx converges weak� to
zero in L1.

(ii) Show that the sequence gn(x) = n sinnx does NOT converge weak� to zero.
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Exercise 83. Let 1 < p <1.
Suppose a sequence of functions fk 2 Lp(Rn) converges in the sense of distributions

to T 2 D
0(Rn). Suppose also that the sequence fk is bounded. Show that the limit

distribution T can actually be represented by an f 2 Lp(Rn).
The following is a more abstract version of the previous exercise:

Exercise 84. Let D be a dense subset of a Banach space X, and let f�i : i 2 Ng be a
sequence of linear functionals which (i) are uniformly bounded:

sup k�ikX� =M <1
and (ii) converge pointwise on D, i.e.

�(x) = lim
i!1

�i(x) exists for all x 2 D.

Show that this limit exists for all x 2 X, that the limit � is a bounded linear functional,
and that �i

**�.

Exercise 85. (i) Let X = C([�1; 1]) and consider the linear functionals �n;� 2 X�

de�ned by

�n(f)
def
= f(1=n); �(f)

def
= f(0):

Show that �n
**� as n%1, but that �n does not converge in the norm of X� to �.

(ii) Let Y be the H�older space C�([�1; 1]). The �n and � as de�ned in (i) also de�ne
bounded linear functionals on Y . Show that �n converges to � in the norm of Y �, i.e.
show

lim
n!1

k�n � �kC�([�1;1])� = 0:

47. The weak and weak� topologies.

The usual approach to de�ning convergence of sequences in a set X involves
the introduction of a topology on X . One can indeed introduce topologies on X
and X� such that weak and weak� convergence are simply convergence with respect
to these topologies.

The weak topology on X is de�ned by specifying that U � X is a neighbour-
hood of 0 if there exist functionals �1, : : : , �m 2 X� and an " > 0 such that

V (�1; : : : ; �m; ")
def
= fx 2 X : j�1(x)j < "; : : : ; j�m(x)j < "g

is contained in U . A set U � X is a neighborhood of some x0 2 X if U � x0 =
fx� x0 : x 2 Xg is a neighborhood of 0.

The weak� topology is de�ned in the same way: a U � X� is a neighbourhood
of 0 if there exist x1, : : : , xm 2 X and an " > 0 such that

W (x1; : : : ; xm; ")
def
= f� 2 X� : j�(x1)j < "; : : : ; j�(xm)j < "g

is contained in U . A set U � X� is a neighborhood of some �0 2 X if U � �0 =
f�� �0 : � 2 X�g is a neighborhood of 0.

The vector spaces X and X� with their weak and weak� topologies respectively
are examples of locally convex topological vector spaces (LCTVS). For a careful
treatment of their theory you should look at Rudin's [5].

For general Banach spaces X the weak topology need not be metrizable, so
that one cannot test for openness or closedness of subsets A � X by looking at
convergent sequences only.

We will not use the theory of LCTVS's, and will only use the following obser-
vation.
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Exercise 86.

(i) Let � 2 X� and let a 2 R be a constant. Show that the set fx 2 X : �(x) < ag
is an open subset of X in the weak topology. Show that fx 2 X : �(x) � ag is closed in
the weak topology.

(ii) Let x 2 X and let a 2 R be a constant. Show that the set f� 2 X� : �(x) < ag is
an open subset of X� in the weak� topology. Show that f� 2 X� : �(x) � ag is closed
in the weak� topology.

The following is an application of the geometric version of the Hahn-Banach the-
orem and the previous exercise.

Exercise 87. Let C � X be a convex subset of a Banach space which is closed with
respect to the norm topology. Show that C is also closed in the weak topology.

Show that any linear subspace L � X is closed in the norm topology if and only if it
is closed in the weak topology.

48. The dual of the dual

If X is a Banach space then any x 2 X de�nes a linear functional x̂ on X� by

x̂(�) = �(x):

This functional is bounded by jx̂(�)j � k�kX�kxkX , so that x̂ belongs to the dual
of X�, and kx̂kX�� � kxkX . Thus the map x 7! x̂ de�nes a bounded linear map
from X into X��. This map is in fact an isometry since for each x 2 X a � 2 X�

can be found with �(x) = kxk and k�kX� = 1, so that kx̂k � x̂(�) = �(x) = kxk.
By de�nition a Banach space is called re
exive if the embedding X ,! X�� is

surjective, i.e. if every bounded linear functional on X� is of the form x̂ for some
x 2 X .

Exercise 88.

(i) Show that Lp(
) is re
exive if 1 < p <1, but not when p = 1.
(ii) Show that C(K) is not re
exive.

Exercise 89.

(i) Show that a closed subspace L � X of a re
exive Banach space is also re
exive.
(ii) Show that if X and Y are re
exive Banach spaces then the sum X � Y is also

re
exive.
(iii) Show that W 1;p(
) is re
exive if 1 < p <1.

49. The Banach-Alaoglu theorem

Theorem 40 (Banach-Alaoglu). The unit ball of the dual of any Banach space is
compact in the weak� topology.

The proof can be found in [5]. The proof relies on Tychonov's theorem which
says that the product

Q
�2AX� of a family of compact topological spaces X� is

again compact in the product topology (with no restrictions on how many there
are: A could be an uncountably in�nite set!) This theorem from point-set topology
in turn relies on Zorn's Lemma (or the Axiom of Choice, or Hausdor�'s maximality
principle.) Since I'm avoiding point-set topology in this class we will prove the
following \sequential compactness version" of this theorem.

Theorem 41. Let X be a separable Banach space. Any bounded sequence of func-
tionals f�n 2 X� : n 2 Ng has a weak� convergent subsequence.
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Proof. Let fxk : k 2 Ng be a dense sequence in X , and let �i be the given sequence
of functionals. By assumption they are bounded, so we have k�ikX� �M for some
M <1.

We can extract a subsequence �ij such that limj!1 �ij (x1) exists. From this
subsequence we can extract a further subsequence such that �

i
(2)
j

(x1) and �i(2)j

(x2)

both converge. Proceeding by induction we obtain a sequence of subsequences �
i
(l)
j

for which

lim
j!1

�
i
(l)
j

(xm)

exists if m � l. Cantor's diagonal trick then gives us a subsequence �i00j of �i for

which

�(xk)
def
= lim

j!1
�i00j (xk)

exists for all k 2 N.
We now show that �i00j (x) converges for all x 2 X .

Let " > 0 and x 2 X be given. The xk are dense in X so we can �nd an xk
with kx � xkk < �=4M . Since �i00j (xk) converges as j % 1 we can �nd N < 1
such that

j�i00
l
(xk)� �i00m (xk)j < "=2

for all l;m > N . The uniform boundedness of the �j now implies that for all
l;m > N one has

j�i00l (x) � �i00m(x)j � j�i00l (x)� �i00l (xk)j+ j�i00l (xk)� �i00m(xk)j
+ j�i00m(xk)� �i00m(x)j

< M
"

4M
+
"

2
+M

"

4M
= ":

Thus �i00j (x) is a Cauchy sequence and

�(x)
def
= lim

j!1
�i00j (x)

exists for all x 2 X .
Uniform boundedness of the �i implies

j�(x)j � sup
j2N

j�i00j (x)j �Mkxk

so that � is a bounded functional on X . By de�nition �i00
l
converges weak� to

�.

The \dual theorem" to the Banach-Alaoglu theorem would state that the unit
ball in any Banach space is weakly compact, or, any bounded sequence in a Banach
space would have a weakly convergent subsequence. This is not true in general, but
we can prove the following

Theorem 42. If X is a re
exive Banach space whose dual is separable, then any
bounded sequence in X has a weakly convergent subsequence.
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Proof. The trick is to identify X with X��. If xi 2 X is a bounded sequence, then
we consider the functionals x̂i 2 X�� de�ned by x̂i(�) = �(xi) for all � 2 X�.

The Banach-Alaoglu theorem gives us a subsquence x̂ij which converges weak
�

to some �1 2 X��. But since X is re
exive there is an x1 2 X such that �1 = x̂1.
Weak� convergence in X�� of the x̂ij to �1 then implies weak convergence in X of
the xij to x1.

The following example shows that things do indeed go wrong if the Banach space
is not re
exive.

Exercise 90. Show that the sequence fn(x) = n�(0;1=n)(x) is bounded in L1(R) but
does not have a weakly convergent subsequence. (Hint: what would be the support of
the weak limit?)

An attempt to construct a similar example in Lp(R) leads to the following problem:

Exercise 91. Prove that the sequence fn(x) = n1=p�(0;1=n)(x) converges weakly to 0
in Lp(R).

50. Application to Partial Di�erential Equations

50.1. A general minimization theorem.

We return to the problem of �nding the minimum of a continuous function f on
a subset K of some Banach space. In general, even if infK f(x) > �1 the function
f need not attain its minimum, even for fairly simple f and K (see exercise 34
again). Using the Banach-Alaoglu theorem one can give suÆcient conditions for a
function to attain its minimum.

Theorem 43. Let X be a re
exive Banach space whose dual is separable. Let
� : X ! R be a continuous and convex function. Assume furthermore that �
satis�es

lim
kxk!1
x2K

�(x) =1:(15)

Then infx2X �(x) > �1. Moreover, for any closed and convex subset K � X an
x0 2 K exists which minimizes � on K, i.e.

�(x0) = inf
x2K

�(x):

If � is strictly convex on K then the minimizer x0 is unique.

Condition (15) is sometimes called \coercivity" of � on K.
By de�nition � is strictly convex on K if for any x 6= y in K one has

�(tx+ (1� t)y) < t�(x) + (1� t)�(y) for all 0 < t < 1.(16)

Proof. If � is strictly convex then � cannot have two distinct minimizers in K, for
if both x and y were minimizers with x 6= y then (16) would imply that �(z) < �(x)
for z = 1

2 (x+ y), in contradiction with the minimizing property of x.
We now worry about the existence of a minimizer.
To show that � is bounded from below we choose R <1 so large that �(x) � 0

for kxk � R. By theorem 39 the subdi�erential of � is never empty so we can choose
a � 2 @�(0). Then

�(x) � �(0) + �(x) � �(0)�Rk�k



60

whenever kxk � R. Thus � is bounded from below, and for any given K � X

�min
def
= inf

x2K
�(x) � �(0)�Rk�k

is well de�ned.
To show that the in�mum is attained we let xi 2 K be a sequence with �(xi)!

�min. Such a sequence must be bounded since our function � is by assumption
coercive, i.e. (15) implies that there is an R < 1 such that �(x) � �min + 1 for
all x with kxk � R. With a �nite number of exceptions all xi therefore satisfy
kxik � R.

By Banach-Alaoglu the sequence has a weakly convergent subsequence xij*xmin 2
X . Since K is closed and convex the Hahn-Banach theorem implies that the weak
limit xmin lies in K. We will show that xmin is a minimizer for �.

Choose any � 2 @�(xmin). Then one has

�min = lim
j!1

�(xij )

� lim
j!1

�(xmin) + �(xij � xmin)

= �(xmin)

� �min:

So we do indeed have �(xmin) = �min.

50.2. A modi�ed Dirichlet problem.

One can use the theory we have developed so far to prove existence of solutions
to certain boundary value problems. To illustrate this we consider the following
problem: Given a domain 
 � Rn and a function g : @
 ! R �nd a function
u : 
! R which satis�es �

�u� u = 0

u j@
 = g
(17)

To be more precise we will look for solutions u 2 W 1;2(
) of �u � u = 0, i.e.
we will look for functions u 2 W 1;2(
) which satisfy �u � u = 0 in the sense of
distributions. To specify the boundary conditions we assume that not g, but a
function G 2 W 1;2(
) is given instead, and we will require that u�G 2W 1;2

o (
).
We write

LG
def
= fu 2 W 1;2(
) : u�G 2W 1;2

o (
)g;
i.e. LG is the set of u 2W 1;2(
) which satisfy the boundary condition \u = g."

Lemma 44. A function u 2 LG satis�es (17) if and only if it minimizes the quan-
tity

Q(u)
def
= 1

2

Z



fu(x)2 + jru(x)j2g dx

among all u 2 LG.
The proof goes exactly as the proof of Theorem 3 of section 8.
To solve the boundary value problem we must therefore �nd a u 2 LG which

minimizes Q. But Q is the square of the norm on W 1;2
o and hence is convex and

continuous. The subset LG is closed and convex. We can therefore apply Theorem
43 with � = Q and K = LG and immediately conclude that a minimizer u 2 LG
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exists, so that we have shown that for all possible boundary data G the boundary
value problem (17) has a solution u 2W 1;2(
).

To conclude we observe that Q is strictly convex. Indeed, for u 6= v 2 W 1;2(
)
one has

q(t)
def
= Q(tu+ (1� t)v) = Q(v + t(u� v)) = A+Bt+ Ct2

where A = Q(v) and B don't really matter and

C =
1

2

Z



f(u� v)2 + jr(u� v)j2g dx > 0

since u 6= v. The quadratic function q(t) is therefore strictly convex, and hence
Q(tu+ (1� t)v) < tQ(u) + (1� t)Q(v) for 0 < t < 1.

The minimizer u 2 LG is therefore unique and we conclude that for all possible
boundary data G the boundary value problem (17) has exactly one solution u 2
W 1;2(
).

50.3. The Dirichlet Problem.

We now show how one can �nd harmonic functions with prescribed boundary
values by proving that the Dirichlet functional attains its minimum. We apply the
same minimization theorem as before to the Dirichlet functional

D(u) = 1
2

Z



jru(x)j2 dx:

This functional is almost the same as the functional Q we have considered in the
previous section, the di�erence being the u2 term in the integral. The absence
of this term makes that the Dirichlet functional does not satisfy the \coercivity"
condition (15) on arbitrary domains 
. However, if the domain is bounded then
we can still prove (15) for D. The key is Poincar�e's inequality:

Lemma 45 (Poincar�e). Let 
 be a connected open subset of Rn with j
j < 1.
Then any u 2W 1;2

o (
) satis�esZ
u(x)2 dx � C

Z
jru(x)j2 dx:(18)

for some C which does not depend on u.

Proof. Since D(
) is dense in W 1;2
o (
) we may assume that u 2 D(
).

When n = 1 we may assume that 
 = (0; L). For u 2 D(
) one then has

u(x)2 =

Z x

0

2u(�)u0(�) d� � 2kukL2(
)ku0kL2(
):

Integrate over x 2 (0; L) to get

kuk2L2(
) � 2LkukL2(
)ku0kL2(
);

which implies

kukL2(
) � 2Lku0kL2(
):

When n � 2 H�older's inequality implies thatZ



jru(x)j 2n
n+2 dx �

�Z



jru(x)j2 dx
� n

n+2

j
j 2
n+2(19)
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The Sobolev inequality (Theorem 27) with r = 2 and p = 2n
n+2 implies

kukL2 � 2(1� 1
n )krukL2n=(n+2)

which, combined with (19) gives

kukL2 � 2(1� 1
n )j
j1=nkrukL2 :

With this lemma we can attack the Dirichlet problem, which we formulate as
follows: Let 
 be a bounded open domain in Rn , and let G 2 W 1;2

o (
) be given.
Find a function u 2W 1;2(
) with

u�G 2W 1;2
o (
) (boundary condition)

and

�u = 0 (Laplace's equation)

in the sense of distributions.
As we observed in section 8, solutions of this problem are exactly the functions

u 2 LG which minimize D(u).

Theorem 46. For any G 2 W 1;2
o (
) there is a unique minimizer uG 2 LG of

D(u).

Proof. Uniqueness follows from the strict convexity of the Dirichlet functional.
Convexity and continuity of D :W 1;2(
)! R are proved as before.
To establish the coercivity condition we use Poincar�e's inequality to estimate

the W 1;2 norm of any u 2 LG in terms of D(u).

kuk2W 1;2 = kuk2L2 + krukL2| {z }
=2D(u)

= ku�G+Gk2L2 + 2D(u)

� 2ku�Gk2L2| {z }
apply Poincar�e

+2kGk2L2 + 2D(u)

� Ckr(u�G)kL2 + 2kGk2L2 + 2D(u)

� 2CkrukL2 + 2CkrGkL2 + 2kGk2L2 + 2D(u)

� C 0kGkW 1;2 + C 00D(u):

It follows that kukW 1;2 ! 1 will force D(u) ! 1. We may therefore apply
Theorem 43 and conclude the existence of a minimizer u 2 LG for D(u).

Exercise 92. Check that D is indeed strictly convex.

50.4. A third example { Poisson's equation

Let 
 � Rn be a bounded domain. For any given f : 
 ! R we try to �nd a
function u : 
! R which satis�es(��u = f in 
,

u j@
 = 0:
(20)
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This equation is called Poisson's equation. One interpretation of this equation
is from electrostatics: If a cavity 
 contains a charge distribution f(x), and the
boundary @
 of the cavity is \grounded," i.e. its potential u is kept at 0 (Volts),
then the electric potential in the cavity generated by the charge distribution is
precisely the solution u(x) of (20).

To solve the problem we observe

Lemma 47. Let f 2 L2(
). A function u 2W 1;2
o (
) which minimizes

Qf (u) =

Z



f 12 jruj2 � f(x)u(x)g dx

over all u 2W 1;2
o (
) satis�es ��u = f in the sense of distributions.

Proof. Let ' 2 D(
) be arbitrary and expand�
dQf (u+ t')

dt

�
t=0

= 0:

One �nds Z



fru � r'� f(x)'(x)g dx = 0;

i.e.

h��u� f; 'i = 0

as claimed.

Lemma 48. Qf is continuous, strictly convex and coercive on X =W 1;2
o (
)

Proof. The �rst term in Qf is just the Dirichlet integral, while the last term is a
linear functional on W 1;2

o (
). Thus we can write Qf as

Qf (u) = D(u) + '(u);

where

'(u) =

Z



f(x)u(x) dx:

The Dirichlet integral is a strictly convex function and linear functionals are convex
so that Qf is clearly convex.

We have alreasy veri�ed continuity of the Dirichlet functional. The linear
functional ' is bounded by����Z




f(x)u(x) dx

���� � kfkL2kukL2 � kfkL2kukW 1;2

and is therefore also continuous. So Qf is continuous.
To prove coercivity we recall that Poincar�e's inequality implies

kuk2
W 1;2

o
=

Z



�juj2 + jruj2	 dx � �1 + 2j
j2=n)
Z
jruj2 dx

i.e.

kuk2
W 1;2

o
� �1 + 2j
j2=n)D(u):
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Coercivity of Qf then follows from

Qf (u) = D(u) +

Z
fu dx

� ckuk2W 1;2 � kfkL2kukW 1;2 use 2ab � �a2 +
1

�
b2

� ckuk2W 1;2 � c

2
kuk2L2 � 1

2c
kfk2L2

� c

2
kuk2W 1;2 � 1

2c
kfk2L2:

We now apply theorem 43 to � = Qf and K = X =W 1;2
o (
) and immediately

conclude that (20) has a solution u 2W 1;2
o (
) for any f 2 L2(
).

Exercise 93. Let g1; : : : ; gn 2 L2(
) be given functions. Show that a solution u of

�u� u = D1g1 + : : :+Dngn

in the sense of distributions exists which also vanishes on @
 in the sense that u 2
W 1;2

o (
). Hint: minimize the functional

Q(u) =

Z



�
1

2
jruj2 + 1

2
u2 + ~g � ru

�
dx;

where ~g = (g1; : : : ; gn).
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Baire Category
Baire's theorem, The Uniform Boundedness Principle, The Open Mapping Theorem, The

Closed Graph Theorem.

Textbooks to look at: Both of Rudin's books[4, 5] have a chapter devoted to the
Baire category theorem and its applications.

51. Baire's theorem

Let (X; d) be a metric space. Recall that V � X is called dense if every open
O � X intersectsD; equivalently, for any point x 2 X and any neighborhood U 3 x
there is a point p 2 O \ U .

Theorem 49 (Baire). Let (X; d) be a complete metric space, and let Vn � X be a
sequence of dense and open subsets. Then W = \1n=1Vn is also dense in X.

The proof will be presented in class and can be found in [4, theorem 5.6].
Some terminology: a set A � X is nowhere dense if A\O is not dense in O for

any open O � X . Equivalently, A � X is nowhere dense if its closure has empty
interior.

A set A � X is said to be of the �rst category in X if it is the countable union
of nowhere dense sets (A = [1n=1An, with An nowhere dense in X .)

A set is of the second category if it is not of the �rst category.
Baire's theorem says that the complement of a �rst category set A � X is dense

in X .
Typical consequences of Baire's theorem are the existence of nowhere di�eren-

tiable but continuous functions (see exercise 14 of [4, chapter 5]), or the existence
of continuous functions whose Fourier series do not converge (see [4, chapter 5] and
also x72.2 in these notes). See also exercises 13 and 21 in [4, chapter 5]. Other
examples of the kind of thing you can use Baire's theorem for are:

Exercise 94. Let f : [0; 1] ! R have derivatives of all orders. Suppose that for every

x 2 [0; 1] some derivative of f vanishes, i.e. 9n(x) 2 N such that f (n(x))(x) = 0. Then
f is a polynomial.
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Exercise 95. Given: a sequence of nonnegative continuous functions fn 2 C([0; 1])
such that for each x 2 [0; 1]

Mx
def
= sup

n2N
fn(x) <1:

Prove: there exist M <1 and a nonempty interval (a; b) � [0; 1] such that fn(x) �M
for all n 2 N and a < x < b.

Exercise 96. Let X be a Banach space.
(i) Let K � X be convex and symmetric subset. If K has nonempty interior then K

contains a neighborhood of the origin.
(ii) Let K � X be convex, closed and symmetric subset such that X = [1n=1nK.

Then K contains a neighborhood of the origin. (By de�nition nK = fnx : x 2 Kg.)

52. The Uniform Boundedness Principle

The following is known as the Uniform Boundedness Principle, or as the Banach-
Steinhaus theorem.

Theorem 50. Let fTa : a 2 Ag be a family of bounded linear mappings Ta : X !
Y , where X is a Banach space and Y is a normed vector space. If

Mx
def
= sup

a2A
kTaxkY <1

for every x 2 X, then

sup
a2A

kTakL(X;Y ) <1:

Proof. Let

K
def
= fx 2 X : sup

a2A
kTaxkY � 1g:

Our hypothesis implies that x 2 nK for any n > Mx, so that x 2 [n2NnK.
Furthermore K is convex, closed and symmetric. By exercise 96 K contains a
neighborhood of the origin, so that for some " > 0 one has kTaxk � 1 is kxk � ".
This implies kTak � "�1 where a 2 A is arbitrary.

Exercise 97. Let X be a Banach space and consider a sequence �i 2 X�. Assume
�i

**� as i%1. Then the sequence �i is bounded, i.e. supi2Nk�ikX� <1.

Exercise 98. Do problem 79 (ii) again, this time using the Banach-Steinhaus theorem.

53. The Open Mapping Theorem

Theorem 51 (The Open Mapping Theorem). Let T : X ! Y be a bounded linear
mapping between Banach spaces X and Y . If T is surjective, then V = fTx :
kxkX � 1g contains an open neighborhood of the origin in Y .

For the proof see [4, theorem 5.9]. A direct consequence is

Theorem 52 (Bounded Inverse Theorem). If X and Y are Banach spaces and T :
X ! Y is a bijective bounded linear mapping, then T�1 : Y ! X is also bounded.
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Proof. Since V = fTx : kxkX � 1g contains BY (0; ") = fy 2 Y : kyk < "g for some
" > 0 we see that

T�1 (BY (0; ")) � BX(0; 1);

which implies that T�1 is indeed bounded with kT�1k � 1

"
.

54. The Closed Graph Theorem

The graph of a linear mapping T : X ! Y is by de�nition

Graph(T ) = f(x; Tx) 2 X � Y : x 2 Xg:
The direct sum X � Y is a Banach space and the graph of T is a linear subspace.

Theorem 53 (Closed Graph Theorem). If X and Y are Banach spaces and if the
graph of T : X ! Y is a closed subspace of X � Y then T is bounded.

Proof. Let Z = Graph(T ). Then since Z is a closed subspace of X � Y it is a
Banach space. Both projections pX : X � Y ! X , pY : X � Y ! Y given by

pX(x; y) = x; pY (x; y) = y

are bounded.
The projection pX jZ : Z ! X is one-to-one and onto X , so by the bounded

inverse theorem its inverse (pX jZ)�1 : X ! Z is bounded.

The operator T is given by T = pY Æ(pX jZ)�1, and hence, being the composition
of bounded operators, is itself also bounded.
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Bounded Operators
Examples of Operators; Inverses and the Neumann series; A nonlinear digression; The adjoint

of an operator; Kernel and Cokernel; Compact Operators

Text books to look at: The theory of the adjoint operator, and the Riesz-theory
of compact operators on a Banach space is treated in much greater detail in Rudin's
book on Functional Analysis [5].

55. Examples of Operators

Finite and in�nite matrices

Linear maps between �nite dimensional spaces are represented by matrices, i.e.
a map T : Rn ! Rm is speci�ed by a matrix fTij : 1 � i � m; 1 � j � ng via

(Tx)i =

nX
j=1

Tijxj :(21)

The most direct generalization are linear maps on `p spaces speci�ed by in�nite
matrices. Let fTij : i; j 2 Ng be an in�nite matrix.

Exercise 99.

(i) Suppose

sup
i2N

X
j2N

jTij j =M <1:(22)

Show that (Tx)i =
P

j2NTijxj de�nes a bounded linear map T : `1 ! `1

(ii) Suppose

sup
j2N

X
i2N

jTij j =M 0 <1:(23)

Show that (Tx)i =
P

j2NTijxj de�nes a bounded linear map T : `1 ! `1

Integral operators

The next step in generalizing matrices is to consider \continuous matrices." Let
(
;�; �) be a measure space and let T (x; y) be a measurable function on 
 � 
.
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Then one can attempt to de�ne a linear operator by

Tf(x)
def
=

Z



T (x; y)f(y) d�(y):(24)

Whenever this integral makes sense the resulting operator is called an integral
operator with kernel T (x; y). It is surprisingly hard to decide for just any kernel
T (x; y) if it de�nes a bounded operator on some Lp space. In fact no necessary
and suÆcient conditions seem to be known. The following exercises indicate some
suÆcient conditions or examples of bounded integral operators. See [9] for a book
only about integral operators on L2 spaces.

The �rst thing that comes to mind when you want to �nd out if Tf 2 Lp is
to apply H�older's inequality as often as necessary to estimate kTfkLp in terms of
kfkLp. This works for the following class of kernels:

Exercise 100. Assume

Np(T )
def
=

(�Z



jT (x; y)jp=(p�1) d�(y)

�p�1

d�(x)

)1=p

<1:

Show that for any f 2 Lp(
;�; �) the integral (24) exists for � almost every x 2 
, and
that (24) de�nes a bounded linear operator T : Lp ! Lp with

kTfkLp � Np(T )kfkLp :
Integral operators for which

N2(T ) =

Z

�


jT (x; y)j2 dx dy <1

are called Hilbert-Schmidt operators.
The condition Np(T ) < 1 is suÆcient, but far from necessary for a kernel T

to de�ne a bounded operator on Lp(
), as the following examples show.

Exercise 101. Let f 2 L1(Rn). Show that the operator

Tg(x) = f � g(x)
is bounded on Lp(Rn).

Identify the kernel T (x; y) of this operator and compute Np(T ) as de�ned in exercise
100.

Exercise 102. Show that the operator

Tf(x) =
1

x

Z x

0

f(t) dt

is bounded from Lp(0; 1) to Lp(0; 1) for 1 < p � 1.
Show that T is not bounded when p = 1.

Exercise 103. Show that

Tf(x) =

Z 1

0

f(y) dy

x+ y

de�nes a bounded operator on Lp(0;1) if 1 < p <1, but not for p = 1 or p =1.

Exercise 104. Find a kernel T (x; y) which de�nes a bounded integral operator on
L1999(R), but not on Lp(R) for any p 6= 1999. (Hint: try T (x; y) = f(x)g(y).)

Finally, many (\most") bounded operators cannot be written as integral operators.
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Exercise 105. Let m : 
! R be measurable. Show that the multiplication operator

Mf(x)
def
= m(x)f(x)

is bounded on Lp(
) if and only if m 2 L1(
).

Exercise 106. Let Tf(x) = f(x+ 1). Then T is a bounded linear operator on Lp(R).

Show that there is no kernel ~T : R2 ! R with ~T 2 L1
loc(R

2) such that T is the operator

with kernel ~T . (Hint: consider
R
R
g(x)Tf(x) dx for characteristic functions f and g.)

56. Inverses and the Neumann series

An operator T : X ! Y is invertible if it is one-to-one and onto. By the
bounded inverse theorem the inverse T�1 : Y ! X is again a bounded linear
operator.

Theorem 54. The set of bounded linear operators T 2 L(X;Y ) which are invert-
ible is open in L(X;Y ).

Proof. We �rst use the geometric series to show that a neighborhood of the identity
in L(X) consists of invertible operators.

If kTkL(X) < 1 for some T 2 L(X) then I � T : X ! X is invertible and its
inverse is given by

(I � T )�1 =

1X
k=0

T k:(25)

Indeed if a = kTkL(X) < 1 then the norm of the kth term in (25) is bounded by

kT kk � kTkk = ak so that the series in (25) is absolutely convergent and hence
norm convergent in L(X). If one denotes the sum by S = I + T + T 2 + : : :, then
one has

TS = ST = T + T 2 + T 3 + : : : = S � I

which after rearrangement gives (I � T )S = S(I � T ) = I ; so (25) is indeed true.
Next we treat the general case: Let T : X ! Y be invertible, and let S 2

L(X;Y ) be some other operator for which

kT � SkL(X;Y ) � kT�1kL(Y;X) = a < 1:

Then T�1S : X ! X is invertible since

kT�1S � IkL(X) = kT�1(S � T )kL(X) � kT � SkL(X;Y ) � kT�1kL(Y;X) < 1:

For a similar reason ST�1 : Y ! Y is also invertible.
The operatorL = (T�1S)�1T�1 is a left inverse for S since LS = (T�1S)�1T�1S =

IX ; similarly, the operator R = T�1(ST�1)�1 is a right inverse for S.
It follows that R = L and that S is invertible if

kT � SkL(X;Y ) <
1

kT�1kL(Y;X)
:

The theorem says that if an operator S is close to an invertible operator T then
S must also be invertible. Here closeness is meant with the respect to the operator
norm, i.e. kS � Tk should be a small number. The following example shows that
this condition is stronger than one might think (i.e. operators which seem close are
actually not close to each other in the operator norm.)
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Exercise 107. Let T" : L
p(Rn) ! Lp(Rn) be the operator given by T"f = '" � f , in

which '"(x) = "�n'(x=") is again our favorite family of smooth compactly supported
functions.

We have seen that kT"f � fkLp(Rn) ! 0 as " & 0 for any f 2 Lp(Rn), so in some
sense one can say that the T" converge to the identity on Lp(Rn).

Is it true that kT" � IkL(Lp(Rn)) ! 0 as "& 0?
Hint: For the case p = 1 consider T"('Æ)� �Æ and let Æ ! 0. For p 6= 1 replace �Æ

by cÆ'Æ where you choose cÆ > 0 so that kcÆ'ÆkLp = 1.

Exercise 108. Show that for small enough � 2 R the integral equation

f(x) + �

Z 1

0

sin(x2 � �2)f(�) d� = g(x)

has a unique solution f 2 Lp(0; 1) for any g 2 Lp(0; 1).
Give a numerical estimate for how small � must be.

57. A nonlinear digression: The Contraction Mapping Principle

The theorem on inverting I � T for kTk < 1 is actually a special case of a
nonlinear theorem.

Theorem 55. Let (X; d) be a complete metric space, and let F : X ! X be a
contraction, i.e. for some � < 1 one has

8x;y2X d(F (x); F (y)) � �d(x; y):(26)

Then F has a unique �xed point, i.e. there is a unique x 2 X such that F (x) = x.

Proof. Choose any x0 2 X and de�ne inductively xn+1 = F (xn). Then

d(xn+1; xn) � �d(xn; xn�1);

so, by induction

d(xn+1; xn) � �nd(x1; x0):

Hence, for n < m <1 one has

d(xn; xm) � d(xn; xn+1) + d(xn+1; xn+2) + : : :+ d(xm�1; xm)

� d(x1; x0)
�
�n + : : :+ �m�1

�
� d(x1; x0)

�n

1� �
:

It follows that xn is a Cauchy sequence. Let x� be its limit. Then

F (x�) = F
�
lim
n!1

xn

�
= lim

n!1
F (xn) = lim

n!1
xn+1 = x�;

so a �xed point does exist.
The �xed point must be unique for if x and y are both �xed points then one

has

d(x; y) = d(F (x); F (y)) � �d(x; y):

In view of � < 1 this can only hold if d(x; y) = 0, i.e. if x = y.
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Theorem 56. Let X be a Banach space, and let F : X ! X be a contraction (as
in (26)). Then the map � : X ! X given by �(x) = x�F (x) is a homeomorphism,
and its inverse ��1 : X ! X is Lipschitz continuous with constant (1� �)�1, i.e.

k��1(x) ���1(y)k � 1

1� �
kx� yk:

Proof. To solve �(x) = u for any u 2 X one must �nd a solution of x = F (x) + u.
In other words, one must �nd a �xed point of the map G(x) = F (x) + u. From

kG(x)�G(y)k = kF (x)� F (y)k � �kx� yk
one sees that G is a contraction, so a solution to x = F (x)+u exists: � is surjective.
The solution to x = F (x) + u is also unique, so � is injective.

Thus ��1 : X ! X is well de�ned. We now estimate ��1(u) � ��1(v) for
u; v 2 X . Let

x = ��1(u); y = ��1(v);

so that

x = F (x) + u; y = F (y) + v:

One then has

kx� yk = kF (x) + u� F (y)� vk � kF (x)� F (y)k+ ku� vk � �kx� yk+ ku� vk:
One solves this for kx� yk with result

kx� yk � ku� vk
1� �

;

as claimed.

A standard application to Ordinary Di�erential Equations

We consider the initial value problem for a system of di�erential equations

dx

dt
= f(x); x(0) = x0:(27)

Here f : Rn ! Rn is some (nonlinear) mapping, and we look for a solution x :
[0; T ]! Rn , for some T > 0.

Theorem 57. Assume that f is Lipschitz continuous with

8x;y2Rnjf(x) � f(y)j � Ljx� yj:
Let 0 < T < L be given. Then (27) has a unique solution x 2 C([0; T ];Rn) for any
given initial data x0 2 Rn .
Proof. Rewrite (27) as an integral equation,

x(t) = x0 +

Z t

0

f(x(s)) ds:(28)

Denote the right hand side of this equation by F (x), more precisely, for any x 2
C([0; T ];Rn) we put

(Fx)(t)
def
= x0 +

Z t

0

f(x(s)) ds; for t 2 [0; T ].
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Since LT < 1 this map is a contraction on the Banach space X = C([0; T ];Rn ):

sup
0�t�T

j(Fx)(t) � (Fy)(t)j = sup
0�t�T

����Z t

0

ff(x(s))� f(y(s))g ds
����

� sup
0�t�T

Z t

0

jf(x(s)) � f(y(s))j ds

� T sup
0�t�T

jf(x(t))� f(y(t))j

� LT sup
0�t�T

jx(t) � y(t)j:

The unique �xed point x 2 C([0; T ];Rn ) of F is the solution of (28).
At this point we only know that x is a continuous function of t (since we

constructed x as an element of C([0; T ];Rn)), but (28) implies that x is actually
continuously di�erentiable, and the fundamental theorem of calculus implies that
x actually satis�es (27).

58. The adjoint of a bounded operator

Let T : X ! Y be a bounded linear operator between Banach spaces. If � 2 Y �
is a bounded functional on Y then one de�nes a bounded linear functional T �� on
X by

T ��(x)
def
= �(Tx):

In this way a linear transformation T � : Y � ! X� is de�ned. This transformation
is called the adjoint of the operator T . Clearly one has

kT ��k = sup
kxk�1

jT ��(x)j

= sup
kxk�1

j�(Tx)j

� k�k sup
kxk�1

kTxk

= kTk k�k
so that T � is bounded and kT �kL(Y �;X�) � kTkL(X;Y ).

Exercise 109. Use the Hahn-Banach theorem to show that

kT �kL(Y �;X�) = sup
kxk�1
k�k�1

�(Tx) = kTkL(X;Y ):

Exercise 110.

(i) Let T : X ! Y be a bounded linear operator, and let fxi 2 X : i 2 Ng be a weakly
convergent sequence, xk*x1. Show that T (xk) is weakly convergent in Y , and that
Txk*Tx1.

(ii) Let f�i 2 X� : i 2 Ng be a weak� convergent sequence, �k
**�1. Show that

T �(�k) is weak� convergent in X�, and that T ��k
**T ��1.

Exercise 111. Let f 2 L1(Rn). Find the adjoint of the operator on Lp(Rn) given by
Tg = f � g.
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Exercise 112. Show that the operator S given by

Sf(x) =

Z 1

x

f(�)

�
d�

is bounded on Lp(0; 1) for all p 2 [1;1), but not for p =1.
Show that S is the adjoint of the operator T in exercise 102.

59. Kernel and Cokernel

We consider a bounded operator T : X ! Y whereX and Y are Banach spaces.
The kernel of T is de�ned to be

kerT = fx 2 X : Tx = 0g:

From linear algebra we know that T is one-to-one if and only if kerT = f0g.
The range of T is by de�nition

R(T ) = fTx : x 2 Xg � Y:

The range of an operator is a linear subspace of Y which in general does not have
to be closed. If the range is closed however, then one de�nes the cokernel of T to
be the following quotient of Banach spaces

cokerT = Y=R(T ):

If R(T ) is closed, then T is surjective if and only if its cokernel is trivial, i.e.
cokerT = f0g.

Exercise 113. Show that the following operators do not have closed range:
(i) X = Y = Lp(0; 1), and Tf(x) = xf(x).
(ii) X = Y = `p and (Tx)j = 2�jxj .
(iii) X = Y = Lp(0; 1) and Tf(x) =

R x
0
f(�) d�.

There is a simple relation between the kernels and cokernels of an operator T
and its adjoint T �.

Theorem 58. (i) Let T : X ! Y be bounded. Then

R(T )? = kerT � and ?R(T �) = kerT:

(ii) If R(T ) is closed then one has

R(T ) =? kerT:

Here for any linear subspaces L � X and M � X� one de�nes the so-called
annihilators

L? = f� 2 X� : 8x2L�(x) = 0g;(29)

?M = fx 2 X : 8�2M�(x) = 0g:(30)

I leave the proof as an exercise (but see [5, theorem 4.12] for part(i); to prove part
(ii) use the Hahn Banach theorem.)
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60. Compact operators

Let X;Y be Banach spaces. By de�nition an operator T : X ! Y is compact if
the image of the unit ball inX under T has compact closure in Y , i.e. fTx : kxk � 1g
has compact closure in Y .

The following is an equivalent de�nition: T is compact if every bounded sequence
xn 2 X has a subsequence for which Txn 2 Y converges in Y .

The set of T 2 L(X;Y ) which are compact is denoted by K(X;Y ).

Exercise 114.

(i) Show that if T : X ! Y is invertible, with T�1 : Y ! X also bounded, then T
compact implies X �nite dimensional.

(ii) Show that if T; S : X ! Y are compact operators, then for any �; � 2 R the
operator �T + �S is also a compact operator; in other words show that K(X;Y ) is a
linear subspace of L(X;Y ).

Theorem 59. If Tn is a sequence of compact operators from X to Y , and if Tn
converges in the operator norm to T , then T is also compact.

In other words, compact operators form a closed subset of the set of bounded
operators.

Proof. Let xi 2 X be a bounded sequence. We must show that Txi has a convergent
subsequence. Each Tn is compact, so for each �xed n one can �nd a subsequence
xij such that limj!1 Tnxij 2 Y exists. Using Cantor's diagonalization trick one
can �nd one subsequence such that

lim
j!1

Tnxij = yn 2 Y
exists for all n 2 N.

We now show that fTxij : j 2 Ng is a Cauchy sequence in Y , and hence a
convergent subsequence of the Txi. Let " > 0 be given. Choose some n0 2 N such
that kTn0 � Tk < "=3. Since fTn0xij : j 2 Ng converges in Y as j %1 it is also a
Cauchy sequence. Hence an N(") 2 N exists for which kTn0xij � Tn0xikkY < "=3
for all j; k � N("). One then also has

kTxij � TxikkY � kTxij � Tn0xij kY + kTn0xij � Tn0xikkY + kTn0xik � TxikkY
< "=3 + "=3 + "=3

= ":

for all j; k � N(").

Exercise 115. If T : X ! Y and S : Y ! Z are bounded operators, and if either T or
S is compact, then show that ST : X ! Z is also compact.

Theorem 60. Let � 2 C n f0g. If T : X ! X is compact, then

(i): ker
�
�I � T

�
is �nite dimensional;

(ii): R(�I � T ) is closed;
(iii): R(�I�T ) has �nite codimension, and dimker(�I�T ) = codimR(�I�T ).

Proof. We only prove (i) here. For the rpoof of (ii) and (iii) you should look at
Rudin's Functional Analysis [5].

Let xn 2 ker
�
�I�T � be a bounded sequence. Then for some subsequence Txni

converges. Since Txn = �xn we conclude that xni = ��1Txni also converges.
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Thus every bounded sequence in ker
�
�I � T

�
has a convergent subsequence.

This implies that the closed unit ball in ker
�
�I � T

�
is compact, and hence the

Banach space ker
�
�I � T

�
is �nite dimensional, by Lemma 7.

61. Finite rank operators.

An operator T : X ! Y has �nite rank if its range is R(T ) �nite dimensional.
For any vectors y1; : : : ; ym 2 Y and functionals �1; : : : ; �m 2 X� the linear operator
given by

Tx =
mX
i=1

�i(x)yi(31)

has �nite rank since its range is contained in the subspace of Y spanned by the yi.

Lemma 61. Any �nite rank operator is of the form (31).

Proof. Let y1; : : : ; ym 2 Y be a basis for R(T ). Then any vector y 2 R(T ) is of the
form y = c1y1 + : : : + cmym where the ci depend continuously on y 2 R(T ). The
function which assigns ci 2 R to y 2 R(T ) thus de�nes a bounded linear functional
ci : R(T )! R, and one has

y = c1(y)y1 + : : :+ cm(y)ym

for all y 2 R(T ). In particular one has

Tx = c1(Tx)y1 + : : :+ cm(Tx)ym

for all x 2 X . Hence T has the form (31) if one de�nes �i(x) = ci(Tx).

Theorem 62. A �nite rank operator is compact.

Proof. For any bounded sequence xn 2 X the sequence Txn is a bounded sequence
in R(T ). Since R(T ) is �nite dimensional any bounded sequence in R(T ) has a
convergent subsequence.

Exercise 116.

(i) Consider the operator T : Lp(0; 1)! Lp(0; 1) given by

Tf(x) =

Z 1

0

sin(x2 � �2)f(�) d�:

Show that T has �nite rank, and write T in the form (31). (Hint: sin(�+ �) =?)
(ii) For which � 2 C does the integral equation

f(x) + �

Z 1

0

sin(x2 � �2)f(�) d� = g(x)

have a unique solution f 2 L2(0; 1) for all g 2 L2(0; 1).

62. Compact integral operators.

Let T : 
�
! R be a measurable function whose norm

Np(T ) =

(�Z



jT (x; y)jp=(p�1) d�(y)
�p�1

d�(x)

)1=p

is �nite. Such a function de�nes a bounded integral operator on Lp(
) (see exercise
100).
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Theorem 63. If 1 < p <1 then an integral operator with kernel T (x; y) for which
Np(T ) <1 is compact.

Proof. We only do the case p = 2. This case is easier since the Np(T ) norm is then
given by the more familiar quantity

Np(T )
2 =

Z

�


jT (x; y)j2 dx dy:

In measure theory it is shown that \simple" functions of the form

~T (x; y) =
mX
i=1

ci�Ei(x)�Fi(y)

are dense in L2(
 � 
). Thus the integral operator on L2(
) with kernel T can

be approximated by integral operators whose kernels are of the form ~T . But an
operator with kernel ~T has �nite rank and is therefore compact. So the operator
with kernel T is a limit of compact operators and therefore is itself also compact.

To prove the general case one must show that the quantity Np(T ) is a norm
and that any kernel T with Np(T ) < 1 can be approximated by functions of the

form ~T .

Not all integral operators are compact.

Exercise 117. Let T : Lp(Rn)! Lp(Rn) be given by convolution with an f 2 L1(Rn),
i.e. Tg = f � g. Show that T is not compact (unless T = 0; if you wish you can simplify
the problem by assuming that f is continuous with compact support.)

Another example of a bounded integral operator which is not compact is the
operator 8><>: Tf(x) =

Z 1

0

~T (x; y)f(y) dy;

~T (x; y) = sin 2n�x; for 2�n�1 � y < 2�n.

(32)

This operator is bounded from L1(
) to L1(
), with 
 = (0; 1) the unit interval,
but since T'n = sin 2n�x, for 'n(x) = 2n+1�(2�n�1;2�n)(x), T cannot be compact.

Exercise 118. Show that the operator T de�ned above in (32) is bounded and compact
from Lp(0; 1) to Lp(0; 1) for 1 < p <1.

We haven't changed the kernel ~T so we still have T'n = sin 2n�x for all n = 1; 2; : : :.
Hence T'n does not have a convergent subsequence in Lp(0; 1). Why does this not show
that T : Lp ! Lp is not compact?

63. Green's operator

In section 50.4 we saw that for any bounded domain 
 � Rn and any f 2 L2(
)
there is a unique solution u 2 W 1;2

o (
) of the equation

��u = f;(33)

in the sense of distributions. The solution u was obtained by minimizing

Q(u) =

Z



f 12 jruj2 � f(x)u(x)g dx

over all u 2 W 1;2
o (
).
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Let us denote the map which sends f 2 L2(
) to u 2 W 1;2
o (
) by G : L2(
)!

W 1;2
o (
).

Theorem 64. The map G is bounded, linear and compact.

Proof. Linearity follows from the fact that equation (33) is linear. If Gf = u and
Gg = v then f = ��u, and g = ��v, so that w = �u + �v 2 W 1;2

o (
) satis�es
��w = �f + �g. Hence w = G(�f + �g).

To prove boundedness we argue as follows. Since u is the minimizer of Q(u)
we have

dQ(tu)

dt

����
t=1

= 0:(34)

From

Q(tu) =
t2

2

Z



jruj2 dx� t

Z



f(x)u(x) dx

and thus

dQ(tu)

dt
= t

Z



jruj2 dx�
Z



f(x)u(x) dx

one then concludes from (34) thatZ



jruj2 dx =
Z
f(x)u(x) dx � kukL2kfkL2:(35)

By Poincar�e's inequality (Lemma 45) we have

kukL2 � 2j
j1=n
�Z

jruj2dx
�1=2

Hence

kuk2L2 � 4j
j2=n
Z
jruj2dx:

Apply this to (35) to get, after cancellation,

kukL2 � 4j
j2=nkfkL2:

Thus Green's operator is bounded from L2(
) to L2(
).
To prove compactness we consider any bounded sequence fn 2 L2(
). Since

G : L2 ! L2 is bounded Gfn is a bounded sequence in L2(
). By (35) Gfn is also
bounded in W 1;2

o (
). The Rellich-Kondrachov theorem implies that the sequence
Gfn must have a convergent subsequence in L

2(
). Hence G is indeed compact.



79

Hilbert Spaces
De�nition; Examples; The Riesz representation theorem; Orthonormal sets and bases;

Examples of Orthonormal sets in L2(0; 2�); More examples of orthogonal sets, or

\Orthogonal Polynomials 101"; The Spectral Theorem for Symmetric Compact Operators;

Eigenfunctions of the Laplacian

Text books to look at: Both Rudins [4, 5] have chapters on Hilbert spaces. The
spectral theorem is in Zimmer's book [8].

64. De�nition.

A pre-Hilbert space is a real or complex vector space H with a positive de�nite
inner product (x; y). In the real case this means that (x; y) is linear both in x and
in y; that (x; y) is symmetric, (x; y) = (y; x); and that (x; x) > 0 for all x 6= 0. If
the vector space is complex one requires

(�x; y) = �(x; y)

(x; �y) = ��(x; y)

(x; y) = (y; x):

The quantity

kxk =
p
(x; x)

de�nes a norm on H . If H is complete with this norm, then H is called a Hilbert
Space.

64.1. Proof that kxk satis�es the triangle inequality

First one proves the Cauchy-Schwarz inequality,

j(x; y)j � kxk kyk
by observing that

P (t) = (x + ty; x+ ty) = kxk2 + 2<(x; y) + t2kyk2
is a nonnegative quadratic poynomial. From Math 112 we therefore know that
\b2 � 4ac < 0", i.e.�

2<(x; y)�2 � 4kxk2kyk2 i.e. <(x; y) � kxk kyk:
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Replace x by ei�y to get

<�ei�(x; y)� � kxk kyk:
Choose � so that ei�(x; y) = j(x; y)j.

Given the Cauchy-Schwarz inequality one has

kx+ yk =
p
(x+ y; x+ y)

=
p
kxk2 + 2<(x; y) + kyk2

�
p
kxk2 + 2kxk kyk+ kyk2

= kxk+ kyk:

65. Examples of Hilbert Spaces

If (
;�; �) is a � �nite measure space then L2(
;�; �) with inner product

(f; g) =

Z



f(x)g(x) d�(x)

is a Hilbert space. (The complex conjugate is included, and in this section we will
use the same notation for both the real and complex versions of L2!)

If w(x) is a bounded measurable function on 
 with w(x) � Æ > 0 for �-a.e.
x 2 
, then the expression

(f; g)w =

Z



f(x)g(x)w(x) d�(x)

de�nes another inner product on L2(
;�; �). Both inner products yield equivalent
norms.

If 
 � Rn is open then W 1;2(
) is also a Hilbert Space, provided one gives it
the inner product

(f; g)W 1;2
def
=

Z



ff(x)g(x) +rf(x) � rg(x)g dx:(36)

One can also modify this inner product by including a weight function w, i.e.

(f; g)w
def
=

Z



ff(x)g(x) +rf(x) � rg(x)g w(x)dx:

If w is measurable and if c � w(x) � C for constants 0 < c < C then this expression
de�nes an inner product on W 1;2, and the resulting norm is equivalent to the usual
W 1;2 norm.

Exercise 119. Let 
 � R
n be open with �nite volume.

The quantity

(f; g)o
def
=

Z



rf(x) � rg(x) dx:

does NOT de�ne an inner product on W 1;2(
), since one has (f; f) = 0 for all constant
functions.

Show that (f; g)o does de�ne an inner product on W 1;2
o (
), and that the resulting

norm is equivalent to the usual norm on W 1;2. Hint: use Poincar�e's inequality (Lemma
45).
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66. The Riesz representation theorem.

Lemma 65. Let K be a nonempty closed and convex subset of a Hilbert space H.
Then K contains a unique element x with minimal norm.

More generally, given any point p 2 H there is a unique nearest point to p in
K.

Proof. The general case follows from the special by translating p to the origin.

Let d = inffkxk2 : x 2 Kg. Choose a sequence xn 2 K with kxnk2 < d +
1

n
.

Then fxn : n 2 Ng is a Cauchy sequence; the limit of this Cauchy sequence must
lie in K and minimizes kxk.

To see that xn is a Cauchy sequence let n < m 2 N be given. Then y =
(xn + xm)=2 belongs to K since K is convex. One has

d � kyk2 = 1

4
fkxnk2 + 2 (xn; xm) + kxmk2g

=
1

4
f2kxnk2 + 2kxmk2 � kxn � xmk2g

� d+
1

n
� 1

4
kxn � xmk2

and hence

kxn � xmk2 � 4

n
:

To see that there is only one nearest point one supposes that x and y are both
nearest points and observes that x, y, x, y, x, y, x, : : : is a distance minimizing
sequence, hence a Cauchy sequence by the previous arguments. Thus x = y.

Corollary 66. If L � H is a closed linear subspace then any x 2 H can be written
as x = y + z with y 2 L and z ? L. The components y and z are unique.

Proof. L is closed and convex so we can apply the previous Lemma. The projection
y 2 L is the nearest point to x contained in L.

Corollary 67. A linear subspace L � H is dense if and only if x ? L implies
x = 0.

Proof. Suppose x ? L implies x = 0. Then any x 2 H can be written as x = y + z
where y is in the closure of L and z is perpendicular to the closure of L. By
assumption z = 0 so x = y belongs to the closure of L: L is dense.

Suppose L is dense in H and let x 2 H satisfy x ? L. Choose xn 2 H with
kxn � xk ! 0. Then

kxk2 = (x; x) = lim
n!1

(x; xn) = 0:

We see that x ? L implies x = 0.

The following is called the Riesz representation theorem.

Theorem 68. For every bounded linear functional � on H a unique x� 2 H exists
such that

�(x) = (x�; x) for all x 2 H.

One has

k�k = kx�k:
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Proof. If � = 0 then one chooses x� = 0. We may assume that � 6= 0.
Let L = ker(�). Since � 6= 0 we have H 6= L, so a vector v 2 H nL exists. Since

L is a closed linear subspace we may replace v by its component perpendicular to
L, and after normalizing we may assume that kvk = 1.

Since v 62 L we have �(v) 6= 0. Thus we can write any x 2 H as

x = l +m; `
def
= x� �(x)

�(v)
v; m

def
=
�(x)

�(v)
v:

One sees that �(`) = 0, so that ` 2 L. Taking the inner product with v we see that

(x; v) =
�(x)

�(v)
(v; v) =

�(x)

�(v)
:

hence

�(x) = (x; �(v)v)

for all x 2 H so that we may choose x� = �(v)v.

Corollary 69. Every Hilbert space is re
exive.

Proof. Let � 2 H�� be given, i.e. � : H� ! R is a bounded linear functional.
By the Riesz representation theorem every ' 2 H� is of the form ' = 'x for

some x 2 H , where 'x(y)
def
=(x; y). Moreover the map x 7! 'x is an isometry of H

with H�.
The functional � : H� ! R then gives us a functional ~� : H ! R via

~�(x)
def
= �('x). The Riesz representation theorem again says that the functional

~� must be of the form ~� = 'x0 for some x0 2 H . We therefore have that for all
' = 'x 2 H�

�('x) = ~�(x) = 'x0(x) = (x0; x) = (x; x0) = 'x(x0):

In other words,

�('x) =cx0('x):
We conclude that every bounded linear functional on H� is of the form cx0 for some
x0 2 H , so that H is re
exive.

67. Orthonormal sets and bases

A sequence of vectors fxn 2 H j n 2 Ng is orthogonal if (xi; xj) = 0 for all
i 6= j.

An orthogonal sequence is called orthonormal if it consists of unit vectors.

Lemma 70. If fxn 2 H j n 2 Ng is an orthonormal sequence then the seriesP1
i=1 aixi converges i�

P jaij2 <1, and one has





1X
i=1

aixi






 =qX jaij2:

Proof. Denote the partial sums of
P
aixi by

sN
def
=

NX
i=1

aixi:
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Using the de�nition of the norm and the orthogonality of the xi one computes

ksn � smk2 =
mX

i=n+1

jaij2:(37)

If we suppose that
P jaij2 <1 then (37) implies that ksn � smk2 ! 0 as n!1.

Thus sn is a Cauchy sequence and the partial sums sn converge.
Conversely, suppose the sum converges. Then the sequence of norms ksnk also

converges, and

1X
i=1

jaij2 = lim
N!1

NX
i=1

jaij2 = lim
N!1

ksNk2 <1:

An orthonormal sequence fxi : i 2 Ng is called an orthonormal basis or a complete
orthonormal set for H if any x 2 H can be written as

x =

1X
i=1

aixi:

Lemma 71. An orthonormal set fxigi2N is complete if x ? xi for all i 2 N implies
x = 0.

Proof. Let x 2 H be given. The orthogonal projection onto the �nite dimensional
space spanned by x1; : : : ; xN is given by

PNx = a1x1 + : : :+ aNxN ;

where

ai = (xi; x) :

Since kPNxk � kxk we get
NX
i=1

jaij2 = kPNxk2 � kxk2:

This holds for all N and hence
1X
i=1

jaij2 � kxk2:

(This is called Bessel's inequality.)
It follows that the sum

P1
i=1 aixi converges in H

If a Hilbert space has a complete orthonormal set fxi : i 2 Ng then we can
de�ne a map ' : H ! `2(N) by

'(x) = fai : i 2 Ng , ai = (xi; x)

This map is an isomorphism of Hilbert spaces, i.e. it's a linear map, it's bijective,
and it preserves the inner product.

Theorem 72. Every separable Hilbert space has a complete orthonormal set and
hence is isomorphic with `2(N).
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Proof. Let yi 2 H be a dense sequence. From this sequence we extract a sub-
sequence by discarding every yk which is linearly dependent on fy1; : : : ; yk�1g.
Denote the resulting subsequence by fzi : i 2 Ng. This subsequence is linearly
independent. The linear subspace it spans contains all the yi and hence is dense in
H .

Now apply the Gramm-Schmidt procedure to the sequence fzig. In other words,
let x̂k be the component of zk which is perpendicular to z1; : : : ; zk�1, and let
xk = x̂k=kx̂kk. Then fxk : k 2 Ng is an orthonormal set. It spans the same subspace
as the zk and therefore fxk : k 2 Ng is a complete orthonormal system.

Exercise 120. If xi, i 2 N is an orthonormal basis for H then you can write any x 2 H
as a convergent sum x =

P
i aixi. Is this sum always absolutely convergent?

68. Examples of Orthonormal sets in L2(0; 2�).

As you can check for yourself, the functions

en(x)
def
=

1p
2�
einx; with n 2 Z

form an orthonormal set in L2(0; 2�).

Since einx =
�
eix
�n
, �nite linear combinations in the en, i.e. expressions of the

form

P (x) = c�Ne�N (x) + : : :+ cNeN (x); with cj 2 C
are in fact polynomials in eix and e�ix. They are called trigonometric polynomials.

Theorem 73 (Fourier series). fen : n 2 Zg is a complete orthonormal system in
L2(0; 2�).

Proof. We have to show that the space of �nite linear combinations of the en is
dense in L2. There are many ways to do this. One way is to observe that the
Stone-Weierstrass theorem implies that any continuous 2� periodic function can be
uniformly approximated by a trigonometric polynomial. Since continuous functions
are dense in L2(0; 2�) we conclude that trigonometric polynomials are dense in L2.

Another proof which avoids the Stone-Weierstrass theorem goes like this: one
must show that if f 2 L2(0; 2�) satis�es (f; en) = 0 for all n 2 Z, then f = 0.
The hypothesis implies that (f; P ) = 0 for all trigonometric polynomials P (x).
Now construct for any given interval (a; b) � (0; 2�) a sequence of trigonometric
polynomials PN (x) such that

sup
N;x

jPN (x)j <1

lim
N!1

PN (x) = �(a;b)(x) pointwise.

The dominated convergence theorem then impliesZ
(a;b)

f(x) dx = lim
N!1

Z 2�

0

PN (x)f(x) dx = 0

from which one concludes that f(x) = 0 a.e.
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Exercise 121. Show that in the above proof one can take

PN (x) =

Z x

0

fQ(t� a)�Q(t� b)g dt

where

Q(t) =
(1 + cos x)NR 2�

0
(1 + cosx)N dx

:

This theorem implies that for any f 2 L2(0; 2�) one has

f(x) =
X
n2Z

f̂ne
inx in L2,

where

f̂n
def
=

1

2�

Z 2�

0

e�inxf(x) dx:

The quali�cation \in L2" is important: we have shown that the partial sums

sNf(x)
def
=

NX
n=�N

f̂ne
inx

converge in L2(0; 2�) to the function f(x). This does not allow us to conclude that
limN!1 sNf(x) = f(x) for even one x 2 [0; 2�]!

Exercise 122. If you've never done this before, compute the Fourier series of the function
f(x) = �(0;�)(x)� �(�;2�)(x).

Assuming that limN!1 sNf(x) = f(x) holds pointwise, what do you get for x = �
2
?

Exercise 123. Compute the Fourier series of the function f(x) = x(2��x) 2 L2(0; 2�).
Assuming that limN!1 sNf(x) = f(x) holds pointwise, what do you get for x = �?

Exercise 124. Let 0 < a < 1. Compute the Fourier series of the 2� periodic function
which for �� < x < � is given by f(x) = sin ax. (This function is discontinuous at
x = � + 2k�).

Assume again that limN!1 sNf(x) = f(x) holds pointwise. What do you get if you
substitute x = �

2
?

Exercise 125.

(i) Show that the system fsin(n�x) : n = 1; 2; 3; : : : g is complete in L2(0; �).
(ii) Show that the system fcos(n�x) : n = 0; 1; 2; 3; : : : g is complete in L2(0; �).

Exercise 126. The Walsh-system fWk;n(x) j n 2 N; 0 � k < 2ng is de�ned by

W1;1(x) = 1;

Wk;n(x) =

(
1 for k2�n < x < (k + 1=2)2�n;

�1 for (k + 1=2)2�n < x < (k + 1)2�n;

Show that this system is complete.

69. More examples of orthogonal sets, or \Orthogonal Polynomials 101"

Let w(x) > 0 be an integrable function on an interval (a; b) � R and consider
the Hilbert space

H = L2(a; b;w(x)dx):
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Assume furthermore that Z b

a

jxjnw(x)dx <1

for all n (this follows from w 2 L1(a; b) if the interval is bounded.)
De�ne Pn(x) to be the unique polynomial of degree n whose highest order

term is xn, such that Pn ? xj for all j < n. The polynomials thus de�ned are
the \orthogonal polynomials on (a; b) with weight w(x)." They form an orthogonal
system.

Exercise 127. Suppose (a; b) is a bounded interval. Prove that fPn : n 2 Ng forms
a complete orthogonal system. (You could use the fact that continuous functions are
dense in L2(a; b; w(x)dx) combined with the Stone-Weierstrass theorem to show that
polynomials are also dense.)

Exercise 128. (Legendre Polynomials)
Compute P0; P1; P2; P3 for (a; b) = (�1; 1) and w(x) = 1.
Show that

Pn(x) =
n!

(2n)!

�
d

dx

�n
(1� x2)n:

Hint: Use integration by parts to prove that the Pn given by this formula are orthogonal.
then compute the coeÆcient of xn in Pn.

Theorem 74. Let Pn(x) be the sequence of orthogonal polynomials in L2(a; b;w(x)dx).
Then Pn(x) has n zeroes in the interval (a; b) so that Pn can be written as

Pn(x) = An(x� x1)(x� x2) : : : (x� xn)

for certain a < x1 < x2 < : : : < xn < b and An 6= 0.

Proof. If Pn has only k < n sign changes, say at x1; : : : ; xk 2 (a; b), then we
consider Q(x) = (x � x1) : : : (x � xk). The degree of Q is k < n so Q ? Pn, but
Q(x)Pn(x) does not change sign so thatZ b

a

Q(x)Pn(x)w(x)dx 6= 0:

This contradicts Q ? Pn. Therefore Pn has n sign changes, and since Pn is a
polynomial of degree n these sign changes must be simple zeroes, i.e.

Pn(x) = An(x� x1)(x � x2) : : : (x� xn):

Exercise 129. Show that there exist constants bncn 2 R such that

xPn(x) = bnPn+1(x) + cnPn(x) + bnPn�1(x):

Hint: (xPn+1; Pm) = (Pn+1; xPm).

70. The Spectral Theorem for Symmetric Compact Operators

One of the main theorems from linear algebra states that every symmetric
n� n matrix T has an orthonormal basis of eigenvectors v1; : : : ; vn 2 Rn with real
eigenvalues. Thus fv1; : : : ; vng is a complete orthonormal set in Rn and Tvi = �ivi.
With respect to the basis fv1; : : : ; vng the matrix of T is diagonal.
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Similar theorems exist for operators in Banach spaces. The most successful
and complete is the spectral theorem for self-adjoint operators in a Hilbert space.
In this section we will state and prove a version for compact symmetric operators.

De�nition. Let H be a separable Hilbert space, and let T : H ! H be an
operator. By de�nition T is symmetric if (Tf; g) = (f; Tg) for all f; g 2 H .

Exercise 130. Symmetric Hilbert Schmidt operators. An integral operator de�ned by a
kernel T (x; y), with T 2 L2(
�
) is symmetric if and only if T (x; y) � T (y; x) (almost
everywhere).

Exercise 131. Let 
 = (0; 1), and let h : 
 ! C be a complex valued measurable
function. Show that the operator Tf(x) = h(x)f(x) is symmetric on L2(
) i� f is real
valued.

Exercise 132. Let T be the operator Tf(x) = xf(x) on L2(
), 
 = (0; 1). Does this
operator have eigenvalues, i.e. are there � 2 C and f 2 L2(
) with Tf = �f?

Theorem 75 (Spectral Theorem). Let H be a separable Hilbert space. If T : H !
H is compact and symmetric then there is a complete orthonormal basis for H
consisting entirely of eigenvectors of T .

Proof of the spectral theorem

We divide the proof into a sequence of lemmas.

Lemma 76 (The largest and smallest eigenvalues.). If T : H ! H is symmetric
and compact then

�(T ) = sup f(Tx; x) : kxk � 1g ; and �(T ) = inf f(Tx; x) : kxk � 1g
both are attained.

If �(T ) > 0 and (Tx; x) = �(T ) with kxk = 1 then x is an eigenvector of T
with eigenvalue �(T ).

If �(T ) < 0 and (Tx; x) = �(T ) with kxk = 1 then x is an eigenvector of T
with eigenvalue �(T ).

Proof. If �(T ) = 0 then the maximum is attained at x = 0.
Assume �(T ) > 0, and let xi 2 H be a sequence with kxik � 1 and limi!1(Txi; xi) =

�(T ).
Since H is a Hilbert space H is re
exive. We may therefore use the Banach-

Alaoglu theorem to extract a weakly convergent subsequence of the xi, which we
denote by xi again.

Since T is compact we may extract a further subsequence for which Txi con-
verges in the norm of H . We again denote this second subsequence by xi.

Thus we have xi*x� and Txi ! y. For an arbitrary z 2 H we have

(y; z) = lim
i!1

(Txi; z) = lim
i!1

(xi; T z) = (x�; T z) = (Tx�; z):

This implies that y = Tx�.
We now claim that (x�; Tx�) = �(T ). To see this we observe that

�(T ) = lim
i!1

(xi; Txi)

= lim
i!1

f(xi; y) + (xi; Txi � y)g
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Here the �rst term converges to (x�; y) = (x�; Tx�) while the second term is
bounded by

j(xi; Txi � y)j � kxik kTxi � yk � kTxi � yk ! 0:

We therefore have �(T ) = (x�; Tx�) as claimed: The quantity (x; Tx) attains a
maximum on fx : kxk � 1g.

A similar argument shows that (x; Tx) also attains a minimum.
It remains to show that if �(T ) > 0 then the maximum is attained at an

eigenvector of T .
First we observe that when �(T ) > 0 the maximizing vector x is a unit vector.

Indeed, if kxk < 1, then there is a c > 1 with kcxk = 1, and one would have
�(T ) � (cx; T (cx)) = c2(x; Tx) = c2�(T ) > �(T ).

Next, let z 2 H be any unit vector perpendicular to x. Consider

x(t) = (cos t)x + (sin t)z; t 2 R
For any t 2 R x(t) is a unit vector and hence (x(t); Tx(t)) � �(T ) with equality
for t = 0. Thus the real valued function f(t) = (x(t); Tx(t)) attains a maximum at
t = 0 and we must have f 0(0) = 0. Now compute

f 0(0) =
d

dt

����
t=0

�
(x; Tx) cos2 t+ 2(Tx; z) sin t cos t+ (z; T z) sin2 t

�
= 2(Tx; z)

Thus Tx ? z for all z ? x: this can only happen if Tx is a multiple of x. Since
(Tx; x) = �(T ) it follows that Tx = �(T )x.

Lemma 77 (Invariant orthogonal splittings.). Let V � H be a linear subspace
which is invariant under the symmetric operator T , i.e. T (V ) � V . Then the
orthogonal complement V ? = fx 2 H : x ? V g is also invariant under T .

Proof. If V is invariant then we consider any x 2 V ? and note that for all v 2 V
one has Tv 2 V by assumption and hence,

(v; Tx) = (Tv; x) = 0:

Thus Tx ? V .

Construction of all eigenvectors and eigenvalues. De�ne numbers

�1 � �2 � � � � > 0 > � � � � �2 � �1;

and vectors x1; x2; � � � , y1; y2; � � � by the following inductive process.
Let �1 = �(T ), and let x1 be a corresponding eigenvector; similarly, let �1 =

�(T ), and let y1 be a corresponding eigenvector.
Given x1; � � � ; xn�1 and y1; � � � ; yn�1 let Hn�1 be the orthogonal complement

of x1; � � � ; xn�1 and y1; � � � ; yn�1. Since the xi and yi are eigenvectors of T , the
space Hn�1 is invariant under T , and we can de�ne

�n = sup f(Tx; x) : kxk � 1; x 2 Hn�1g = �(T jHn�1);

�n = inf f(Ty; y) : kyk � 1; y 2 Hn�1g = �(T jHn�1):

If �n > 0 we let xn be a point in the unit ball of Hn�1 where the sup is attained,
and likewise, if �n < 0 we choose a yn which minimizes (Ty; y) over the unit
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ball in Hn�1. In either case xn and yn are eigenvectors with eigenvalues �n, �n
respectively.

If for some n the �n turns out to vanish, one ends the sequence of �i's and xi's
at i = n� 1, and similar measures are to be taken if �n happens to be zero.

Lemma 78. lim
n!1

�n = lim
n!1

�n = 0

Proof. The same arguments apply to both �n and �n. We only deal with the
former.

The �n form a decreasing sequence so � = limn!1 �n � 0 exists. Suppose
� > 0. Since the sequence xn is bounded and T is compact, the image Txn must
have a convergent subsequence. But then convergence of �n and Txn implies that
xn = ��1n Txn also converges. On the other hand the xn are orthogonal unit vectors
so that kxn�xmk =

p
2 for all n 6= m. There can be no convergent subsequence!

Let H1 be the intersection of all Hn. On Hn one has

�nkxk2 � (Tx; x) � �nkxk2

so on the intersection H1 one has (Tx; x) � 0. Hence

0 = (T (x+ y); (x+ y)) = (Tx; x) + (Ty; y) + 2 (Tx; y) = 2 (Tx; y)

for all x; y 2 H1, which means that T vanishes on H1 (take y = Tx.)
If one now chooses an arbitrary complete orthonormal basis fzig for H1, then

fxig[fyig[fzig is a complete orthonormal basis for H which diagonalizes T . The
proof of the spectral theorem is complete.

What happened in this proof? The following problem reveals a nice fact about
the \eigenvalues" of a symmetric matrix which doesn't show up in most introduc-
tions to matrix algebra.

Exercise 133. Solve the following (3rd semester, honors) Calculus problem: Let A =
(aij) be a symmetric n� n matrix. Find the maxima and minima of

f(x1; : : : ; xn) =
1
2

nX
i;j=1

aijxixj

on the unit sphere, i.e. �nd the extrema of f subject to the constraint x21+ : : :+x2n = 1.

The following description of eigenvalues turns out to be of practical use in com-
puting, say, the eigenvalues of the Laplacian on some bounded domain in Rn . Here
one can interpret \computing" in the sense of numerical computation, involving a
fast computer to obtain �1; : : : ; �25 in several digits, but also in the sense of es-
timating the �n by hand, e.g. to obtain information about the growth rate of the
eigenvalues �n as n!1.

Exercise 134. Rayleigh's minimax characterization of the eigenvalues.
Let Gk(H) be the set of k-dimensional subspaces of H. Then

�n = sup
V 2Gk(H)

inf
x2V

(Tx; x)

kxk2 ;

�n = inf
V 2Gk(H)

sup
x2V

(Tx; x)

kxk2 :
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71. Eigenfunctions of the Laplacian

This section is devoted to a proof of

Theorem 79. Let 
 � Rn be a bounded domain. Then there is a complete or-
thonormal basis f�n : n 2 Ng for L2(
) consisting of eigenfunctions of the Laplace
operator, i.e. the �n belong to W 1;2

o (
) and

���n = �n�n (in D0(
))

for certain constants

�n >
1

4
j
j�2=n:

We will prove this theorem by applying the spectral theorem to Green's oper-
ator.

Recall that Green's operator was de�ned in x63 by saying that Gf = u if
f 2 L2(
), if u 2 W 1;2

o (
) and if u satis�es

��u = f

in the sense of distributions. It was shown in x63 that G is a bounded linear and
compact operator.

Lemma 80. Green's operator G is symmetric and strictly positive de�nite, i.e.
(Gf; f) > 0 for all f 6= 0 2 L2(
).

Proof. We must show that (Gf; g) = (f;Gg) for all f; g 2 L2(
).
From the construction of G we know that Gf = u if u minimizes

Qf (u) =

Z



�
1
2 jru(x)j2 � u(x)f(x)

	
dx

over all u 2 W 1;2
o (
).

Similarly, if Gg = v then v minimizes

Qg(v) =

Z



�
1
2 jrv(x)j2 � v(x)g(x)

	
dx

over all v 2W 1;2
o (
).

Hence Qf (u+ tv), as a function of t 2 R, attains a minimum at t = 0. Hence

0 =
dQf (u+ tv)

dt

����
t=0

=
d

dt

����
t=0

�
1

2

Z
jruj2dx+ t

Z
ru � rvdx

+
t2

2

Z
jrvj2dx�

Z
ufdx� t

Z
vfdx

�
=

Z
ru � rvdx �

Z
vfdx:

Thus Z
ru � rvdx =

Z



v(x)f(x) dx:

Applying the same argument to Qg(v + tu) we also getZ
ru � rvdx =

Z



u(x)g(x) dx:
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Thus we have

(Gf; g) = (u; g) =

Z
ru � rvdx = (v; f) = (Gg; f):

This shows that G is symmetric. By setting u = v and f = g we get

(Gf; f) =

Z
jruj2 dx � 0

with equality only for u = 0 and hence f = ��u = 0.

Since G is a compact operator we may apply the spectral theorem: There exists
an orthonormal family �n 2 L2(
) of eigenfunctions of G,

G�n = 
n�n:

Lemma 81. 0 < 
n � 4j
j2=n for all n.

Proof. Since G is strictly positive de�nite we have


n = 
n(�n; �n) = (�n; G�n) > 0

for all n. From kGk � we get


n = 
nk�nk = k
n�nk = kG�nk � 4j
j2=nk�nk = 4j
j2=n:

From G�n = 
n�n and the de�nition of G it follows that the �n satisfy


n (���n) = �n;

in the sense of distributions. Hence

���n = �n�n

where �n =
1

n
� 1

4 j
j�2=n.

An example: the one dimensional case.

If 
 = (0; 1), then we have shown that there is a complete orthonormal system
of functions �k(x) which satis�es

�00k(x) + �k�k(x) = 0; (0 < x < 1)

�k(0) = �k(1) = 0

Here the �rst line is meant in the sense of distributions, and the second should be
interpreted as �k 2 W 1;2

o (
). However, we have seen that in one dimension W 1;2
o

functions are continuous, and that they vanish on @
 = f0; 1g.
Starting from � 2 C([0; 1]) one shows by induction that the di�erential equation

�00 = ��� implies that � 2 C1([0; 1]). We can then use our \cookbook di�erential
equation knowledge" to �nd the �k. They are:

�k(x) =
p
2 sin(k�x); �k =

�
k�
�2
; (k = 1; 2; 3; : : : ):
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What are the eigenvalues?

\And now for a message from our sponsor : : : "

(M.Spivak, Di�erential geometry, vol.5)

Historically the eigenfunctions of the Laplacian are attached to the heat and
wave equations. The wave equation is the PDE

@2u

@t2
= �u; x 2 
; t � 0:(38)

It describes the following physical situation (and many others): if 
 � R2 is
bounded, then one can imagine a membrane in the shape of 
 whose boundary
@
 is kept �xed, but which is allowed to vibrate. If one represents the vertical de-
viation at x 2 
 and time t � 0 by a function u(x; t) then, assuming the deviations
are small, and the membrane is of uniform thickness, etc. one arrives at (38).

If �n is an eigenfunction of � with eigenvalue �n, then direct substitution shows
that

Sn(x; t)
def
= sin(

p
�nt)�n(x); and Cn(x; t)

def
= cos(

p
�nt)�n(x)

are solutions to (38) which satisfy the boundary condition

u(x; t) = 0 for x 2 @
 and t � 0.(39)

Since the wave equation is linear any linear combination of the Vn and Un is again
a solution. Thus one arrives at the \general solution"

u(x; t) =

1X
k=1

n
Ak sin(

p
�kt)�k(x) +Bk cos(

p
�kt)�k(x)

o
where the coeÆcients Ak, Bk are determined by the initial position and velocities

u(x; 0) =
1X
k=1

Bk�k(x)

ut(x; 0) =

1X
k=1

Ak

p
�k�k(x):

In particular, this shows that any solution is a superposition of harmonic (sinu-
soidal) vibrations with frequencies !k =

p
�k.

For the heat equation one has the same story. The heat (or di�usion) equation
is

@u

@t
= �u; x 2 
; t � 0:(40)

If one thinks of 
 as a solid whose temperature u(x; t) at point x and time t is
not constant, then under various assumptions it follows that the temperature must
obey (40).

Assume furthermore that the boundary @
 of the solid 
 is kept at a constant
temperature u = 0 (e.g. the solid is submerged in melting ice) and it follows that
the temperature must satisfy the boundary condition (39).

As with the heat equation one can �nd simple solutions of the form

Hn(x; t) = e��nt�n(x)
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and then exploit linearity of the equation and boundary condition to obtain the
\general solution"

u(x; t) =

1X
k=1

Cke
��nt�n(x):

Again, the constants Ck are to be determined from the initial temperature by
expanding u(x; 0) with respect to the complete orthonormal system f�k(x)gk2N,
i.e.

u(x; 0) =

1X
k=1

Ck�k(x)) Ck = (u(�; 0); �k)L2(
):

It was the one dimensional version of this problem (heat conduction in an
interval with periodic boundary conditions) which led Fourier to study the series
named after him.

For an entertaining article (which spawned several research papers in the years
since then) about the eigenvalues of the Laplacian see M.Kac's \Can you hear the
Shape of a Drum?" American Mathematical Monthly, 1966, and a more
recent follow-up by M. H. Protter, \Can one hear the shape of a drum? revisited"
SIAM Review 29 (1987) pp.185{197.
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The Fourier transform
Fourier series; The Fourier transform; the Inversion Formula; Tempered distributions;

Plancherel's Formula; Fourier multipliers; Elliptic regularity;

Textbooks to look at: Rudin's Real and Complex book [4] has chapters on
both Fourier series and the Fourier transform. In [5] he also treats the Fourier
transform from the point of view of tempered distributions. A more specialized
book on Fourier analysis only is Katznelson's [10].

72. Fourier series

In dealing with Fourier series we consider periodic functions with period 2�.
To �x notation we let T be the unit circle in C . Points on T are of the form
eix = cosx + i sinx, and functions f : T ! R can be regarded as 2� periodic
functions of x 2 R. When integrating such functions one hasZ

T

f(x)dx =

Z 2�

0

f(x)dx =

Z 2�+a

a

f(x)dx =

Z �

��

f(x)dx:

For instance the convolution f � g of f; g 2 L1(T) is given by

f � g(x) =
Z
T

f(x� y)g(y) dy

=

Z 2�

0

f(x� y)g(y) dy

=

Z x

x�2�

f(x� y)g(y) dy (y := x� z)

=

Z 2�

0

f(z)g(x� z) dy

= g � f(x):

We will use these identities freely.
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Exercise 135. Show that for f; g 2 L1(T) the convolution f �g again belongs to L1(T),
and that one has

kf � gkL1(T) � kfkL1(T)kgkL1(T):
Prove that for f 2 L1(T) and g 2 Lp(T) (where 1 � p � 1) one has f � g 2 Lp(T) with

kf � gkLp(T) � kfkL1(T)kgkLp(T):

Exercise 136. Let h 2 L1(T) be given, and consider the bounded operator on L2(T)
de�ned by convolution with h, i.e.

Tf(x) = h � f(x) =
Z 2�

0

h(y)f(x� y)dy

Show that the functions en(x) = 1p
2�
e2�nx are eigenfunctions of T . What are the

corresponding eigenvalues?

For f 2 L1(T) we de�ne the Fourier coeÆcients to be

f̂n =
1

2�

Z
T

e�inxf(x) dx

The sequence of Fourier coeÆcients is bounded by

sup jf̂nj � 1

2�
kfkL1(T):

The map f 7! ff̂n : n 2 Zg is therefore a bounded linear map from L1(T) to `1(Z).
We have seen that for f 2 L2 the partial sums

sNf(x) =

NX
n=�N

f̂ne
inx

converge in L2 to f . It is natural to ask if sNf(x) converges pointwise or in any
other sense to f : the answer to this question is surprisingly complicated and has a
very long history.

There are many convergence theorems. In these notes I will only prove one of
them (Theorem 84 below). In Katznelson's [10, chapter I&II] you can �nd much
more on the convergence and divergence of Fourier series.

72.1. The Dirichlet kernel

Theorem 82. The partial sums sNf of a function f 2 L1(T) admit the following
explicit representation,

sNf(x) =

Z
T

DN (x� y)f(y) dy(41)

where

DN(x) =
1

2�

NX
k=�N

eikx =
1

2�

sin(N + 1
2 )x

sin( 12x)
:
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Figure 2. The Dirichlet kernel for N = 100.

Proof. One has

sNf(x) =

NX
k=�N

f̂ke
2k�ix

=
NX

k=�N

e2k�ix

2k�

Z
T

f(y)e�2k�iy dy

=

Z
T

(
NX

k=�N

e2k�i(x�y)

2�

)
f(y) dy

=

Z x0+�

x0��

DN(x � y)f(y) dy

provided

DN (t) =
1

2�

NX
k=�N

e2k�it:

Summation of the geometric series in e2�it gives the other expression for DN (t).

The highly oscillatory function DN is called the Dirichlet kernel. (See �gure 2.) A
basic property of DN is Z

T

DN (x) dx = 1:(42)

One veri�es this by integrating DN(x) = (2�)�1
P
e2k�ix term by term.

To prove convergence of the partial sums one must use the oscillatory nature
of DN , so we recall

Lemma 83 (Riemann-Lebesgue). If f 2 L1(T) then for any x0 2 R

lim
A!1

Z 2�

0

sinA(x� x0)f(x) dx = 0:
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You have proved this in several exercises in these notes for the case f 2 L1(R).
The case of periodic functions follows immediately: given a periodic function f 2
L1(T) apply the L1(R) version of the Riemann Lebesgue Lemma to the function

~f(x)
def
=

(
f(x) x 2 (0; 2�)

0 elsewhere.

By de�nition a continuous function f : T! C is said to be Dini-continuous at
a point x0 2 T if Z

T

jf(x)� f(x0)j
jx� x0j dx <1

Exercise 137. Verify that any H�older continuous function is everywhere Dini continuous.

Theorem 84. If f is Dini-continuous at x0 then

lim
N!1

sNf(x0) = f(x0):

Proof. One has, using (42),

sNf(x0)� f(x0) =

Z
T

DN (x� y)f(y) dy � f(x0)

=

Z
T

DN (x� y)ff(y)� f(x0)g dy

=
1

2�

Z
T

sin(N + 1
2 )(x0 � y)

f(y)� f(x0)

sin 1
2 (y � x0)

dy

=
1

2�

Z
T

sin(N + 1
2 )(x0 � y)g(y) dy

where

g(y)
def
=
f(y)� f(x0)

sin 1
2 (y � x0)

=
f(y)� f(x0)

y � x0

y � x0

sin 1
2 (y � x0)

Since t
sin(t=2) � � for jtj � � we have���� y � x0

sin 1
2 (y � x0)

���� � �

for x0�� < y < x0+�. Thus g(y) is integrable on the interval x0�� < y < x0+�,
and the Riemann-Lebesgue Lemma implies that

lim
N!1

sNf(x0)� f(x0) = lim
N!1

1

2�

Z
T

sin(N + 1
2 )(x0 � y)g(y) dy = 0:

Exercise 138. For which x 2 T does this theorem apply to the functions whose Fourier
series you computed in problems 122, 123 and 124?
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72.2. A divergent Fourier Series

Theorem 85. A continuous function g 2 C(T) exists whose Fourier series diverges
at x = 0.

Proof. An explicit construction can be given, but in this case Functional Analysis
(Baire's theorem in the form of the Banach-Steinhaus theorem) provides a shortcut.

Consider the functional

�N (f)
def
= sNf(0) =

1

2�

NX
k=�N

Z
T

eikxf(x) dx:

It is clearly a bounded functional on C(T). A direct calculation show that for

fN(x) = sin(N + 1
2 )x; 0 < x < 2�:

one has

�N (fN ) =
2

�

�
1 +

1

3
+
1

5
+ : : :+

1

4N + 1

�
:

(The 2� periodic extension of fN is continuous, but not di�erentiable at x = 0!)
Since kfNk1 = 1, this implies that

k�NkC(T)� � �N (fN )!1; as N !1.

If supN j�N (g)j were �nite for every g 2 C(T) then the Banach-Steinhaus the-
orem would imply that the functionals �N are bounded, i.e. supN k�Nk < 1. We
have just shown that this is not the case so we conclude that there exists a g 2 C(T)
for which the sequence f�Ng 2 C(T) : N 2 Ng is unbounded. The Fourier series of
this g can therefore not converge at x = 0.

With much more work one can prove the following.

Theorem 86 (Kolmogorov). A function f 2 L1(T) exists whose Fourier series
diverges everywhere.

Theorem 87 (L.Carleson, 1965). If f 2 L2(T) then the Fourier series of f con-
verges almost everywhere to f(x).

Theorem 88 (Y.Katznelson & J.-P.Kahane, 1966). For every set E � T of zero
measure there is a continuous function f whose Fourier series diverges precisely on
E.

72.3. The Fej�er kernel

By explicit computation one �nds

�Nf(x)
def
=
s0f(x) + s1f(x) + : : :+ sNf(x)

N + 1

=

NX
k=�N

�
1� jkj

N + 1

�
f̂ke

ikx

=

Z
T

KN(x � y)f(y) dy

where

KN (x) =
1

N + 1

 
sin N+1

2 x

sin 1
2x

!2
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Figure 3. The Fejer kernels for N = 10 and N = 200.

is the Fej�er kernel. This kernel is much better behaved than the Dirichlet kernel
(see �gure 72.2), and the average partial sums �Nf(x) converge more often than
the partial sums sNf(x) themselves.

Theorem 89. For any f 2 C(T) the average partial sums �Nf of the Fourier
series of f converge uniformly to f .

73. The Fourier Integral

For f 2 L1(Rn ) we de�ne the Fourier transform of f to be

Ff(x) =

Z
Rn

e�2�ix�f(x) dx:

The inverse Fourier transform of a g 2 L1(Rn ) is

F
�g(�) =

Z
Rn

e2�ix�g(�) d�:

Other notation which is used widely is

Ff(�) = f̂(�); F
�g(x) = �g(x):

Theorem 90 (Basic Properties of F).

1. If f 2 L1(Rn ) then Ff 2 C(Rn ) and limj�j!1 Ff(�) = 0.

2. For f; g 2 L1 one has

F(f � g) = (Ff)(Fg)

3. If f;Dkf 2 L1(Rn ) then

F(Dkf)(�) = 2�i�kFf(�):

4. If (1 + jxj)f 2 L1(Rn ) then Ff 2 C1(Rn ) and

DkFf = F(�2�ixkf):
The proofs are left as an exercise. (But see Rudin [5] if you get stuck.)
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74. The Inversion Theorem

There are several versions of the inversion theorem, all of which guarantee

F
�(F(f)) = f

under varying hypotheses on f , and under various interpretations of \=" (pointwise,
almost everywhere, in the sense of (tempered) distributions, etc.)

Theorem 91. (a) If f 2 L1(Rn ) and Ff 2 L1(Rn ) then f(x) = (F�Ff)(x) for
almost all x 2 Rn .

(b) If f 2 L1(Rn ) and F�f 2 L1(Rn ) then f(x) = (FF�f)(x) for almost all
x 2 Rn .

Note that Ff 2 L1 implies that F�Ff 2 C0(Rn ) so that this theorem says that
f is almost everywhere equal to a continuous function.

Proof. The second statement is obtained from the �rst by changing i to �i in the
de�nition of the Fourier transform. Below we will prove (a); by changing all i's to
�i's you get a proof of (b).

For the proof you must choose a bounded continuous function m : Rn ! R
whose Inverse Fourier transform M = F�m you know, and for which m and M are
both in L1(Rn ) with m(0) = 1 andZ

Rn

M(x) dx = 1:(43)

Here are some m's you could choose:

m(x) M(�)

e�jxj
2

�n=2e��
2j�j2

Qn
j=1(1� jxj j)+

Qn
j=1

�
sin��j
��j

�2

e�jx1j�jx2j�����jxnj
2n

(1 + 4�2�21) � � � (1 + 4�2�2n)

Denote

m�(�) = m(��); M�(x) = ��nM
�
x
�

�
:

On then establishes the following identity:

F
�(m�(�)(Ff)(�)) =M� � f:(44)

We now let �& 0 on both sides. On the left we get

F
�(m� � Ff)(x)! (F�F)f(x) uniformly in x 2 Rn .

Indeed, m(��) is uniformly bounded, and converges pointwise to m(0) as � & 0,
while F�f 2 L1. Hence the Dominated Convergence theorem applies to

F
�(m� � Ff)(x) =

Z
Rn

e2�ix�m(��)F�f(�) d�:
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On the right in (44) we have

M� � f =

Z
Rn

��nM
�
x�y
�

�
f(y) dy (y := x� �z)

=

Z
Rn

M(z)f(x� �z) dz:

Since M 2 L1(Rn ) and in view of (43) this implies that lim�!0M� � f(x) = f(x)
for almost every x 2 Rn .

To conclude, we derive (44) :

F
�(m�(�)(Ff)(�)) =

Z
Rn

e2�ix�m(��)Ff(�) d�

=

Z
Rn

Z
Rn

e2�ix�e�2�ix
0�m(��)f(x0) dx0d� (Fubini)

=

Z
Rn

�Z
Rn

e2�i(x�x
0)�m(��)d�

�
f(x0) dx0

=

Z
Rn

M�(x� x0)f(x0) dx0

where

M�(x) =

Z
Rn

e2�ix�m(��)d� (� = �=�)

= ��n
Z
Rn

e2�i
x
� �m(�) d�

= ��nF�m(x=�):

75. Tempered distributions

We have de�ned the Fourier transform for L1 functions. Can one de�ne Ff if
f is merely a distribution? Following the Distribution Way of Doing Things we can
try to de�ne FT for any distribution by trying to make sense of hFT; 'i for any
test function '.

Lemma 92. For f; g 2 L1(Rn ) one has

hFf; gi = hf;Fgi(45)

where we write hf; gi = R
Rn
f(x)g(x) dx whenever f � g 2 L1(Rn ).

Proof. Both sides equal Z
Rn

Z
Rn

e�2�ix�f(�)g(x) d� dx:

We would therefore like to de�ne hFT; 'i = hT;F'i. But we can't do this for
an arbitrary T 2 D0(Rn ) since F' is in general not a compactly supported smooth
function, i.e. for most testfunctions ' the Fourier transform F' is not a testfunction.
A remedy for this problem is to enlarge the class of test functions. This leads us to
the de�nition of rapidly decreasing functions (or Schwarz functions, after Laurent
Schwartz who introduced them).
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De�nition. A function f : Rn ! C is called rapidly decreasing if for all
k 2 N and j�j � k one has

pk;�(f) = sup
x2Rn

�
1 + jxj�kjD�f(x)j <1:

Thus rapidly decreasing functions are functions whose derivatives of arbitrary order
decay faster than (1+ jxj)�N as jxj ! 1, for all N . The space of rapidly decreasing
functions is denoted by S(Rn ), or just S if the dimension is clear from context.

Lemma 93. For any f 2 S one has Ff;F�f 2 S.
For any f 2 S one has F�Ff = FF�f = f pointwise.

Proof. Let f 2 S be given. Since f and all its derivatives decrease faster than any
(1 + jxj)�N as jxj ! 1, we may use the basic properties of the Fourier transform
to conclude

��D�
Ff(�) = (�1)j�j(�2�i)j�j�j�jF(D�x�f):

Thus ��D�
� Ff(�) is bounded for arbitrary �; �. It follows that Ff 2 S.

The same arguments apply to F�f .
Since S � L1 we have proved in particular that for any f 2 S one has

f;Ff;F�f 2 L1(Rn ) so that our inversion Theorem 91 applies.

De�nition. A tempered distribution is a linear functional T : S ! C which
is continuous in the sense that for some K one has

jT (')j � C sup
x2Rn

j�j�K

�
1 + jxj�K jD�'(x)j:

The space of tempered distributions is denoted by S0.
The Fourier transform of a tempered distribution T 2 S0 is given by

hFT; 'i def= hT;F'i :
Similarly, one de�nes

hF�T; 'i def= hT;F�'i :
Theorem 94 (Inversion for tempered distributions.). For any T 2 S0 one has F�FT =
T .

Proof. We have observed that for all Schwarz functions ' 2 S one has FF�' = '.
Hence one has

hF�FT; 'i = hFT;F�'i = hT;FF�'i = hT; 'i :

Exercise 139. Which of the following functions f de�ne tempered distributions Tf , if
one sets

hTf ; 'i = lim
A;B!1

Z A

�B
f(x)'(x)dx?

(i) f(x) = jxj;
(ii) f(x) = ejxj;
(iii) f(x) = ex sin ex.
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Exercise 140. One can de�ne di�erentiation of tempered distributions in the same way
as for ordinary distributions, namely,

hDjT; 'i def= �
�
T;

@'

@xj

�
for any ' 2 S; T 2 S0. This gives us two possibly con
icting interpretations of \f = Djg
in the sense of distributions" when f and g are locally integrable functions.

Suppose f; g 2 Lp(Rn) for some p. Show that f = Djg in D0 if and only if f = Djg
in S0.

76. Plancherel's Formula

Lemma 95. For f; g 2 S one has (Ff; g) = (f;F�g), where (f; g) is the L2(Rn )
inner product.

Proof. Remembering the complex conjugate in the de�nition of the inner product
on L2 one �nds (f; g) = hf; �gi. Hence

(Ff; g) = hFf; �gi = hf;F�gi = 
f;F�g� = (f;F�g):

By setting g = Ff one �nds Plancherel's formula

(Ff;Ff) = (f;F�Ff) = (f; f);

in other words, the Fourier transform preserves the L2 norm on rapidly decaying
functions! Since F : S! S is bijective (its inverse is given by F�) the same is true
for F� : S! S. Since S is dense in L2 we conclude

Theorem 96. The Fourier transform F : S ! S extends to an norm preserving
linear map F : L2(Rn ) ! L2(Rn ). This map is invertible, its inverse is given by
F
�.

For any f 2 L2(Rn ) one has F�Ff = f , but one should be careful with the
interpretation of this identity. Here both sides do not stand for continuous functions
which are well de�ned at each x 2 Rn . Since L2(Rn ) 6� L1(Rn ) we have no
guarantee that the integral

Ff(x) =

Z
Rn

e�2�ix�f(x) dx

exists for any � 2 Rn . Instead, we have de�ned Ff by

Ff = (L2) lim
k!1

Ffk

where fk 2 S is a sequence of Schwarz functions which converge in L2 to f . The
result is an L2 function g = Ff . Indeed, Theorem 96 says that the result can be
any function g 2 L2!

77. Fourier multiplier operators.

A Fourier multiplier operator Tm is an operator of the form

Tmf = F
�
�
m(�)F�f(�)

�
for some bounded function m : Rn ! C which is called the multiplier.

If m happens to be the Fourier transform of some M 2 L1(Rn ) then

Tmf = F
�
�
m(�)Ff(�)

�
= F

�
�
FM(�)Ff(�)

�
= F

�
F(M � f) =M � f:
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In other words for m = FM(�) the Fourier multiplier operator Tm is nothing but
convolution with an L1 function M . Such operators are bounded on all Lp(Rn )
with 1 � p �1, by Young's inequality.

Theorem 97. If m 2 L1(Rn ) then the operator Tm is bounded on L2(Rn ).

Proof. If f 2 L2 then Ff 2 L2, with kFfkL2 = kfkL2 . Since m 2 L1 one has
m(�)Ff(�) 2 L2 with

km(�)Ff(�)kL2 � kmkL1kfkL2 :

Since the inverse transform also preseves the L2 norm one obtains

Tmf = F
�
�
m(�)Ff(�)

� 2 L2

with

kTmfkL2 =


F��m(�)Ff(�)

�


L2 = km(�)Ff(�)kL2 � kmkL1kfkL2 :

This is a very strong theorem since nothing is required of the multiplier besides
being measurable and (essentially) bounded. However, the theorem is only true in
this generality for operators from L2 to L2. Similar theorems exist giving suÆcient
conditions on the multiplier m for the operator Tm to be bounded on Lp. On
the other hand, a simple example exists of a multiplier whose operator Tm is not
bounded on any Lp except p = 2, namely: let m be the characteristic function of
the unit ball in Rn (the example is simple, the proof is not { see [11, page 450].)

78. An example of Elliptic Regularity

The Fourier transform can be used to prove that solutions of certain partial
di�erential equations have more derivatives than is apparent from the equation.
In this section we illustrate this with the Laplace operator. As a result we will
show that the eigenfunctions of the Laplacian on a domain 
 � Rn are in fact C1

functions in the domain.

78.1. The Resolvent of the Laplacian.

For given � 2 C we try to solve the equation

�u��u = f(46)

where the given function f and the solution u shall be tempered distributions.

Lemma 98. If � 2 C n (�1; 0] then (46) has a unique solution u 2 L2(Rn ) for
any f 2 L2(Rn ). This solution is given by

u = F
�
�
m� � Ff

	
;

where the multiplier m� is given by

m�(�) =
1

1 + 4�2j�j2 :

Furthermore, the �rst and second derivatives of u in the sense of distributions also
belong to L2.
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Proof. Taking Fourier transforms on both sides one �nds

Ff(�) = F(�u��u) = �Fu(�) + 4�2j�j2Fu(�);
which one can solve easily for Fu(�) by dividing by �+4�2j�j2, i.e. by multiplying
with m�.

If � 2 C n (�1; 0] then m� is a smooth and bounded function on Rn , so that
the corresponding multiplier operator Tm�

is bounded on L2.
To see that the derivatives of u are L2 functions we observe that

F(DkDlu) = �4�2�k�lFu(�) = �4�2�k�lFu(�)
�+ 4�2j�j2 Ff(�):

Thus if f 2 L2 then by Parseval we have Ff 2 L2; the multiplier above is bounded,
so F(DkDlu) also belongs to L2; by Parseval again we see that DkDlu itself also
belongs to L2.

A similar argument shows that the �rst derivatives also belong to L2.

Recall that Wm;p(Rn ) is the Sobolev space of functions whose distributional
derivatives of order � m are Lp functions.

Corollary 99. If u 2 L2, and if �u 2Wm;2(Rn ) then u 2Wm+2;2(Rn ).

In other words, \if the Laplacian of an L2 function has m derivatives in L2

then the function has m+ 2 derivatives in L2."

Proof. By induction on m � 0.
For m = 0 we are given u 2 L2 and �u 2 L2. Hence u��u 2 L2. By lemma

98 the �rst and second derivatives of u belong to L2. This means u 2W 2;2(Rn ).
In the induction step with m > 0 we are given u 2 L2 with �u 2 Wm;2. In

particular �u 2 L2 so by the m = 0 step we conclude that u 2 W 2;2, i.e. the
derivatives of order � 2 are in L2.

Consider vk = Dku. Then we have just shown that vk 2 L2. Since �vk =
Dk�u, we also have �vk 2Wm�1;2 (i.e. vk has derivatives of order � m�1 in L2).
The induction hypothesis then implies that vk 2Wm+1;2 (i.e. vk has derivatives of
order � m+ 1 in L2). Recall that the vk are the �rst derivatives of u, so that we
have u 2Wm+2;2, as claimed.

78.2. Smoothness of Eigenfunctions

In this section we study local smoothness of the eigenfunctions of the Laplace
operator. We will use the following de�nitions:

Let 
 � Rn be an open domain. A distribution u 2 D0(
) is said to be locally

of class Wm;2 if for every � 2 D(
) one has �u 2 Wm;2(Rn ). We write Wm;2
loc (
)

for the space of locally Wm;2 distributions on 
.

Theorem 100. Let 
 � Rn be an open domain, and let u 2W 1;2
loc (
) be a solution

of �u = �u for some � 2 C . Then u 2 C1(
).

We will break the proof into several Lemmas.

Lemma 101. Let u 2 W 1;2
loc (
) be a solution of �u = �u in the sense of distribu-

tions. Then u 2 Wm;2
loc (
) for all m, i.e. for any test function � 2 D(
) one has

�u 2Wm;2(Rn ).
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Proof. By induction on m. The case m = 1 is given, so we proceed directly to the
induction step. Assume we have proven that u 2 Wm;2

loc (
).
Let � 2 D(
) be given. Then

�(�u) = (�u)�+ 2ru � r�+ u�� = 2ru � r�+ u(��+ ��):

By the induction hypothesis both ru �r� and u(��+��) belong to Wm�1;2(Rn ).
Hence �u;�(�u) 2Wm;2(Rn ) and we conclude that �u 2Wm+1;2(Rn ).

Lemma 102. If m > n
2 + k and u 2Wm;2(Rn ), then u 2 Ck(Rn ) and the deriva-

tives of order k of u are H�older continuous with exponent

Proof. One can derive this from the Sobolev embedding theorems. Here is a proof
which uses the Fourier transform.

We are given u 2 Wm;2(Rn ), i.e. all derivatives D�u of order j�j � m belong
to L2. Their Fourier transforms F(D�u) = (�2��)�Fu therefore also lie in L2(Rn ).
We therefore have Z

Rn

(1 + j�j2)mjFu(�)j2 d� <1:(47)

The inversion theorem tells us that

u(x) =

Z
Rn

e2�ix�Fu(�) d�

Condition (47) implies via H�older's inequality thatZ
Rn

j�jkjFu(�)j d� =
Z
Rn

(1 + j�j2)�m=2j�jk(1 + j�j2)m=2jFu(�)j d�

�
�Z

Rn

(1 + j�j2)�mj�j2k d�
� 1

2
�Z

Rn

(1 + j�j2)mjFu(�)j2 d�
� 1

2

The condition k > m + n
2 implies that the �rst integral here converges. We may

therefore di�erentiate k times under the integral to obtain for any � with j�j = k
that

D�
xu(x) =

Z
Rn

e2�ix�(2�i�)�Fu(�) d�

so D�u is the inverse Fourier transform of an integrable function. Hence D�u is
continuous.
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