Sobolevology

1. Definitions and Notation

1.1. The domain. Ω is an open subset of \mathbb{R}^n .

1.2. Hölder seminorm. For $\alpha \in (0,1]$ the Hölder seminorm of exponent α of a function is given by

$$[f]_{\alpha} = \sup_{x \neq y} \frac{|f(x) - f(y)|}{|x - y|^{\alpha}}.$$

When $\alpha = 1$ this seminorm is the same as the Lipschitz constant of the function f.

2. Inequalities

2.1. Poincaré. If $\varphi \in C_c^{\infty}(\Omega)$ and if Ω has width L (i.e. $\Omega \subset (0, L) \times \mathbb{R}^{n-1}$) then

$$\int_{\Omega} \varphi(x)^2 dx \le C_P(\Omega) \int_{\Omega} |\nabla \varphi|^2 dx$$

where the Poincaré constant $C_P(\Omega)$ is bounded by

$$C_P(\Omega) \le \frac{1}{L^2}$$

2.2. Sobolev (p = 1). For any $f \in C_c^1(\mathbb{R}^n)$ one has

$$\left(\int_{\mathbb{R}^n} |f|^{n/(n-1)} dx\right)^{(n-1)/n} \le C_n \int_{\mathbb{R}^n} |\nabla f| dx.$$

The constant $C_n \leq 1$.

2.3. Sobolev $(1 \le p < n)$. For any $f \in C_c^1(\mathbb{R}^n)$ and any $1 \le p < n$ one has

$$\left(\int_{\mathbb{R}^n} |f|^{np/(n-p)} dx\right)^{(n-p)/np} \le C_{n,p} \left(\int_{\mathbb{R}^n} |\nabla f|^p dx\right)^{1/p}.$$

(See problems for the constant $C_{n,p}$)

2.4. Morrey. For any $f \in C_c^1(\mathbb{R}^n)$ and any p > n one has

$$[f]_{1-n/p} \le C_{n,p} \left(\int_{\mathbb{R}^n} |\nabla f|^p dx \right)^{1/p}$$

3. Spaces

3.1. The space $W^{1,p}(\Omega)$. For $1 \leq p \leq \infty$ the space $W^{1,p}(\Omega)$ consists of all $f \in L^p(\Omega)$ for which the distributional partial derivatives $\frac{\partial f}{\partial x_i}$ belong to $L^p(\Omega)$. The norm on $W^{1,p}(\Omega)$ is

$$||f||_{W^{1,p}} = \left(\int_{\Omega} \{|f|^p + |\nabla f|^p\} dx\right)^{1/p}$$

The space $W_0^{1,p}(\Omega)$ is by definition the closure in $W^{1,p}(\Omega)$ of $C_c^{\infty}(\Omega)$.

3.2. $H^1(\Omega)$ and $H^1_0(\Omega)$. When p = 2 the following notation is commonly used

$$W^{1,2}(\Omega) = H^1(\Omega), \qquad W^{1,2}_0(\Omega) = H^1_0(\Omega).$$

These spaces are Hilbert spaces, and there are various inner products on them which define equivalent norms. On $H^1(\Omega)$ one defines

$$(u,v)_{H^1} = \int_{\Omega} \{uv + \nabla u \cdot \nabla v\} dx.$$

This expression also defines an inner product on the subspace $H_0^1(\Omega)$.

The following expression defines an inner product on $H_0^1(\Omega)$ but not on $H^1(\Omega)$:

$$(u,v)_{H_0^1} = \int_{\Omega} \nabla u \cdot \nabla v \, dx.$$

The corresponding norm on $H_0^1(\Omega)$ is

$$||u||_{H_0^1(\Omega)}^2 = \int_{\Omega} |\nabla u(x)|^2 \, dx.$$

It follows from the Poincaré inequality that this norm is equivalent with the H^1 norm defined above.

3.3. $H^{-1}(\Omega)$. The space of all distributions on Ω which can be written as

$$g = \nabla \cdot \vec{f} = \frac{\partial f_1}{\partial x_1} + \dots + \frac{\partial f_n}{\partial x_n}$$

with $f_1, \ldots, f_n \in L^2(\Omega)$ is defined to be $H^{-1}(\Omega)$.

The quantity

$$||g||_{H^{-1}}^2 = \inf_{g = \nabla \cdot \vec{f}} \int_{\Omega} |\vec{f}|^2 dx$$

defines a norm on $H^{-1}(\Omega)$.

3.4. $H^{-1}(\Omega)$ is the dual of $H^1_0(\Omega)$. Let g be any distribution on Ω . Then the functional

$$\varphi \mapsto \langle g, \varphi \rangle$$

extends to a bounded linear functional on $H_0^1(\Omega)$ if and only if $g \in H^{-1}(\Omega)$. Furthermore, the H^{-1} norm of g defined in §3.3 is also given by

$$||g||_{H^{-1}} = \sup_{||v||_{H^1_0} \le 1} \langle g, v \rangle.$$

3.5. Theorem. If $f \in L^2(\Omega)$ then

$$v \mapsto \int_{\Omega} f(x)v(x) \ dx$$

defines a bounded linear functional on $H_0^1(\Omega)$. Identifying the function f with the linear functional it defines, we may think of f as an element of $H^{-1}(\Omega)$. One has

 $||f||_{H^{-1}} \le C_P(\Omega) ||f||_{L^2},$

where $C_P(\Omega)$ is the Poincaré constant of Ω .

Proof. Use the Poincaré inequality, which says that for any $v \in H_0^1(\Omega)$ one has $||v||_{L^2} \leq C_P ||v||_{H_0^1}$, to bound $\int f v dx$ as follows:

$$\int f v dx \le \|f\|_{L^2} \|v\|_{L^2} \le C_P \|f\|_{L^2} \|v\|_{H^1_0}.$$
 QED

4. Solving the Poisson equation

4.1. The Poisson equation and boundary value problem. Poisson's equation is

$$-\Delta u = f, \qquad u|_{\partial\Omega} = 0$$

A function $u \in H_0^1(\Omega)$ is a weak solution, or a solution in the sense of distributions if

$$\forall v \in C_c^{\infty}(\Omega) \quad \int_{\Omega} \nabla u \cdot \nabla v \, dx = \int_{\Omega} f v \, dx$$

4.2. Theorem. Let Ω be bounded. Then for any $f \in L^2(\Omega)$ there is a unique solution of

$$\Delta u = f, \qquad u \in H^1_0(\Omega).$$

This is a special case of the following theorem.

4.3. Theorem. Let
$$\Omega$$
 be bounded. Then for any $g \in H^{-1}(\Omega)$ there is a unique solution of $-\Delta u = q$, $u \in H^{1}_{0}(\Omega)$.

Proof. The definitions imply that $u \in H_0^1(\Omega)$ is a weak solution iff

(1)
$$\forall v \in H_0^1 \quad (u, v)_{H_0^1} = \langle g, v \rangle$$

The right-hand side defines a bounded linear functional on $H_0^1(\Omega)$, because, by definition $\langle g, v \rangle \leq ||g||_{H^{-1}} ||v||_{H_0^1}$ for all $v \in H_0^1$. Every bounded linear functional on a Hilbert space such as $H_0^1(\Omega)$ is of the form $v \mapsto (u, v)_{H_0^1}$ for one and only one $u \in H_0^1$. QED

4.4. Theorem. If
$$u \in H_0^1(\Omega)$$
 is the solution to $-\Delta u = g$ with $g \in H^{-1}(\Omega)$, then
 $\|u\|_{H_0^1} \leq \|g\|_{H^{-1}}.$

Proof. u satisfies (1) for all $v \in H_0^1$. Choose v = u and you get

$$\|u\|_{H_0^1}^2 = (u, u)_{H_0^1} = \langle g, u \rangle \le \|g\|_{H^{-1}} \|u\|_{H_0^1}.$$

Cancel $||u||_{H_0^1}$ s left and right.

QED

5. Problems

5.1. Membership in Sobolev spaces. Let *B* be the open unit ball, and define for each a > 0 the function $f_a(x) = |x|^{-a}$. For which values of a > 0 does one have $f_a \in W^{1,p}(B)$?

5.2. Bad (nowhere continuous) Sobolev functions. Let $1 \leq p < n$, and let B be the open unit ball in \mathbb{R}^n . Let $\{x_i \in B\}_{i \in \mathbb{N}}$ be a dense sequence of points. Find numbers $b_i > 0$ $(i \in \mathbb{N})$ and a > 0 so that the series $f(x) = \sum_{i=1}^{\infty} b_i |x - x_i|^{-a}$ converges in $W^{1,p}(B)$.

Background to the next three problems. The Sobolev inequality says for any p < n that $\nabla f \in L^p(\Omega)$ implies $f \in L^{np/(n-p)}(\Omega)$. If you let $p \nearrow n$ in this statement you would get: " $\nabla f \in L^n \implies f \in L^\infty$ ". This turns out not to be true however (for a counterexample, if you insist, try functions of the form $f(x) = |\log x|^{\alpha}$ for appropriate $\alpha > 0$.)

5.3. Sobolev constant. Derive the Sobolev inequality with 1 from the Sobolev inequality with <math>p = 1, and find an explicit upper bound for $C_{n,p}$ (assuming that $C_n \leq 1$).

5.4. Sobolev inequality when $|\nabla f| \in L^n(\Omega)$. When $\Omega \subset \mathbb{R}^n$ and $\int_{\Omega} |\nabla f|^n dx < \infty$ neither the Sobolev inequality nor the Morrey inequality apply. Prove that for any $f \in W^{1,n}(\Omega)$ and any $p < \infty$ one has

$$\|f\|_{L^p(\Omega)} \le C \Big(\int |\nabla f|^n \ dx \Big)^{1/n}.$$

The constant depends on p and $|\Omega|$ (you must assume that Ω has finite volume).

(Hint: if $|\nabla f| \in L^n$ and $|\Omega| < \infty$ then Hölder's inequality implies that $|\nabla f| \in L^r(\Omega)$ for any $r \in [1, n)$. Pick the right r for the given p, and use $C_{n,p}$ from the previous problem.)

5.5. Sobolev inequality when $|\nabla f| \in L^n(\Omega)$, the sequel. Use the result from the previous problem to show that if $|\nabla f| \in L^n(\Omega)$ for some bounded domain $\Omega \subset \mathbb{R}^n$, then there is a constant c > 0 such that

$$\int_{\Omega} e^{c|f(x)|} \, dx < \infty.$$

Hint: use the Taylor expansion $e^{c|f|} = \sum_{k=0}^{\infty} c^k |f|^k / k!$ and estimate the integral of the terms in this expansion using the previous problem.

5.6. Membership in $H^{-1}(\Omega)$. In §3.5 we showed that $L^2(\Omega) \subset H^{-1}(\Omega)$ for any bounded open domain $\Omega \subset \mathbb{R}^n$.

A. For which $q \in [1, \infty]$ does one have $L^q(\Omega) \subset H^{-1}(\Omega)$? (The answer will depend on n; you need the Sobolev inequalities to find the appropriate range of q; the cases n = 1 and n = 2 are a bit different from the case n > 3.)

B. Suppose the domain Ω contains the origin. For which a > 0 does the boundary value problem

$$-\Delta u = |x|^{-a}, \qquad u \in H^1_0(\Omega)$$

have a solution? (hint: if $|x|^{-a}$ belongs to $H^{-1}(\Omega)$ then Theorem 4.3 applies. Use problem 5.1).

5.7. Poincaré from Sobolev. Let $\Omega \subset \mathbb{R}^n$ be an open subset with finite volume. Use the Sobolev inequality to prove that Poincaré's inequality holds for Ω :

$$\forall u \in C_c^{\infty}(\Omega) \quad \int_{\Omega} u^2 dx \le C |\Omega|^{2/n} \int_{\Omega} |\nabla u|^2 dx$$

where $|\Omega|$ is the volume of Ω .