
Sobolevology

1. Definitions and Notation

1.1. The domain. Ω is an open subset of Rn.

1.2. Hölder seminorm. For α ∈ (0, 1] the Hölder seminorm of exponent α of a function is
given by

[f ]α = sup
x 6=y

|f(x)− f(y)|
|x− y|α

.

When α = 1 this seminorm is the same as the Lipschitz constant of the function f .

2. Inequalities

2.1. Poincaré. If ϕ ∈ C∞c (Ω) and if Ω has width L (i.e. Ω ⊂ (0, L)× Rn−1) then∫
Ω
ϕ(x)2dx ≤ CP (Ω)

∫
Ω
|∇ϕ|2dx

where the Poincaré constant CP (Ω) is bounded by

CP (Ω) ≤ 1

L2
.

2.2. Sobolev (p = 1). For any f ∈ C1
c (Rn) one has(∫

Rn

|f |n/(n−1)dx
)(n−1)/n

≤ Cn
∫
Rn

|∇f |dx.

The constant Cn ≤ 1.

2.3. Sobolev (1 ≤ p < n). For any f ∈ C1
c (Rn) and any 1 ≤ p < n one has(∫

Rn

|f |np/(n−p)dx
)(n−p)/np

≤ Cn,p
(∫

Rn

|∇f |pdx
)1/p

.

(See problems for the constant Cn,p)

2.4. Morrey. For any f ∈ C1
c (Rn) and any p > n one has

[f ]1−n/p ≤ Cn,p
(∫

Rn

|∇f |pdx
)1/p

.
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3. Spaces

3.1. The space W 1,p(Ω). For 1 ≤ p ≤ ∞ the space W 1,p(Ω) consists of all f ∈ Lp(Ω) for

which the distributional partial derivatives ∂f
∂xi

belong to Lp(Ω). The norm on W 1,p(Ω) is

‖f‖W 1,p =
(∫

Ω
{|f |p + |∇f |p} dx

)1/p

The space W 1,p
0 (Ω) is by definition the closure in W 1,p(Ω) of C∞c (Ω).

3.2. H1(Ω) and H1
0 (Ω). When p = 2 the following notation is commonly used

W 1,2(Ω) = H1(Ω), W 1,2
0 (Ω) = H1

0 (Ω).

These spaces are Hilbert spaces, and there are various inner products on them which define equiv-
alent norms. On H1(Ω) one defines

(u, v)H1 =

∫
Ω

{
uv +∇u · ∇v

}
dx.

This expression also defines an inner product on the subspace H1
0 (Ω).

The following expression defines an inner product on H1
0 (Ω) but not on H1(Ω):

(u, v)H1
0

=

∫
Ω
∇u · ∇v dx.

The corresponding norm on H1
0 (Ω) is

‖u‖2H1
0 (Ω) =

∫
Ω
|∇u(x)|2 dx.

It follows from the Poincaré inequality that this norm is equivalent with the H1 norm defined above.

3.3. H−1(Ω). The space of all distributions on Ω which can be written as

g = ∇ · ~f =
∂f1

∂x1
+ · · ·+ ∂fn

∂xn

with f1, . . . , fn ∈ L2(Ω) is defined to be H−1(Ω).

The quantity

‖g‖2H−1 = inf
g=∇·~f

∫
Ω
|~f |2dx

defines a norm on H−1(Ω).

3.4. H−1(Ω) is the dual of H1
0 (Ω). Let g be any distribution on Ω. Then the functional

ϕ 7→ 〈g, ϕ〉

extends to a bounded linear functional on H1
0 (Ω) if and only if g ∈ H−1(Ω). Furthermore, the H−1

norm of g defined in §3.3 is also given by

‖g‖H−1 = sup
‖v‖

H1
0
≤1
〈g, v〉.
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3.5. Theorem. If f ∈ L2(Ω) then

v 7→
∫

Ω
f(x)v(x) dx

defines a bounded linear functional on H1
0 (Ω). Identifying the function f with the linear functional

it defines, we may think of f as an element of H−1(Ω). One has

‖f‖H−1 ≤ CP (Ω)‖f‖L2 ,

where CP (Ω) is the Poincaré constant of Ω.

Proof. Use the Poincaré inequality, which says that for any v ∈ H1
0 (Ω) one has ‖v‖L2 ≤

CP ‖v‖H1
0
, to bound

∫
fvdx as follows:∫

fvdx ≤ ‖f‖L2‖v‖L2 ≤ CP ‖f‖L2‖v‖H1
0
.

QED

4. Solving the Poisson equation

4.1. The Poisson equation and boundary value problem. Poisson’s equation is

−∆u = f, u|∂Ω = 0.

A function u ∈ H1
0 (Ω) is a weak solution, or a solution in the sense of distributions if

∀v ∈ C∞c (Ω)

∫
Ω
∇u · ∇v dx =

∫
Ω
fv dx.

4.2. Theorem. Let Ω be bounded. Then for any f ∈ L2(Ω) there is a unique solution of

−∆u = f, u ∈ H1
0 (Ω).

This is a special case of the following theorem.

4.3. Theorem. Let Ω be bounded. Then for any g ∈ H−1(Ω) there is a unique solution of

−∆u = g, u ∈ H1
0 (Ω).

Proof. The definitions imply that u ∈ H1
0 (Ω) is a weak solution iff

(1) ∀ v ∈ H1
0 (u, v)H1

0
= 〈g, v〉

The right-hand side defines a bounded linear functional on H1
0 (Ω), because, by definition 〈g, v〉 ≤

‖g‖H−1‖v‖H01
for all v ∈ H1

0 . Every bounded linear functional on a Hilbert space such as H1
0 (Ω)

is of the form v 7→ (u, v)H1
0

for one and only one u ∈ H1
0 . QED

4.4. Theorem. If u ∈ H1
0 (Ω) is the solution to −∆u = g with g ∈ H−1(Ω), then

‖u‖H1
0
≤ ‖g‖H−1 .

Proof. u satisfies (1) for all v ∈ H1
0 . Choose v = u and you get

‖u‖2H1
0

= (u, u)H1
0

= 〈g, u〉 ≤ ‖g‖H−1‖u‖H1
0
.

Cancel ‖u‖H1
0
s left and right. QED
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5. Problems

5.1. Membership in Sobolev spaces. Let B be the open unit ball, and define for each a > 0
the function fa(x) = |x|−a. For which values of a > 0 does one have fa ∈W 1,p(B)?

5.2. Bad (nowhere continuous) Sobolev functions. Let 1 ≤ p < n, and let B be the
open unit ball in Rn. Let {xi ∈ B}i∈N be a dense sequence of points. Find numbers bi > 0 (i ∈ N)
and a > 0 so that the series f(x) =

∑∞
i=1 bi|x− xi|−a converges in W 1,p(B).

Background to the next three problems. The Sobolev inequality says for any p < n
that ∇f ∈ Lp(Ω) implies f ∈ Lnp/(n−p)(Ω). If you let p ↗ n in this statement you would get:
“∇f ∈ Ln =⇒ f ∈ L∞”. This turns out not to be true however (for a counterexample, if you
insist, try functions of the form f(x) = | log x|α for appropriate α > 0.)

5.3. Sobolev constant. Derive the Sobolev inequality with 1 < p < n from the Sobolev
inequality with p = 1, and find an explicit upper bound for Cn,p (assuming that Cn ≤ 1).

5.4. Sobolev inequality when |∇f | ∈ Ln(Ω). When Ω ⊂ Rn and
∫

Ω |∇f |
ndx < ∞ neither

the Sobolev inequality nor the Morrey inequality apply. Prove that for any f ∈ W 1,n(Ω) and any
p <∞ one has

‖f‖Lp(Ω) ≤ C
(∫
|∇f |n dx

)1/n
.

The constant depends on p and |Ω| (you must assume that Ω has finite volume).

(Hint: if |∇f | ∈ Ln and |Ω| < ∞ then Hölder’s inequality implies that |∇f | ∈ Lr(Ω) for any
r ∈ [1, n). Pick the right r for the given p, and use Cn,p from the previous problem.)

5.5. Sobolev inequality when |∇f | ∈ Ln(Ω), the sequel. Use the result from the previous
problem to show that if |∇f | ∈ Ln(Ω) for some bounded domain Ω ⊂ Rn, then there is a constant
c > 0 such that ∫

Ω
ec|f(x)| dx <∞.

Hint: use the Taylor expansion ec|f | =
∑∞

k=0 c
k|f |k/k! and estimate the integral of the terms in

this expansion using the previous problem.

5.6. Membership in H−1(Ω). In §3.5 we showed that L2(Ω) ⊂ H−1(Ω) for any bounded
open domain Ω ⊂ Rn.

A. For which q ∈ [1,∞] does one have Lq(Ω) ⊂ H−1(Ω)? (The answer will depend on n; you
need the Sobolev inequalities to find the appropriate range of q; the cases n = 1 and n = 2 are a
bit different from the case n > 3.)

B. Suppose the domain Ω contains the origin. For which a > 0 does the boundary value
problem

−∆u = |x|−a, u ∈ H1
0 (Ω)

have a solution? (hint: if |x|−a belongs to H−1(Ω) then Theorem 4.3 applies. Use problem 5.1).
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5.7. Poincaré from Sobolev. Let Ω ⊂ Rn be an open subset with finite volume. Use the
Sobolev inequality to prove that Poincaré’s inequality holds for Ω:

∀u ∈ C∞c (Ω)

∫
Ω
u2dx ≤ C|Ω|2/n

∫
Ω
|∇u|2dx

where |Ω| is the volume of Ω.
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