The wave equation

[Math 619 home]

Contents

Derivation, vibrating string, vibrating membranes

The wave equation with several space variables is

2ut2Δu=0,Δu=def2ux12++2uxn2\frac{\partial^2 u}{\partial t^2} - \Delta u = 0,\qquad \Delta u{\stackrel{\textrm{def}}=}\frac{\partial^2 u}{\partial x_1^2} + \cdots + \frac{\partial^2 u}{\partial x_n^2}

or more generally

2ut2c2Δu=0,\frac{\partial^2 u}{\partial t^2} - c^2\Delta u=0,

where c>0c>0 is a positive real number called the wave speed.

The unknown is a function u:R×RnRu:\mathbb R\times\mathbb R^n \to\mathbb R.

The equation appears in physics in the following contexts

D’Alembert’s solution (n=1n=1)

Changing coordinates.

Suppose that u(x,t)u(x,t) satisfies

uttuxx=0 for all (x,t).(1)u_{tt}-u_{xx}=0 \text { for all }(x, t).\tag{1}

We introduce new coordinates (p,q)(p,q) related to our original space-time coordinates (x,t)(x, t) by

p=x+t,q=xtp=x+t,\qquad q=x-t

If we know the (p,q)(p,q) coordinates of a point then we can recover the (x,t)(x, t) coordinates of the point from

x=p+q2,t=pq2.x=\frac{p+q}{2}, \qquad t = \frac{p-q}{2}.

Consider the quantity uu expressed as a function of the (p,q)(p,q) coordinates, i.e. we consider the new function

v(p,q)=defu(p+q2,pq2).v(p,q) \stackrel{\sf def}{=} u\Bigl(\frac{p+q}{2}, \frac{p-q}{2}\Bigr).

and ask what equation it satsifies. The computation is easiest if we first write u(x,t)u(x, t) in terms of vv, i.e.

u(x,t)=v(x+t,xt).u(x, t) = v(x+t, x-t).

We can substitute this in the wave equation and apply the chain rule several time. We compute the derivatives one by one. The first derivative is

ut=v(x+t=p,xt=q)t=vp(x+t,xt)(x+t)t+vq(x+t,xt)(xt)t=vp(x+t,xt)vq(x+t,xt)\begin{aligned} u_{t} &= \frac{\partial v(\overbrace{x+t}^{=p}, \overbrace{x-t}^{=q})}{\partial t}\\ &=v_p(x+t, x-t) \frac{\partial (x+t)}{\partial t} +v_q(x+t, x-t)\frac{\partial (x-t)}{\partial t}\\ &=v_p(x+t, x-t) - v_q(x+t, x-t) \end{aligned}

Differentiate again:

utt={vp(x+t,xt)vq(x+t,xt)}t=vppvpqvqp+vqqat (x+t,xt)=vpp2vpq+vqqat (x+t,xt)\begin{aligned} u_{tt} &= \frac{\partial \{v_p(x+t, x-t) - v_q(x+t, x-t)\}}{\partial t}\\ &=v_{pp}-v_{pq}-v_{qp}+v_{qq}\quad \text{at }(x+t, x-t)\\ &=v_{pp}-2v_{pq}+v_{qq}\quad \text{at }(x+t, x-t) \end{aligned}

Similarly, the second xx derivative is

uxx=vpp+2vpq+vqqat (x+t,xt) u_{xx} = v_{pp}+2v_{pq}+v_{qq} \quad \text{at }(x+t, x-t)

Therefore

uttuxx=vpp2vpq+vqq(vpp+2vpq+vqq)=4vpqu_{tt}-u_{xx}=v_{pp}-2v_{pq}+v_{qq}-\bigl(v_{pp}+2v_{pq}+v_{qq}\bigr) =-4v_{pq}

We see that if uu is a C2C^2 function, then uu satisfies the wave equation if and only if vv satisfies the equation

2vpq=0 for all (p,q).(2)\frac{\partial^2 v}{\partial p\partial q} = 0 \text{ for all }(p,q).\tag{2}

The point of choosing the coordinates p,qp, q is that the new equation (2) is easier to solve than the original wave equation (1).

Theorem.

(a) If u:R2Ru:\R^2\to\R is a C2C^2 solution of the wave equation utt=uxxu_{tt}=u_{xx} then there exist C2C^2 functions F,G:RRF, G:\R\to\R such that u(x,t)=F(x+t)+G(xt)u(x, t)=F(x+t)+G(x-t) for all (x,t)R2(x, t)\in\R^2.
(b) If F,G:RRF, G:\R\to\R are C2C^2 functions then u(x,t)=F(x+t)+G(xt)u(x, t)=F(x+t)+G(x-t) satisfies the wave equation.

Proof of (a). If uu satisfies the wave equation then we have shown that v(p,q)v(p,q) defined above satisfies

2vqp=vpq=0.\frac{\partial^2 v}{\partial q\partial p} = \frac{\partial v_p}{\partial q} = 0.

Hence vpv_p does not depend on qq, i.e. vp(p,q)v_p(p,q) is a function of pp only, i.e.  there is a function f:RRf:\R\to\R such that

vp=f(p)\frac{\partial v}{\partial p} = f(p)

We can now integrate this. Let F:RRF:\R\to\R be an antiderivative of ff. Then there is a function G:RRG:\R\to\R such that

v(p,q)=f(p)  dp+G(q)=F(p)+G(q)v(p,q) = \int f(p)\; dp + G(q) = F(p)+G(q)

Substitute p=x+tp=x+t, q=xtq=x-t and we get

u(x,t)=F(xt)+G(x+t)u(x,t) = F(x-t)+G(x+t)

If we are given the function u:R2Ru:\R^2\to\R then we can find the functions FF and GG up to a constant from the formulas

u(s/2,s/2)=F(s)+G(0),u(s/2,s/2)=F(0)+G(s).u(s/2, s/2) = F(s)+G(0), \qquad u(s/2, -s/2) = F(0) + G(s).

We find these formulas by setting x=t=s/2x=t=s/2 (for FF) or x=s/2,t=s/2x=s/2, t=-s/2 (for GG) in u(x,t)=F(x+t)+G(xt)u(x, t)=F(x+t)+G(x-t).
If uu is a C2C^2 function then it follows from F(s)=u(s/2,s/2)G(0)F(s)=u(s/2,s/2)-G(0) that

F(s)=12ux(s2,s2)+12ut(s2,s2),F(s)=14uxx(s2,s2)+12uxt(s2,s2)+14utt(s2,s2)F'(s) = \tfrac12 u_x(\tfrac s2, \tfrac s2)+\tfrac12 u_t(\tfrac s2, \tfrac s2),\qquad F''(s) = \tfrac14 u_{xx}(\tfrac s2, \tfrac s2)+ \tfrac12 u_{xt}(\tfrac s2, \tfrac s2)+\tfrac14 u_{tt}(\tfrac s2, \tfrac s2)

Therefore FF also has two derivatives, and they are continuous.

Proof of (b). If F,GF, G are given functions, and if u(x,t)=F(xt)+G(x+t)u(x, t) = F(x-t)+G(x+t), then

ut(x,t)=F(x+t)G(xt),ux(x,t)=F(x+t)+G(xt)u_{t}(x, t) = F'(x+t)-G'(x-t), \qquad u_{x}(x, t) = F'(x+t)+G'(x-t)

and hence

utt(x,t)=F(x+t)+G(xt),uxx(x,t)=F(x+t)+G(xt)u_{tt}(x, t) = F''(x+t)+G''(x-t), \qquad u_{xx}(x, t) = F''(x+t)+G''(x-t)

This implies that utt=uxxu_{tt}=u_{xx}, so uu satisfies the wave equation. \hspace{1in} Q.E.D.

Theorem — solution in terms of the initial values and velocities. If uu is a C2C^2 solution of the wave equation, then

u(x,t)=u(xt,0)+u(x+t,0)2+12xtx+tut(ξ,0)dξu(x,t) = \frac{u(x-t,0)+u(x+t,0)}{2} + \frac12 \int_{x-t}^{x+t}u_t(\xi,0)\mathrm d\xi

Conversely, if U,U˙:RRU, \dot U:\R\to\R are two functions of which UU is C2C^2 and U˙\dot U is C1C^1, then

u(x,t)=U(xt)+U(x+t)2+12xtx+tU˙(ξ)dξu(x,t) = \frac{U(x-t)+U(x+t)}{2} + \frac12 \int_{x-t}^{x+t}\dot U(\xi)\mathrm d\xi

is a solution of the wave equation that satisfies

u(x,0)=U(x),ut(x,0)=U˙(x) for all xR.u(x, 0)= U(x),\qquad u_t(x, 0)=\dot U(x)\qquad \text{ for all }x\in\R.

Proof. If uu is a solution then it is of the form u(x,t)=F(x+t)+G(xt)u(x,t)=F(x+t)+G(x-t) for certain functions FF and GG. To find these functions we note that

ut(x,t)=F(x+t)G(xt).u_t(x, t) = F'(x+t)-G'(x-t).

Set t=0t=0:

u(x,0)=F(x)+G(x),ut(x,0)=F(x)G(x)u(x,0) = F(x)+G(x), \quad u_t(x,0)=F'(x)-G'(x)

Differentiate the first equation with respect to xx,

ux(x,0)=F(x)+G(x),ut(x,0)=F(x)G(x)u_x(x,0) = F'(x)+G'(x), \quad u_t(x,0)=F'(x)-G'(x)

which we solve for FF' and GG':

F(x)=ux(x,0)+ut(x,0)2,G(x)=ux(x,0)ut(x,0)2F'(x) = \frac{u_x(x,0)+u_t(x,0)}{2},\qquad G'(x) = \frac{u_x(x,0)-u_t(x,0)}{2}

The fundamental theorem of calculus implies

F(x)=F(0)+120x{ux(ξ,0)+ut(ξ,0)}dξ=F(0)+12u(x,0)12u(0,0)+120xut(ξ,0)dξ\begin{aligned} F(x) &= F(0)+\frac12 \int_0^x \bigl\{u_x(\xi,0)+u_t(\xi,0)\bigr\}\,d\xi\\ &=F(0) + \frac12 u(x, 0) - \frac12u(0,0) + \frac12 \int_0^x u_t(\xi, 0)\,d\xi \end{aligned}

Similarly,

G(x)=G(0)+12u(x,0)12u(0,0)120xut(ξ,0)dξG(x) = G(0) + \frac12 u(x, 0) - \frac12u(0,0) - \frac12 \int_0^x u_t(\xi, 0)\,d\xi

It follows that the solution u(x,t)u(x, t) is given by

u(x,t)=F(x+t)+G(xt)=u(x+t,0)+u(xt,0)2+120x+tut(ξ,0)dξ120xtut(ξ,0)dξ+F(0)+G(0)u(0,0).\begin{aligned} u(x, t)&=F(x+t)+G(x-t)\\ &=\frac{u(x+t, 0)+u(x-t, 0)}{2}+\frac12\int_0^{x+t}u_t(\xi, 0)\,d\xi -\frac12\int_0^{x-t}u_t(\xi, 0)\,d\xi \\ &\qquad\qquad+F(0)+G(0)-u(0,0). \end{aligned}

We can combine the two integrals:

0x+tut(ξ,0)dξ0xtut(ξ,0)dξ=0x+tut(ξ,0)dξ+xt0ut(ξ,0)dξ=xtx+tut(ξ,0)dξ.\int_0^{x+t}u_t(\xi, 0)\,d\xi -\int_0^{x-t}u_t(\xi, 0)\,d\xi = \int_0^{x+t}u_t(\xi, 0)\,d\xi +\int^0_{x-t}u_t(\xi, 0)\,d\xi = \int_{x-t}^{x+t}u_t(\xi, 0)\,d\xi.

The terms F(0)+G(0)u(0,0)F(0)+G(0)-u(0,0) cancel because

u(x,t)=F(x+t)+G(xt)    u(0,0)=F(0)+G(0).u(x,t)=F(x+t)+G(x-t) \implies u(0,0) = F(0)+G(0).

Therefore we end up with

u(x,t)=u(xt,0)+u(x+t,0)2+12xtx+tut(ξ,0)dξu(x,t) = \frac{u(x-t,0)+u(x+t,0)}{2} + \frac12 \int_{x-t}^{x+t}u_t(\xi,0)\,d\xi

as claimed.

Weak and classical solutions

For many partial differential equations the naive notion of a “solution” is not satisfactory, as there may be functions that do not have enough derivatives to allow verification of the equation, but which one really would like to call solutions, for other reasons. This has led to the introduction of many theories of “generalized solution.” Here we will see one version of such a theory.

Definition. A classical solution of the wave equation is a C2C^2 function u:R2Ru:\R^2\to\R that satisfies the equation, i.e. for which utt=uxxu_{tt}=u_{xx} holds at all (x,t)R2(x, t)\in\R^2.

A weak solution of the wave equation is a continuous function that satisfies

u(x+h,t)+u(xh,t)=u(x,t+h)+u(x,th)()u(x+h, t)+u(x-h,t) = u(x, t+h)+u(x, t-h) \tag{$\star$}

for all x,tRx, t\in\R and h>0h>0.

The new notion of solution has the following features:

Theorem. If F,G:RRF, G:\R\to\R are continuous functions, then u(x,t)=F(x+t)+G(xt)u(x, t)=F(x+t)+G(x-t) is a weak solution to the Wave Equation.

Proof. For any x,tRx, t\in\R and h>0h>0 we have

u(x+h,t)+u(xh,t)=F(x+h+t)+G(x+ht)+F(xh+t)+G(xht)u(x,t+h)+u(x,th)=F(x+t+h)+G(xth)+F(x+th)+G(xt+h).\begin{aligned} u(x+h, t)+u(x-h, t) &= F(x+h+t) + G(x+h-t) + F(x-h+t) + G(x-h-t)\\ u(x, t+h)+u(x, t-h) &= F(x+t+h) + G(x-t-h) + F(x+t-h) + G(x-t+h). \end{aligned}

Therefore ()(\star) holds. \qquad Q.E.D

Theorem. Any classical solution of the wave equation is also a weak solution

Proof. Since uu is a C2C^2 solution of the wave equation there exist functions F,GF, G such that u(x,t)=F(x+t)+G(xt)u(x, t)=F(x+t)+G(x-t) for all x,tx, t. The previous theorem then implies that uu is a weak solution$\qquad$Q.E.D

Theorem. If uu is a weak solution, and if uu is C2C^2, then uu is also a classical solution of the wave equation.

Proof. Suppose uu is a C2C^2 function satisfying ()(\star). Then we differentiate ()(\star) on both sides twice with respect to hh and set h=0h=0

u(x+h,t)+u(xh,t)=u(x,t+h)+u(x,th)    ux(x+h,t)ux(xh,t)=ut(x,t+h)ut(x,th)    uxx(x+h,t)+uxx(xh,t)=utt(x,t+h)+utt(x,th)    2uxx(x,t)=2utt(x,t)\begin{aligned} &&u(x+h, t)+u(x-h,t) &= u(x, t+h)+u(x, t-h) \\ \implies&&u_x(x+h, t)-u_x(x-h,t) &= u_t(x, t+h)-u_t(x, t-h) \\ \implies&&u_{xx}(x+h, t)+u_{xx}(x-h,t) &= u_{tt}(x, t+h)+u_{tt}(x, t-h) \\ \implies&&2u_{xx}(x, t) &= 2u_{tt}(x, t) \end{aligned}

Therefore uu satisfies the wave equation.\qquadQ.E.D

Theorem. If u:R2Ru:\R^2\to\R is a weak solution of the Wave Equation, then there exist continuous function F,G:RRF, G:\R\to\R such that

u(x,t)=F(x+t)+G(xt)u(x,t)=F(x+t)+G(x-t)

for all x,tx, t.

Proof. Define

F(x)=u(x2,x2),G(x)=u(x2,x2)u(0,0).F(x) = u\left(\frac x2, \frac x2\right), \qquad G(x) = u\left(\frac x2, -\frac x2\right) - u(0,0).

and consider the function

v(x,t)=defF(x+t)+G(xt).v(x, t) \stackrel{\sf def}= F(x+t)+G(x-t).

We will show that u(x,t)=v(x,t)u(x, t)=v(x, t) for all x,tx, t. To do this we begin by verifying

Let h>0h>0 be given. Then by repeatedly using the condition ()(\star) we conclude that

u((mn)h,(m+n)h)=v((mn)h,(m+n)h) for all m,nZu((m-n)h, (m+n)h) = v((m-n)h, (m+n)h) \text{ for all }m, n\in\Z

If (x,t)R2(x, t)\in\R^2 is a given point, then we can find sequences mk,nkZm_k, n_k\in \Z such that (mknk)2kx(m_k-n_k) 2^{-k}\to x and (mk+nk)2kt(m_k+n_k)2^{-k}\to t as kk\to\infty. Since uu and vv are continuous functions we then have

u(x,t)=limku(mknk2k,mk+nk2k)=limkv(mknk2k,mk+nk2k)=v(x,t).u(x, t) = \lim_{k\to\infty} u\left(\frac{m_k-n_k}{2^k}, \frac{m_k+n_k}{2^k}\right) =\lim_{k\to\infty} v\left(\frac{m_k-n_k}{2^k}, \frac{m_k+n_k}{2^k}\right) = v(x, t).

Q.E.D.

Problems

Suppose that u(x,t)u(x,t) is a solution of

utt2uxt15uxx=0(†)u_{tt} - 2u_{xt} - 15u_{xx} = 0 \tag{\dag}

For certain values of cRc\in\mathbb R the function u(x,t)=F(xct)u(x,t) = F(x-ct) is a solution of ()(\dag) for any F:RRF:\R\to\R that is C2C^2. Find all cRc\in \mathbb R with this property.

Solution. Substitute u(x,t)=F(xct)u(x, t)=F(x-ct) in the equation:

ut=cF(xct),ux=F(xct), utt=c2F(xct),uxt=utx=cF(xct),uxx=F(xct)\begin{gathered} u_t = -cF'(x-ct),\quad u_x=F'(x-ct),\\\ u_{tt}=c^2F''(x-ct),\quad u_{xt}=u_{tx}=-cF''(x-ct),\quad u_{xx}=F''(x-ct) \end{gathered}

implies

utt2uxt15uxx=(c2+2c15)F(xct).u_{tt} - 2u_{xt} - 15u_{xx} = \bigl(c^2+2c-15\bigr) F''(x-ct).

Since FF is allowed to be any C2C^2 function, we cannot assume that F(xct)=0F''(x-ct)=0 for all x,tx, t. Therefore uu is a solution for every choice of FF if and only if

c2+2c15=0, i.e. iff c=+3 or c=5.c^2+2c-15 = 0, \text{ i.e. iff } c=+3 \text{ or }c=-5.

Consider the PDE

uttuxt2uxx=0(‡)u_{tt} - u_{xt} - 2u_{xx} = 0 \tag{\ddag}

and consider the coordinate transformation

r=xts=x+2t    x=13(2r+s)t=13(r+s)\begin{aligned} r &= x-t \\ s&=x+2t \end{aligned} \iff \begin{aligned} x&=\tfrac13(2r+s)\\[2pt] \quad t&=\tfrac13(-r+s) \end{aligned}

1. Which differential equation does the function v(r,s)=u(2r+s3,r+s3)v(r, s) = u\bigl(\frac{2r+s}{3}, \frac{-r+s}{3}\bigr) satisfy? (The computation is easier if you begin with u(x,t)=v(xt,x+2t)u(x, t) = v(x-t, x+2t) and substitute that in the equation for uu).
2. Find the general solution for ()(\ddag).

Solution.

1. Substitute u(x,t)=v(xt,x+2t)=v(r,s)u(x, t)=v(x-t,x+2t)=v(r,s) in the equation:

ut=vr+2vsux=vr+vs    utt=vrr4vrs+4vssuxt=vrr+vrs+2vssuxx=vrr+2vrs+vssuttuxt2uxx=9vrs\begin{alignedat}{4} u_t&=&-v_r&+&2v_s\\ u_x&=& v_r&+& v_s \end{alignedat}\implies \begin{alignedat}{8} u_{tt}&=& v_{rr}&-&4v_{rs}&+&4v_{ss}\\ u_{xt}&=&-v_{rr}&+& v_{rs}&+&2v_{ss}\\ u_{xx}&=& v_{rr}&+&2v_{rs}&+& v_{ss}\\\hline u_{tt} - u_{xt} - 2u_{xx}&=&&&9v_{rs}&& \end{alignedat}

2. Hence uu is a solution of the equation if and only if vrs=0v_{rs}=0,i.e. if v(r,s)=F(r)+G(s)v(r, s) = F(r)+G(s) for certain functions F,G:RRF, G:\R\to\R. The general solution to the equation is therefore

u(x,t)=F(xt)+G(x+2t).u(x, t)= F(x-t) + G(x+2t).

Differentiability of d’Alembert’s solution.

Suppose f:RRf:\R\to\R is C2C^2 and g:RRg:\R\to\R is C1C^1, and consider

u(x,t)=f(x+t)+f(xt)2+12xtx+tg(ξ)dξ.u(x, t) = \frac{f(x+t)+f(x-t)}{2} + \frac12 \int_{x-t}^{x+t} g(\xi)\, d\xi.

1. Find C2C^2 functions F.G:RRF. G:\R\to\R such that u(x,t)=F(x+t)+G(xt)u(x, t)=F(x+t)+G(x-t).
2. Show that uu is a C2C^2 function. (This function appears in our formulation of d’Alembert’s solution; we never checked that uu is twice differentiable, and this problem asks you to do that.)

Solution.

1. By the fundamental theorem of calculus we can write

xtx+tg(ξ)dξ=0x+tg(ξ)dξ0xtg(ξ)dξ.\int_{x-t}^{x+t} g(\xi)\, d\xi =\int_0^{x+t} g(\xi)\, d\xi-\int_{0}^{x-t} g(\xi)\, d\xi.

Therefore the function uu can be written as

u(x,t)=12f(x+t)+120x+tg(ξ)dξ+12f(xt)120xtg(ξ)dξ.u(x, t) = \frac12 f(x+t) + \frac 12\int_0^{x+t} g(\xi)\, d\xi + \frac12 f(x-t) - \frac 12\int_0^{x-t} g(\xi)\, d\xi.

If we now define

F(x)=12f(x)+120xg(ξ)dξ and G(x)=12f(x)120xg(ξ)dξ F(x)= \frac12 f(x) + \frac 12\int_0^{x} g(\xi)\, d\xi\quad\text{ and }\quad G(x)= \frac12 f(x) - \frac 12\int_0^{x} g(\xi)\, d\xi

then we have u(x,t)=F(x+t)+G(xt)u(x, t) = F(x+t)+G(x-t).

2. Since gg is C1C^1 the integral 0xg(ξ)dξ\int_0^x g(\xi)d\xi is C2C^2. We are also given that ff is C2C^2 so it follows that the two functions FF and GG are C2C^2. Therefore uu is also C2C^2.

The initial value problem for weak solutions.

Suppose f:RRf:\R\to\R is C1C^1 and g:RRg:\R\to\R is continuous, and again consider

u(x,t)=f(x+t)+f(xt)2+12xtx+tg(ξ)dξ.u(x, t) = \frac{f(x+t)+f(x-t)}{2} + \frac12 \int_{x-t}^{x+t} g(\xi)\, d\xi.

1. Find C1C^1 functions F.G:RRF. G:\R\to\R such that u(x,t)=F(x+t)+G(xt)u(x, t)=F(x+t)+G(x-t).
2. Show that u(x,0)=f(x)u(x, 0)=f(x) and ut(x,0)=g(x)u_t(x, 0)=g(x).
3. Show that for every C1C^1 function f:RRf:\R\to\R and every continuous g:RRg:\R\to\R there is a weak solution to the wave equation with u(x,0)=f(x)u(x, 0)=f(x) and ut(x,0)=g(x)u_t(x, 0)=g(x) for all xRx\in\R.

Solution.
1. Define FF and GG to be the same functions as in the previous problem.
2. Substitute t=0t=0 is the definition of uu:

u(x,0)=f(x+0)+f(x0)2+12x0x+0g(ξ)dξ=f(x).u(x,0) = \frac{f(x+0)+f(x-0)}{2} + \frac12 \int_{x-0}^{x+0} g(\xi)\, d\xi = f(x).

To check the time derivative we differentiate u(x,t)u(x, t) with respect to tt and then set t=0t=0:

ut=f(x+t)f(xt)2+t{12xtx+tg(ξ)dξ}=f(x+t)f(xt)2+g(x+t)+g(xt)2    ut(x,0)=f(x+0)f(x0)2+g(x+0)+g(x0)2=g(x).\begin{aligned} u_t &= \frac{f'(x+t)-f'(x-t)}{2} + \frac{\partial}{\partial t}\left\{ \frac12 \int_{x-t}^{x+t} g(\xi)\, d\xi\right\} \\ &=\frac{f'(x+t)-f'(x-t)}{2} +\frac{g(x+t)+g(x-t)}{2} \\ \implies u_t(x, 0) &=\frac{f'(x+0)-f'(x-0)}{2} +\frac{g(x+0)+g(x-0)}{2} =g(x). \end{aligned}

3. If ff is C1C^1 and gg is C0C^0, then FF and GG are C1C^1 functions. In particular, they are continuous, so that u(x,t)=F(x+t)+G(xt)u(x,t)=F(x+t)+G(x-t) is a weak solution of the Wave Equation. The calculation in part 2 of this problem shows that u(x,0=f(x)u(x,0=f(x) and ut(x,0)=g(x)u_t(x, 0)=g(x) for all xRx\in\R.