CHAPTER 1

First Order Equations

1. The constant velocity transport equation — characteristics

We consider the equation

ou  Ou
(CVT) 5 + o = 0.
If u(z, t) is a continuously differentiable solution, then by the several variable chain rule
du(wg +ct,t)  Oud(xg+ct) Ou
dt o @ o
for any xg,t € R. This means that any solution is constant along the lines z:(¢) = ¢ +
ct (t € R). These lines are called the characteristics of the equation.

=cuy +u =0

2. The initial value problem

Suppose we are given the values u(z,0) = F(x) of the solution at time ¢ = 0 for all
x € R. Then for any (z,t) € R? one has

u(z,t) = u(x — ct,0) = F(a — ct).

In other words, if there is a solution with the prescribed initial values then it must be
u(z,t) = F(x — ct).

On the other hand, if F : R — R is C'! then you can verify by substituting that u(z,t) =
F(x — ct) satisfies the transport equation (CVT), i.e. us + cu, = 0.

3. Solutions without derivatives

Much of the modern theory of partial differential equations deals with “generalized so-
lution” of one kind or another. Here is an example that begins to show why one would
want to do that.

Consider the solutions with initial values u,, (z,0) = arctan(nz). The solutions are
un(x,t) = arctan(n(x — ct)).
What happens if we let n — co? We get

Uoo(x,0) = nlﬁn;o Un(2z,0) = nhﬁngo arctan nx =

+7/2 (x> 0),
—m/2 (x<0),

and

Uso (T, 1) = nh_)n;<> un(x,t) = nll_}rr;o arctann(x — ct) =

—m/2 (x < ct),

{—HT/Q (x > ct),



The function us(, t) is the limit of solutions, but it is not continuous and therefore not
differentiable because it has a jump discontinuity at x = ct. It can’t be a solution of the
PDE u; + cu, = 0 because the derivatives in the equation aren’t defined at all (x, t).

Nevertheless, u is a function of the form F'(x — ct) and it arises as the limit of actual
solutions, so we would like to call it a solution. The discontinuous solution u, is itself
not a solution of the PDE, but it does give a good description of all smooth solutions that
are close to Uqo.

This leads to the question: how do we change the definition of solution to allow for dis-
continuous solutions?

4. Method of characteristics

There is a general method, called the method of characteristics for finding the solutions
to a first order equation of the form
— t+a(x,t)=— = f(z,t,u)

1
M ot Oz
in which a : R? — R and f : R® — R are continuously differentiable functions.

ou ou

4.1. Definition. A characteristic for the equation (1) is a function z.. : [tg, t1] — R
that is defined on some interval (¢, 1] C R and that satisfies the characteristic equation

@) daz t(t)

Often the graph of z., i.e. the curve {(t,2.(t)) € R? | tyg < t < t;} is also called a
characteristic of the equation (1).

= a(z.(t),1) forall t € [to, t1]

4.2. Theorem. If z. : [to,t1] — R is a characteristic of equation (1) then the func-
tion u.(t) = u(x(t),t) satisfies
(3) ue(t) = f(2e(t), b, uc(t)).
In the special case where f(z,¢,u) = 0 for all (z, ¢, u) it follows that u.(t) = wu.(to) for

allt € [to,t1], i.e. if the right hand side f in the equation (1) is just 0, then any C'! solution
u is constant along a characteristic.

Note that u.(t) is a function of one variable and (3) is an ordinary differential equation.

Proor. To derive (3) let z, : R — R be a characteristic of the PDE (1), so that
z. : R — R satisfies (2). Then the several variable chain rule implies

Since u satisfies (1), we can write this as
du(zo(t),t
L) _ gy 1) — alrelt),1) s+ Flaelt) 1 ulae(), 1)

The characteristic equation (2) implies 2/,(t) = a(z.(t),t) so the first two terms on the
left cancel. This proves (3).

We next show that if f(x,t,u) = 0 for all z, ¢, u, then solutions are constant along char-
acteristics. If f = 0 and if z. : [to,t1] — R is a characteristic, then (3) implies that
u.(t) = u(z.(t),1) is a function of one variable that is differentiable for all ¢ € [to, t1],



and that satisfies u/,(t) = 0 for all ¢ € [to, t1]. This implies that u.(t) does not depend on
t,ie uc(t) = uc(to) for all ¢ € [to, t1]. Q.ED.

4.3. The recipe for solving initial value problems for 1st order PDE. We can
use the above Theorem to solve an initial value problem for the partial differential equa-
tion (1), i.e.

ou

(1) a""_a(l‘at)% :f(x,t,u)

Special case where the right hand side f(z,¢,u) = 0. In this case (1) is the equation
ut + a(x,t)u, = 0, and we can proceed as follows. If we are given the initial values
uo(x) = u(z,0) of a solution for all x € R, and we want to find value of the solution u
at some point (z1, t1) in space and time, then

e find the characteristic through (1, 1), i.e. find the solution z. : R — R of
2 (t) = a(ze(t),t), @ (t1) =m
o Check that the characteristic is defined for all ¢ € [0, #1]

o It follows from equation (3) that % = 0 for all t € [0,¢;]. Therefore
u(z(t),t) does not depend on ¢ and we have

u(zy,t1) = u(ze(tr), t1) = u(2(0),0) = ug(zc(0)).
General case with arbitrary right hand side f(z,t, u).
e find the characteristic through (21, ¢,), i.e. find the solution z. : R — R of
zo(t) = alxe(t),t),  ze(tr) = m1
o Check that the characteristic is defined for all ¢ € [0, ¢1] * It follows from equa-
tion (3) that dulze(t),t) = f(x(t),t,u(z:(t),t)) for all t € [0,¢1]. To find
u(xze(t),t) define uc(t) = u(z.(t),t) and solve the differential equation
ue(t) = f(ze(t),t,uc(t),  1e(0) = uo(xc(0)).
o If the solution u.(t) is defined for all ¢ € [0, ¢1] then we have
u(xy,t1) = u(xc(tl),tl) = uc(ty).

5. Equations for the derivatives of a solution

If u is a solution of

uy + sin(x)u, = u?
then the derivative v = u, also satisfies a partial differential equation. We get this equa-
tion by differentiating the equation for v with respect to x on both sides:

O(uy +sin(z)uy)  Ou? Ouy ou . Ouy ou
e = or ey, i) = 2ups
Rewrite the second order derivatives that appeared as derivatives of v using
Ou, Ov ou;  O0%u 0%u  Ouy
= —_— an —_— = = = = Ut'
Ox Ox Ox  Ox0t Otox ot
We get
ou . v ou
(o —+ COS(I)% —+ SIH(I)% = 2U%



Finally, replace every % by v:

ve + sin(z)v, = 2uv — cos(z)v

6. A nonlinear equation

Consider the so-called inviscid Burger’s equation
ou Ou
4 — — =0.
@ ot "ox
If u(x,t) is a C'* solution then any level set of u on which u, # 0 is a straight line.

Suppose a level set is a graph « = x(t), i.e. suppose that for some function = z(t) one
has u(xz(t),t) = ¢ for all t. Then

0= de du(z(t),t)

7. Problems

7.1. Suppose u : [0,00) x [0,00) — R is a C'* solution of

us + xu, = 0.

1. Find the characteristics of the equation.

2. If you are given the initial condition u(z,0) = wug(z) for all z € [0, 00), can you
compute u(x, t) for all z,t > 0?

3. Show that the function v(z,t) = u,(x,t) satisfies the partial differential equation
Ve + XV, = —.

4. Show that along a characteristic x(t) of the equation for v one has u, (z(t),t) = A
and find A, B.

eBt

Solution.
1. The characteristic equation is i—f = z, so the characteristics are z.(t) = mc(O)et.
2. To compute u(x,t) consider the characteristic for which z.(t) = x. For this characteristic

we have z = z.(t) = x.(0)e’ and therefore z.(0) = ze~ ‘. Along the characteristic we have
Lo(ze(t),t) = 0,50 u(xc(t), t) = u(zc(0),0). Substitute z.(t) = = and z.(0) = ze~* and we
get u(x,t) = u(ze *,0) = uo(ze™").

3. Differentiate the equation u; + xu, = 0 with respect to z:

e o) =0 = w + %uz + ZUze =0 (use Uty = Ugt)
Oox oz

= (Uz)t +v+ 20, =0 (use Uy = U, Upe = Vz)
— VUt + TV = —0.

4. The characteristics for the v equation are determined by % = x, so they are the same as the
characteristics for the equation for u. They are given by z(t) = z.(0)e’. Along a characteristic we



have % = —v(z(t),t). Solving this ordinary differential equation we get v(z.(t),t) =

U(xC(O)v O)eits ie.
g (2e(t), 1) = Uz (2:(0),0)e™".
7.2. Suppose u : [0,00) x [0,00) — Risa C! solution of
U = x2u$.

1. Find the characteristics of the equation for u.
2. If you are given the initial condition u(z,0) = wug(z) for all z € [0,00), can you
compute u(x,t) for all z,¢t > 0?

Solution. The Partial Differential Equation for w is us — 2?uy = 0, so the differential equation

for the characteristics is % =—z% ... note the minus sign! Solving this equation we get:
1
d=
1d 1 1
S = T S o4 C = z(t) =
x

x?dt dt St O
To find the value of u(x, t) for given z, t we need to know the characteristic for which z.(t) = x.
The constant C' and the initial value z.(0) for this characteristic follow from
1 1 1 1 x
=—— = (C=—-—-t = 0) = = - )
"Tivo x ze(0) 0+C 1/z—t 1—uxt

Along the characteristic we have

du(z.(t'), ')
(1) a

and we would like to conclude that u(z.(t),t) = u(z.(0),0). But we can only conclude this if we
know that (1) holds for all t' € [0, ¢]. The equation (1) holds at all ¢’ at which the characteristic
xc(t') is defined. The characteristic x. is given by

1

o) =

v(t) =76

so it is defined for all ¢ € [0,t] if ' + C # 0 for all ¢ € [0,¢t]. This holds if either C > 0 or
C < —t. Using C' = % — t we now check for which z, ¢ this is true.

=0

1

It is given that x > 0so C' = — —t > —t is true. We still have to see when C' > 0. This holds if
x

1

— >t e ifxt <1.

x

We can therefore only determine the value of u(z,t) if zt < 1 (assuming z,t > 0).

7.3. About the inviscid Burger’s equation. Let u : R x [0,7) — R be a C?
solution to the inviscid Burger’s equation (4). Let @ € R be given, and define ¢ = u(a, 0).

1. What can you say about the level set {(z,t) | u(z,t) = ¢}? 2. Show that the function
v(z,t) = uy(x,t) satisfies the partial differential equation

vt+uvx+v2 =0.
3. Show that S(t) = u.(a + ct,t) satisfies S’(t) = —S(t)%. 4. Assume that u(z,0) =
2
and compute wu,(t, ) for all ¢ > 0; show that there is a 7' > 0 such that

1+e®

li = —00.
Jim Ug (t,1) 00

Solution.



1. On the level set {(z,t) | u(x,t) = ¢} we have uy = —cu,. If u; # 0 along the level set, then
the Implicit Function Theorem says that near each point (2o, to) with u(zo,to) = ¢, the level set
is the graph of a function = z.(t). The derivative of this function follows from

de  du(z(t),t)  Ou , ou , Uy —CUg

Thus the level set is a straight line with slope z.(t) = c. Since u(a,0) = c we also know that
2:(0) = a,so zc(t) = a + ct.

2. Differentiate the equation u; + uus, = 0 with respect to z to get

2
Uty + Uz Uy + UlUge = 0 == Uzt + UgUp + UlUze = 0 = vy + 07 +uv, = 0.

3. We have J
t, T
S'(t) = % = cvg(a + ct,t) + ve(a + ct, t)
Furthermore u(a + ct, t) = ¢, so

S'(t) = u(a + ct, t)va(a + ct, t) + vi(a+ ct, t) = —v(a + ct, t)* = —S(t)°.

4. The initial function is u(z,0) = , which satisfies u(0,0) = 1. The level set through

2
1+ ez
(0,0) is therefore a line with slope 1, and is thus given by x(¢t) = ¢: the level set through (0,0) is
{(t,t) | t > 0}.

By the previous problem S(t) = u, (t,t) satisfies S(t) = —S(t)*.

At t = 0 we have
S(O)Zux(o,()):(a 2 ) L
=0 2

Oz 1+ e®
Solving 5'(t) = —S(t)*, S(0) = — 3 we find S(t) = % Hence lim; »5 S(t) = —oc.



CHAPTER 2

The 1D Wave Equation

1. Derivation, vibrating string, vibrating membranes

The wave equation with several space variables is

0%u def 0% 0%u
—Au=0, Au=Z — 4o 22
oz~ o R A
or more generally
Pu
w —c"Au = 0,

where ¢ > 0 is a positive real number called the wave speed.
The unknown is a function v : R x R™ — R.

The equation appears in physics in the following contexts

e vibrating string (n = 1, slides for the derivation)

e vibrating membrane (n = 2)

e propagation of light waves, or of sound waves (n = 3)
e more...

2. D’Alembert’s solution (n = 1)

2.1. Changing coordinates. Suppose that u(x,t) satisfies
(1) Ut — Ugy = 0 for all (z,1).
We introduce new coordinates (p, ¢) related to our original space-time coordinates (z, t)
by
p=a+t, gq=x—1
If we know the (p, ¢) coordinates of a point then we can recover the (x, t) coordinates of
the point from
L,_P+a p—q
2 2
Consider the quantity u expressed as a function of the (p, ¢) coordinates, i.e. we consider
the new function
o(p,q) = u(P1 2
’ 2 2 )

and ask what equation it satsifies. The computation is easiest if we first write u(x,t) in
terms of v, i.e.

u(z,t) =v(z+t,x—t).

7
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We can substitute this in the wave equation and apply the chain rule several time. We
compute the derivatives one by one. The first derivative is

=p =q
ov(z+t,x—t)
ST e
:Up(x_;'_t’x_t)w +Uq(m+t’x_t)w

ot
=vp(x+t,x—1t)—vg(x+t,x—1)

ot

Differentiate again:
Ny +to—t) —vg(x+t,x—1)}
‘?)—Zialt

= Upp — Upg — Ugp + Vqq at (z+t,x—1t)

Utt

= Upp — 2Upq +Vgq at (z+t,z—1)
Similarly, the second x derivative is
Ugy = Vpp + 20pq +Vgq at (x+t,z—1)
Therefore
Ut — Ugg = Vpp — 2Upg + Vgq — (vma + 20pq + qu) = —4upq

We see that if u is a C? function, then u satisfies the wave equation if and only if v satisfies
the equation

0%v
9pdq
The point of choosing the coordinates p, ¢ is that the new equation (2) is easier to solve
than the original wave equation (1).

(2) =0 forall (p, q).

2.2. Theorem — C? solutions to the Wave Equation are sums of traveling
waves.

(@) Ifu : R? — R is a C? solution of the wave equation us = u,, then there exist C'
functions F, G : R — R such that u(z,t) = F(x +t) + G(z — t) for all (x,t) € R?.

(b) If F,G : R — R are C? functions then u(z,t) = F(x +t) + G(z — t) satisfies the
wave equation.

Proor. We begin with the proof of (a).
If u satisfies the wave equation then we have shown that v(p, ¢q) defined above satisfies
v _ dup _
dqdp  dq

Hence v, does not depend on ¢, i.e. v,(p, ¢) is a function of p only, i.e. there is a function
f : R — R such that

ov
('97) = f(p)



We can now integrate this. Let /' : R — R be an antiderivative of f. Then there is a
function G : R — R such that

vmm:/ﬂm@+m@:ﬂm+m@

Substitute p = z + ¢, ¢ = x — ¢ and we get
u(z,t) = Flx —t) + G(z + t)

If we are given the function u : R? — R then we can find the functions F and G up to a
constant from the formulas

u(s/2,5/2) = F(s) + G(0), u(s/2,—s/2) = F(0) + G(s).

We find these formulas by setting © = t = s/2 (for F) or x = s/2,t = —s/2 (for G) in
u(z,t) = Flx +t) + G(z — t).

If u is a C? function then it follows from F(s) = u(s/2,s/2) — G(0) that
F/(S) = %uf(%’ %) + %ut(; %)7 F//(S) = iumm(%v %) + %umt(%v %) + iutt(%v %)

Therefore F also has two derivatives, and they are continuous.

Now we turn to the proof of (b). If F, G are given functions, and if u(z,t) = F(x —t) +
G(x +t), then

u(x, t) = F'(x +t) — G'(x — 1), uy(z,t) = F'(x +t) + G'(x — 1)
and hence
ug(x, t) = F'(x +t) + G"(z — t), Ugz(z,t) = F'(x + 1) + G"(xz — t)
This implies that uy; = w4y, so u satisfies the wave equation. Q.E.D.

2.3. Theorem — solution in terms of the initial values and velocities. If u is a
C? solution of the wave equation, then

u(x —t,0) +u(z +¢,0) N 1/x+t

u(z,t) = 5 5 ut (€, 0)dg

Conversely, if U,V : R — R are two functions of which U is C? and V is C1, then

Ux—t)+U(z+t) 1 [*t
: s / RGL

—t

u(z,t) =

is a solution of the wave equation which satisfies
u(z,0) = U(z), ut(x,0) = V(x) forall z € R.

Proof. If u is a solution then it is of the form u(x,t) = F(z + t) + G(x — t) for certain
functions F' and G. To find these functions we note that

u(z,t) = F'(x +t) — G'(z — t).
Sett = 0:
u(z,0) = F(z) + G(z), wu(z,0)=F'(z) - G'(x)
Differentiate the first equation with respect to z,

Uz (2,0) = F'(2) + G'(2), wu(z,0) = F'(z) — G'(x)



which we solve for F’ and G:
ug(z,0) + u(z,0)
F/ — I bl
@) culn0)
The fundamental theorem of calculus implies

Fla) = FO) + 5 [ {ual60) +ue.0)}de

Uz (2,0) — ut(z,0)
2

G'(z) =

1 1 1 [*
:ﬂm+§m%mf§wam+5ﬂzmam&

Similarly,

Gz) = G(0) + %u(w, 0) — %U(O,O) _ ;/0 g (£,0) de

It follows that the solution u(x, t) is given by
u(z,t) =F(x +t)+ Gz —1t)
_ uw(x +1t,0) +u(r —t,0) +1/
2 2y
+ F(0) + G(0) = u(0,0).

We can combine the two integrals:

T+ r—t 0
/0 EOdﬁ/ ut(€,0) d€ = / £0d€+/w,ut(50d£ ,0) d€.
The terms F'(0) + — u(0, 0) cancel because

u(z, t) = F(m t)+ G(x —t) = u(0,0) = F(0) + G(0).
Therefore we end up with
u(z —t,0) +u(x+¢0) 1

x+t
u(z, t) = 2 : +5/%zmam%

as claimed.

3. Weak and classical solutions

For many partial differential equations the naive notion of a “solution” is not satisfactory,
as there may be functions that do not have enough derivatives to allow verification of the
equation, but which one really would like to call solutions, for other reasons. This has
led to the introduction of many theories of “generalized solution.” Here we will see one
version of such a theory.

3.1. Definition. A classical solution of the wave equation is a C? function u : R? —
R that satisfies the equation, i.e. for which u;; = w, holds at all (z,t) € R?.
A weak solution of the wave equation is a continuous function that satisfies
(*) u(x + h,t) +u(x — h,t) = u(z,t + h) +u(z,t — h)
forall x,t € Rand h > 0.

The new notion of solution has the following features:

e checking if some function u satisfies (x) does not require one to differentiate u



o Classical solutions, which were our original idea of what a “solution” ought to
be, should still be solutions
e Weak solutions should have some of the same properties as classical solutions

3.2. Theorem. If F,G : R — R are continuous functions, then u(z,t) = F(x +
t) + G(z — t) is a weak solution to the Wave Equation.

Proor. For any z,t € R and h > 0 we have
u+ht)+ulz—ht)=Fle+h+t)+Gla+h—t)+ Flx—h+t)+Glx—h—1t)
w(z,t+h)+u(z,t—h)=Flz+t+h)+Glxz—-t—h)+ Flx+t—h)+Gx—t+h).
Therefore (x) holds. Q.ED.

3.3. Theorem. Any classical solution of the wave equation is also a weak solution.

ProoF. Since u is a C solution of the wave equation there exist functions F, G’ such
that u(x,t) = F(z+1t) + G(z — t) for all x, t. The previous theorem then implies that u
is a weak solution QE.D.

3.4. Theorem. If u is a weak solution, and if « is C?, then w is also a classical solu-
tion of the wave equation.

ProOF. Suppose u is a C? function satisfying (x). Then we differentiate (x) on both
sides twice with respect to h and set h =0

u(zx + h,t) +ulx — h,t) = u(z,t + h) + u(x,t — h)
= Ug(z + hyt) — ug(x — h,t) = ug(z,t+h) —we(x,t —h)
= Uy (T + Ry t) + uge(z — h,t) = ug(z,t + h) + uy(z,t —h)
= 2uy (x,t) = 2up(x, t)

Therefore u satisfies the wave equation. QE.D.

3.5. Theorem. If u : R?> — R is a weak solution of the Wave Equation, then there
exist continuous function F, G : R — R such that

u(z,t) =F(x +1t)+ Gz —1t)

for all x, t.

Proor. Define
F(x):u(g,g), G(m)zu(g,—g) —u(0,0).

and consider the function
v(a,t)  F(z+t)+ Gz —t).
We will show that u(x,t) = v(z,t) for all z, t. To do this we begin by verifying

o u(t,t) =wv(tt) foralt e R
e v is a continuous function
e v also satisfies the condition (%)



Let h > 0 be given. Then by repeatedly using the condition (x) we conclude that

u((m —n)h, (m+n)h) =v((m —n)h,(m +n)h) forallm,n € Z
If (x,t) € R? is a given point, then we can find sequences my, ny € Z such that (m;, —
nk)27% = xand (my +ng)27% — tas k — oo. Since u and v are continuous functions
we then have

u(z,t) = lim u M Tk M E T g p (kT s T = v(z,t)
’ k—o0 2k 7 ok 2k 7 2k e

QED.

4. Problems

4.1. Suppose that u(z,t) is a solution of
(T) Ut — 2uzt — 15ug;1; = 0

For certain values of ¢ € R the function u(z,t) = F(x — ct) is a solution of (}) for any
F :R — R that is C2. Find all ¢ € R with this property.

Solution. Substitute u(z,t) = F(x — ct) in the equation:
up = —cF'(x —ct), u, = F'(z — ct),
Upp = cQF”(ac —ct), Ut = Ute = —cF"(x —ct), Ups = F”(ac —ct)
implies
Ut — 2Upt — 1DUgy = (02 4+ 2¢c — 15)F”(w —ct).

Since F is allowed to be any C? function, we cannot assume that F”(z — ct) = 0 for all x, .
Therefore u is a solution for every choice of F' if and only if

A +20—15=0, ie. iffc =43 orc= —5.

4.2. Consider the PDE
(i) Utt — Ugt — 2ua::r =0

and consider the coordinate transformation
(2r + s)

(=1 +3)

r=x—1t T = %
—
1
-3
1. Which differential equation does the function v(r, s) = u(%, %‘”) satisfy? (The
computation is easier if you begin with u(x,t) = v(x — ¢, + 2t) and substitute that
in the equation for w).
2. Find the general solution for ().

Solution.

1. Substitute u(x, t) = v(x — t,z + 2t) = v(r, s) in the equation:

Ut = Vpr—40rs+40ss

Ut :—UT+2US Uzt :_vrr+ vrs+2vss
—

Uy = VUrt+ Vs Uz = Vrr+2Vrs+ Vss

Utt — Uzt — 2uza7 - 91}7«5



2. Hence u is a solution of the equation if and only if v,s = O,i.e. if v(r,s) = F(r) + G(s) for
certain functions F, G : R — R. The general solution to the equation is therefore

u(z,t) = F(z —t) + G(x + 2t).

4.3. Problem: Differentiability of d’Alembert’s solution. Suppose f : R — R
isC%?and g : R — R is C', and consider

fe+t)+flz—t) 1 /”t
_|_7

t =
(e, 1 . .

1. Find C? functions F.G : R — R such that u(z,t) = F(z +t) + G(z — t).

2. Show that u is a C? function. (This function appears in our formulation of d’Alembert’s
solution in Theorem 2.3; we never checked that u is twice differentiable, and this prob-
lem asks you to do that.)

Solution. 1. By the fundamental theorem of calculus we can write

/:tg(@ dé = /Omg(@ i~ [ o e

Therefore the function u can be written as

wet) = i+ +3 [ @ de+ e —n-1 [ g

If we now define
F@) = 5@+ [ o©de and )= 31— [ ae)ae
then we have u(z,t) = F(z +t) + G(z — t).

2. Since g is C"! the integral foz g(€)d€ is C2. We are also given that f is C? so it follows that the
two functions F and G are C?. Therefore u is also C?.

4.4. Problem: the initial value problem for weak solutions. Suppose f: R —
Ris C! and g : R — R is continuous, and again consider

flx+t)+ flx—t) 1 [=F
2 +§/w

u(z,t) = 9(&) d€.

—t

1. Find C! functions F.G : R — R such that u(z,t) = F(z +t) + G(x — ).

2. Show that u(z,0) = f(x) and u:(z,0) = g(z).

3. Show that for every C* function f : R — R and every continuous g : R — R there
is a weak solution to the wave equation with u(z,0) = f(x) and u(z,0) = g(z) for
allz € R.

Solution. 1. Define F' and G to be the same functions as in the previous problem.

2. Substitute ¢ = 0 is the definition of u:

T x — o0
a0y = LA OEIE=0

9(§) d§ = f(z).

—0



To check the time derivative we differentiate u(x, t) with respect to ¢ and then set t = 0:

u = SNl +g{§/j+t9(£)d£}

_fett) = fle—t) glett)+gle—i)
2 2

A (S ES { Ll WL R TCEL By

3. 1If fis C' and g is C°, then F and G are C* functions. In particular, they are continuous, so
that u(z,t) = F(x +t) + G(x — t) is a weak solution of the Wave Equation. The calculation in
part 2 of this problem shows that u(z,0 = f(x) and u(x,0) = g(z) for all z € R.



CHAPTER 3

Fourier Series and the Wave Equation

1. The complex exponential
Many of the computations involving Fourier series are simpler when we use the complex

exponential instead of sine and cosine, so in this section we will consider complex valued
solutions to the wave equation.

1.1. Euler’s Formulas. By definition

e =cosf +isinf foralld e R.
This implies
e =cosf —isinf foralld € R
and hence
i0 —i0 i0 —i0
e’ +e e’ —e
S 9 = —— 51 9 =
cos 5 , sin %

1.2. Derivative of the complex exponential. Euler’s definition of €? implies

i0
de’ it
do
In the language of Linear Algebra, ¢? is an eigenvector of the linear transformation f

(% with eigenvalue 3.

1.3. Trigonometric polynomials. A function of the form

N
flz) =40+ Z (An cos nx + B, sin mc)
n=1
where A,,, B, € C are constants is called a trigonometric polynomial. Using Euler’s
formulas we can rewrite a trigonometric polynomial in terms of complex exponentials:

N
flx)=Ag+ Z (A, cosnz + By, sinna)

n=1
al An - ZBn inT An + ZBn —inx
= Ao ) Ty e

I
st
z >

®
N
S
&

15



provided we define
(A, —iBp)/2 n<0
fo=13 (A +iB,)/2 n>0
Ay n=>0

2. Finite string, Fourier solution

2.1. The wave equation is linear. If u,v : R? — R are solutions to the wave
equation, then w(z,t) = au(x,t) + bv(z,t) is also a solution for any choice of a,b € R.
This is true both for classical solutions and for weak solutions; i.e. if u,v are classical
solutions, then w = au + bv is a classical solution, and if u, v are weak solutions, then
w = au + bv is a weak solution.

2.2. Solutions that are periodic in space. Instead of considering arbitrary solu-
tions to the wave equation, we look for solutions for which

u(x + 2m,t) = u(x,t)

holds for all x,t. By direct substitution in the equation we can verify that each of the
functions

einteinx7 e—int einz
are classical solutions of the wave equation, and that they are 27-periodic in the x vari-
able. It follows that for any choice of G, Bn € C the linear combination

N

(5) u(z,t) = Z Gpe™ e 4 b, e M e

n=—N
is again a solution of the wave equation. If we have infinitely many coefficients a,, bn
then we could try to show that the series converges and that its limit is a weak or classical
solution of the wave equation.

Sometimes it is convenient to rewrite (5) by applying Euler’s formula e*"* = cosnt +
7 sin nt, with result
N
(6) u(z,t) = Z Ty, cos(nt)e™ + 0, sin(nt)e™®
n=—N

where @,, = @, + b, and ©,, = i(Gn — bp).
2.3. The initial value problem. Suppose we want to find a solution to
Upy = Ugy, for all x,t
u(x + 2m,t) = u(z,t), forall x, ¢
w(z,0) = f(z), wu(z,0)=g(x)forallz
by looking for a function u(z,t) that is given by (6). The function already satisfies the

PDE, and it is 2m-periodic in the x variable, so we only have to choose the coefficients
Uy, U, SO that u satisfies the initial conditions. It follows from (6) that

f(z) = u(x,0) = Zaneinw’ g(2) = w(z,0) = Z —nb, e



If f and g are trigonometric polynomials given by

N N
fl@)y= > fae™,  glx)= e,
n=—N n=—N
then we should choose 1.,, 0, so that
ﬂn = fnv @n = gi
n
Thus the solution is
N .
(7) u(z, t) = Z {fn cos(nt) + In sin(nt)} e,
n=—N n

2.4. How to find the coefficients f,,, j, if we know f and g. If f () = ZJEN freine

then Fourier multiplied the equation with e~*

27 ) 27 N . N . 27 ) R
flx)e ™ de = / S fad A= Y f, / 'R dy = or fy,
n=—N 0

0 0 n=—N

2 i(n—k)z ™
/ R gy = {e } =0
0 iln—Fk)],_o

while when k = n we get

27 ) 27
/ e =Rz gy — / 1dzx = 2m.
0 0

Thus, if we know the function f then its coefficients are given by

and integrated from 0 to 27:

because when k # n

1 2m

(8) fr = o ), (z)e”*dy

2.5. Including infinitely many terms. If we completely ignore questions about

convergence, then we could let N — oo and claim that if the initial functions f and g are
given by

9) Fla)=3 fae™,  gla) =) gue™,

then the 27-periodic solution to the wave equation with initial values u(x,0) = f(z) and
ut(x,0) = g(z) is given by

(10) u(z,t) = :i{fn cos(nt) + % sin(nt) }e™”

So if you can write the initial function and time derivative as a Fourier series (9) then we
have a solution given in (10). This leaves us with a few questions

e for which 27-periodic functions f and g can we find a Fourier expansion (9)?
e in what sense do the series (9) and (10) converge?



Fourier’s remarkable answer to the first question was: every 2m-periodic function f has
a Fourier expansion and the coefficients can be found by computing the integrals in (8).
For example, the “sawtooth function” is given by

f(:z:)zﬂ-;xfor0<a:<2ﬂ'

Fourier computed the coefficients in its expansion and claimed

f(x)zzsmmc—smx—i— sin 2z + + 3sindz + -
n

n=1

Wikipedia' offers a one paragraph history of Fourier’s claims.

3. Digression: convergence of Fourier series

There is not enough space in this aside on Fourier series to do the topic justice. If you want
to read more, the book FOURIER ANALYSIS by Stein and Shakarchi (Princeton lectures in
analysis) offers a good introduction. Alternatively, TW.K6rner’s book FOURIER ANALYSIS
(yes, same title) from Cambridge University press is very readable.

3.1. Questions: was Fourier right? Let f be a 27-periodic function. Does the
Fourier series for f converge, and does it converge to f? To be more precise, define the
partial sums of the series

27
Sxf(x an , fn:% /U e " f(z) dx

Under what conditions can we guarantee that limy_, o, Sx f(2) = f(x)? Is the converge
uniform? What other notions of convergence might apply here?

3.2. The Dirichlet kernel. For any 27-periodic function f the partial sums of the
Fourier series of f are given by

o Sin
Sxf@ = [ Dx(o—€(€) de, where Dy(a)— SN +3)7

0 2 sin 5

The function Dy is called the Dirichlet kernel. It satisfies
2m

Dn(z—¢&)dé =1forallz € R.
0

Proor.

27
w0 s 3 [

n=-—

1 2m

=35 ), Z emE=E F(g) de = Dy (z —&)f(§) d§

lhttps://en.wikipedia.org/wiki/JosephFourier#TheAnalyticTheoryof
Heat


https://en.wikipedia.org/wiki/Joseph_Fourier#The_Analytic_Theory_of_Heat
https://en.wikipedia.org/wiki/Joseph_Fourier#The_Analytic_Theory_of_Heat

where
N

1 inx
Dy(x) = o Ze
—N

We can compute by using the formula for geometric sums:

N
Zeinm — e—iNx +e—i(N—1)ac 4. _|_ei(N—1)m + eiN.'r

e*iNac{l _|_eiz _|_62ia: NI e2iNm}
N 6(2N+1)i:v -1
eir —1

ei(N+%)z o efi(N+%)a:

ciw/2 _ o—iz/2

sin(N + 3)z
sin
QE.D.

3.3. Riemann-Lebesgue Lemma. If f : [a,b] — R is Riemann integrable, then

b b
lim sin(Az) f(z) dz = lim cos(A\x) f(z) de = 0.

A—oo [, A—oo J,

Proor. We show that [ sin(Az)f(z)dx — 0, the proof that | cos(A\z) f(z)dz — 0
being nearly identical.

Let € > 0 be given. Then, by definition of Riemann integrability of the function f, there
exists a partitiona = 2o < 1 < 2 < -+ < Tyy—1 < Ty, = b, and numbers m; < M;
such that * my, < f(x) < My forallx € [xy_1,zx),andallk =1,...,m™* > 7" (M}, —
mg)(Tr — 2p—1) < 6/(2(b — a))
Define the step function

s(z) = my forall x € (xp_1,2;] and forallk =1,2,...,m
Then s(z) < f(z) and 0 < ff(f(x) —s(z)) dz < €/(2(b—a)).

To show that fab sin(Ax) f(z) de — 0 we rewrite the integral as follows

b b b
/ sin(Az) f(x) dx = / sin(Az)s(x) dx —|—/ sin(Az)(f(z) — s(z)) dv = A+ B.

We can compute the first term A explicitly:

b
(12) A= / sin(Az)s(x) de = Z/ sin(Ax)mydz
a Tk—1

— —cos(A\x) ™" 1 &
Z [ } =5 ; my, [cos Axg_1 — cos Azy]

k=1 Tk—1

which implies

2 m
FIESS !
k=1



Therefore, if we define A, = * _ then |A| < €/2 holds for all A > A..
k

4> m

Next we show that B is also small. No matter what A is, we always have

b
(13) |B|= / sin(Az) (f(z) — s(z)) dx
b
< / sin(A2)| |£(2) — s(x)| dx < (b—a) - Q(bi 5= :
Therefore we get |A + B| < |A| 4 |B| <¢/2+¢/2 =eforall A > A.. QE.D.

3.4. Definition. A function f : R — R is called Lipschitz continuous at € R if
there exists a C' > 0 such that

|£(§) = f(z)] < Clz — ¢ forall { € R.

3.5. Convergence of a Fourier series at a point of Lipschitz continuity. As-
sume that f : R — R is 27-periodic, Riemann integrable, and that f is Lipschitz contin-
uous at a. Then

N

fla) = kae““‘7 ie. ]\}E}noo Z fre™ = f(a)
kez k=—N

Proor. It follows from j;)% Dy (€ — a)d€ = 1 that f(a) = 0% Dy(€ —a)f(a)dE.

Therefore
27

Snfla) = f(a) = A Dy (& = a)(£(6) — f(a)) d.

Substitute £ = a + s, and use the definition of the Dirichlet kernel:

™

Snf(a)— f(a)= | Dn(s)(f(a+s)— f(a)) ds

_ 1/ sin((N + 3)s) W

d
2 5

= / sin((N + 3)s) g(s) ds
e fla+s) - f(a)
def Jla+5)— fla
9(s) = =5
27 sin s/2
This function is bounded because
Cls|
[ R E—
96 = St
Here we have used that sinz > Zx forallz € [0, 7]. using the boundedness of g and the
fact that f is Riemann integrable, it is now a somewhat lengthy exercise in real analysis to
show that g is also Riemann integrable on [, 7r]. We can therefore invoke the Riemann-
Lebesgue lemma and conclude that there is a A such that for all A > A, one has

/7T sin(As)g(s)ds

—T

C
< ) forall s € (—m,7),s # 0.

< €.

and therefore |Sy f(a) — f(a)| < eforall A > A, ie. forall N > A, — 1. Q.ED.



3.6. Theorem. If f is a 27-periodic C? function then its Fourier coefficients fo sat-
isty

|ful <

The Fourier series f(z) = > > frnei™® converges uniformly, and absolutely.

[/ Mlo
> for all n # 0.

ProoF. Integration by parts in the definition of f,, gives us

2m
(14) 27Tfn=/0 e f(x) da

—inx 27 2m 27
- [e : f(x)] ey = — [ @) do

—in 0 —in Jo m Jo
Integrating by parts again we get
=1 [P
271 f, = F/ e " ! (z) du.
0

This implies

1 ’r —inx g/
< —2/0 |e f (x)| dzx

n
| 1" 1lo0
< ﬁ/o 1/ ood = I
The terms in the Fourier series for f are bounded by

||f”||oo

_ 27 )
19 2elful=| oy [ as

= |ful < (n #0).

Therefore, by the Weierstrass M-test (see Section 4.2 in the analysis appendix), the series
DO fne™® converges uniformly, and absolutely.

Since f is C! it is also Holder continuous at all z € R. Therefore Theorem 3.5 implies
that >-> frneim® = f(z)forall z € R. Q.E.D.

4. Fourier series and the L? Inner Product

4.1. Aninner product. Let R, be the set of Riemann integrable 27-periodic func-
tions, and let Cp¢, be the subset of continuous 27-periodic functions. For any two func-
tions f, g € Rper we define

2T

(o) = | F@igte) do.

Then (... ) has the following properties:

)

Symmetry: (f, g) = (g,

Bilinear: (f + g, h) = (f,h) + (g, h) forall f,g,h € Rper

Bilinear: (cf, g) = ¢(f, g > and (f, cg) =¢(f,g) forall f, g € Rper andc € NC.
Nonnegative: (f, f) > 0forall f € Rper



4.2. Theorem. If f € Cp, and (f, f) = 0 then f = 0. On the other hand there
exist functions f € Ryer with f # 0and (f, f) = 0.

Proor. Arguing by contradiction we suppose (f, f) = 0 and f(xg) # 0 for some
g € [0,2m). Since f is continuous, there is an § > 0 such that | f(z)| > %|f(z0)| for all
x € (xg — 0,z + 9). This implies

2m ro+0 2
0=trh) = [ i@ = [ i@k (i)’ (25) >0

z9—0

This is a contradiction, so we conclude that f(xo) = 0 for all z.

To prove the second part of the theorem, consider the function f for which f(z) = 0 at
all z € R except z = nw (n € Z) where f(nm) = 1. Then f is Riemann integrable and
27-periodic, and (f, f) = 0 even though f # 0. QE.D.

4.3. Theorem. Cp, with (f, g) defined as above is a complex vector space with an
inner product.

See [the analysis appendix](AppendixAnalysis.md) for a review of complex inner prod-
ucts.

We define the L? norm of f € Ry, to be || f||2 where

w@=mﬁ=lﬂﬂmwm

4.4. The L? norm and the supremum norm. The L? norm and the supremum
norm || f||s = sup,, | f(z)| are generally different. They always satisfy

[fll2 < V27| flloo for any f € Rper-

This follows from the following short computation

21 21
wm:A wm%sA 1112 dz = 2] £

4.5. Fourier coefficients as inner products. Let e¢;(z) = ¢*%. Then for any k €
Z and any [ # k one has

lexl|? = 27, and (ex,e;) = 0, ie e L .
Iff= ffNefN + -4+ fNeN then we have
(f.er) = fullerl® = 27 fi.

The k' Fourier coefficient of f € R, is given by

fk = %<fvek>

The NI partial sum of the Fourier series of f € R, is given by

N

SnT =5 k;Nq, exder



4.6. Bessel’s inequality. For any f € Ry, we have

1Sn FI3 +11F = Sn I3 = I £115-
In particular ||Sx f||l2 < || f||2 always holds.

Proor. We beginby showing that Sy f L (f—Sn f). Forany integer k with |k| < N
we have

n

1

o
I=—N

<€k7f_SNf> ek7 eka f7el el

n

= (ex, f) — 2177 Z {f,en)(ensen)

(e f) — 5= O A Plewe)  {ene) =0ifk £
I=—N
= (en. £) = o= len, D)lesen) (exsex) = 2

Thus e, L f— Syfforallk = —N,...,N. Since Sy f is a linear combination of
€_nN,...,en it follows that Sy f L f— Sy f.

Bessel’s inequality now follows from Pythagoras: since Sy f L f — Sy f we have

1115 =11 = Snf+Snfl5=IIf = SnfII5 + 11Sn 13-
Q.E.D.

4.7. Partial sums as best approximations. If g = ETN Jrex is a trigonometric
polynomial of degree at most N then

1f = Snfllz < If = 9ll2s
with strict inequality if g # Sy f.

Proor. First note that Sy f — g is a linear combination ofe_, . . ., en, and therefore
that Sy f — g L Sy — f. Then apply Pythagorasto f —g = f — Sy f+ Snvf — g, to get

If = gll3 = Ilf = SnflI3 + 1S f — gll3-

This implies || f = Sn fll2 < [[f —gll2, andif [ f = Sn fll2 = [|f = gl|2 then [[Sy f — gl =
0. Since Sy f — ¢ is a trigonometric polynomial it is a continuous function. Therefore

ISnf — gll2 = 0 implies that Sy — g = 0,ie. SN f = g. Q.E.D.

4.8. Convergence in L? of Fourier series. Let f € R, Then
lim [[Snf = fll2=0
N—o00

and

1 .
11 = 5= Yo 1Ful?.

neL
This statement is known as the Plancherel or Parseval identity.



PrOOF. Let ¢ > 0 be given. Since f is Riemann integrable, a C? function g exists
that is 27-periodic, and that satisfies

2

27
|15 - go)Pas < Siells — gl < 5.

(details in lecture). Since g is 2, we know that the Fourier series of g converges uniformly
to g, i.e.

[Sng — gl — 0.

For any given e; > 0 we can therefore find an N, such that ||Syg — ¢[/c < sva forall
N > N,. This implies

€
Sng —gll2 < V27 [[Sng — glleo < 3

We now have for all N > N,

ISnf— fll2=ISnf — Sng + Sng — gll2
< |ISnf = Sngllz + [Sng — gll2
= [ISn(f = 9ll2 + 1Svg — gll2
<|f=gl2+15vg —gll2

<e+e
—+ - =e
2 2

The Parseval-Plancherel identity now follows by letting N — oo in ||f||3 = ||Sn f||3 +
If — SnflI3- QE.D.

5. Problems

5.1. Consider the solutions u : R? — R to the wave equation described in (5). Find
functions F, G : R — R such that u(x,t) = F(z +t) + G(a —t) for all «, ¢. (Hint: don’t
use the derivation of d’Alembert’s solution but instead use e*?¢’® = ¢!(?+9) and take a

good look at (5)).

Solution. We have

N
U,(I,t) — Z d"eintevﬁnm+Bne—inteinm
n=—N
N N
— Z &nein(z+t)+ Z Bnein(z—t)
n=—N n=—N

=F(z+t)+ Gz —1)

provided we define



5.2. Various questions about the Dirichlet kernel and Fourier coefficients.

(a) Show that f027r Dy(s) ds=1.
(b) The k" Fourier coefficient fk of a 2m-periodic function fR— (C is defined as an
integral from « = 0 to x = 27. Show that f = f_ e~ f ()

Solution. For (a) we compute:

2 2 1 ms Z?’L«S
/o DN(s)ds:/O QWZe ds —Z2ﬂ/ ds.

If n # 0 then f27r e dx = 0, so the only non zero term in this sum is the one with n = 0:
27 1 27

; Dy (s)ds = o lds = 1.

(b) follows from the fact that f(x)e™ " is periodic with period 27 so that f: flx)e ™ dy =

22:;: f(x)e™ ™ dx for any a,b € R and in particular,

0 ) 27 )
flx)e "™ dx = flz)e "™ da.

T
Hence

™

0 ™
f(a:)e_imdx:/_ f(m)e_mzdx—k/o flz)e " da

= /:7( f(x)e ™ dx + /07r f(x)e ™ de = /027r f(z)e " da.

5.3. Let f(x) = [sin .

-

(a) Compute the Fourier series of f (the integrals simplify if you write sin § in terms of
complex exponentials.)

(b) For which z € R does the Fourier series converge to f?

(c) What do you get if you set = 0 in the Fourier expansion of f?

Solution. (a) The Fourier coefficients are given by f; = = fo% |sin §|dz. If 0 < o < 27 then
035 < and thus sin § > 0. It follows that in the integral we have to compute, we have
[sin | = sin §. We now compute

27 27
. ik 1 g . ik
27 fi :/ sin 2 e~y — —,/ (e“/z—e ””/2)6 ke g
o 2 21 Jo

2i Jg

1 efi(kf—)z efi(kJr%)z
—i(k— 5 —i(k+ 1)

1 {67(21@71)1‘# 1 e (@k+Dlyim _

_ 1 27 (efi(kff);p _ e—i(k+%)z)dx

27

1} (use i’ = —1).

T2 N
By Euler’s definition of the complex exponential we have e(2F+1)im — g2kmigdmi _ odmi _ _q
so we get
A 11 2 2 1 -1 1 1
] e Ry F Sy Ty sy
m 2 +3 T (k—35)(k+3) mk?— 3



= |sin | is thus
- Y
< 2w

(b) The function g(z) = sin % satisfies the Lipschitz condition because, because of the Mean Value

. 2) — sin © satisfi
2
Theorem. Indeed, for any a,z € R with a # x thereisac € (a,z) (or ¢ € (z,a) if z < a) such

ikx

The Fourier series for f(x)
e

that
x—a
This implies
g@)—gla)| _ |1 c|_1
I\ I | Zeos = | < =
' r—a 23| =2
and hence
|sm£—smf| |z —al.
2

2
|g(x)| also satisfies the Lipschitz condition we use the triangle inequality

To show that f(x) =
||a| — \b|| <l|a -0l
1
[f(z) = fa)l = [lg(@)] = Ig(a)l| < lg(z) — 9(a)| < S|z —al.
This is true for any a € R and therefore the Fourier series Sx f(a) converges to f(a)
VaeR: lim Snf(a) = f(a).
N — o0
(c) We may choose @ = 0 and conclude that since f(0) = |sin 2| = 0
N ik-0 N
. 1 e . 1
R By el L D
. . ﬁ — ﬁ, which

We can leave the result in this form, but we can also rewrite it by using

implies
Moo - 1 AR 1
:Zk2_,+zk2_4 Ti_zz]& 1_

5.4. The “plucked string” function. Let p be the 2m-periodic function that satis-
fies p(x) = x for x € [0, 7], and p(x) = 27 — x for x € [m, 27]

(a) Compute the Fourier series of o
(b) For which z € R does the Fourier series converge to p?

(c) What do you get if you set z = 0 in the Fourier expansion of p?



5.5. Solving ordinary differential equations with Fourier series.

(@) Let f : R — C be a 27-periodic function that is C'. Show that if ¢ = f’ then

g = ik fi.
(b) Let f : R — C be a 27-periodic function that is C2. Show that if g = f” then
gk = =k fr.

(c) Show that there exist numbers m; € C such that the following holds for any C?
2m-periodic function f : R — C: if f/ — 4f = g then fi, = mygp.

(d) Find the Fourier series of the 2m-periodic solution f : R — C of f(z) — 4f(z) =
sin(z) (0 < z < 2m).

(e) Find the Fourier series of the 27-periodic solution f : R — C of f"(z) — 4f(x) =
p(z) (0 < & < 27) where g is the “plucked string” function from problem 5.4.

5.6. Let f : [0,27] — R be Riemann integrable, and let f be the k™ Fourier
coefficient of f.

(a) Show that |fi,| < ||f]|ec for all k € Z.
(b) Show that limg_, 4~ fr = 0.

(c) Suppose that f is m times continuously differentiable. Show that | fk| < % for
all k # 0.

Solution.
@ el = | JZ7 F(@)e*da] < & (27 17(@)lde < [ fll
27

) fx = &= [77 flx)e **de = L [77 f(z) cos(kz)ds — 5= [ f(z)sin(kz)dz by Euler’s

27 JO 27 JO
formula. The Riemann-Lebesgue lemma implies that both integrals tend to zero as k — oo.

'

5.7. Let z : R — R be the 27-periodic “saw tooth function” given by z(z) =
for 0 < x < 27. Compute ||z||2 and the Fourier coefficients of z. Which identity do you
find by applying the Plancherel-Parseval identity?







CHAPTER 4

The Laplacian and where you will find it

1. Calculus of Variations in 1D

1.1. Example: Fermat’s principle. Suppose a region of space witha < z < bis
laminated vertically, and that the speed of light at each point is given by v(z) > 0 for
some positive C'*° function v. If the path of a light ray entering at = a and exiting at
x = b is the graph of a function f : [a,b] — R, then the time it takes the light to traverse

this path is
b b
/1 / 2
T[f] = ds — L@) dx

FERMAT’s principle says that if a light ray travels from A = (a,y,) to B = (b, y») along
the graph of y = f(x) then f minimizes the travel time T'[f]: this means that for any
other h : [a, b] — R with h(a) = y, and h(b) = y; one has T'[f] < T'[h].

Theorem. If f : [a,b] — R minimizes the travel time T[f] amongst all f : [a,b] —
R with f(a) = ya, f(b) = yp, and if f is C? then

d f/(-f) = orall > a
(16) dx{ @ 1+f’(:c)2}_0f Iz € [a,b].

This equation is called the Euler-Lagrange equation for the minimizer of the travel time

T[f].

Proofr. Suppose that a function f : [a,b] — R represents the fastest path from
(a, f(a)) to (b, f(b)). Then, for any function g : [a,b] — R and all ¢ € R we have

T[f +eg] = T(f],

and hence

d
&T[f + €g]

=0.
e=0

We compute this derivative as follows:

f+69 / \/ fm+€gz dl’

/ba 1+(fw+€gx) d
~J, Oe v(x) v
b gm(fm+59z) dz

o V1+(fo+egs)?v(@

29




Set ¢ = 0 and you find

d
&T[f + €g]

/b fo  dx
=0 Jo /AT @)

Finally, we integrate by parts,

b
_ . fl(x) B b . i f/(fll') dﬂ:
—o lg( >v(x) 1 +fl(x)2]x_a /a g )d:v {v(a:) 1 +f/($)2}

and use g(a) = g(b) = 0 to get

y o /@)
(17) %T[f—’_eg]‘e:o = /a g(x)% {U(x) 1+f’(z)2} dx

This equation is called the first variation of the travel time function 7.

d
%T[fﬂ%g]

Fermat’s principle says that if the graph of f is a possible light ray, then %T[ f+eg =0
ate =0, i.e.

b d f'(x) - — g(b) =
(18) —/a g(x)% {v(x) ) } dz for all g with g(a) = g(b) = 0.

Using Lemma 1.2 below, we conclude
dr | v(x)y/1+ f'(z)? '

1.2. Lemma. If h : [a,b] — R is a continuous function with the property that

QE.D.

b
/ h(z)g(x)dx =0
holds for all C*° functions g : [a,b] — R with g(a) = g(b) = 0, then h(x) = 0 for all
x € a,b].

2. The Euler-Lagrange equations

Let L : [a,b] x R x R — R be a C? function and consider the integral

b
def
T ™ [ L(e (@), £1@) d
The function L is called the Lagrangian of the integral J[f].

We will think of L = L(z, u, v) as a function of the three variables (z, u, v). For example,

if
L(z,u,v) = v/ 1+ 02

then
b
JIf] :/ V14 f(z)?de

is the length of the graph of f.



Similarly, the Lagrangian for which J[f] becomes the time-traveled in Fermat’s principle
is

(19) Lrermat (T, u,v) = —/1 4 v2.

1
v(z)
2.1. Theorem. Let L : [a,b] x R x R — R be a C function, and define the integral

J[u]:/ L(z,u(x),u (z))dz.

Ifu : [a,b] — Risa C? function that minimizes .J[u] amongst all C? functions u :
[a,b] — R with u(a) = ya, u(b) = ys, then u satisfies

d (0L oL
(20) . (&)(x,u(x),u’(x)o — %(x,u(x),u’(x)) =0.
This equation is called the Euler-Lagrange equation for the problem of minimizing J[u]
with prescribed boundary values u(a), u(b).

In general the Euler-Lagrange equation is a second order differential equation for the
unknown function v : [a,b] — R.

PrOOF. Let g : [a,b] — R be a C? function with g(a) = g(b) = 0. Then, because u
minimizes the integral J[u] we have J[u + eg] > J[u] for all € € R. It follows that

dJ[u + eg]

=0.
de

e=0

We now compute this derivative:

b
Wl _ 2 [ Lo ute) + eglo) @) + e () o
[/ Mot o)) + )
o Oe
b
= [ Gt a@ + G @) s

where (- ) = (z,u(x) + eg(z), v (x) + €g’(x)). If we set € = 0 then we get

dJ[u + eg]
de

b
— [ {5t @) 960 + Gt ula). @) - o)

Integrate by parts in the second term:

e=0

b

/a ' %(z, u(z), ' (2))g(z)de = L,)(x, u(z), u’(x))g’(x)} -
_ /ab % (gi(m,u(m),u'(l‘)o -g(x) dx

The boundary terms vanish because g(a) = ¢g(b) = 0. Therefore we have

/ab %(x’u(x),u’(:c))g(m)dﬂf _ /ab % <g{j(x,u(z),d(z))) -g(x)dx



and hence

dJu + eg]
de

" /:{gi(x,u(x),u’(x)) — %%(m,u(,@)7u'(az))}g($)d$

dJ[u+teg]
de

Our assumption that v minimizes J[u] implies that
function g : [a, b] — R with g(a) = ¢g(b) = 0. Thus

vanishes for any C?
0

/ab{?;(x,umu'(x)) - @), (@) g(a)ds =0

for all g with g(a) = g(b) = 0.

We have also assumed that « : [a, b] — R and the Lagrangian L : [a,b] x R x R — R are
both twice differentiable functions. This implies that

oL , d OL ,
5y (@ @), u'(@)) = = (@, u(2), u'(2))

is a continuous function of = € [a, b]. Using Lemma 1.2 again we conclude that

O o) @)~ LI g, ) = 0

forall z € [a, b]. Q.E.D.

2.2. What did we just prove? The theorem in the previous section tells that

(a) if there is a minimizer v for J|u], and
(b) if the minimizer is a C? function

then the minimizer u satisfies the Euler-Lagrange equation.

The same theorem does not claim any of the following statements:

(a) ifu : [a,b] — Ris C? and satisfies the Euler-Lagrange equation, then u is a minimizer
for J[u]

(b) every minimizer is C?

(c) there always is a minimizer for J[u] = fab L(z, u,u)dz, no matter what L is.

2.3. Solving the Euler-Lagrange equation. In general the Euler-Lagrange equa-
tion is a second order differential equation and finding solutions using calculus methods
may not be possible, but there are some special cases where the equation simplifies. One
of those is where L(z, u,v) does not depend on w ( as in the Fermat principle case, see
(19) and (16)). In that case the Euler-Lagrange equation

= (G =0

from which we immediately see that

oL, ., .
Gela@) =

for some constant C. Instead of a second order equation we now have a first order
equation which we may be able to solve.



3. Problems

3.1. The Euler-Lagrange equation. Find the Lagrangian, determine the Euler-
Lagrange equation (but don’t solve it) for each of the following minimization problems.
Be on the lookout for strange answers when you see “%”.

b
(a) J[u]:/ %u’(z)zd:c Solution.

b
(b) J[u] :/ {3u/(z)® + u(z)} dz  Solution.

L(z,u,v) = %1)2 +u
Lu(z,u,v) =1 = Ly(z,u(z),u'(x)) =1
Lo(z,u,v) =v = Ly(z,u(z),d(z)) = ()

EL-eqn: %(u'(az)) —1=0,ieu"(z)=1

1
(¢) Ju] = /0 {V1+u(x)?+u(x)} dz Solution.
L(z,u,v) = %\/14—1)2 +u

Ly(z,u,v) =1 = Ly(z,u(z),u'(x)) =1
Ly(z,u,v) = i = Ly(z,u(z),uv (z)) = \/W

. d u'(z) . d ' () B
EL-eqn: Ir <1+u/(w)2> —1=0, ie. I <1+u/(1:)2> =1

(d) J[u] = /b sin(u()) dx Solution.

L(z,u,v) = sin(v)
Lu(z,u,v) =0 = Ly(z,u(z),u'(x)) =0

Ly(x,u,v) = cos(v) = Ly(z,u(z),u’(x)) = cos(u'(z))

oa / a4 / _
EL-eqn: . (cosu/(z)) —0=0, ie. e (cosu'(z)) =0



b
(e)g% J[u]:/ u'(z)dz  Solution.

L(z,u,v) =v

d
EL-eqn: %(1) —0=0,ie.0=0

The Euler-Lagrange equation is trivial in this case, and is satisfied by every function w.

6 2 Ju = / bu(x)d:v Solution.

L(z,u,v) =v

Ly(z,u,v) =1 = Ly(z,u(z),u (z)) =1
Lyo(z,u,v) =0 = Ly(z,u(z),u'(x)) =0

EL-eqn: %(O) —1=0,ie.0=1

The Euler-Lagrange equation has no solutions.

3.2. Solve the Euler-Lagrange equations for each of the following minimization
problems:

b
(a) J[u] = / 11/(95)2 dz, u(a) = A, u(b) = B

2
¢
(b) J[u] = /0 {34/ (2)* + u(x)} dz, u(0) = u(€) = 0 (¢ > 01is a constant)

Solution. (a) From the previous problem we know that the Euler-Lagrange equationis u” (z) = 0.
The solutions to this equation are u(x) = Cix + C2 where C1, Cs are constants. The solution
that satisfies u(a) = A, u(b) = B is found by solving
Cia+Ca=A
Cib+Cy =B

B-A  _Ab-aB

b—a’ T b—a

}<:>C1:

so the unique solution to the Euler-Lagrange equations that satisfies the boundary conditions is

B—A Ab—aB
u(x) = P b —a

(b) We found in the problem 3.1 that the Euler-Lagrange equation is u” (x) = 1. The solutions to
this equation area

u(z) = 12° + Crz + Co

We want to find the solution that satisfies u(0) = 0, u(¢) = 0. The appropriate values of C1, C>

areC; =0,C2 = ,%g’ so that the only solution of the Euler-Lagrange equations that satisfy the
given boundary conditions is u(z) = 12° — 4z = —La (¢ — ).



3.3. A strange minimization puzzle. Consider the problem of finding a function
that minimizes J[u] = fab u’(2)dx among all functions v with u(a) = A, u(b) = B. The
Euler-Lagrange equation does not tell you very much (what does it say?).

What is the minimal value of J[u|?

Solution. We found in Problem 3.1 that the Euler-Lagrange equation is 0 = 0, which is satisfied
by every C? function u.

How can this be? The Fundamental Theorem of Calculus implies that for any C* function u :
[a,b] — R one has

Ju] = / o' (z)dz = u(b) — u(a).

If the boundary values are prescribed by u(a) = A, u(b) = B, then the value J[u] = B — A does
not depend on u, and therefore every u with u(a) = A,u(b) = B is a minimizer. The minimal
value of J[u] over all C? functions u : [a,b] — R with u(a) = A,u(b) = Bis B — Aand it is
attained by all such u.

3.4. Minimize length—area under the graph. Let / > 0 be some positive num-
ber. For any curve from (—/,0) to (¢,0) that is the graph of a function u : [—¢,/] — R

we consider
)
J[u] = /_é{\/l +u/(z)? —u(z)} da,

i.e. J[u] is the difference of the length of the graph of u and the area beneath the graph.

Note: this problem is a variation on Dido’s problem which appears in the story of the
founding of the city of Carthage in ~800BC'. Imagine that the x-axis is the lake shore,
and you have just been told that you can sell all the land you can enclose with a fence
starting and ending at the points (£¢,0) on the lake shore. The King will pay $1 per
square foot of area, but you have to spend $1 per foot of fence you make. Your expense
is the length of the fence minus the enclosed area. Which shape should the fence have to
minimize your loss (or maximize your gain)?

(a) In an attempt to find a function u with the lowest possible value of J[u], you could
compute the Euler-Lagrange equation, and then solve the resulting differential equa-
tion. What do you find?

(b) Suppose ¢ = 3 and consider for any M > 0 the function uy;(z) = M (¢*> —2?). Show
that limps_, oo J[upas] = —o0. (The inequality va? + b2 < |a| + |b| may be useful.)

(c) Let m € N be a positive integer and consider for any M > 0 the function ups(z) =
M(£*™ — x2™). For which ¢ > 1 is it true that limy/ 00 J[up] = —00? (The
inequality va? 4 b? < |a| + |b| may again be useful.)

ISee https://www.ams.org/journals/notices/201709/rnoti-p980.pdf or
google “Dido’s problem”


https://www.ams.org/journals/notices/201709/rnoti-p980.pdf

Solution.

(a) The Lagrangian is L(z,u,v) = v/1 4+ v? — u, so that the Euler-Lagrange equations are

/
d(_w@ ), i_,g
dx 1+ u/(x)?
Integrate once. Any solution to the Euler-Lagrange equations satisfies
!’
& = —x+ Cl
1+ u/(x)?

for some constant C1, and thus
—x+ C1

ey

Integrate again to get

u(z) = V1= (z = C1)? + .
Rewriting this as

(x = C1)* + (ula) — C2)* =1
we see that the graph of w is a circle with radius 1 and center (C1, Cb).

We are looking for a minimizer that satisfies u(£¢) = 0, i.e. one for which the graph of u contains
the points (£, 0). Since the graph of u is a part of a circle with radius 1, the distance between the
points (££, 0) cannot be more than 2.

It follows that when ¢ > 1 none of the solutions of the Euler-Lagrange equation satisfy the bound-
ary condition u(#£¢) = 0. In this case there is no minimizer that is also C*.

(b) Using the triangle inequality v/a? + b2 < |a| + |b| we find for any function uas

0 0
Jlun) = /72{\/1 + u)y ()% — unm () pdo < [2{1 + [uh ()| — une () fd

For uas(x) = M (€2 — %) we get
4
Jun] < 20+ [Z{2M|w| — M —2®)}de = 20+ 2M 0% — M =20 — M (0 - 3)

In our problem £ = 3 so J{un| < 6 — 18 M, which implies limas— o0 J[un] = —oo.

(c) We now have un(x) = M (€™ — 2°™) so that
¢
Tun] < / {1+ [y (2)] — unr (2) Vo
)
¢
=20+ M/ {Juhi (z)| — ure () }da
—t

¢
=20+ M/ {2m|z*™! — 02" 4 2*" Y da
—e

_ 2€ + M{2€27n _ 2£2m+1 + 2 627n+1}

2m+1
=20+ 2M ™ {1 — L+ 5150}

=20+ 2M™ {1 — 2mo 0y

If ¢ > 1then we can choose m so large that Q’ilf > 1. In that case we again get limas— o0 J[un] =

2m
—o0. In particular, there is no minimizer.



3.5. Does a minimizer exist? Let a > 0 be a real constant and consider the prob-
lem of minimizing

Ju) = /0 zu (x)? de, u(0) = u(1) = 0.

(a) Find the Euler-Lagrange equation for this problem.

(b) Suppose a = % and find the solution to the Euler-Lagrange equation with u(0) = 0,
u(1) = 1. Is the solution you find C? on the whole interval [0, 1]?

(c) Suppose a = 2. Show that there is no solution to the Euler-Lagrange equation with
u(0) =0,u(l) =1.

Solution. (a) The Lagrangian is L(x,u,v) = 2*v? so the Euler-Lagrange equation is
d o oa
E(Zm u'(z)) = 0.

The problem doesn’t ask you to solve the equation, but here is the solution anyway: Integrate to
find that any solution of the EL equation satisfies x*u’(x) = C; for some C; € R. Divide by z*
and integrate again and we see that if a # 1 then any solution of the EL equation satisfies

C1
1—a

u(z) = T+ Oy

for certain constants C, Cs. If a = 1 then any solution of the EL-equation is

u(z) = Cilnz + Cs.

(b) If a = 3 then the solutions to the EL equation are given by u(z) = 2C1/z + Ca. If u(0) = 0
then Cz = 0 so u(z) = 2C1/z. If in addition u(1) = 1, then C1 = 1, so the solution of the EL
equation that satisfies the boundary conditions is u(x) = /. This function is not differentiable
at z = 0, so it is certainly not C* on the whole interval [0, 1].

(c) If a = 2 then any solution to the EL equation is given by u(z) = —C12 ™" 4 C2. This function
is not defined at z = 0 unless C; = 0, so the only solutions that satisfy lim,_,o u(z) = 0 are
the ones with C1 = 0, i.e. u(z) = Cs. The condition u(0) = 0 then also requires C2 = 0, so
we conclude that the only solution of the EL equation that satisfies limy—0 u(z) = 0 is the zero
solution, u(z) = 0. This solution does not satisfy u(1) = 1, so there is no solution of the EL
equation that satisfies the boundary conditions.

3.6. Noether’s conserved quantity. Let u : [a,b] — R be a C? solution to the
Euler-Lagrange equation for the Lagrangian L(z, u, v). Assume that the Lagrangian does
not depend on z, i.e. L = L(u,v). Show that

d ’ 3L / /
v @ @) @) - L), @) | <o

This is a special case of a much more general result due to Emmy Noether relating symme-
tries of a variational problem with conserved quantities for their Euler-Lagrange equa-
tions.



4. Calculus of Variations in nD

4.1. Example — the area of a surface. Let C be a curve in R®. We consider the
problem of finding a two-dimensional surface S C R?® whose boundary is the curve C
and which has the smallest possible area of all such surfaces.

Instead of considering the most general case, we will assume that the surface S is the
graph of a function z = u(z,y) of two variables. The domain of this function is some
region R C R? in the plane. We will assume that

e R is an open subset of the plane,
e the boundary of the region is a “nice curve,” i.e. a circle, ellipse, rectangle, a
polygon, or a piecewise C! curve.

We write JR for the boundary curve.

In multivariable calculus one defines the area of the surface S to be

A[u}://ja\/mdA://sz\/lﬁ-(g;:L)?—i—(gZ)dedy

If we use polar coordinates on the domain R then the surface area is given by

1
A[u}:// \/1+u2 + —ug rdfdr.
R T

Both forms of A[u] are of the form

Iu] = // L(z,y,u,vy,vy) dedy
R

where L : R x R? is a function of five variables. For the area integral A in Cartesian
coordinates we should choose

L(xayvuavmavy) = \/ 1 +U% +v12; )

while for the area integral in polar coordinates we should choose

2
L(r,0,u,v,,vp) :T\/1+v£+v—g.
T

4.2. The Euler-Lagrange equation for multiple integrals. Let R C R" be an
open domain, and let L : R x R x R™ — R be a C' function. For any C' function
u : R — R we define

I[u] = // L (x,u(:c), %(sc), ce 887“(90)) day ...dx,
® n
A shorter way of writing this integral is to abbreviate

Vu(z) = (ug, (), ..., ug, ().

and
dr = dxq -+ -dx,.

With this notation we can write

Iu] = //RL(ac,u(x),Vu(x)) dx.



4.3. Definition. A C* function u : R — R with u = g on OR minimizes I[u] if for
every C'! function @ : R — R with % = u on OR one has I[u] > I[u].

4.4. Theorem. If L is C?, and if u : R — R is C? minimizes /[u] among all C?
functions with © = g on OR, then u satisfies the Euler-Lagrange equation

o o (oL, o (ory_or
0x1 \ Ovq Orp, \Ov, ) Ou’
Here the partial derivatives g—fi and 2£ are to be evaluated at (z, u(), ty, (2), . . . , Us, (2)).

4.5. Example: the Laplace equation and the Dirichlet integral. The Laplace
equation is the partial differential equation

def 0?u 0%u
(22) Au:O,WhereAuzaix%_F..._i_@.

The expression Au is called the Laplacian of the function v :  — R. Solutions of the
Laplace equation are called harmonic functions.

Dirichlet introduced the Dirichlet integral
1 2
Dlu) == [ |Vu(z)|*dzy---dzy
2 Jx

in which

au/axl

2 2
Vu = : and ||Vu? = Ou bt Ou
; 8:171 3In
ou/0xy,

are the gradient of the function u : R — R and its squared length.

Dirichlet observed that Laplace’s equation is the Euler-Lagrange equation for the Dirich-
let integral. To verify this we observe that D[u] = [[, L(x,u,ug,, ..., Uz, ) dzy - - - dy,
for the Lagrangian

L(z,u,v1,...,0,) = %{U%"'""FU?L}-

We compute the associated Euler-Lagrange equations:

oL oL

%(:v,u,vl,...,vn)zoand Tw(x,u,vl,...,vn):vk
U, ou,
= Euler-L : Lo =0
uler-Lagrange 92, + + i
0%u 0%u



4.6. Example: the Minimal Surface Equation. Suppose n = 2. If the graph of u
minimizes the area Aful, then the Lagrangian is

L(z,u, vz, vy) = (/1 + 03 + 02

oL oL oL

0 oL Vs oL _ Y%
ou ’ Ovy, 24 .2 ov 24 .2
1+vg + vy Y 14+ vg + vy

The Euler-Lagrange equation for minimizers of the area integral A[u] is therefore

so that

0 Ug 0 Uy

ol e o Tl T s
z 1+u§+u§ Y 1+ufc+u§

This equation is related to the Laplace equation if one considers functions u whose partial
derivatives are much smaller than 1. Namely, if we assume that |u,|, |u,| < 1, then
1+u?+ ui ~ 1 and thus one would expect solutions to (23) to satisfy

()5 ()

Ugg + Uyy = 0.

(23) =0.

ie.

4.7. Proof of Theorem 4.4. For simplicity we assume n = 2. The general case can
be proved in much the same way.

Let h : R — R be a C? function with h = 0 on OR. Then I[u + eh] > I[u] for alle € R.
It follows that

dIfu + eh]
e =0.
de £=0
To compute the derivative of I[u+ eh| with respect to e we use V(u+¢eh) = Vu+eVh:
dIfu+ch]
de

= % //RL(x,u(x) + eh(z), Vu(z) + eVh(z)) da
= // gl,(m, u(z) + eh(z), Vu(z) + eVh(z)) dz
%3

oL oL  Oh oL  0Oh

where 8%, 9L ‘and 2L are evaluated at (z,u(z) + ch(z), Vu(z) + eVh(z)). We now
integrate by parts using the product rule

oL o _ o (oL N o (oL,
v, Oz Oz vy, Oxj \ Ovg, ’

as well as Green’s theorem

dIfu+ch] 8L 9 (9L 8 (0L
de _//y{au axl(avm) axn(auxn)}h(x)d“’“

OR 8’011 " 5‘1;%




in whichn = n,,,...,n;, ) is the outward unit normal to OR. Since h = 0 on IR the
last integral vanishes and we find

dIu+ah aL o /oL
// {8u_8x1 8%)_..._m(a%n)}h(x)dx.

Keeping in mind that 2%, etc., are all evaluated at (z, y, u(z) +eh(z), Vu(z) +Vh(z)),

we set ¢ = 0 and find
8L 0 oL
// {au - avzl) . amn(avzn)}h(m)dax.

(24) dl [u + ehl
where 2L, etc., are now evaluated at (z, u(z), Vu(z)).

Since w minimizes [[u] we have shown that

0 oL 0 oL
) // {811_6331 avxl)_“._8xn<6vwn>}h(x)dx_0
for all C? functions h : R — R with h = 0 on OR.

Finally, the fact that L : R x R x R® — Ris C? and u : R — R also is C? implies

oL 9. (LL) 9 (LL)

Ou  0x1 \Ovy, 0xp N0V,
is a continuous function on R. It then follows from condition (25) that u satisfies equa-
tion (21). QE.D.

5. Convexity

5.1. Definitions. A subset C' C V of a real vector space V is called convex if the
line segment connecting any two points in C' is contained in C, i.e. if for all x,y € C' and
all# € (0,1) one has (1 — )z + 6y € C.

If C' C V is a convex set then a function f : C' — V is convex if for all z,y € C and all
6 € (0,1) one has

F(L=0)z+0y) < (1—-0)f(z)+0f(y).

The function f is said to be strictly convex if

F(A=0)z+0y) < (1-0)f(2) +0f(y).
holds for all z,y € C'and 6 € (0,1).

5.2. Calculus Theorems on Convexity.

(@ If f : (a,b) — R is twice differentiable and and convex then f”(z) > 0 for all
€ (a,b).

(b) If f : (a,b) — R is twice differentiable and if f”/(z) > 0 for all x € (a, b), then f is
convex.

(¢) If f : (a,b) — R is twice differentiable and if f”(x) > 0 for all z € (a,b), then f is
strictly convex.

(d) Let R C R™ be a convex open set. If f : R — R is twice differentiable and if
D?f(z) > 0,ie. if D?f(x) is positive semi-definite for all # € R, then f is convex.

(e) If f : R — R is twice differentiable and if D?f(z) > 0, i.e. if D?f(z) is positive
definite for all x € R, then f is strictly convex.



In the last two statements D? f(z) is the Hessian matrix of f, which, by definition, con-
sists of all second order partial derivatives of f:

foiz (@) faiz, (@)
D*f(x) = : :

The Hessian is a symmetric matrix. By definition the matrix D?f(x) is positive semi-
definite if for every vector h € R™ one has

(h, D*f(z) - h) > 0.
It is positive definite if
(h, D*f(z)h) > 0forall h € R" h # 0.
In practice one can see if D? f(x) satisfies this condition by verifying

2
d?f(z + 6h) -0
d6? 0=0 —
ie. regard g(0) = f(x + 0h) as a function of 6 and compute its second derivative.

5.3. Example. The function f(x) = |z| is convex, due to the triangle inequality.
Namely, forallz € Rand 6 € (0,1):

[(1 =)z + 0y| <[(1 = 0O)z[ +[0y| = (1 = O)|z| + Olyl.
5.4. Theorem about Convex Lagrangians. Let L : R x R" — R be a C? function,

and assume that for each 2 € R the function v — L(x,v) is a strictly convex function
from R™ to R, i.e. assume that for all v, o € R™ with v # ¥, and for all § € (0, 1) one has

L(z,(1—0)v+6v) < (1 —0)L(x,v) + 0L(x,v).
Let g : OR — R be a given function. Then the function I : C*(R) — R defined by

1] = //j2 L(z, Vu()) dz

has at most one C'! minimizer u : R — R with u = g on R.
(We again abbreviate )
ProoF. Suppose u, % : R — R both are minimizers with u = 4 = g on OR. This

means that for every C'! function v : R — R with v = g on R one has I[v] > I[u] and
I[v] > Ila). In particular, we have I[u] > I[a] and I[a] > I[u], i.e. we have I[u] = I[u].

Choose a number 6 € (0,1) (e.g. = 1), and consider the function w(z) = (1—6)u(z)+
Ou(x). Since u is a minimizer for I we have

Iu] < Iw] = //32 L(z,Vw(x)) dz
- //RL(x,(l —0)Vu(x) + 0Va(r)) da

Convexity of L implies

26)  L(z,(1—0)Vu(z)+ 0Vau(z)) < (1 —0)L(z, Vu(z)) + 0L (z, Vi(z))



Thus we have

//R 1— (z, Vu(z)) +9L($,Vﬂ(x))} dx

(1—9// z, Vu(z d:v—l—@// (z, Vu(z

= (1—-0)I[u] + 6I[u] (recall I'[u
= I[u).

This shows that the inequalities above are actually equalities, and, in particular, the equal-
ity in (26) is an equality for all z € R. Since L(z,v) is a strictly convex function of
v € R", we conclude that Vu(z) = Viu(z) holds for all x € R, i.e. the difference func-
tion u(z) —u(x) is constant. Since u— % = 0 on IR, we have proved that u(z) —a(z) = 0
for all z € R, i.e. w and @ are the same function. QE.D.

5.5. A sufficient condition for a function to be a minimizer. If L : R x R"
is a convex function of v and if u : R — R is a C? function that satisfies the Euler—
Lagrange equation, then for any other C? function @ : R — R with @ = u on OR one
has I'[a] > Ifu).

Proor. Let h = % — u and consider the function
g(t) = I[u +th).
We first show that g is a convex function, and then we show ¢'(0) = 0.
The function g is convex: let to,t; € [0,1] and 6 € (0, 1) be given. Then

g((1 = 0)to + 6t1) = Ifu+ ((1 — 0)to + 6t1)h)]
I( 9)( +t0h)+9(u+t1h)]

// )V (u+ toh) + 0V (u+ t1h)) do

1— 9// :EVu—i-toh d:c—i—H// xVu—i—tlh))

(
( 9) (to) +09(t1).

IN

The derivative att = 0: In the derivation of the Euler-Lagrange equation we found

iy Al [u+th] __/ i@i 0 0L
g'(0) = dt ‘t:O B % | 0x1 Ovq Tt o dz,, Ov,, du

The Euler-Lagrange equation states that the integrand in this integral vanishes, which
implies ¢'(0) = 0.

We conclude by observing that a convex function g : [0, 1] — R with ¢’(0) = 0 satisfies
g(t) > g(0) for all ¢t € [0,1] and hence I'[a] = g(1) > g(0) = I[ul. Q.ED.



6. Problems

6.1. In this problem we let f,g : C' — R be convex functions defined on a convex
subset C' C V of some real vector space V. Prove or give a counter example :

(a) f+ gisconvex

(b) fgis convex

(c) f — gisconvex

(d) h(z) = ¢(f(z)) is convex, if ¢ : R — R is a convex function
(e) h(z) = max{f(x),g(x)} is a convex function

(f) h(x) = min{f(z), g(z)} is a convex function

Solution. (a) Forany z,y € C' and 0 € (0, 1) it follows from convexity of f and g that

F((L=0)2+8y) < (1—6)f(x) + 6f(y), and g((1 — O)z + by) < (1 — )g(x) + Og(y)-

Hence

(f+9)((1=0)z+0y) = f((1—0)z+0y) +g((1 —0)z + by)
S(A=0)f(z)+0f(y)+ (1 —-0)g(x)+0g(y)
=1 -0)(f+g)(x)+0(f+9)(v)

Therefore f + g is convex.

(b)If C =V =Rand f(x) = —x, g(x) = =, then f and g are convex, but (fg)(z) = —z? is not

convex.

(c) Againlet C = V = R. If f(x) = 0 and g(z) = 2° then f and g are convex, but (f — g)(z) =

—2% is not convex.

(d) This is not true in general. For example, if C = V = Rand if ¢(z) = —x, f(x) = 22, then
h(z) = ¢(f(x)) = —x? is not convex.

However, if ¢ is convex and also non decreasing (Vz < y : ¢(z) < ¢(y)), then h(z) = ¢(f(x)) is
convex. Namely, for all z,y € C and 6 € R one has

F(A=0)z+0y) < (1-0)f(z) +0f(y)
= ¢(f(1—0)z+0y)) <o((1—0)f(z)+0f(y)) because ¢ is nondecreasing

(
<
< (1—0)p(f(z)) +06(f(y)) because ¢ is convex

(e) max{f, g} is convex

(f) min{ f, g} does not have to be convex. For example, if C =V =R and f(z) = z, g(x) = —u,
then h(z) = min{f(x), g(z)} = —|z| is not convex.

6.2. In this problem let V' be a real vector space and let = +— ||z|| be a norm on V.
See §3.4 for the properties of a norm.

(a) Use the triangle inequality to show that f(x) = |z| is a convex function.

(b) Show that f : V' — R defined by f(x) = ||z|| is a convex function.

(c) Show that f : V' — R defined by f(x) = ||z||™ is a convex function for any m > 1.
(Hint: consider part (d) of Problem 6.1.)

(d) Show that h(x) = /1 + ||=||? is a convex function.



Solution. (a) forall z,y € R and 6 € (0,1) we have |(1 — 0)z + 0y| < |(1 — O)z| + |0y| =
(1 —0)|z| + 0|y| because 6,1 — 6 > 0.

(b)forallz,y € Vand 6 € (0,1) we have ||(1—0)x+0y| < |[(1—0)z|| + ||0y| = (1 —0)|=|] +
0|ly|| because 8,1 — 6 > 0.

(c) By computing its first and second derivatives we can verify that the function ¢ : [0,00) — R
given by ¢(x) = z™ is increasing and convex if m > 1. Since the norm z € V — ||z is a convex
function, it follows that f(z) = ||z||™ also is convex.

(d) By computing the second derivative of ¢(x) = +/1 + 22 we see that ¢ : [0,00) — R is
increasing and convex. Since the norm z € V — ||z|| is convex it follows that f(x) = /1 + ||z]|?
also is convex.

6.3. Let V = C'(R) be the real vector space of all C* functions defined on R. For
any given function g : 9R — R on the boundary of R we consider the set
Vo={u eV :u=gondR},

i.e. the set of all u € V that have g as boundary value. Show that V} is a convex subset
of V.

6.4. Minimal surface in polar coordinates. If a surface is the graph of a function
given in polar coordinates by z = v(r, 6), then the area of its graph is given by

Afv] = // ry/1+v2 4+ r=20v} dr df
®

which one can also write as

Afv] = // \/ T2+ 202 + v} drdb.
R

(a) Find the Euler-Lagrange equation for minmizers of the integral A[u]
(b) Suppose the function v does not depend on , i.e. suppose v(r,8) = F(6) for some
C? function F' : R — R. What is the function F'?

Solution. (a) The EL equation is

0 r2u, 0 Vo
gl ) (%) —o
or \ \/r2 + r2v2 + v2 90 \ \/r? +r202 + v2

(b) If v(r,0) = F(0) is a solution of the EL equation, then v,, = 0, vy = F’(#), and thus F is a
q

solution of
1o} F'(9)
|l —= | =0
06 72 +F’(9)2

This implies that there is a function G(r) such that
O 6
r2 4+ F'(0)?
for all r, 0. Solving for F'(0) we get
rG(r)
1—G(r)?
Here the right hand side does not depend on r, so there is a constant C' € R such that for all »
rG(r)
1—G(r)?

F'(0) =



which implies

v(r,0) = F(8) = C6.
We have shown that if there is a solution of the form v(r,8) = F(0), then is must be given by
v = C40 for some constant C. By direct substitution in the EL-equation we verify that v = C0 is
indeed always a solution to the EL-equation.

The resulting surface (graph of v(r,8) = C8 in cylindrical coordinates) is known as the helicoid.
(Google “helicoid” for images.)

6.5. A nonlinear differential equation.

(a) Find the Euler-Lagrange equation for the minimizers of

Iu] = /0 {%u’(m)2 + ze"™®} dy

(b) Show that for all z > 0 L(x,u,v) = %112 + xe is a strictly convex function of
(u,v) € R2.

(c) Show there is at most one C? function u : [0,1] — R that satisfies the ordinary
differential equation u” (z) = xe*(®) (for 0 < x < 1), and for which u(0) = u(1) = 0.

Solution. (a) The EL-equation is an ordinary differential equation:

o (z) + ze"™® = 0.

(b) We compute the Hessian matrix of the function (u,v) — L(x,u,v), treating = as a constant:
since Lyy = ze", Lyy = Lyyw = 0, and Ly, = 1 we have

2 _ fze" 0
D L(z,u,v) = ( 0 1)

The eigenvalues of this matrix are ze" and 1, both of which are positive for all x > 0, so the matrix
is positive definite. It follows that L(x, u, v) is a strictly convex function of (u,v).

Alternative argument: For any h, k € R we consider the function ¢(t) = L(x,u + th,v + tk)
and show that it is strictly convex by computing its second derivative with respect to ¢ at ¢ = 0.
We find

d u 3
¢/(t) — &(%(’U +tk)2 + ze +t/)
= (v+th)k + ze"T"h
and thus
¢"(t) = k* + ze" " = ¢"(0) = k® + we"h’.

If x > 0and if (h,k) # (0,0) then we see that ¢ (0) > 0, which implies that L(z, u,v) is a
strictly convex function of (u, v).
(c) Any G2 solution of the EL-equation is a minimizer of I[u] (this was shown in section 5.5). If
there are two C? solutions u, % then they are both minimizers, but since L(z,u,v) is a strictly

convex function of (u,v) it follows from section 5.4 that u = 4. Thus there cannot be more than
one solution to the EL-equation that satisfies the boundary conditions u(0) = u(1) = 0.



CHAPTER 5

Analyzing Laplace’s equation

1. Laplace’s equation on a disc

If the domain R is the unit disc, i.e.
R={(,y) | 2> +y* <1}
then there is an explicit representation of the solution of
Au=0onR, u=gondR

where g : OR — R is a prescribed continuous function on the boundary. This explicit
solution is given in polar coordinates by

T

(27) u(r,0) = i P(r,0 — ¢)g(¢) do,
where
(28) Py =L 1"

271 —2rcosf +r2’

In this section we prove that w is a harmonic function that equals g on the boundary,
assuming only that g is continuous.

1.1. Laplace’s equation in Polar Coordinates. To any point (z,y) € R we can
associate polar coordinates r, § that are related to z, y by

xr=rcosf, y=rsind.
If we have a function f : R — C then its representation in polar coordinate is the function
(29) g(r,0) = f(rcosf,rsinb).
The function ¢ is defined for 0 < r < 1 and all § € R. It is 27 periodic in 6.

Conversely, if we have a function ¢ : [0,1) x R — C with g(r, 0 + 27) = g(r, ) for all
7,0 then there is a function f : R — C with f(r cos8,rsinf) = g(r,0).

If g(r, 0) is the representation of f : R — C in polar coordinates, so that they are related
by (29), then

1 1
(30) fa::p + fuy = grr + ;gr + ﬁg%~

To verify this one differentiates the relation (29) twice with respect to r and twice with
respect to 0, and substitutes the resulting expressions for g,,, g, gos in (30).
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1.2. Lemma. For all r € [0, 1) the Poisson kernel satisfies

31 0 \n| in6
G Pr, 2#2

The series converges uniformly for 0 < r < 1 — ¢§ for any 6 > 0.

Proor. We write
2w P(r,0) Zr‘" "‘9—1—1—1—27‘" ind

If » < 1 — 0 then the terms in the second series are bounded by
[ret™| = ¢ < (1 —6)".
The series Y 7°(1— &)™ is a geometric series, which converges, with Y2 7°(1—6)" = 152,

Hence the Weierstrass M-test implies that Y, 7"¢™’ converges uniformly for r < 1—4.
Similar arguments apply to the first sum.

We compute the sum

27TP7’9 Zr_” l"9+1+zrn inf

_Z,r e zn9+l+zrn inf
= Z(re*w)n + 1+ Z(rew)
1

1
re~ ret?
1 —re—i Tt 1—retf
2r cos 0 + 212
1—2rcosf 4+ r?
1—7r2

T 1—2rcosf+ 12

=1+

QE.D.

1.3. Lemma. .
/ P(r,0)do =

Proor. The series (31) for P(r, §) converges uniformly, so we have

™ St 1 L
/ P(r,0)do = o / e™de.
™ —T

—T

The only nonzero term in the series is the one with n = 0, so we find

/_Tr P(r,0)do = o7 2 = 1.
QE.D.



1.4. Lemma. The function P(r,#) is harmonic, i.e. if u : R — R is the function on
the unit disc that satisfies

u(rcosf,rsinf) = P(r, )

then u is C? and ug, + Uyy = 0.

PrROOF. Since reT = z + iy we can write the Poisson kernel in Cartesian coordi-

nates as
P(r,0) =u(z,y) =1+ > (z+iy)" + Y (v —iy)",
1 1

ie u(z,y) = limy_ o0 un(z,y) where
N N

un(z,y) =1+ Z(x +iy)" + Z(m —ay)".

1

Each term (x 4 iy)™ is harmonic, because

Oz +iy)" _ - n—1 0*(z +iy)" _ . A2
~ o0r =n(z+iy)" ", B =n(n—1)(z +iy)
oz +iy)" . . \n—1 Pl +iy)" o . \n—2
i =in(x +1y)" ", 0y =i‘n(n — 1)(z +dy)
= —nn = 1)(x + iy)" "
implies

0?(x + iy)" N 0% (z + iy)" B
Ox? Oy N

and similarly for (z — iy)".

This implies that v is harmonic. to show that the limit v = limy_, o un is harmonic
we must show that the partial derivatives (ux )z, and (uy )y, converge uniformly for
|z +iy| < 1— 4 forany d > 0. Since (up ). is given by

82uN

N
Taa = 2o nln = Dla+iy) 4 n(n — 1) —iy)"

1

we can use the Weierstrass M-test: assume |(E + zy| <1 -9, then
[n(n = Dz +iy)" 2 + n(n = 1)(@ — iy)" "] < nn-1) (lo+iy"~2+a—iy|"2)

<2n(n—1)(1—6)"2 % M.

The series ZTO M, converges, and therefore we are allowed to differentiate the serie for
u term by term to get

% = Z nin —1)(z +iy)" "2 +n(n — 1)(z —iy)" %
1

Similarly one has
82u = . \n—2 s \n—2
@:—Zn(n—l)(az—i—zy) +n(n—1)(x—iy)" %,
1

which implies Uy + Uy, = 0 on R. Q.E.D.



1.5. Lemma. If g : R — Cis a continuous 27-periodic function, then the function
u : R — C given by (27) is harmonic.

Proor. The representation of u in polar coordinates is

™

v(r,0) = u(rcosf,rsinf) = / P(r,0 — ¢)g(¢) do.

Therefore the Laplacian of u in polar coordinates is given by
1 1 T (02P(r,0 — ng) 1 OP(r,0 —¢) 1 9*°P(r,0 — ¢)
Urr L Ur g Vo0 = /W{ ar Ty o TR e
Since the Poisson kernel is harmonic we have
0?P(r,0 — ¢) . 19P(r,0 — ¢) n i82P(r,9 —¢)
or? r or r2 002
which implies that v,.,, + %vr + T%vgg =0, i.e. u is harmonic. QE.D.

bo(oao

:O’

1.6. Lemma. If g : R — C is a continuous 27-periodic function, then
u(r,0) = / P(r,0 — 8)9(6) do

satisfies

The convergence is uniform in 6.

Proor. Let € > 0 be given.
Since fjﬂ P(r,¢)d¢ = 1 we have, substituting ¢ = 0 — ¢,

u(r,e)fg<9>:/ﬂ P(r,a—@{gw)fg(e)}dqb:/ﬂ (o) {9(0— ) —9(0)} do.

—T —T

For any § > 0 we split the integral in two parts:

fu(r,0)—g(8)] < / _ POPls0—)—g(0)| dot /<| P00 0)]

From the explicit expression for P(r, ¢) we see that0 < P(r, @) < P(r,0)if d < |p| < 7.
The function g is continuous and hence bounded, so we have

19(0 —¢) — g(0)] < 2[|g]loc forall 0, ¢,

and we can estimate the second integral by

L Pele =0 o) 4o < PC0)2Agle [ o

o< p<m

Since f6<|¢>|<7r d¢ =21 — 2§ < 27, we get

/ P(r,9)|g(0 — ¢) — g(6)] de < 47 P(r,6)||g |-
<|pl<m

It follows from lim, ~; P(r,d) = 0 that for our given € > 0 there is an r. € (0,1) such
that

P(r,0) < forall r € (r, 1).

87lglloo



Since g is continuous it is also uniformly continuous, and thus there exists a 6 > 0 such
that .
lg(0 — ) —g(8)] < 3 for all 4, p € R with || < 0.

It follows that we can bound the first integral by

€ €
/ P(r,¢)|g(0 — ¢) — g(0)] di < 5/ P(r,p)de < 5.
[pl<d |p|<d
Combine the bounds for the two integrals and we find that if r. < r < 1 we have

€
|u(r,0) = g(0)] < Arlglleo + 5 =€

_c
879l 2
forall 6 € R. QED.

2. Problems

rcosa)’

2.1. The Poisson kernel in cartesian coordinates. Consider the vector x = (T g

withr < 1,and let e; = (é) Show that
1— |lz|?

Prf) = ——mM—
0=z el

3. Minimizers of the Dirichlet integral and the need for generalized functions

One strategy to construct a solution u : R — R of
Au=0onR, u = gonJdR

for some given function g : 9R — R is to show find a function v : R — R that minimizes
the Dirichlet integral

Dlu] = %//m |Vu(z)|? dzy ... dz,

among all functions with u = g on OR. In this section we discuss the problem of finding
such a minimizer.

The following notation will be convenient:

1 def
C, =

{ulu:R—>RisC',u=gondR}.

3.1. Minimizing sequences. Since D[u] > 0 for any function u, there is a greatest
lower bound for the values D[u] can have if u = g on OR. We denote this number by
p. Y inf{D[u] | u e C}}.

If we can find a function withu € C ; for which D[u] = D_ then we are done, because
u is a minimizer. The definition of “infimum” implies that for each k& € N there is a C"*
function uy € C; for which

1
This implies
lim Dlug] = D_.
k—o00

Any sequence of functions with this property is called a minimizing sequence.



3.2. A minimizing sequence is a Cauchy sequence. Let u,v :€ C’; be functions
with
Dlu], Djv] < D_ +e.
Then

(32) // |Vu — Vo|?dzy ... dr, < 2.
R
If uj, € C} is a sequence of functions with D[uz] — D_ then
2
/ |Vuy, — V|2 dzy ... de, < =
R k
foralll >k > 1.

Proor. By expanding squares one finds
|Vu — Vo|? + |Vu + Vo|? = 2|Vu|? + 2|Vo|?
and thus

’Vu—Vv 2

Vu+ Vo 2_
5 —

5 (IVul* +Vo[?)

1
2

Integrate over R:

2
// Vu=Vv dxy ... // 1Vul® + Vo dw_//’Vu—i—Vv
R

u] + Dlv] — 2D [442]
< SD[ |+ Dlv] —2D_
< 2e.

QE.D.

3.3. Poincaré’s inequality. If R is a bounded domain then there is a constant C'x
such that for all C* functions u : R — R with u = 0 on OR one has

// u?dr < ng/ |Vul|? da.
R R

Proor.

implies

/ dac—/ / 2u(s dsdx—/ / 2u(s)e(s) da ds

3.4. A minimizing sequence is a Cauchy sequence in L. It follows from the
Poincaré inequality that

/ (uk — uE)zdx < CR/ |Vug — Vuz|2dx <
R R

QE.D.

2Cx
k

forall¢ > k > 1.



4. Generalized functions and Distributions

Let R C R"™ be an open set. Ordinary functions f : R — R are defined by specifying
the value f(x) at each point z € R. If the function f is continuous then it is completely
determined once one knows all the possible averages

Tylo] = /:R f(@)p(x) da.

The notion of distribution generalizes that of ordinary function by no longer requiring
that f(x) be defined for all x or even for any x, but instead by requiring that for any “test
function” ¢ the average T[¢] is defined.

The following definitions make these ideas more precise.

4.1. Test functions. A function ¢ : R — R is called a test function if

(1) ¢ is infinitely often differentiable, and
(2) there exists a compact set K C R with p(z) =0forallz € R\ K.

We define C2°(R) to be the set of all test functions on R.

4.2. Lemma. CS°(R) is a vector space. For every p € R and € > 0 with B.(p) C R
there is a test function ¢ with p(z) > 0 <= z € B.(p)

Proor. A possible choice for the function ¢ is

(e —p] def e/ g<t<1
cp(m)—q)( . )where@(t) = o £ 1

We omit the proof that ¢ is C*°. QE.D.

4.3. Distributions on R. A distribution of order m onRisalinearmapT : C°(R) —
R with the property that there exists a C' > 0 such that for all test functions ¢ one has

811++’L7”(p
(@z1)i1 - (Dap)in ()

(33) ITlg]] <C  sup  sup
i1+ Fin, <maxeR

4.4. Example — ordinary functions as distributions. Let f : R — R be a
bounded Riemann integrable function. Then

Tylp) /9z f(@)p(z) da

defines a distribution. Two different Riemann integrable functions f and g can end up
defining the same distribution, but if f, g : R — R are continuous at a point p € R, and

if Ty = T then f(p) = g(p).

4.5. Example — Dirac’s j-function. Let n = 1,and R = (—1,1). Then
3] = ¢(0)

defines a distribution on R. There is no Riemann integrable function f : (—1,1) —» R
such that § = T'.



4.6. The derivative of a distribution. By definition the partial derivative of a dis-
tribution 7" : C$°(R) — R with respect to z; is again a distribution. It is defined by

Oy ]
8@

Unlike ordinary functions, distributions can always be differentiated.

(34) DiTlp] & -1

This definition is consistent with the definition of derivatives for ordinary functions,
namely, if f : R - RisaC I function, then

DiTy = Tof/oa,-

4.7. Example — derivative of the Heaviside function. The Heaviside function

is defined by
1
Hiz) = x>0
0 =<0
It defines a distribution T on R by

Tul) & [ H@)etado = [ popts

The Heaviside function is constant on all of R except at x = 0 where it has a jump dis-
continuity. The derivative of H is therefore zero at all = # 0, and the Heaviside function
is not differentiable at x = 0. The derivative of the distribution Ty is well defined. To see
how it is defined let ¢ € C2°(R) by a test function. Thus ¢ : R — R is infinitely often
differentiable, and there is an L > 0 such that ¢(z) = 0 when |z| > L. Then

(DTw)|¢] = —Tul¢'] definition of DTy
:_/ o (2)dz def of Ty
0
L
= _/ ¢’ (z)dx p(z)=0forxz > L
0
= —(p(L) — ¢(0)) Fundamental Thm of calculus
= ¢(0).

By definition of Dirac’s d-function d[p] = ¢(0) for all test functions ¢. Hence (DT)[p] =
d[¢] for all test functions, which means that DTy and 6 are the same distribution: we
have shown that

DTy =4.

The derivative of the Heaviside function in the sense of distributions is Dirac’s J-function.

4.8. Example. Let R = (—1, 1) and consider the function

f(as):{e_z O<x<1

0 -1<z<0
Let T be the corresponding distribution. We show that
DTy + Ty =9,

where § is Dirac’s §-distribution (see § 4.5 above.)



To prove that the two distributions DT’y + T’y and § are equal we must show that
(DTy +Ty) ] = 0[] for all p € C°(R).

By definition
3] = #(0)
On the other hand we have
(DT +Ty)[e) = (DTy)[e) + (Ty) ] definition of DT + T
= —Tyl¢'] + T¢[] definition of DT}
=Ts[-¢" + ¢ Ty is linear
/ flz z) + o(x))dx def. of T}

The function f(z) vanishes for x < 0 and equals e~ for x > 0, so the integral is
(35) (DTy +Ty)[p / flz + ¢(z))dz = /01 e " (—¢ (@) + o(x))dz.
Now integrate by parts

/01 e "¢ (x)dx = [e I(p(x)}izo - /01 dz;xgo(a:)dx

— (1) - p(0) + / e~ p(z)dz

Recall that ¢ € CZ°(R) is a test function in the interval R = (—1, 1), so that ¢(1) = 0.
It follows that

/01 e "¢ (x)dr = —p(0) + /01 e o(x)dz.

Apply this to equation (35):

(DT} +1Ty) ] = / e (¢ (@) + pla))di = (0).

Thus (DT + Ty)[p] = d[¢] for all test functions ¢ € C2°(R), and we have shown that
DTy +T¢ =0.

4.9. Harmonic distributions. A C? function f : R — R is called harmonic if
Af = 0. Similarly a distribution T : C2°(R) — R is harmonic if
Di(D1T)+ -+ Dn(D,T)=0

5. Minimizing the Dirichlet integral

5.1. A minimizing sequence converges in the sense of distributions. Let u €
C} be a minimizing sequence of the Dirichlet integral D [uy], as in § 3.1. Then we have

shown in § 3.4 that uy, is a Cauchy sequence in the L? norm. If p € C2°(R) is a test
function then the sequence of numbers

ak:Auk(x)@(m) dz



is a Cauchy sequence of real numbers. Indeed, we have

lar, — ae| =

/9z (s () — we()) p() d
< /R Juk () — ()| o) dz

1/2 1/2
< (/ (ug — ’U,g)2d$) </ gp(x)zdx) (Cauchy-Schwarz <)
R R
20
< =Zllellz (by §3.4)

for all £ > k > 1. Every Cauchy sequence of real numbers converges (‘R is complete”),
so lim a, exists. We can therefore define

Toolp] = lim | ug(z)p(z)dx.
k—oo R
5.2. Lemma. T is a distribution.

To prove this one has to verify linearity, i.e. To[c101 + c202] = c1T00[p1] + c2Too[w2],
and the condition (33). This was done in lecture

5.3. Theorem. T, is a harmonic distribution.

A proof was given in lecture.

6. The maximum principle

Ifu: [a,b] — Risa C? function with " (x) > 0 for all z, then the graph of u is convex,
and u cannot attain it maximum in the interior of the interval [a, b], i.e. © must attain its
maximum at @ or b. The maximum principle generalizes this fact to solutions of certain
partial differential equations.

_6.1. Assumptions in this section. Let R C R" be a bounded open set, and let
¢ : R — R be a continuous function. We consider functions that satisfy the inequality

(36) Au(z) — c(z)u(z) >0
for all x € R. This includes all functions that satisfy the partial differential equation
Au(z) — c(z)u(z) =0 (z € R).

The maximum principle is useful because it allows one to compare solutions to the PDE
Au — ¢(x)u = 0 with other functions that satisfy the inequality (36).



6.2. Theorem (maximum principle). Assume c(z) > 0 forallz € R, and assume
also that u : R — R is a continuous function that is C2 on R. Let M be the maximum
value of u on the boundary of the domain, i.e.

M= .
max u(y)

If w satisfies (36), then u(x) < max{M,0} forall x € R.

A different formulation of the conclusion of this theorem is to say that u does not attain
an interior positive maximum.

A proof was given in lecture.

6.3. A special case of the maximum principle. Let v : R — R be a continuous
function that is C? in the interior R. If u satisfies Au(z) — c(z)u(z) > 0 on R, and if
u(z) < 0forall z € OR, then u(z) < 0 for all x € R. In other words, if u < 0 on the
boundary, then v < 0 on the whole domain.

This follows immediately from the maximum principle in § 6.2, because the assumption
that u < 0 on OR implies that M < 0.

6.4. An example. Let u : (0,00) — R be a solution of
d*u
da?

and assume that u(x) < 1 for all z > 0. Using the maximum principle we will find a
number 0 € (0, 1) and show that u(x) < 6 forall z > 1.

= (2+sinz)u

From here on abbreviate c¢(x) = 2 + sin x, and note that ¢(z) > 1 > O forall z € R.

In our proof we first let a be any number with @ > 1 and find a functionv : (a—1,a+1) —
R that satisfies
v —c(z)v <Oforallx € (a —1,a + 1)
and
via—1)=v(a+1)=1.
We try a function of the form v(z) = 1 — a + a(z — a)? with 0 < a < 1. Substituting
leads to

V() = e(z)v(z) = +2a — c(z) (1 — a + a(z — a)?)

)(
=2a — (1 - a)e(z) — ac(z)(z — a)? (use ¢(z) > 0)
<2a— (1 —a)c(z) (use c(z) > 1)
<2a—(1-a)
=3a— 1.
If we choose o = % then we have shown that
o) =3+ 3 (e a)?

satisfies v/ — ¢(z)v(xz) <Oon(a —l,a+1),andv(a £ 1) = 1.
Now that we have the function v we can apply the maximum principle to

w(z) = u(z) - v(z)



on the domain R = (a — 1,a + 1). The function w satisfies
w”(z) — c(z)w(z) = u’(z) — c(z)u(z) —{v"(z) — c(z)v(z)} >0

=0 <0

forallz € (a — 1,a + 1). On the boundary of the domain R = (a — 1, a + 1) we have
wlatl)=wu(a£l) —v(exl) =u(£l) —1<0,

because we are given that u(x) < 1 for all «.

The maximum principle 6.2 now implies that w(z) < Oforallz € (a — 1,a + 1). In
particular w(a) < 0, or,

2
u(a) <wv(a) = 3
The only assumption we made on the number a was a > 1, so we have shown that if

u : (0,00) — R is a solution to v” = (2 + sinz)u with u(z) < 1 for all z > 0, then
u(z) < 2 foralla > 1.



APPENDIX A

Analysis reference

1. Integrating and differentiating sequences and series
1.1. Fundamental Theorem of Calculus. If f : [a,b] — R is continuous, then

r@) | " 1o de

is a differentiable function, and

P = [ 19 de = 1io)

2. Switching and differentiating integrals

2.1. Switching integrals. If f : [a, b] X [¢, d] — R is a Riemann integrable function
of two variables, then

/ab/cdf(l‘,y) dydx:/cd/abf(x,y)dxdy

2.2. Integrals depending on a parameter. If f : [a,b] X (tg,t1) — R is continu-
ous, then the function F' : (tg,t;) — R given by

F(t)déf/bf(x,t) do

is continuous.

2.3. Differentiating the parameter in an integral. If f, % i [a, 0] % (to, t1) = R

are continuous, then
d [? bof
%/a flz,t) de = /a E(x,t) dx

b
F(t) :/ f(z,t) da.

Proor. Let

Choose T € (g, t1). Then
b
F(O) =P+ [ {7et) - fa.7)} do

b ta
:F(T)+/ /Ta—{(xm)dex.



Since Jf /0t is continuous we are allowed to switch the order of integration:

t b
F(t):F(T)—i—/T/ %(m,r)dwdr.

The Fundamental Theorem of Calculus now implies

dt// (x,7 dsz—/ 5 x,t) d.

QE.D.

3. Norms and inner products

3.1. Definition (real inner product). A real inner product on a real vector space
V is a real valued function on V' x V, usually written as (z,y) or (z,y) such that the
following properties hold for all z,y, z € V and a € R:

3.2. Definition (complex inner product). A complex inner product on a complex
vector space V' is a complex valued function on V' x V, usually written as (z, y) or (z, y)
such that the following properties hold for all z,y,z € V and a € C:

3.3. Example: inner product on a function space. Let C, be the space of 27-
periodic continuous functions f : R — C. Then

def 1 27

(o) ¥ 5 | reatar

defines an inner product on Cper.

3.4. Definition (norm). If V' is a real or complex vector space then a function z €
V = ||z|| € Ris called a norm on V' if

o ||z|| >0forallz € V withz # 0
o ||az| = |a|||z| forallz € Vanda € Rora € C
e ||z +yl| < |||+ |ly| (the triangle inequality)

3.5. Definition (distance between vectors). The distance between two vectors

x,y € V in a normed vector space is d(z, y) ef llz — vl



3.6. Theorem about the norm in an inner product space. If V' is a real or com-
plex inner product space with inner product {x, y). Then

]l = v/ (2, ).

is anorm on V. In addition to the norm properties (see definition 3.4) it also satisfies the
Cauchy-Schwarz inequality

[z, 9) < [l=[l [yl

forallz,y € V.

Note that (x, ) is never negative, so the square root is always defined.

3.7. Definition (orthogonality). Two vectors z,y € V are said to be orthogonal
if (z,y) = 0. Notation: L y means z,y are orthogonal.

In particular, the zero vector is orthogonal to every other vector, because (x,0) = 0 for
allz € V.

4. Convergence of sequences and series of functions

4.1. Uniform convergence. Let V' be the vector space of bounded functions from
some set X to the real numbers:

V={f:X—>R|sup|f(z) <oo}.
zeX

Then

1£loe & sup |£(2)]
reX

defines a norm on V, often called the “sup—norm”. By definition a sequence of functions

fn + X — R converges uniformly to a function f : X — Riflim,, o || fr. — f]lcc = 0.

4.2. Theorem — Weierstrass M-test. Let f,, : [a,b] — C be a sequence of func-
tions for which we can find real numbers M,, > 0 such that

o |fn(z)] < M, forall z € [a,b], and
e > M, < .

Then the series >~ ; f,(x) converges uniformly on [a, b).

Proor. Let s(z) = > 7, fu(z) and sy (z) = ZnN:1 fn(x). We have to show that
sn(x) converges uniformly to s(x).



Let € > 0 be given. For any x € [a,b] and any N € N we have

|s(x) = sn ()]

!
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n=1
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oo

n=N+1
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n=N+1
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Since the series Y . M, is known to converge, an N, € N exists for which ZZO:NS M, <e.
It then follows that for all N > N, and all = € [a, b] one has

|s(z) — sn(z)] < e.
This implies sy (z) — s(z) uniformly. Q.E.D.
Example 1. The series Y -, SH;L# converges uniformly for all z € R because the n'!
term is bounded by |512#| < M,, with M,, = %, and the series ZTO # converges. Each
term is continuous and the series converges uniformly. Therefore the function f(z) =

1 S”:L# is a continuous function.

Example 2. The sawtooth function is defined by f(z) = 5% (0 < x < 27) and f(z +
27) = f(x) for all x € R. Its Fourier series is

Fa) = Z sinn:z:'

n

n=1
The best upper bound we can find for the n*® term is M,, = % The series ), M, =

>on % does not converge, so we cannot apply the Weierstrass M-test. The sawtooth func-
tion f is discontinuous at x = 2kn (k € Z), so the series cannot converge uniformly.

4.3. The integral and derivative of a limit.
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